WorldWideScience

Sample records for voltage polarity effects

  1. Simulation of subnanosecond streamers in atmospheric-pressure air: Effects of polarity of applied voltage pulse

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, N. Yu.; Naidis, G. V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2016-08-15

    Results of simulation of subnanosecond streamer propagation in corona gap configuration, obtained in the framework of 2D fluid model, are presented. Effects related with the polarity of a voltage pulse applied to the stressed electrode are discussed. It is argued that these effects (dependence of the discharge current and propagation velocity on the polarity of applied voltage) observed in experiments can be attributed to the difference in initial (preceding the streamer formation) distributions of charged species inside the gap. This difference can be caused by preionization (at negative polarity) of the gas inside the discharge gap by runaway electrons. Calculated streamers have large widths (up to 1 cm) and move with velocities in the range of 10{sup 9}–10{sup 10 }cm s{sup −1}, similar to experimental data.

  2. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  3. Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2013-06-01

    Full Text Available Purpose: Polarization voltage of the lithium-ion battery is an important parameter that has direct influence on battery performance. The paper aims to analyze the impedance characteristics of the lithium-ion battery based on EIS data. Design/methodology/approach: The effects of currents, initial SOC of the battery on charge polarization voltage are investigated, which is approximately linear function of charge current. The change of charge polarization voltage is also analyzed with the gradient analytical method in the SOC domain. The charge polarization model with two RC networks is presented, and parts of model parameters like Ohmic resistance and charge transfer impedance are estimated by both EIS method and battery constant current testing method. Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery total polarization compared to charge transfer impedance. Practical implications: Experimental results demonstrate the efficacy of the model with the proposed identification method, which provides the foundation for battery charging optimization. Originality/value: The paper analyzed the impedance characteristics of the lithium-ion battery based on EIS data, presented a charge polarization model with two RC networks, and estimated parameters like Ohmic resistance and charge transfer impedance.

  4. Polarity effects and apparent ion recombination in microionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Hooten, Brian D. [Standard Imaging, Middleton, Wisconsin 53562 (United States); Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-05-15

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurements were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered

  5. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  6. Effect of driving voltage polarity on dynamic response characteristics of electrowetting liquid lens

    Science.gov (United States)

    Na, Xie; Ning, Zhang; Rong-Qing, Xu

    2018-05-01

    A test device is developed for studying the dynamic process of an electrowetting liquid lens. By analyzing the light signals through the liquid lens, the dynamical properties of the lens are investigated. In our experiment, three types of pulse, i.e., sine, bipolar pulse, and single pulse signals, are employed to drive the liquid lens, and the dynamic characteristics of the lens are subsequently analyzed. The results show that the positive and negative polarities of the driving voltage can cause a significant difference in the response of the liquid lens; meanwhile, the lens’s response to the negative polarity of the driving voltage is clearer. We use the theory of charge restraint to explain this phenomenon, and it is concluded that the negative ions are more easily restrained by a dielectric layer. This work gives direct guidance for practical applications based on an electrowetting liquid lens.

  7. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  8. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  9. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures

    Directory of Open Access Journals (Sweden)

    Yongqi Dong

    2017-05-01

    Full Text Available The effect of gate voltage polarity on the behavior of NdNiO3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (∼3% and pronounced lattice expansion (0.17% in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is provided for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.

  10. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-01

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  11. Abnormal polarity effect in nanosecond-pulse breakdown of SF6 and nitrogen

    International Nuclear Information System (INIS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Beloplotov, Dmitry S.; Yang, Wenjin; Lomaev, Mikhail I.; Zhou, Zhongsheng; Sorokin, Dmitry A.; Yan, Ping

    2014-01-01

    The breakdown of gas gaps in an inhomogeneous electric field at subnanosecond and nanosecond voltage pulse rise times are studied, and the famous polarity effect in point-to-plane gaps is investigated. It is shown that at a voltage pulse rise time of ∼0.5 ns, the inversion of polarity effect takes place not only in electronegative gases such as SF 6 , but also occurs in electropositive nitrogen. The inversion of polarity effect is related to a delay of electron emission from the plane cathode on arrival of the ionization wave front anode to the cathode. It is found that with a voltage pulse rise time of ∼0.5 ns, the inversion of polarity effect occurs at SF 6 and SF 6 –N 2 pressures of 0.25 MPa and lower, and with a voltage pulse rise time of 15 ns, at a SF 6 pressure lower than 0.12 MPa.

  12. Field and polarity dependence of time-to-resistance increase in Fe-O films studied by constant voltage stress method

    International Nuclear Information System (INIS)

    Eriguchi, Koji; Ohta, Hiroaki; Ono, Kouichi; Wei Zhiqiang; Takagi, Takeshi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe-O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (t r ) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. From a polarity-dependent resistance increase determined by a time-zero measurement, the voltage and polarity-dependent t r were discussed on the basis of field- and structure-enhanced thermochemical reaction mechanisms

  13. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.

    2000-01-01

    It is necessary to obtain precise values of signal currents for the measurement of exposure rates for gamma rays with cavity ionization chambers. Signal currents are usually expected to have the same absolute values for both polarities of applied voltages. In the case of cylindrical cavity ionization chambers, volume recombination loss of ion pairs depends on the polarity of the applied voltage. This is because the values of mobility are different for positive and negative ions. It was found, however, that values of signal currents from a cylindrical ionization chamber change slightly more with a negative than with a positive applied voltage, even after being corrected for volume recombination loss. Moreover, absolute values of saturation currents, which are obtained by extrapolation of correction of initial recombination and diffusion loss, were larger for the negative than for the positive applied voltage. It is known from an experiment with parallel plate ionization chambers that when negative voltage is applied to the repeller electrode, the saturated signal current decreases with an increase in the applied voltage. This is because secondary electrons are accelerated and the stopping power of air for these electrons decreases. When positive voltage is applied, the reverse is true. The effects of acceleration and deceleration of secondary electrons by the electric field thus seem to cause a tendency opposite to the experimental results on the signal currents from cylindrical ionization chambers. The experimental results for the cylindrical ionization chamber can be explained as follows. When negative voltage is applied, secondary electrons are attracted to the central (collecting) electrode. Consequently, the path length of the trajectories of these secondary electrons in the ionization volume increases and signal current increases. The energy gain from the electric field by secondary electrons which stop in the ionization chamber also contributes to the

  14. Influence of the parameters of supplying pulses and polarization voltage on the signal and shape of current characteristics of the electron capture detector

    International Nuclear Information System (INIS)

    Lasa, J.; Sliwka, I.; Drozdowicz, B.

    1989-01-01

    The paper contains results of measurements of current characteristics and of the signal for the constant concentration of freon F-11 of the ECD supplied with pulse voltage of changeable time of pulse duration t p , amplitude U 1 and the time of pulse repetition t r . In the course of measurements the detector worked at temperature 573 K with the additional constant polarization voltage. The polarization voltage has been observed to cause the effect of hypercoulometry. The presented mathematical analysis helps to determine the values of the coefficient of efficiency of electron capture p, the coefficient of electron loss k D , the coefficient of collecting of electric charges by the anode k' 3 and the coefficient of collecting of electric charges by the detector cathode k u . The coefficients are determined on the basis of experimental measurements. An attempt of physical interpretation of calculated values of these coefficients and their dependence on the parameters of the pulses supplying the detector has been presented. This interpretation requires the assumption that in some pulse periods t r the concentration of positive ions in the detector considerably exceeds concentration n 0 + = √a xα e /V, where a is an efficiency of the carrier gas ionization, α e is the coefficient of the electron-ion recombination and V is the detector volume. This statement helping to describe the effects observed in the electron capture polarized by voltage U a contradicts the recognized concept that the concentration of positive ions in the detector does not exceed the concentration n 0 + . The paper shows that the detector of the cylindrical construction, supplied with a pulse voltage can be used for coulometric measurements and the voltage polarizing the cathode can cause an effect of hypercoulometry. 33 figs., 9 refs. (author)

  15. High voltage processing of the SLC polarized electron gun

    International Nuclear Information System (INIS)

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  16. Polarization imprint effects on the photovoltaic effect in Pb(Zr,Ti)O3 thin films

    Science.gov (United States)

    Tan, Zhengwei; Tian, Junjiang; Fan, Zhen; Lu, Zengxing; Zhang, Luyong; Zheng, Dongfeng; Wang, Yadong; Chen, Deyang; Qin, Minghui; Zeng, Min; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2018-04-01

    The polarization imprint along with the photovoltaic (PV) effect has been studied in Pt/Pb(Zr0.3Ti0.7)O3/SrRuO3 ferroelectric capacitors. It is shown that the positive DC poling induces the imprint with a downward direction whereas the negative DC poling suppresses the imprint (i.e., rejuvenation). In the polarization up state, the imprinted capacitor exhibits degraded PV properties compared with the rejuvenated one. This may be because the imprint reduces the number of upward domains, thus lowering the driving force for the PV effect. In the polarization down state, however, the rejuvenated capacitor enters the imprinted state spontaneously. This rejuvenation-to-imprint transition can be further aggravated by applying positive voltages and ultraviolet illumination. It is proposed that the domain pinning/depinning, which are associated with the oxygen vacancies and trapped electrons modulated by polarization, voltage, and illumination, may be responsible for the polarization imprint and rejuvenation. Our study therefore sheds light on the correlation between the polarization imprint and the PV effect in the ferroelectrics and also provides some viable suggestions to address the imprint-induced degradation of PV performance.

  17. Effects of a low-voltage static electric field on energy metabolism in astrocytes.

    Science.gov (United States)

    Huang, R; Peng, L; Hertz, L

    1997-01-01

    Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of approximately 30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition.

  18. SU-E-T-623: Polarity Effects for Small Volume Ionization Chambers in Cobalt-60 Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Bhatnagar, J; Huq, M Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, PA (United States)

    2015-06-15

    Purpose: To investigate the polarity effects for small volume ionization chambers in {sup 60}Co gamma-ray beams using the Leksell Gamma Knife Perfexion. Methods: Measurements were made for 7 small volume ionization chambers (a PTW 31016, an Exradin A14, 2 Capintec PR0-5P, and 3 Exradin A16) using a PTW UNIDOSwebline Universal Dosemeter and an ELEKTA solid water phantom with proper inserts. For each ion chamber, the temperature/pressure corrected electric charge readings were obtained for 16 voltage values (±50V, ±100V, ±200V, ±300V, ±400V, ±500V, ±600V, ±700V). For each voltage, a five-minute leakage charge reading and a series of 2-minute readings were continuously taken during irradiation until 5 stable signals (less than 0.05% variation) were obtained. The average of the 5 reading was then used for the calculation of the polarity corrections at the voltage and for generating the saturation curves. Results: The polarity effects are more pronounced at high or low voltages than at the medium voltages for all chambers studied. The voltage dependence of the 3 Exradin A16 chambers is similar in shape. The polarity corrections for the Exradin A16 chambers changes rapidly from about 1 at 500V to about 0.98 at 700V. The polarity corrections for the 7 ion chambers at 300V are in the range from 0.9925 (for the PTW31016) to 1.0035 (for an Exradin A16). Conclusion: The polarity corrections for certain micro-chambers are large even at normal operating voltage.

  19. Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride-trifluoroethylene)/ZnO heterostructures

    International Nuclear Information System (INIS)

    Yamada, Hiroaki; Yoshimura, Takeshi; Fujimura, Norifumi

    2015-01-01

    The electrical properties of heterostructures composed of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO with different crystallographic polarities, i.e., O- and Zn-polar ZnO, were investigated. Distinct differences in the capacitance-voltage and polarization-voltage characteristics between the P(VDF-TrFE)/O- and Zn-polar ZnO were obtained in the depletion regions of ZnO. The band configurations were determined by X-ray photoelectron spectroscopy (XPS) using a synchrotron radiation beam to analyze the differences in the electrical properties of the P(VDF-TrFE)/O- and Zn-polar ZnO. The XPS spectra indicated that the valence band maximum of P(VDF-TrFE) is 2.9 and 2.7 eV higher than Zn- and O-polar ZnO, respectively. Thus, both structures have staggered band configurations with large valence band offsets, and the spontaneous polarization of ZnO is less effective on the band lineup. The electrical properties of the P(VDF-TrFE)/ZnO heterostructures are modulated through carrier generation because of the polarization-mediated interface charges and the staggered band alignments of the P(VDF-TrFE)/ZnO with a large valence band offset

  20. Influence of the polarity of the applied voltage on the reignition of a discharge below a dielectric layer in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Pechereau, François; Bourdon, Anne

    2014-01-01

    The dynamics of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer obstacle on the discharge path is investigated numerically for different applied voltages. Whatever the polarity of the voltage applied, first, a streamer discharge of the same polarity ignites at the point and propagates towards the dielectric layer. After the impact on the dielectric surface, the streamer discharge spreads along the upper dielectric surface and charges it positively or negatively depending on its polarity. On the bottom surface of the dielectric layer, charges with an opposite polarity are deposited. Surface charges on both faces of the dielectric layer are shown to have a significant influence on the discharge reignition for a negative applied voltage, but not for a positive one. Furthermore, it is shown that the dynamics of the discharge reignition below the dielectric layer depends on the polarity of the applied voltage at the point electrode. For a positive applied voltage, the reignited discharge is a positive ionization wave propagating towards the grounded plane. For a negative applied voltage, a double headed discharge is observed with positive and negative fronts propagating in opposite directions. Finally, the minimal value of the ionization integral to have a discharge reignition below the dielectric obstacle is found to be less for a negative applied voltage than for a positive one. (paper)

  1. Polarization and sidewall effects in a coal fired MHD channel - three-dimensional calculation

    International Nuclear Information System (INIS)

    Ishikawa, M.; Scott, M.H.; Wu, Y.C.L.

    1981-01-01

    The effects of slag polarization of electrodes and the sidewall configuration on generator performance are studied experimentally and analytically. An analysis of the voltage-current characteristics between two generator frames measured during the operation of the TP40-07 experiment is given, along with an examination of nonuniformities of interframe voltage. Experimental data show that the polarization effect reduces about 3% of the overall electrical performance of the 60 deg diagonal conducting channel used in the study. Analytically, the effect of polarization on the local current and potential distributions is examined by solving the three-dimensional electrical potential using a finite element method. A moderate increase in conductivity in the vicinity of the cathode-side frame is found to give a calculated leakage resistance which approximates the value derived experimentally. The polarization effect results in a large change in the potential and current distributions near the frame but has a small effect on the overall electrical performance. Alternate sidewall/electrode configurations are treated analytically

  2. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  3. Field and polarity dependence of time-to-resistance increase in Fe–O films studied by constant voltage stress method

    OpenAIRE

    Eriguchi, Koji; Wei, Zhiqiang; Takagi, Takeshi; Ohta, Hiroaki; Ono, Kouichi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe–O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (tr) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. Fro...

  4. Time scales of bias voltage effects in FE/MgO-based magnetic tunnel junctions with voltage-dependent perpendicular anisotropy

    International Nuclear Information System (INIS)

    Lytvynenko, Ia.M.; Hauet, T.; Montaigne, F.; Bibyk, V.V.; Andrieu, S.

    2015-01-01

    Interplay between voltage-induced magnetic anisotropy transition and voltage-induced atomic diffusion is studied in epitaxial V/Fe (0.7 nm)/ MgO/ Fe(5 nm)/Co/Au magnetic tunnel junction where thin Fe soft electrode has in-plane or out-of-plane anisotropy depending on the sign of the bias voltage. We investigate the origin of the slow resistance variation occurring when switching bias voltage in opposite polarity. We demonstrate that the time to reach resistance stability after voltage switching is reduced when increasing the voltage amplitude or the temperature. A single energy barrier of about 0.2 eV height is deduced from temperature dependence. Finally, we demonstrate that the resistance change is not correlated to a change in soft electrode anisotropy. This conclusion contrasts with observations recently reported on analogous systems. - Highlights: • Voltage-induced time dependence of resistance is studied in epitaxial Fe/MgO/Fe. • Resistance change is not related to the bottom Fe/MgO interface. • The effect is thermally activated with an energy barrier of the order of 0.2 eV height

  5. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    Science.gov (United States)

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  6. The recombination correction and the dependence of the response of plane parallel chambers on the polarizing voltage in pulsed electron and photon beams

    International Nuclear Information System (INIS)

    Roos, M.; Derikum, K.

    2000-01-01

    Based on an experimental investigation of the recombination effect in plane parallel chambers, a relation is deduced that allows the correction to be calculated from the electrode spacing and from the dose per pulse. It is shown that the uncertainties caused by the application of the Boag formula for volume recombination (recommended in the International Code of Practice TRS-381) amount to not more than about 0.1% for conventional beams. Calculated recombinations are compared with experimental results concerning the dependence of the response of various commercial plane parallel chambers on the polarizing voltage. Since it cannot be excluded that particular chambers collect a non-negligible amount of charge from regions outside the designated collecting volume or that the effective polarizing voltage is reduced by poor contacts, it seems advisable to experimentally check the chambers before use and before application of the analytical relations. (author)

  7. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen; Qin, Yong; Li, Cheng; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity

  8. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  9. The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes

    Science.gov (United States)

    Züfle, Simon; Altazin, Stéphane; Hofmann, Alexander; Jäger, Lars; Neukom, Martin T.; Schmidt, Tobias D.; Brütting, Wolfgang; Ruhstaller, Beat

    2017-05-01

    We demonstrate the application of the CELIV (charge carrier extraction by linearly increasing voltage) technique to bilayer organic light-emitting devices (OLEDs) in order to selectively determine the hole mobility in N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-diamine (α-NPD). In the CELIV technique, mobile charges in the active layer are extracted by applying a negative voltage ramp, leading to a peak superimposed to the measured displacement current whose temporal position is related to the charge carrier mobility. In fully operating devices, however, bipolar carrier transport and recombination complicate the analysis of CELIV transients as well as the assignment of the extracted mobility value to one charge carrier species. This has motivated a new approach of fabricating dedicated metal-insulator-semiconductor (MIS) devices, where the extraction current contains signatures of only one charge carrier type. In this work, we show that the MIS-CELIV concept can be employed in bilayer polar OLEDs as well, which are easy to fabricate using most common electron transport layers (ETLs), like Tris-(8-hydroxyquinoline)aluminum (Alq3). Due to the macroscopic polarization of the ETL, holes are already injected into the hole transport layer below the built-in voltage and accumulate at the internal interface with the ETL. This way, by a standard CELIV experiment only holes will be extracted, allowing us to determine their mobility. The approach can be established as a powerful way of selectively measuring charge mobilities in new materials in a standard device configuration.

  10. Bias voltage effect on electron tunneling across a junction with a ferroelectric–ferromagnetic two-phase composite barrier

    International Nuclear Information System (INIS)

    Wang Jian; Ju Sheng; Li, Z.Y.

    2012-01-01

    The effect of bias voltage on electron tunneling across a junction with a ferroelectric–ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics. - Highlights: ► Electron tunneling across a ferroelectric–ferromagnetic composite barrier junction. ► TMR effect is different under the same value but opposite direction bias voltage. ► This directionality of the electron tunneling enhances with increasing bias voltage.

  11. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  12. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    Science.gov (United States)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  13. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rychetsky, Monir, E-mail: monir.rychetsky@physik.tu-berlin.de; Avinc, Baran; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Koslow, Ingrid; Rass, Jens; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Hoffmann, Veit; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Wild, Johannes; Zweck, Josef [Fakultät für Physik, University of Regensburg, Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel (Germany)

    2016-03-07

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In{sub 0.08}Ga{sub 0.92}N/GaN, (0.90 ± 0.13) MV/cm for Al{sub 0.18}Ga{sub 0.82}N/GaN, and (2.0 ± 0.3) MV/cm for Al{sub 0.31}Ga{sub 0.69}N/GaN heterostructures.

  14. Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics

    International Nuclear Information System (INIS)

    Kim, Se Hyun; Yun, Won Min; Kwon, Oh-Kwan; Hong, Kipyo; Yang, Chanwoo; Park, Chan Eon; Choi, Woon-Seop

    2010-01-01

    Here, we report on the fabrication of low-voltage-operating pentacene-based organic field-effect transistors (OFETs) that utilize crosslinked cyanoethylated poly(vinyl alcohol) (CR-V) gate dielectrics. The crosslinked CR-V-based OFET could be operated successfully at low voltages (below 4 V), but abnormal behaviour during device operation, such as uncertainty in the field-effect mobility (μ) and hysteresis, was induced by the slow polarization of moieties embedded in the gate dielectric (e.g. polar functionalities, ionic impurities, water and solvent molecules). In an effort to improve the stability of OFET operation, we measured the dependence of μ and hysteresis on dielectric thickness, CR-V crosslinking conditions and sweep rate of the gate bias. The influence of the CR-V surface properties on μ, hysteresis, and the structural and morphological features of the pentacene layer grown on the gate dielectric was characterized and compared with the properties of pentacene grown on a polystyrene surface.

  15. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  17. Effect of DC voltage pulses on memristor behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brian R.

    2013-10-01

    Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

  18. Advanced DVR with Zero-Sequence Voltage Component and Voltage Harmonic Elimination for Three-Phase Three-Wire Distribution Systems

    Directory of Open Access Journals (Sweden)

    Margo P

    2009-11-01

    Full Text Available Dynamic Voltage Restorer (DVR is a power electronics device to protect sensitive load when voltage sag occurs. Commonly, sensitive loads are electronic-based devices which generate harmonics. The magnitude and phase of compensated voltage in DVR depend on grounding system and type of fault. If the system is floating, the zero sequence components do not appear on the load side. Meanwhile, in a neutral grounded system, voltage sag is extremely affected by zero sequence components. A blocking transformer is commonly installed in series with DVR to reduce the effect of zero sequence components. This paper proposes a new DVR control scheme that is capable of eliminating the blocking transformer and reducing harmonic distortion. The system uses fuzzy polar controller to replace the conventional PI or FL controller that is commonly used. By taking into account the zero sequence components in the controller design, the effects of zero sequence components can be compensated. Simulated results show the effectiveness of the proposed DVR controller

  19. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  20. Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow

    International Nuclear Information System (INIS)

    Hinshelwood, D. D.; Schumer, J. W.; Allen, R. J.; Commisso, R. J.; Jackson, S. L.; Murphy, D. P.; Phipps, D.; Swanekamp, S. B.; Weber, B. V.; Ottinger, P. F.; Apruzese, J. P.; Cooperstein, G.; Young, F. C.

    2011-01-01

    A pinch-reflex ion diode is fielded on the pulsed-power machine Mercury (R. J. Allen, et al., 15th IEEE Intl. Pulsed Power Conf., Monterey, CA, 2005, p. 339), which has an inductive voltage adder (IVA) architecture and a magnetically insulated transmission line (MITL). Mercury is operated in positive polarity resulting in layered MITL flow as emitted electrons are born at a different potential in each of the adder cavities. The usual method for estimating the voltage by measuring the bound current in the cathode and anode of the MITL is not accurate with layered flow, and the interaction of the MITL flow with a pinched-beam ion diode load has not been studied previously. Other methods for determining the diode voltage are applied, ion diode performance is experimentally characterized and evaluated, and circuit and particle-in-cell (PIC) simulations are performed. Results indicate that the ion diode couples efficiently to the machine operating at a diode voltage of about 3.5 MV and a total current of about 325 kA, with an ion current of about 70 kA of which about 60 kA is proton current. It is also found that the layered flow impedance of the MITL is about half the vacuum impedance.

  1. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    International Nuclear Information System (INIS)

    Bora, B.

    2015-01-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage

  2. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross, C. K. [Ionizing Radiation Standards, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Culberson, W. S. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-07-15

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identified with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the

  3. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    International Nuclear Information System (INIS)

    Shen, H.; Ross, C. K.; Culberson, W. S.

    2016-01-01

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identified with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for 125 I and 241 Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap

  4. Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells.

    Science.gov (United States)

    Wu, Ting; Collins, Liam; Zhang, Jia; Lin, Pei-Ying; Ahmadi, Mahshid; Jesse, Stephen; Hu, Bin

    2017-11-28

    This article reports an experimental demonstration of photoinduced bulk polarization in hysteresis-free methylammonium (MA) lead-halide perovskite solar cells [ITO/PEDOT:PSS/perovskite/PCBM/PEI/Ag]. An anomalous capacitance-voltage (CV) signal is observed as a broad "shoulder" in the depletion region from -0.5 to +0.5 V under photoexcitation based on CV measurements where a dc bias is gradually scanned to continuously drift mobile ions in order to detect local polarization under a low alternating bias (50 mV, 5 kHz). Essentially, gradually scanning the dc bias and applying a low alternating bias can separately generate continuously drifting ions and a bulk CV signal from local polarization under photoexcitation. Particularly, when the device efficiency is improved from 12.41% to 18.19% upon chlorine incorporation, this anomalous CV signal can be enhanced by a factor of 3. This anomalous CV signal can be assigned as the signature of photoinduced bulk polarization by distinguishing from surface polarization associated with interfacial charge accumulation. Meanwhile, replacing easy-rotational MA + with difficult-rotational formamidinium (FA + ) cations largely minimizes such anomalous CV signal, suggesting that photoinduced bulk polarization relies on the orientational freedom of dipolar organic cations. Furthermore, a Kelvin probe force microscopy study shows that chlorine incorporation can suppress the density of charged defects and thus enhances photoinduced bulk polarization due to the reduced screening effect from charged defects. A bias-dependent photoluminescence study indicates that increasing bulk polarization can suppress carrier recombination by decreasing charge capture probability through the Coulombic screening effect. Clearly, our studies provide an insightful understanding of photoinduced bulk polarization and its effects on photovoltaic actions in perovskite solar cells.

  5. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  6. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  7. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  8. Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current.

    Science.gov (United States)

    Li, Shuaishuai; Wang, Tao; Chen, Xiaoshuang; Lu, Wei; Xie, Yiqun; Hu, Yibin

    2018-04-26

    High polarization sensitivity, suppressed dark current and low energy consumption are all desirable device properties for photodetectors. In this work, we propose phosphorene-based photodetectors that are driven using photogalvanic effects (PGEs). The inversion symmetry of pristine phosphorene is broken using either application of an out-of-plane gate voltage or a heterostructure that is composed of the original phosphorene and blue phosphorene. The potential asymmetry enables PGEs under illumination by polarized light. Quantum transport calculations show that robust photocurrents are indeed generated by PGEs under a zero external bias voltage because of the broken inversion symmetry. These results indicate that the proposed photodetector is self-powered. In addition, the zero bias voltage eliminates the dark currents that are caused by application of an external bias voltage to traditional photodetectors. High polarization sensitivity to both linearly and circularly polarized light can also be realized, with extinction ratios ranging up to 102. The photoresponse of the proposed phosphorene/blue phosphorene heterostructure can be greatly enhanced by gating and is several orders of magnitude higher than that in gated phosphorene.

  9. Stability of polarization in organic ferroelectric metal-insulator-semiconductor (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT (United Kingdom)

    2011-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in such devices is confined to the interface between the insulator and the semiconductor, the focus of the present study was on the investigation of this region. Capacitance-voltage (C-V) measurements of all-organic MIS devices with poly(vinylidenefluoride- trifluoroethylene) (P(VDF-TrFE)) as gate insulator and poly(3-hexylthiophene)(P3HT) as semiconductor were carried out. When the structure was driven into depletion, a positive flat-band voltage shift was observed arising from the change in polarization state of the ferroelectric insulator. When driven into accumulation, the polarization was reversed. It is shown that both polarization states are stable. However, negative charge trapped at the interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. Measurements on P(VDF-TrFE)/P3HT based FeFETs yield further evidence for fixed charges at the interface. Output characteristics suggest the injection of negative charges into the interface region when a depletion voltage is applied between source and gate contact.

  10. Apparatus and methods for memory using in-plane polarization

    Science.gov (United States)

    Liu, Junwei; Chang, Kai; Ji, Shuai-Hua; Chen, Xi; Fu, Liang

    2018-05-01

    A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process is non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.

  11. High-voltage nanosecond Marx generator with quasi-rectangular pulses

    International Nuclear Information System (INIS)

    Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.

    1999-01-01

    The automated high-voltage nanosecond generator, forming single pulses of any polarity on the load of 17 Ohm with polarity voltage from 100 up to 300 kV at the semiheight of 80 ns and the front of 7 ns is described. The generator is assembled on the basis of low-inductive capacitors, which by discharge form the pulse, close by form to rectangular one [ru

  12. Tunable valley polarization by a gate voltage when an electron tunnels through multiple line defects in graphene.

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2015-02-04

    By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.

  13. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  14. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    Science.gov (United States)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  15. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    Science.gov (United States)

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  16. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  17. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  18. Bias voltage dependence of tunneling magnetoresistance in granular C60–Co films with current-perpendicular-to-plane geometry

    International Nuclear Information System (INIS)

    Sakai, Seiji; Mitani, Seiji; Matsumoto, Yoshihiro; Entani, Shiro; Avramov, Pavel; Ohtomo, Manabu; Naramoto, Hiroshi; Takanashi, Koki

    2012-01-01

    Voltage-dependence of the tunneling magnetoresistance effect in the granular C 60 –Co films has been investigated for the samples with the current-perpendicular-to-plane geometry. The transport measurements under this geometry demonstrate that the granular C 60 –Co films show an unusual exponential bias voltage dependence of the magnetoresistance ratio down to zero voltage. Small characteristic energies of less than 10's meV are derived from the temperature dependences of the characteristic voltage in the exponential relationship. Considering the magnitudes of the voltage drop between Co nanoparticles and also the effect of cotunneling on the energy values, the characteristic energies for the voltage-induced degradation of the spin polarization are found to show a satisfactory agreement with that for the thermally-induced one. It can be reasonably expected that the onset of magnetic disorder to the localized d-electron spins at the interface region of the C 60 -based matrix (C 60 –Co compound) with Co nanoparticles leading to the unusual voltage and temperature dependence of the magnetoresistance ratio and the spin polarization at low temperatures. - Highlights: ► Unusual voltage dependence of the TMR effect in granular C 60 –Co films is studied. ► Linear temperature-characteristic voltage dependence in the MR–V relationship. ► Spin-flip scattering by the exchange-coupled d-electron spins at the interface.

  19. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  20. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  1. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes-Polarization Effects

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; McIntyre, Melissa D.; Norrman, Kion

    2016-01-01

    and Raman spectroscopy reveal the formation of a secondary phase, Ba3Mn2O8, on the electrode. During the in operando Raman investigation of the BaO-infiltrated La0.85Sr0.15MnO3±δ electrodes, experiments are performed at 300 and 500 °C with oxygen partial pressure 0.1 atm and with −1 or +1 V Applied...... for the reduced polarization resistance observed at open Circuit voltage (OCV) in an oxygen containing atmosphere. Furthermore, the results illustrate the dramatic differences between the electrode surface composition at OCV and during cathodic polarization. Overall, the results highlight the dynamic interactions...... between minor secondary phases and applied potential, a general effect that may be important for the high-performance frequently observed with ceramic electrodes prepared by infiltration....

  2. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    Science.gov (United States)

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.

  3. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  5. Polarization Effects at a Muon Collider

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-01-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC)

  6. A Tunable Polarization-Dependent Terahertz Metamaterial Absorber Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Guangsheng Deng

    2018-02-01

    Full Text Available In this paper, a tunable polarization-dependent terahertz (THz metamaterial absorber based on liquid crystal (LC is presented. The measurement results show that absorption peak is at 239.5 GHz for a TE-polarized wave and 306.6 GHz for a TM-polarized wave, without exerting the bias voltage on the LC layer. An increase in bias voltage affects the orientation of LC molecules and causes redshifted resonant frequencies. By adjusting the bias voltage from 0 to 10 V, frequency tunabilities of 4.7% and 4.1% for TE- and TM-polarized waves, respectively, were experimentally demonstrated. Surface current and power loss distribution was analyzed to explain the physical mechanism of the absorber, while the absorption dependence on geometrical parameters and incident angles was also studied in detail. According to the obtained results, the proposed absorber is shown here to be capable of achieving tunable polarization-dependent absorption, and to have potential application in terahertz polarization imaging, terahertz sensing, and polarization multiplexing.

  7. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  8. Polarization phenomena in Al/p-CdTe/Pt X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Principato, F., E-mail: fabio.principato@unipa.it; Turturici, A.A.; Gallo, M.; Abbene, L.

    2013-12-01

    Over the last decades, CdTe detectors are widely used for the development of room temperature X-ray and gamma ray spectrometers. Typically, high resolution CdTe detectors are fabricated with blocking contacts (indium and aluminum) ensuring low leakage currents and high electric field for optimum charge collection. As well known, time instability under bias voltage (termed as polarization) is the major drawback of CdTe diode detectors. Polarization phenomena cause a progressive degradation of the spectroscopic performance with time, due to hole trapping and detrapping from deep acceptors levels. In this work, we studied the polarization phenomenon on new Al/p-CdTe/Pt detectors, manufactured by Acrorad (Japan), through electrical and spectroscopic approaches. In particular, we investigated on the time degradation of the spectroscopic response of the detectors at different temperatures, voltages and energies. Current transient measurements were also performed to better understand the properties of the deep acceptor levels and their correlation with the polarization effect.

  9. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2017-04-15

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.

  10. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  11. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V AH ) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V AH on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V AH depends on the doping density. The results are discussed

  12. An open circuit voltage equation enabling separation of cathode and anode polarization resistances of ceria electrolyte based solid oxide fuel cells

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu

    2017-07-01

    The open circuit voltage (OCV) of solid oxide fuel cells is generally overestimated by the Nernst equation and the Wagner equation, due to the polarization losses at electrodes. Considering both the electronic conduction of electrolyte and the electrode polarization losses, we express the OCV as an implicit function of the characteristic oxygen pressure of electrolyte (p* [atm], at which the electronic and ionic conductivities are the same), and the relative polarization resistance of electrodes (rc = Rc/Ri and ra = Ra/Ri, where Ri/c/a [Ωcm2] denotes the ionic resistance of electrolyte, and the polarization resistances of cathode and anode, respectively). This equation approaches to the Wagner equation when the electrodes are highly active (rc and ra → 0), and approaches to the Nernst equation when the electrolyte is a purely ionic conductor (p* → 0). For the fuel cells whose OCV is well below the prediction of the Wagner equation, for example with thin doped ceria electrolyte, it is demonstrated that the combination of OCV and impedance spectroscopy measurements allows the determination of p*, Rc and Ra. This equation can serve as a simple yet powerful tool to study the internal losses in the cell under open circuit condition.

  13. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-07-01

    Full Text Available To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs, a polar polymer layer was inserted between two polymethyl methacrylate (PMMA dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol (PVA or poly(4-vinylphenol (PVP containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one, and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type. The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer.

  14. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  15. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  16. Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures

    International Nuclear Information System (INIS)

    Ji, Xu; Zhu, Yuan; Chen, Mingming; Su, Longxing; Chen, Anqi; Zhao, Chengchun; Gui, Xuchun; Xiang, Rong; Huang, Feng; Tang, Zikang

    2014-01-01

    Surface water molecules induced grain boundaries (GBs) barrier modification was investigated in ZnO and ZnMgO/ZnO films. Tunable electronic transport properties of the samples by water were characterized via a field effect transistor (FET) device structure. The FETs fabricated from polar C-plane ZnO and ZnMgO/ZnO films that have lots of GBs exhibited obvious double Schottky-like current-voltage property, whereas that fabricated from nonpolar M-plane samples with GBs and ZnO bulk single-crystal had no obvious conduction modulation effects. Physically, these hallmark properties are supposed to be caused by the electrostatical coupling effect of crystal polar field and molecular dipole on GBs barrier.

  17. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen

    2009-01-01

    Owing to the anisotropic property and small output signals of the piezoelectric nanogenerators (NGs) and the influence of the measurement system and environment, identification of the true signal generated by the NG is critical. We have developed three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity, and random signals, which might change signs but cannot consistently add up or cancel out under designed connection configurations. This study establishes the standards for designing and scale up of integrated nanogenerators. © 2009 American Institute of Physics.

  18. An inverted-geometry, high voltage polarized electron gun with UHV load lock

    International Nuclear Information System (INIS)

    Breidenbach, M.; Foss, M.; Hodgson, J.; Kulikov, A.; Odian, A.; Putallaz, G.; Rogers, H.; Schindler, R.; Skarpaas, K.; Zolotorev, M.

    1994-01-01

    The design of a high voltage electron source with a GaAs photocathode and a load lock system is described. The inverted high voltage structure of the gun permits a compact and simple design. Test results demonstrate that the load lock system provides a reliable way to achieve high quantum efficiency of the photocathode in a high voltage device. ((orig.))

  19. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    Science.gov (United States)

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  20. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  1. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V{sub AH}) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V{sub AH} on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V{sub AH} depends on the doping density. The results are discussed.

  2. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  3. Radiation effects on residual voltage of polyethylene films

    International Nuclear Information System (INIS)

    Kyokane, Jun; Park, Dae-Hee; Yoshino, Katsumi.

    1986-01-01

    It has recently been pointed out that diagnosis of deterioration in insulating materials for electric cables used in nuclear power plants and outer space (communications satellite in particular) can be effectively performed based on measurements of residual voltage. In the present study, polyethylene films are irradiated with γ-rays or electron beam to examine the changes in residual voltage characteristics. Irradiation of electron beam and γ-rays are carried out to a dose of 0 - 90 Mrad and 0 - 100 Mrad, respectively. Measurements are made of the dependence of residual voltage on applied voltage, electron beam and γ-ray irradiation, annealing temperature and annealing time. Results show that carriers, which are once trapped after being released from the electrode, move within the material after the opening of the circuit to produce resiual voltage. The residual voltage increases with increasing dose of electron beam or γ-ray and levels off at high dose. Residual voltage is increased about several times by either electron beam or γ-rays, but electron beam tends to cause greater residual voltage than γ-ray. Polyethylene films irradiated with electron beam can recover upon annealing. It is concluded from observations made that residual voltage has close relations with defects in molecular structures caused by radiations, particularly the breaking of backbone chains and alteration in superstructures. (Nogami, K.)

  4. Effect of neutron irradiation on the breakdown voltage of power MOSFET's

    International Nuclear Information System (INIS)

    Hasan, S.M.Y.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The effect of neutron irradiation on power metal-oxide-semiconductor field effect transistor (power MOSFET) breakdown voltage has been investigated. Transistors with various breakdown voltage ratings were irradiated in a TRIGA nuclear reactor with cumulative fluence levels up to 5 x 10 14 neutrons/cm 2 (1 MeV equivalent). Noticeable increases in the breakdown voltages are observed in n-type MOSFET's after 10 13 neutrons/cm 2 and in p-type MOSFETs after 10 12 neutrons/cm 2 . An increase in breakdown voltage of as much as 30% is observed after 5 x 10 14 neutrons/cm 2 . The increase in breakdown voltage is attributed to the neutron-irradiation-induced defects which decrease the mean free path and trap majority carriers in the space charge region. The effect of positive trapped oxide charge due to concomitant gamma radiation and the effect of the termination structure on the increase in breakdown voltage are considered. An empirical model is presented to predict the value of the breakdown voltage as a function of neutron fluence

  5. Giessen polarization facility. II. 1. 2 MeV tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W; Ulbricht, J; Berg, H; Keiner, P; Krause, H H; Schmidt, R; Clausnitzer, G [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1977-06-15

    A small pressure insulated tandem accelerator with 600 kV terminal voltage was constructed for the application of a polarized ion source of the Lambshift type: thin carbon foils or gas stripping is used for the charge exchange in the high voltage terminal. The calculated ion optical properties were realized in the construction; transmission and energy resolution are sufficient to obtain high intensity polarized beams on target (maximum 0.6..mu..A protons with P=0.75 ) for precision polarization experiments in the 0.2-1.2 MeV energy region.

  6. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  7. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Leeuw, Dago M. de, E-mail: deleeuw@mpip-mainz.mpg.de [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Katsouras, Ilias [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Groen, Wilhelm A. [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629 HS, Delft (Netherlands)

    2016-06-06

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  8. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Science.gov (United States)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  9. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  10. Influence of the channel electric field distribution on the polarization Coulomb field scattering in AlGaN/AlN/GaN heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yingxia Yu

    2013-09-01

    Full Text Available Using the Quasi-Two-Dimensional (quasi-2D model, the current-voltage (I-V characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs with different gate length were simulated based on the measured capacitance-voltage (C-V characteristics and I-V characteristics. By analyzing the simulation results, we found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field scattering, and the difference of the electron mobility mostly caused by the polarization Coulomb field scattering can reach up to 1829.9 cm2/V·s for the prepared AlGaN/AlN/GaN HFET. In addition, it was also found that when the two-dimension electron gas (2DEG sheet density is modulated by the drain-source bias, the electron mobility appears peak with the variation of the 2DEG sheet density, and the ratio of gate length to drain-source distance is smaller, the 2DEG sheet density corresponding to the peak point is higher.

  11. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  12. Polarization and charge limit studies of strained GaAs photocathodes

    International Nuclear Information System (INIS)

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of ∼ 2.5 A/cm 2 at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don't have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes

  13. Boundary layer polarization and voltage in the 14 MLT region

    Science.gov (United States)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  14. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  15. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.

    Science.gov (United States)

    Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J

    2017-10-01

    Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

  16. Critical voltage effects in electron channeling patterns

    International Nuclear Information System (INIS)

    Farrow, R.C.

    1984-01-01

    Electron channeling patterns were used to study critical voltage effects in the metals molybdenum and tungsten. The purpose was to characterize both theoretically and experimentally how a critical voltage will affect the channeling pattern line shapes. The study focused on the second order critical voltage that results from the degeneracy between the Bloch wave states of the (110) and (220) reflections. Theoretical (110) series electron channeling pattern line profiles were calculated using the dynamical theory of Hirsch and Humphreys (1970). A 10 beam dynamical electron diffraction calculation was performed (using complex Fourier lattice potentials) to generate Bloch wave coefficients, excitation amplitudes, and absorption coefficients needed for determining backscattering coefficients and subsequent backscattered electron intensities. The theoretical model is applicable to electron diffraction at all energies since no high energy approximation or perturbation method was used

  17. Selective electromembrane extraction at low voltages based on analyte polarity and charge

    DEFF Research Database (Denmark)

    Domínguez, Noelia Cabaleiro; Gjelstad, Astrid; Nadal, Andrea Molina

    2012-01-01

    Electromembrane extraction (EME) at low voltage (0-15V) of 29 different basic model drug substances was investigated. The drug substances with logP......Electromembrane extraction (EME) at low voltage (0-15V) of 29 different basic model drug substances was investigated. The drug substances with logP...

  18. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  19. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    International Nuclear Information System (INIS)

    Fischer, W.; Bazilevsky, A.

    2011-01-01

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. (bar P)), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g. ).

  20. Detection of vortex-core dynamics using current-induced self-bistable rectifying effect

    International Nuclear Information System (INIS)

    Goto, M; Hata, H; Yamaguchi, A; Miyajima, H; Nozaki, Y; Nakatani, Y; Yamaoka, T

    2011-01-01

    A magnetic vortex core confined in a micron-scale magnetic disk is resonantly excited by spin-polarized radio-frequency (rf) current and rf field. We show that rectifying voltage spectra caused by the vortex core resonance is dependent on the core polarity. Rectifying voltage spectra are given by the superposition of the polarity-dependent term and the polarity-independent term. The sign of the polarity-dependent rectifying voltage reverses when the sign of polarity P or external field H is reversed. This experimental result can be explained by the anisotropic magnetoresistance effect caused by the vortex core motion.

  1. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  2. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  3. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  4. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  5. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  6. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    Science.gov (United States)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  7. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  8. Spin polarization of a Ferromagnetic Narrow Gap p-(In,Mn)As Obtained from Andreev Reflection Spectroscopy

    International Nuclear Information System (INIS)

    Akazaki, T.; Munekata, H.; Yokoyama, T.; Tanaka, Y.; Takayanagi, H.

    2011-01-01

    Spin-polarized carrier transport across Nb/p-(In,Mn)As junctions has been studied. Suppressions of conductance in the superconductor sub-gap region and conductance peaks at the bias voltage around the edge of the sub-gap are observed. These features are well reproduced by a newly modified BTK model including both spin polarization and the inverse proximity effect. The value of spin polarization in p-(In,Mn)As extracted by the calculation is P = 0.725 at 0.5 K with Z = 0.25

  9. Effect of Circuit Breaker Shunt Resistance on Chaotic Ferroresonance in Voltage Transformer

    Directory of Open Access Journals (Sweden)

    RADMANESH, H.

    2010-08-01

    Full Text Available Ferroresonance or nonlinear resonance is a complex electrical phenomenon, which may cause over voltages and over currents in the electrical power system which endangers the system reliability and continuous safe operating. This paper studies the effect of circuit breaker shunt resistance on the control of chaotic ferroresonance in a voltage transformer. It is expected that this resistance generally can cause ferroresonance dropout. For confirmation this aspect Simulation has been done on a one phase voltage transformer rated 100VA, 275kV. The magnetization characteristic of the transformer is modeled by a single-value two-term polynomial with q=7. The simulation results reveal that considering the shunt resistance on the circuit breaker, exhibits a great mitigating effect on ferroresonance over voltages. Significant effect on the onset of chaos, the range of parameter values that may lead to chaos along with ferroresonance voltages has been obtained and presented.

  10. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  11. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials.

    Science.gov (United States)

    Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang

    2017-09-01

    Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.

  12. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  13. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  14. The influence of the AlN barrier thickness on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Lv, Yuanjie; Feng, Zhihong; Gu, Guodong; Han, Tingting; Yin, Jiayun; Liu, Bo; Cai, Shujun; Lin, Zhaojun; Ji, Ziwu; Zhao, Jingtao

    2014-01-01

    The electron mobility scattering mechanisms in AlN/GaN heterostuctures with 3 nm and 6 nm AlN barrier thicknesses were investigated by temperature-dependent Hall measurements. The effect of interface roughness (IFR) scattering on the electron mobility was found to be enhanced by increasing AlN barrier thickness. Moreover, using the measured capacitance-voltage and current-voltage characteristics of the fabricated heterostructure field-effect transistors (HFETs) with different Schottky areas on the two heterostuctures, the variations of electron mobility with different gate biases were investigated. Due to enhanced IFR scattering, the influence of polarization Coulomb field (PCF) scattering on electron mobility was found to decrease with increasing AlN barrier layer thickness. However, the PCF scattering remained an important scattering mechanism in the AlN/GaN HFETs.

  15. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  16. Threshold voltage roll-off modelling of bilayer graphene field-effect transistors

    International Nuclear Information System (INIS)

    Saeidmanesh, M; Ismail, Razali; Khaledian, M; Karimi, H; Akbari, E

    2013-01-01

    An analytical model is presented for threshold voltage roll-off of double gate bilayer graphene field-effect transistors. To this end, threshold voltage models of short- and long-channel states have been developed. In the short-channel case, front and back gate potential distributions have been modelled and used. In addition, the tunnelling probability is modelled and its effect is taken into consideration in the potential distribution model. To evaluate the accuracy of the potential model, FlexPDE software is employed with proper boundary conditions and a good agreement is observed. Using the proposed models, the effect of several structural parameters on the threshold voltage and its roll-off are studied at room temperature. (paper)

  17. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    Science.gov (United States)

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  18. Effect of geometry on concentration polarization in realistic heterogeneous permselective systems

    Science.gov (United States)

    Green, Yoav; Shloush, Shahar; Yossifon, Gilad

    2014-04-01

    This study extends previous analytical solutions of concentration polarization occurring solely in the depleted region, to the more realistic geometry consisting of a three-dimensional (3D) heterogeneous ion-permselective medium connecting two opposite microchambers (i.e., a three-layer system). Under the local electroneutrality approximation, the separation of variable methods is used to derive an analytical solution of the electrodiffusive problem for the two opposing asymmetric microchambers. The assumption of an ideal permselective medium allows for the analytic calculation of the 3D concentration and electric potential distributions as well as a current-voltage relation. It is shown that any asymmetry in the microchamber geometries will result in current rectification. Moreover, it is demonstrated that for non-negligible microchamber resistances, the conductance does not exhibit the expected saturation at low concentrations but instead shows a continuous decrease. The results are intended to facilitate a more direct comparison between theory and experiments, as now the voltage drop is across a realistic 3D and three-layer system.

  19. Effect of alternating voltage treatment on corrosion resistance of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); Zhang, T.; Shao, Y.; Meng, G.; Wang, F. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2012-06-15

    AZ91D magnesium alloy was treated by the alternating voltage (AV) treatment technique. The optimal AV-treatment parameters of the alloy were determined by orthogonal experiments. Polarization curve, electrochemical impedance spectroscopy (EIS), and scanning electrochemical microscopy (SECM) were used to understand the effect of AV-treatment on the corrosion resistance of the alloy. AFM, contact angle, and XPS were employed to investigate further the influence of AV-treatment on the properties of the surface film formed on the alloy after AV-treatment. The results showed that a uniform and stable film was formed and the corrosion resistance of AZ91D magnesium alloy was significantly improved after AV-treatment. This was caused by the noticeable change of the chemical structure and semi-conducting properties of the surface film after AV-treatment. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. SYNTHESIS OF VOLTAGES OF UNIFORM PWM IN TIME REGULATION

    Directory of Open Access Journals (Sweden)

    A. G. Stryzhniou

    2014-01-01

    Full Text Available The article describes a process of synthesis and qualitative assessment of the harmonic composition of voltages of multiple and single PWM pulses in time regulation, being, along with amplitude, frequency and phase method, one of control methods of an asynchronous motor. The main point of time regulation is that a pause after any two single PWM pulses with different polarity or after any two groups of multiple PWM pulses with different polarity changes during a process of regulation. Feature of time regulation is that a motor has fast response in the range of small-signal of control and good linearity of speed-torque characteristics in the whole control range. Analytical expressions of parameters of PWM pulses ai and ti are obtained which allow to simplify considerably a process of formation and implementation of time regulation using tabular or indexed-tabular methods. These expressions allow not only to define voltage amplitude of  harmonic but also to perform qualitative assessment of harmonic composition of output voltages at time regulation. It is specified that harmonic frequencies wi = w0/q change in inverse proportion to magnitude of parameter q during a process of regulation and there is a replacement of a fundamental frequency by frequencies of higher harmonics.The offered approach allows to synthesize voltage of uniform single and multiple PWM pulses and to perform their comparative and qualitative analysis and the obtained expressions can be used at modeling of AC motor work. Voltage of multiple PWM pulses which is formed using stepped reference voltage with even quantity of steps in a half period and a pause on a zero level has the best parameters by criterion of a minimum of harmonic components and a maximum of a factor of anharmonicity Kнс at time regulation.

  1. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  2. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  3. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  4. Performance of wireless optical communication systems under polarization effects over atmospheric turbulence

    Science.gov (United States)

    Zhang, Jiankun; Li, Ziyang; Dang, Anhong

    2018-06-01

    It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.

  5. Large time-dependent coercivity and resistivity modification under sustained voltage application in a Pt/Co/AlOx/Pt junction.

    NARCIS (Netherlands)

    Brink, van den A.; van der Heijden, M.A.J.; Swagten, H.J.M.; Koopmans, B.

    2015-01-01

    The coercivity and resistivity of a Pt/Co/AlOx/Pt junction are measured under sustained voltage application. High bias voltages of either polarity are determined to cause a strongly enhanced, reversible coercivity modification compared to low voltages. Time-resolved measurements show a logarithmic

  6. Effects of symmetrical voltage sags on squirrel-cage induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain)

    2007-10-15

    This paper analyzes the symmetrical voltage sag consequences on the induction motor behavior when single- and double-cage models are considered, namely current and torque peaks, and speed loss. These effects depend on several variables like sag type, duration and depth. Voltage sag effects are studied by using single- and double-cage models for three motors of different rated power. The double-cage model always predicts torque and current peaks higher than those of the single-cage model. The single-cage model predicts that voltage sags can produce motor instability, whereas the double-cage model is always stable. Therefore, the double-cage model must be used for the simulation of the squirrel-cage induction motor, because the single-cage model can give erroneous results in some situations. (author)

  7. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  8. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  9. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  10. Effects of oxide replacement with fluoride at the CoFeB interface on interface magnetic anisotropy and its voltage control

    Science.gov (United States)

    Pankieiev, Mykhailo; Kita, Koji

    2018-05-01

    In this paper we report results of improving Co60Fe20B20 interface perpendicular magnetic anisotropy (PMA) by replacing neighbor oxide layer with fluoride one. We expected that fluorine as element with higher than oxide electronegativity could more effectively attract electrons from out-of-plane d orbitals of ferromagnetic, increasing role of in-plane orbitals. By this we wanted to increase PMA and its response to applied voltage bias. Polar magneto-optic Kerr effect measurement show decreasing of out-of-plane magnetic field needed to change magnetization to perpendicular in stacks with oxygen replaced by fluorine as well as increasing of coefficient of response to applied voltage α from < 10 fJ/Vm for CoFeB/Al2O3 interface to 20 fJ/Vm for CoFeB/AlF3/Al2O3 and 22 fJ/Vm for CoFeB/MgF2 stacks. Direct chemical interaction of Co with F was confirmed by x-ray photoelectron spectroscopy (XPS) measurement of Co2p core level region. Moreover angular-resolved XPS showed that F tends to stay at CoFeB interface rather than diffuse out of it.

  11. Voltage- and Light-Controlled Spin Properties of a Two-Dimensional Hole Gas in p-Type GaAs/AlAs Resonant Tunneling Diodes

    Science.gov (United States)

    Galeti, H. V. A.; Galvão Gobato, Y.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2018-03-01

    We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from - 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin-orbit effect.

  12. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions

    International Nuclear Information System (INIS)

    Li Bin; Wei Lan; Wen Cai

    2014-01-01

    This paper aims to simulate the I–V static characteristic of the enhancement-mode (E-mode) N-polar GaN metal—insulator—semiconductor field effect transistor (MISFET) with self-aligned source/drain regions. Firstly, with SILVACO TCAD device simulation, the drain—source current as a function of the gate—source voltage is calculated and the dependence of the drain—source current on the drain—source voltage in the case of different gate—source voltages for the device with a 0.62 μm gate length is investigated. Secondly, a comparison is made with the experimental report. Lastly, the transfer characteristic with different gate lengths and different buffer layers has been performed. The results show that the simulation is in accord with the experiment at the gate length of 0.62 μm and the short channel effect becomes pronounced as gate length decreases. The E-mode will not be held below a 100 nm gate length unless both transversal scaling and vertical scaling are being carried out simultaneously. (semiconductor devices)

  13. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Goro, E-mail: gsato@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin' nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiraki, Hiroyuki; Ohno, Ryoichi [ACRORAD Co., Ltd., 13-23 Suzaki, Uruma, Okinawa 904-2234 (Japan)

    2011-10-01

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  14. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  15. Universal Approach to Estimate Perfluorocarbons Emissions During Individual High-Voltage Anode Effect for Prebaked Cell Technologies

    Science.gov (United States)

    Dion, Lukas; Gaboury, Simon; Picard, Frédéric; Kiss, Laszlo I.; Poncsak, Sandor; Morais, Nadia

    2018-04-01

    Recent investigations on aluminum electrolysis cell demonstrated limitations to the commonly used tier-3 slope methodology to estimate perfluorocarbon (PFC) emissions from high-voltage anode effects (HVAEs). These limitations are greater for smelters with a reduced HVAE frequency. A novel approach is proposed to estimate the specific emissions using a tier 2 model resulting from individual HVAE instead of estimating monthly emissions for pot lines with the slope methodology. This approach considers the nonlinear behavior of PFC emissions as a function of the polarized anode effect duration but also integrates the change in behavior attributed to cell productivity. Validation was performed by comparing the new approach and the slope methodology with measurement campaigns from different smelters. The results demonstrate a good agreement between measured and estimated emissions as well as more accurately reflect individual HVAE dynamics occurring over time. Finally, the possible impact of this approach for the aluminum industry is discussed.

  16. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  17. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  18. Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Yu Ying-Xia; Lin Zhao-Jun; Luan Chong-Biao; Yang Ming; Wang Yu-Tang; Lü Yuan-Jie; Feng Zhi-Hong

    2014-01-01

    By making use of the quasi-two-dimensional (quasi-2D) model, the current–voltage (I–V) characteristics of In 0.18 Al 0.82 N/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance–voltage (C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm 2 /V·s for the prepared In 0.18 Al 0.82 N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  20. Evaluation of the magnitude of EBT Gafchromic film polarization effects

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.

    2009-01-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a >99% plane polarized light source a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured O D for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 0 ± 7 0 (2 S D) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effects follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5 % per 5 0 is seen for an anticlockwise polarizer rotation where as the effect is 1.2 % per 5 0 for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 0 alignment error can cause an approximate 1 % error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of O D variation with a fully linear

  1. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    Science.gov (United States)

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation

  2. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  3. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  4. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  5. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    Science.gov (United States)

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  6. Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods

    International Nuclear Information System (INIS)

    Sinha, Nidhi; Ray, Geeta; Godara, Sanjay; Gupta, Manoj K.; Kumar, Binay

    2014-01-01

    Highlights: • Low cost highly crystalline Cr-doped ZnO nanorods were synthesized. • Enhancement in dielectric, piezoelectric and ferroelectric properties were observed. • A high output voltage was obtained in AFM. • Cr-doping resulted in enhanced conductivity and better Ohmic behavior in ZnO/Ag contact. - Abstract: Highly crystalline Cr-doped ZnO nanorods (NRs) were synthesized by solution technique. The size distribution was analyzed by high resolution tunneling electron microscope (HRTEM) and particle size analyzer. In atomic force microscope (AFM) studies, peak to peak 8 mV output voltage was obtained on the application of constant normal force of 25 nN. It showed high dielectric constant (980) with phase transition at 69 °C. Polarization vs. electric field (P–E) loops with remnant polarization (6.18 μC/cm 2 ) and coercive field (0.96 kV/cm) were obtained. In I–V studies, Cr-doping was found to reduce the rectifying behavior in the Ag/ZnO Schottky contact which is useful for field effect transistor (FET) and solar cell applications. With these excellent properties, Cr-doped ZnO NRs can be used in nanopiezoelectronics, charge storage and ferroelectric applications

  7. 3D Cloud Radiative Effects on Polarized Reflectances

    Science.gov (United States)

    Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.

    2017-12-01

    As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced

  8. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  9. Power conditioning using dynamic voltage restorers under different voltage sag types.

    Science.gov (United States)

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  10. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  11. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    Science.gov (United States)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  12. Polarization Imaging Apparatus with Auto-Calibration

    Science.gov (United States)

    Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)

    2013-01-01

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.

  13. Optimum distributed generation placement with voltage sag effect minimization

    International Nuclear Information System (INIS)

    Biswas, Soma; Goswami, Swapan Kumar; Chatterjee, Amitava

    2012-01-01

    Highlights: ► A new optimal distributed generation placement algorithm is proposed. ► Optimal number, sizes and locations of the DGs are determined. ► Technical factors like loss, voltage sag problem are minimized. ► The percentage savings are optimized. - Abstract: The present paper proposes a new formulation for the optimum distributed generator (DG) placement problem which considers a hybrid combination of technical factors, like minimization of the line loss, reduction in the voltage sag problem, etc., and economical factors, like installation and maintenance cost of the DGs. The new formulation proposed is inspired by the idea that the optimum placement of the DGs can help in reducing and mitigating voltage dips in low voltage distribution networks. The problem is configured as a multi-objective, constrained optimization problem, where the optimal number of DGs, along with their sizes and bus locations, are simultaneously obtained. This problem has been solved using genetic algorithm, a traditionally popular stochastic optimization algorithm. A few benchmark systems radial and networked (like 34-bus radial distribution system, 30 bus loop distribution system and IEEE 14 bus system) are considered as the case study where the effectiveness of the proposed algorithm is aptly demonstrated.

  14. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  15. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  16. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  17. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  18. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  19. The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Carvalho, H.W.P.; Zielke, Philipp

    2017-01-01

    in the Mn K edge energy towards lower energies. The shift is assigned to a decrease in the average Mn oxidation state, which based on Kβ XES changes from 3.4 at open circuit voltage to 3.2 at −800 mV applied potential. Furthermore, RIXS rendered pronounced changes in the population of the Mn 3d orbitals...... (RIXS) at the Mn K-edge. The study of polarization induced changes in the electronic properties and structure has been carried out at 500°C in 10–20% O2 with electrical polarization applied in the range from −850 mV to 800 mV. Cathodic polarizations in the range −600 mV to −850 mV induced a shift......, due to filling of the Mn d-orbitals during the cathodic polarization. Overall, the study experimentally links the electrical polarization of LSM electrodes to the structural and electronic properties of Mn - these properties are expected to be of major importance for the electrocatalytic performance...

  20. Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level

    DEFF Research Database (Denmark)

    Nielsen, John Godsk; Newman, Michael; Nielsen, Hans Ove

    2004-01-01

    power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a Distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies......The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high...... the use of a feed-forward and feed-back technique of the controller and it obtains both good transient and steady state responses. The effect of the DVR on the system is experimentally investigated under both faulted and non-faulted system states, for a variety of linear and non-linear loads. Variable...

  1. Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip

    International Nuclear Information System (INIS)

    Rastei, M V; Bucher, J P

    2006-01-01

    A massive Ni tip is used in spin polarized scanning tunnelling microscopy (SP STM) to explore the magnetization state of nanometre Co clusters, self-organized on the Au(111) surface. Constant current STM images taken at 4.6 K show a bimodal distribution of the cluster heights, accounting for the spin polarization of the STM junction. The spin polarization of the tunnel junction as a function of the bias voltage is found to depend on the local density of states of the sample examined. Changing the vacuum barrier parameters by bringing the tip closer to the surface leads to a reduction in the tunnelling magnetoresistance that may be attributed to spin flip effects. (letter to the editor)

  2. The memory effect of a pentacene field-effect transistor with a polarizable gate dielectric

    Science.gov (United States)

    Unni, K. N. N.; de Bettignies, Remi; Dabos-Seignon, Sylvie; Nunzi, Jean-Michel

    2004-06-01

    The nonvolatile transistor memory element is an interesting topic in organic electronics. In this case a memory cell consists of only one device where the stored information is written as a gate insulator polarization by a gate voltage pulse and read by the channel conductance control with channel voltage pulse without destruction of the stored information. Therefore such transistor could be the base of non-volatile non-destructively readable computer memory of extremely high density. Also devices with polarizable gate dielectrics can function more effectively in certain circuits. The effective threshold voltage Vt can be brought very close to zero, for applications where the available gate voltage is limited. Resonant and adaptive circuits can be tuned insitu by polarizing the gates. Poly(vinylidene fluoride), PVDF and its copolymer with trifluoroethylene P(VDF-TrFE) are among the best known and most widely used ferroelectric polymers. In this manuscript, we report new results of an organic FET, fabricated with pentacene as the active material and P(VDF-TrFE) as the gate insulator. Application of a writing voltage of -50 V for short duration results in significant change in the threshold voltage and remarkable increase in the drain current. The memory effect is retained over a period of 20 hours.

  3. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  4. Effect of inductance between middle and outer cylinders on diode voltage of pulse forming line

    International Nuclear Information System (INIS)

    Liu Jinliang; Wang Xinxin

    2008-01-01

    Based on the experimental device of the water spiral pulse forming line(PFL) type electron beam accelerator, the effect of inductance between the middle and outer cylinders of PFL on diode voltage is theoretically and experimentally studied in this paper. The formulae are introduced, with which the effect of inductance on diode voltage is calculated. In addition, the diode voltage waveform is simulated through the Pspice software. The theoretical and simulated results agree well with the experimental results, which show that large inductance between middle and outer cylinders can shorten the waveform flat part of diode voltage, increase waveform rise time and reduce the diode peak voltage. When the inductance is smaller than 200 nH, a nearly square voltage waveform can be obtained in field-emission diode. (authors)

  5. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    International Nuclear Information System (INIS)

    Divani, Nazila; Firoozabadi, Mohammad M.; Bayat, Esmail

    2014-01-01

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors

  6. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  7. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.

    Science.gov (United States)

    Yan, Yongke; Zhou, Jie E; Maurya, Deepam; Wang, Yu U; Priya, Shashank

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c ) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% texture) modified PbTiO 3 ceramic that has a high T c (364 °C) and an extremely large g 33 (115 × 10 -3  Vm N -1 ) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ɛ 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.

  8. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  9. Direct visualization of polarization reversal of organic ferroelectric memory transistor by using charge modulated reflectance imaging

    Science.gov (United States)

    Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2017-11-01

    By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.

  10. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    Science.gov (United States)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  11. Many-body kinetics of dynamic nuclear polarization by the cross effect

    Science.gov (United States)

    Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.

    2018-03-01

    Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.

  12. Effect of voltage sags on digitally controlled line connected switched-mode power supplies

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2012-01-01

    Different voltage disorders like voltage fluctuations, sags, frequency variations may occur in the power supply networks due to different fault conditions. These deviations from normal operation affects in different ways the line connected devices. Standards were developed to protect and ensure...... of voltage sags is analyzed. Fault tolerant control algorithm was designed, implemented and is discussed. The fault conditions and their effects were investigated at different power levels....

  13. Analysis for the Effects of Grid Voltage Degradation on APR1400 Operation, Case Study for Egypt

    International Nuclear Information System (INIS)

    Hassan, Mostafa Ahmed Fouad; Koo, Chang Choong

    2015-01-01

    Egypt is one of the countries planning to introduce a NPP into its electrical power system. Although the Egyptian power system has sufficient capacity to integrate any commercially available nuclear unit as the total installed capacity of the power system is more than 32GWe, which is more than 10 times capacity of any nuclear unit in the range of 1000 to 1700MWe, the system is vulnerable to extreme voltage variations, especially voltage degradation during peak load conditions. These conditions can lead to voltage collapse if a counter measure, usually load shedding, is not taken in a proper time. Hence, it is necessary to analyze the effect of such conditions on the safe and economic operation of the NPP. In this paper we analyzed the effects of grid voltage degradation on the safe and economic operation of the Advanced Power Reactor (APR1400) to determine any adverse effects on the plant auxiliary loads while operating in the Egyptian power system. In this paper the effects of grid voltage degradation on the safe and economic operation of APR1400 were investigated taking into account, generator operating limits, plant safety requirements, operation modes and loading categories in order to determine any adverse effect on the plant auxiliary loads while operating in the Egyptian power system. The results of the load flow and motor starting analysis demonstrated that during normal operation the automatic voltage regulator and transformers OLTCs can mitigate the effect of grid voltage degradation without any detrimental effect on the plant auxiliary loads. During the highly unlikely LOCA condition if the grid voltage degraded below 95%, the degraded voltage relays at Class 1E 4.16 kV buses will trip the supply and load breakers and reconnect the required safety loads to the EDG after 4 minutes time delay. During this period the safety loads required for LOCA can be started and accelerated to their rated speed safely even in the worst case of expected degraded voltage

  14. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2018-01-01

    Full Text Available The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  15. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.

    Science.gov (United States)

    Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping

    2018-01-20

    The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  16. Serach for polarization effects in the antiproton production process

    CERN Multimedia

    It is proposed to study polarization effects in the production of antiprotons at the PS test beam line T11 at 3.5 GeV/c momentum. A polarization in the production process has never been studied but if existing it would allow for a rather simple and cheap way to generate a polarized antiproton beam with the existing facilities at CERN.

  17. A Novel Index for Online Voltage Stability Assessment Based on Correlation Characteristic of Voltage Profiles

    Directory of Open Access Journals (Sweden)

    M. R. Aghamohammadi

    2011-06-01

    Full Text Available Abstract: Voltage instability is a major threat for security of power systems. Preserving voltage security margin at a certain limit is a vital requirement for today’s power systems. Assessment of voltage security margin is a challenging task demanding sophisticated indices. In this paper, for the purpose of on line voltage security assessment a new index based on the correlation characteristic of network voltage profile is proposed. Voltage profile comprising all bus voltages contains the effect of network structure, load-generation patterns and reactive power compensation on the system behaviour and voltage security margin. Therefore, the proposed index is capable to clearly reveal the effect of system characteristics and events on the voltage security margin. The most attractive feature for this index is its fast and easy calculation from synchronously measured voltage profile without any need to system modelling and simulation and without any dependency on network size. At any instant of system operation by merely measuring network voltage profile and no further simulation calculation this index could be evaluated with respect to a specific reference profile. The results show that the behaviour of this index with respect to the change in system security is independent of the selected reference profile. The simplicity and easy calculation make this index very suitable for on line application. The proposed approach has been demonstrated on IEEE 39 bus test system with promising results showing its effectiveness and applicability.

  18. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    Science.gov (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  19. Unique spin-polarized transmission effects in a QD ring structure

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  20. The effect of activation rate on left atrial bipolar voltage in patients with paroxysmal atrial fibrillation.

    Science.gov (United States)

    Williams, Steven E; Linton, Nick; O'Neill, Louisa; Harrison, James; Whitaker, John; Mukherjee, Rahul; Rinaldi, Christopher A; Gill, Jaswinder; Niederer, Steven; Wright, Matthew; O'Neill, Mark

    2017-09-01

    Bipolar voltage is used during electroanatomic mapping to define abnormal myocardium, but the effect of activation rate on bipolar voltage is not known. We hypothesized that bipolar voltage may change in response to activation rate. By examining corresponding unipolar signals we sought to determine the mechanisms of such changes. LA extrastimulus mapping was performed during CS pacing in 10 patients undergoing first time paroxysmal atrial fibrillation ablation. Bipolar and unipolar electrograms were recorded using a PentaRay catheter (4-4-4 spacing) and indifferent IVC electrode, respectively. An S1S2 pacing protocol was delivered with extrastimulus coupling interval reducing from 350 to 200 milliseconds. At each recording site (119 ± 37 per LA), bipolar peak-to-peak voltage, unipolar peak to peak voltage and activation delay between unipole pairs was measured. Four patterns of bipolar voltage/extrastimulus coupling interval curves were seen: voltage attenuation with plateau voltage >1 mV (48 ± 15%) or voltage unaffected by coupling interval with plateau voltage >1 mV (17 ± 10%) or voltage attenuation were associated with significantly greater unipolar voltage attenuation at low (25 ± 28 mV/s vs. 9 ± 11 mV/s) and high (23 ± 29 mV/s vs. 6 ± 12 mV/s) plateau voltage sites (P voltage attenuation (P = 0.026). Bipolar electrogram voltage is dependent on activation rate at a significant proportion of sites. Changes in unipolar voltage and timing underlie these effects. These observations have important implications for use of voltage mapping to delineate abnormal atrial substrate. © 2017 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals, Inc.

  1. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  2. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  3. Reversible Resistance Switching Effect in Amorphous Ge1Sb4Te7 Thin Films without Phase Transformation

    International Nuclear Information System (INIS)

    Hua-Jun, Sun; Li-Song, Hou; Yi-Qun, Wu; Xiao-Dong, Tang

    2009-01-01

    We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge 1 Sb 4 Te 7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude

  4. Generation of valley-polarized electron beam in bilayer graphene

    International Nuclear Information System (INIS)

    Park, Changsoo

    2015-01-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents

  5. Generation of valley-polarized electron beam in bilayer graphene

    Science.gov (United States)

    Park, Changsoo

    2015-12-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  6. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  7. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    Science.gov (United States)

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  8. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    Science.gov (United States)

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  9. The feasibility and application of PPy in cathodic polarization antifouling.

    Science.gov (United States)

    Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong

    2018-04-01

    Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  11. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  12. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  13. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  14. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  15. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  16. Simulation of polarization-dependent film with subwavelength nano-hole array

    Science.gov (United States)

    Yu, Yue; Wei, Dong; Long, Huabao; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    When lightwave passes through a metal thin film with a periodic subwavelength hole arrays structure, its transmittance is significantly improved in the partial band compared to other wavelength. Changing the size of the hole, the period or metal material, will make the transmission curve different. Here, we add a layer of dielectric material on the surface of the metal film, such as liquid crystal(LC), by controlling voltage on LC to change the refractive index of this layer, then we can change the transmission curve, and achieve using voltage to move the transmission curve. When there is need for polarization, the holes can be made of a rectangle whose length and width are different or other shapes, for different polarization state of the light, and the film will display different transmission characteristics.

  17. Bias voltage induced resistance switching effect in single-molecule magnets’ tunneling junction

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-01

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be ‘read out’ by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  18. Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-12

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  19. X-BAND CIRCULARLY POLARIZED RECTENNAS FOR MICROWAVE POWER TRANSMISSION APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexia; Xu Junshu; Xu Deming; Xu Changlong

    2008-01-01

    Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas,which are easily matched and integrated with the circuits of rectennas. The double-layer structure not only minimizes the size of the rectennas but also decreases the effects of the circuits on the antenna. The receiving elements have broader bandwidth and higher gain than the single-layer patches.Two rectennas operating at 10GHz are designed, fabricated and measured. The voltage of 3.86V on a load of 200Ωis measured and a high RF-DC conversion efficiency of 75% is obtained at 9.98GHz. It is convenient for this kind of rectennas to form large arrays for high power applications.

  20. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  1. Effect of samarium in corrosion and microstructure of Al-5Zn-0.5Cu as low driving voltage sacrificial anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Ramadhan, Fajar Yusya; Maulana, Bramuda

    2018-05-01

    Sacrificial Anode Low voltage is the latest generation of the sacrificial anode that can prevent the occurrence of Hydrogen Cracking (HIC) due to overprotection. The Al-5n-0.5Cu alloy showed the potential to be developed as the new sacrificial anode. However, the main problem is copper made Al2Cu intermetallic in grain boundary. Samarium is added to modify the shape of the intermetallic to make it finer and make the corrosion uniform. Several characterizations were conducted to analyze the effect of Samarium. Scanning electron microscope (SEM) and Energy dispersive spectroscopy was used to analyzed the microstructure of the alloy. Metallography preparation was prepared for SEM analysis. Corrosion behavior was characterized by cyclic polarization in 3.5% NaCl solution. The results show samarium can change the shape of intermetallic and refine the grains. In addition, samarium makes better pitting resistance and exhibits a tendency for uniform corrosion. It is indicated by the loop reduction (ΔEpit-prot). Current density increased as an effect of samarium addition from 6x10-5 Ampere (Al-5Zn-0.5Cu) to 2.5x10-4 Ampere (Al-5Zn-0.5Cu-0.5Sm). Steel potential protection increased after addition of samarium which is an indication the possibility of Al-Zn-Cu-Sm to be used as low voltage sacrificial anode.

  2. Polarization-independent rapidly tunable optical add-drop multiplexer utilizing non-polarizing beam splitters in Ti:LiNbO3

    Science.gov (United States)

    Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.

    2012-04-01

    A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.

  3. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    Science.gov (United States)

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  4. Alternating gradient focusing and deceleration of polar molecules

    NARCIS (Netherlands)

    Bethlem, H.L.; Tarbutt, M.R.; Kupper, J.; Carty, D.; Wohlfart, K.; Hinds, E.A.; Meijer, G.

    2006-01-01

    Beams of polar molecules can be focused using an array of electrostatic lenses in alternating gradient (AG) configuration. They can also be accelerated or decelerated by applying an appropriate high-voltage switching sequence to the lenses. AG focusing is applicable to molecules in both low-field-

  5. Polarized electron sources for linear colliders

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Schultz, D.C.; Sheppard, J.C.

    1992-07-01

    Linear colliders require high peak current beams with low duty factors. Several methods to produce polarized e - beams for accelerators have been developed. The SLC, the first linear collider, utilizes a photocathode gun with a GaAs cathode. Although photocathode sources are probably the only practical alternative for the next generation of linear colliders, several problems remain to be solved, including high voltage breakdown which poisons the cathode, charge limitations that are associated with the condition of the semiconductor cathode, and a relatively low polarization of ≤5O%. Methods to solve or at least greatly reduce the impact of each of these problems are at hand

  6. Effective polarization in quasi-free scattering

    OpenAIRE

    Maris, Theodor August Johannes; Teodoro, Maria Ribeiro; Veit, Eliane Angela

    1980-01-01

    A simple relation, involving only experimental quantmes, for the effective polarizations m quasi-free (p, 2p) scattering on closed shell nuclei IS tested for recent TRIUMF (p, 2p) experiments with 200 MeV polanzed protons.

  7. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  8. The polarizing effect of arousal on negotiation.

    Science.gov (United States)

    Brown, Ashley D; Curhan, Jared R

    2013-10-01

    In this research, we examined the impact of physiological arousal on negotiation outcomes. Conventional wisdom and the prescriptive literature suggest that arousal should be minimized given its negative effect on negotiations, whereas prior research on misattribution of arousal suggests that arousal might polarize outcomes, either negatively or positively. In two experiments, we manipulated arousal and measured its effect on subjective and objective negotiation outcomes. Our results support the polarization effect. When participants had negative prior attitudes toward negotiation, arousal had a detrimental effect on outcomes, whereas when participants had positive prior attitudes toward negotiation, arousal had a beneficial effect on outcomes. These effects occurred because of the construal of arousal as negative or positive affect, respectively. Our findings have important implications not only for negotiation, but also for research on misattribution of arousal, which previously has focused on the target of evaluation, in contrast to the current research, which focused on the critical role of the perceiver.

  9. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

    KAUST Repository

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-01

    simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling

  10. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  11. Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model

    Energy Technology Data Exchange (ETDEWEB)

    Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)

    2011-04-15

    The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.

  12. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  13. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Gayani, Didi; Margono; Indasah, Iin; Sugito

    2000-01-01

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGS T HOMSON

  14. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames

    KAUST Repository

    Belhi, Memdouh

    2017-10-19

    Two-dimensional axisymmetric simulations for counterflow nonpremixed methane-air flames were undertaken as an attempt to reproduce the experimentally observed electro-hydrodynamic effect, also known as the ionic wind effect, on flames. Incompressible fluid dynamic solver was implemented with a skeletal chemical kinetic mechanism and transport property evaluations. The simulation successfully reproduced the key characteristics of the flames subjected to DC bias voltages at different intensity and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current-voltage curve. The flame response to the electric field with positive and negative polarity exhibited qualitatively different characteristics. In the negative polarity of the configuration considered, a non-monotonic variation of the current with the voltage was observed along with the existence of an unstable regime at an intermediate voltage level. With positive polarity, a typical monotonic current-voltage curve was obtained. This behavior was attributed to the asymmetry in the distribution of the positive and negative ions resulting from ionization processes. The present study demonstrated that the mathematical and computational models for the ion chemistry, transport, and fluid dynamics were able to describe the key processes responsible for the flame-electric field interaction.

  15. Polarization reversal of proton spins in solid-state targets by superradiance effects

    International Nuclear Information System (INIS)

    Reichertz, L.A.

    1991-02-01

    Scattering experiments with polarized targets are prepared at the Bonn accelerator ELSA. The new Bonn frozen spin target (BOFROST) developed for real photon experiments at the PHOENICS detector has been tested in the laboratory. Proton polarization values of -99% and +94% in ammonia, -96% and +90% in butanol have been achieved at a magnetic field of 3.5 Tesla. At a temperature of 70 mK and a magnetic field of 0.35 Tesla a very fast spontaneous polarization reversal has been observed. This effect occured at negative polarization only and has been identified as a self-induced superradiance effect in the proton spin system. This work describes the polarization and relaxation measurements at BOFROST and detailed experiments concerning the superradiance effect. (orig.) [de

  16. Radiochromic film and polarization effects

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW; Inwood, D.

    2004-01-01

    Full text: A new high sensitivity radiochromic film has been tested for its polarization properties. Gafchromic HS film has been shown to produce a relatively small (less than 3%) variation in measured optical density measured at 660nm wavelength when the light source is fully linear polarized and the film is rotated through 360 deg angle. Similar variations are seen when the detector is linearly polarized. If both light source and detector is linearly polarised variations in measured optical density can reach 15% when the film is rotated through 360 deg angle. This seems to be due to a phase shift in polarised light caused by the radiochromic film resulting in the polarised light source becoming out of phase with the polarised detector. Gafchromic HS radiochromic film produces a minimal polarization response with varying angle of rotation however we recommend that a polarization test be performed on a densitometry system to establish the extent of its polarization properties before accuracy dosimetry is performed with radiochromic HS film. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  17. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhemin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Technology, Tsinghua University, Beijing 100084 (China); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-04-28

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  18. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    Science.gov (United States)

    Shi, Zhemin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  19. Polarization effects in hadron fragmentation

    International Nuclear Information System (INIS)

    Lednicky, R.

    1984-01-01

    Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed

  20. First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET

    International Nuclear Information System (INIS)

    Hahn, Herwig; Reuters, Ben; Wille, Ada; Ketteniss, Nico; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2012-01-01

    One current focus of research is the realization of GaN-based enhancement-mode devices. A novel approach for the realization of enhancement-mode behaviour is the utilization of polarization matching between the barrier and the GaN buffer. Yet, the utilization of a quaternary barrier combining polarization engineering together with a large conduction band offset has not been demonstrated so far. Here, epitaxially grown, compressively strained AlInGaN is applied as a nearly polarization-matched barrier layer on GaN resulting in enhancement-mode operation. The insulated-gate devices are fabricated gate-first with Al 2 O 3 as gate dielectric. Passivated metal insulator semiconductor heterostructure field effect transistors yielded threshold voltages (V th ) of up to +1 V. The devices withstand negative and positive gate-biased stress and a positive V th is maintained even after long-time negative bias stress. (paper)

  1. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    Science.gov (United States)

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  2. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  3. Polarization effects in the beta decay

    International Nuclear Information System (INIS)

    Gaponov, Yu.V.

    1978-01-01

    Reviewed is the modern state of experiments on β decay of polarized nuclei from the point of view of studying the structure of the effective hamiltonian of the weak interaction and the peculiarities of series of isobaric states of the p anti n and n anti p type. Considered are the problems on realization of the complete experiment and of the evaluation of the contribution of the S and T variants of β interaction, the experiments on second class currents and the information on the structure of isobaric series with various moments: 0+-, 1+-, 2-. The main attention is paid to new possibilities on the experiments with polarized nuclei at the SPIN device

  4. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    Science.gov (United States)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  5. Framing effects in group investment decision making: role of group polarization.

    Science.gov (United States)

    Cheng, Pi-Yueh; Chiou, Wen-Bin

    2008-02-01

    Prospect theory proposes that framing effects result in a preference for risk-averse choices in gain situations and risk-seeking choices in loss situations. However, in group polarization situations, groups show a pronounced tendency to shift toward more extreme positions than those they initially held. Whether framing effects in group decision making are more prominent as a result of the group-polarization effect was examined. Purposive sampling of 120 college students (57 men, 63 women; M age = 20.1 yr., SD = 0.9) allowed assessment of relative preference between cautious and risky choices in individual and group decisions. Findings indicated that both group polarization and framing effects occur in investment decisions. More importantly, group decisions in a gain situation appear to be more cautious, i.e., risk averse, than individual decisions, whereas group decisions in the loss situation appear to be more risky than individual decisions. Thus, group decision making may expand framing effects when it comes to investment choices through group polarization.

  6. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    International Nuclear Information System (INIS)

    Wu Kunlin; Bai Meilin; Hou Shimin; Sanvito, Stefano

    2013-01-01

    The origin and the distance dependence of the transition voltage of gold–vacuum–gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold–vacuum–gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold–vacuum–gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. (paper)

  7. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru [Physics Department, Moscow State University, Moscow (Russian Federation)

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  8. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  9. Effect of bias voltage on microstructure and mechanical properties of ...

    Indian Academy of Sciences (India)

    In the present study, authors report on the effect that substrate bias voltage has on the ... ings and at high deposition rates, having a wide range of .... The coatings were then ultra- ... The results of a typical compositional analysis carried out.

  10. Grain boundary effect of ZnO voltage sensitive ceramic

    International Nuclear Information System (INIS)

    Zhu Ziying; Lei Deming; Li Jingde

    1991-01-01

    Positron annihilation techenique has been to study the non-linear Ohmic effect of ZnO. The resemblence of curve representing the short life-time τ 1 and its component I 1 vs. current i with the voltage drop curve proves that this component I 1 belongs to the annihilation of transporting electron and positron. The experimental results give support to the explaination of Schottky barrier model for the effect of intergranular boundary

  11. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  12. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  13. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  14. The effect of random dopant fluctuation on threshold voltage and drain current variation in junctionless nanotransistors

    International Nuclear Information System (INIS)

    Rezapour, Arash; Rezapour, Pegah

    2015-01-01

    We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel. (paper)

  15. thermally poled channel waveguides with polarization independent electro-optic effect

    DEFF Research Database (Denmark)

    Ren, Yitao; Marckmann, Carl Johan; Arentoft, Jesper

    2002-01-01

    We present a systematic investigation of the poling-induced electrooptic (EO) effect in germanium and nitrogen codoped channel waveguides. The channel waveguides show attractive properties: (1) almost polarization independent EO effect; (2) a flat frequency response with the modulation frequency up...... to 100 kHz; and (3) low linear loss and low polarization dependent loss, which demonstrate great technological potential...

  16. Spatial Congruity Effects Reveal Metaphorical Thinking, not Polarity Correspondence.

    Science.gov (United States)

    Dolscheid, Sarah; Casasanto, Daniel

    2015-01-01

    Spatial congruity effects have often been interpreted as evidence for metaphorical thinking, but an alternative account based on polarity correspondence (a.k.a. markedness) has challenged this view. Here we compared metaphor- and polarity-correspondence-based explanations for spatial congruity effects, using musical pitch as a testbed. In one experiment, English speakers classified high- and low-frequency pitches as "high" and "low," or as "front" and "back," to determine whether space-pitch congruity effects could be elicited by any marked spatial continuum. Although both pairs of terms describe bipolar spatial continuums, we found congruity effects only for high/low judgments, indicating that markedness is not sufficient to produce space-pitch congruity effects. A second experiment confirmed that there were no space-pitch congruity effects for another pair of terms that have clear markedness (big/small), but which do not denote spatial height. By contrast, this experiment showed congruity effects for words that cued an appropriate vertical spatial schema (tall/short), even though these words are not used conventionally in English to describe pitches, ruling out explanations for the observed pattern of results based on verbal polysemy. Together, results suggest that space-pitch congruity effects reveal metaphorical uses of spatial schemas, not polarity correspondence effects.

  17. Spatial congruity effects reveal metaphorical thinking, not polarity correspondence

    Directory of Open Access Journals (Sweden)

    Sarah eDolscheid

    2015-11-01

    Full Text Available Spatial congruity effects have often been interpreted as evidence for metaphorical thinking, but an alternative account based on polarity correspondence (a.k.a. markedness has challenged this view. Here we compared metaphor- and polarity-correspondence-based explanations for spatial congruity effects, using musical pitch as a testbed. In one experiment, English speakers classified high- and low-frequency pitches as high and low, or as front and back, to determine whether space-pitch congruity effects could be elicited by any marked spatial continuum. Although both pairs of terms describe bipolar spatial continuums, we found congruity effects only for high/low judgments, indicating that markedness is not sufficient to produce space-pitch congruity effects. A second experiment confirmed that there were no space-pitch congruity effects for another pair of terms that have clear markedness (big/small, but which do not denote spatial height. By contrast, this experiment showed congruity effects for words that cued an appropriate vertical spatial schema (tall/short, even though these words are not used conventionally in English to describe pitches, ruling out explanations for the observed pattern of results based on verbal polysemy. Together, results suggest that space-pitch congruity effects reveal metaphorical uses of spatial schemas, not polarity correspondence effects.

  18. Effect of polarization force on the Jeans instability of self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2011-01-01

    The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.

  19. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  20. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  2. Development of a cryogenic source of polarized deuterons ''Polaris''

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Belushkina, A.A.; Ershov, V.P.

    1985-01-01

    To obtain a beam of polarized deuterons, a cryogenic source ''Polaris'' has been developed according to the program of research at the Dubna synchrophasotron. The source is installed on a high-voltage terminal of the linac preaccelerator. A beam of deuterons from the source is accelerated in the synchrophasotron. At present the source is being improved. A polarimeter with 3 He and 4 He targets has been developed to measure the polarization of the beam of deuterons after the linac. Results of this work are presented in the report

  3. The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1978-01-01

    The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)

  4. Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka

    2010-07-01

    Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.

  5. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen; Rovang, D.C.

    1997-04-01

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of ∼ 1.5-mm spot size and 1 kR dose at sign 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180 degrees poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to ∼ 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape

  6. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  7. The antecedents and belief-polarized effects of thought confidence.

    Science.gov (United States)

    Chou, Hsuan-Yi; Lien, Nai-Hwa; Liang, Kuan-Yu

    2011-01-01

    This article investigates 2 possible antecedents of thought confidence and explores the effects of confidence induced before or during ad exposure. The results of the experiments indicate that both consumers' dispositional optimism and spokesperson attractiveness have significant effects on consumers' confidence in thoughts that are generated after viewing the advertisement. Higher levels of thought confidence will influence the quality of the thoughts that people generate, lead to either positively or negatively polarized message processing, and therefore induce better or worse advertising effectiveness, depending on the valence of thoughts. The authors posit the belief-polarization hypothesis to explain these findings.

  8. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    Science.gov (United States)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  9. Polarization effects in the 3-body system

    International Nuclear Information System (INIS)

    Ohlsen, G.G.

    1978-01-01

    An experimental review is given of polarization effects in the three-nucleon system. Inelastic processes are emphasized and some special topics on elastic scattering are also considered. The recent elastic nucleon--deuteron scattering result are discussed including the determination of the deuteron D state, vector n - d vs vector p - d vector analyzing power, the status of fits to polarization observables via Faddeev-type theory, and medium-energy elastic scattering. The treatment of the breakup experiments covers a general discussion of some of the possible kinematically complete breakup measurements and kinematically incomplete breakup experiments. 71 references

  10. Effects of Photovoltaic and Fuel Cell Hybrid System on Distribution Network Considering the Voltage Limits

    Directory of Open Access Journals (Sweden)

    ABYANEH, H. A.

    2010-11-01

    Full Text Available Development of distribution network and power consumption growth, increase voltage drop on the line impedance and therefore voltage drop in system buses. In some cases consumption is so high that voltage in some buses exceed from standard. In this paper, effect of the fuel cell and photovoltaic hybrid system on distribution network for solving expressed problem is studied. For determining the capacity of each distributed generation source, voltage limitation on the bus voltages under different conditions is considered. Simulation is done by using DIgSILENT software on the part of the 20 kV real life Sirjan distribution system. In this article, optimum location with regard to system and environmental conditions are studied in two different viewpoints.

  11. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation

    Science.gov (United States)

    Nimmy John, V.; Varanakkottu, Subramanyan Namboodiri; Varghese, Soney

    2018-06-01

    Flexible polymer dispersed liquid crystal (F-PDLC) devices were fabricated using transparent conducting ITO/PET film. Polymerization induced phase separation (PIPS) method was used for pure and ferroelectric BaTiO3 (BTO) and ZnO doped PDLC devices. The distribution of nanoparticles in the PDLC and the formation of micro cavities were studied using field emission scanning electron microscopy (FESEM). It was observed that the addition of ferroelectric BTO nanoparticles has reduced the threshold voltage (Vth) and saturation voltage (Vsat) of FNP-PDLC by 85% and 41% respectively due to the spontaneous polarization of ferroelectric nanoparticles. The ferroelectric properties of BTO and ZnO in the fabricated devices were investigated using dynamic contact electrostatic force microscopy (DC EFM). Flexing the device can generate a potential due to the piezo-tribo electric effect of the ferroelectric nanomaterial doped in the PDLC matrix, which could be utilized as an energy generating system. The switching voltage after multiple flexing was also studied and found to be in par with non-flexing situations.

  12. Effects of bias voltage on the corrosion resistance of titanium nitride thin films fabricated by dynamic plasma immersion ion implantation-deposition

    International Nuclear Information System (INIS)

    Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2002-01-01

    Dynamic plasma-based thin-film deposition incorporating ion mixing and plasma immersion is an effective technique to synthesize nitride-based hard films. We have fabricated TiN films using a filtered titanium vacuum arc in a nitrogen plasma environment. A pulsed high voltage is applied to the target for a short time when the metallic arc is fired to attain simultaneous plasma deposition and ion mixing. We investigate the dependence of the corrosion resistance and interfacial structure of the treated samples on the applied voltage. Our Auger results reveal an oxygen-rich surface film due to the non-ultra-high-vacuum conditions and high affinity of oxygen to titanium. The corrosion current is reduced by two orders of magnitude comparing the sample processed at 8 kV to the untreated sample, but the 23 kV sample unexpectedly shows worse results. The pitting potential diminishes substantially although the corrosion current is similar to that observed in the 8 kV sample. The polarization test data are consistent with our scanning electron microscopy observation, corroborating the difference in the pitting distribution and appearance. This anomalous behavior is believed to be due to the change in the chemical composition as a result of high-energy ion bombardment

  13. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Soh, Wee Tee; Ong, Chong Kim [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore)

    2016-03-07

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  14. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  15. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    Science.gov (United States)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  16. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  17. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  18. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    KAUST Repository

    Wu, Kunlin

    2012-12-13

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. © 2013 IOP Publishing Ltd.

  19. Variations in the polar cap area during two substorm cycles

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  20. Interrogation and mitigation of polarization effects for standard and birefringent FBGs

    Science.gov (United States)

    Ibrahim, Selwan K.; Van Roosbroeck, Jan; O'Dowd, John A.; Van Hoe, Bram; Lindner, Eric; Vlekken, Johan; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-05-01

    Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. Several inscription techniques and type of fibers can be used. However, depending on the writing process, type of fiber used and the packaging of the sensor a Polarization Dependent Frequency Shift (PDFS) can often be observed with polarized tunable laser based optical interrogators. Here we study the PDFS of the FBG peak for the different FBG types. A PDFS of 20pm was observed across the FBGs. To mitigate and reduce this effect we propose a polarization mitigation technique which relies on a synchronous polarization switch to reduce the effect typically by a factor greater than 4. In other scenarios the sensor itself is designed to be birefringent (Bi-FBG) to allow pressure and/or simultaneous temperature and strain measurements. Using the same polarization switch we demonstrate how we can interrogate the Bi-FBGs with high accuracy to enable high performance of such sensors to be achievable.

  1. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  2. Numerical analysis on the effect of voltage change on removing condensed water inside the GDL of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nam Woo [Fuel Cell Technology Development Team, Eco-Technology Center, Hyundai-Kia Motors, Yongin (Korea, Republic of); Kim, Young Sang; Kim, Min Soo [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Min Sung [School of Energy Systems Engineering, Chung-Ang University, Seoul (Korea, Republic of)

    2016-09-15

    Decreasing the voltage of a fuel cell through hydrogen mixing or using low-air stoichiometry ratio is beneficial to remove condensed water inside GDL under flooding condition. In this study, the effect of voltage level of a fuel cell on water distribution in GDL under flooding condition was numerically analyzed. Water content in GDL was dependent on the voltage level of a fuel cell, that is, the water content was low when the cell voltage was maintained low. The effect of voltage change under flooding condition was also simulated. The flow rate of condensed water inside GDL considerably increased immediately after decreasing the cell voltage. The oxygen concentration in the catalyst layer was increased by decreasing the voltage of the fuel cell. Consequently, the cell voltage was recovered. Therefore, decreasing cell voltage under flooding condition can facilitate removal of condensed water in GDL.

  3. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  4. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  5. A thermoelectric voltage effect in polyethylene oxide

    International Nuclear Information System (INIS)

    Martin, Bjoern; Wagner, Achim; Kliem, Herbert

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depends on the energy-barrier heights in the multi-well potential

  6. A thermoelectric voltage effect in polyethylene oxide

    CERN Document Server

    Martin, B; Kliem, H

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depen...

  7. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Science.gov (United States)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  8. Variations in ultraviolet extinction: effect of polarization revisited

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Chlewicki, G.; Rijksuniversiteit Groningen

    1987-01-01

    The alignment of the particles responsible for the polarization and visual extinction is shown to provide a basis for changing the saturation level of the ultraviolet extinction without changing the particle sizes. If the particles are well aligned, it is predicted that there should be significantly lower extinction in the ultraviolet relative to the visible for stars viewed perpendicular to magnetic-field lines (maximum polarization) as compared with those viewed across the field lines. Preliminary evidence for such an effect is noted in Carina. (author)

  9. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  10. Research of the voltage and current stabilization processes by using the silicon field-effect transistor

    International Nuclear Information System (INIS)

    Karimov, A.V.; Yodgorova, D.M.; Kamanov, B.M.; Giyasova, F.A.; Yakudov, A.A.

    2012-01-01

    The silicon field-effect transistors were investigated to use in circuits for stabilization of current and voltage. As in gallium arsenide field-effect transistors, in silicon field-effect transistors with p-n-junction a new mechanism of saturation of the drain current is experimentally found out due to both transverse and longitudinal compression of channel by additional resistance between the source and the gate of the transistor. The criteria for evaluating the coefficients of stabilization of transient current suppressors and voltage stabilizator based on the field-effect transistor are considered. (authors)

  11. Inversion of time-domain induced polarization data based on time-lapse concept

    Science.gov (United States)

    Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon

    2018-05-01

    Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.

  12. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  13. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    Directory of Open Access Journals (Sweden)

    S. Demirezen

    Full Text Available In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε′, ε′, tanδ, electric modulus (M′ and M″ and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε′, ε′, tanδ, M′, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε′, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε′ and ε″ values at low frequencies may be attributed to the Maxwell–Wagner and space charge polarization. The high values of ε′ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M′ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M′ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε′, ε″, tanδ, M′, M″ and ac electric conductivity (σac is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization. Keywords: Thin films, Electrical properties, Interface/interphase

  14. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    Science.gov (United States)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  15. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  16. Transient charging and discharging of spin-polarized electrons in a quantum dot

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Leao, S.A.; Gester, R. M.

    2007-01-01

    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green ...

  17. Effects of polarization field on vertical transport in GaN/AlGaN resonant tunneling diodes

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Shim, Jong-In

    2012-01-01

    Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.

  18. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  19. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

    KAUST Repository

    Wu, Kunlin

    2013-01-01

    The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.

  20. Spectral Properties and Orientation of Voltage-Sensitive Dyes in Lipid Membranes

    KAUST Repository

    Matson, Maria

    2012-07-24

    Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decades, the mechanism behind their voltage sensitivity is still obscure. We ask whether the voltage response is due to electrochromism as a result of direct field interaction on the chromophore or to solvatochromism, which is the focus of this study, as result of changed environment or molecular alignment in the membrane. The spectral properties of three styryl dyes, di-4-ANEPPS, di-8-ANEPPS, and RH421, were investigated in solvents of varying polarity and in model membranes using spectroscopy. Using quantum mechanical calculations, the spectral dependence of monomer and dimer ANEPPS on solvent properties was modeled. Also, the kinetics of binding to lipid membranes and the binding geometry of the probe molecules were found relevant to address. The spectral properties of all three probes were found to be highly sensitive to the local environment, and the probes are oriented nearly parallel with the membrane normal. Slow binding kinetics and scattering in absorption spectra indicate, especially for di-8-ANEPPS, involvement of aggregation. On the basis of the experimental spectra and time-dependent density functional theory calculations, we find that aggregate formation may contribute to the blue-shifts seen for the dyes in decanol and when bound to membrane models. In conclusion, solvatochromic and other intermolecular interactions effects also need to be included when considering electrochromic response voltage-sensitive dyes. © 2012 American Chemical Society.

  1. Nonclassical polarization effects in fluorescence emission spectra from microdroplets

    Science.gov (United States)

    Arnold, S.; Goddard, N. L.; Hill, S. C.

    1999-12-01

    We report a pronounced nonclassical polarization effect on the shape of fluorescence emission spectra from isolated microdroplets containing a dilute solution of soluble fluors or a dilute layer of surfactant fluors. We see different spectral shapes for 90° scattering when comparing between IVV, IVH, IHH, IHV. However, we measure the largest difference in spectral shape in the surfactant case, with the incident polarization directed toward the detector (IHV vs IHH). Imaging reveals that the emission in this case principally arises from two distinct regions near the surface of the droplet, which are diametrically opposed and along the axis of the incident laser beam. The effect appears to be the direct result of coupling between molecular emission moments and electromagnetic modes of the droplet. It is not the molecule which radiates but the molecule microvessel. Directional emission is sensitive to the polarization of the electromagnetic mode which is stimulated by the coupling.

  2. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  3. Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization

    CERN Document Server

    Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A

    2004-01-01

    We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).

  4. Harmonic Mitigation Using a Polarized Ramp-time Current-Controlled Inverter

    Directory of Open Access Journals (Sweden)

    Lawrence J. Borle

    2010-12-01

    Full Text Available This paper describes the implementation of a shunt active power filter for a three-phase four-wire system to compensate for power quality problems generated by mixed non-linear loads, which are a combination of harmonic, reactive and unbalanced components. The filter is a three-phase current-controlled voltage source inverter (CC-VSI with a filter inductor at the AC output and a DC-bus capacitor. The CC-VSI is operated to directly control the grid current to be sinusoidal and in phase with the grid voltage without sensing the load currents. The switching is controlled using polarized ramp-time current control, which is based on the concept of zero average current error (ZACE with a fixed switching frequency. The laboratory experiment results indicate that the filter is able to mitigate predominantly the harmonics, as well as the reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical although the grid voltage contains harmonics.

  5. Voltage Effect in Holograms of Polyvinyl Alcohol with FeCl3

    Directory of Open Access Journals (Sweden)

    Arturo Olivares-Pérez

    2014-03-01

    Full Text Available We show experimentally that the metallic salt, FeCl3, at different concentrations, provides photosensitivity and conductivity characteristics with poly(vinyl alcohol material. The holographic recording in this photosensitive material was made in real time. The effect of applied voltage on holographic diffraction gratings in the recording process and the changes in their diffraction efficiency, depending on their composition, are shown. In addition, we describe the photo-mechanism, physicochemical processes, and water condensations involved in changes of the formation of images due to applied voltage. The results suggest that polymers doped with metallic salts may have potential as inexpensive photosensitive materials that are easy to work under normal laboratory condition.

  6. Conservation voltage regulation (CVR) applied to energy savings by voltage-adjusting equipment through AMI

    Science.gov (United States)

    Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.

    2017-11-01

    Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.

  7. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  8. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  9. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  10. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  11. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  12. SPIN EFFECTS IN THE FRAGMENTATION OF TRANSVERSELY POLARIZED AND UNPOLARIZED QUARKS

    International Nuclear Information System (INIS)

    ANSELMINO, M.; BOER, D.; DALESIO, U.; MURGIA, F.

    2001-01-01

    We study the fragmentation of a transversely polarized quark into a non-collinear (kperpendicular ≠ 0) spinless hadron and the fragmentation of an unpolarized quark into a non collinear transversely polarized spin 1/2 baryon. These nonperturbative properties are described by spin and kperpendicular dependent fragmentation functions and are revealed in the observation of single spin asymmetries. Recent data on the production of pions in polarized semi-inclusive DIS and long known data on A polarization in unpolarized p-N processes are considered: these new fragmentation functions can describe the experimental results and the single spin effects in the quark fragmentation turn out to be surprisingly large

  13. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanay; Sen, A. K. [Department of Physics Assam University, Silchar-788011, Assam (India)

    2016-12-10

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannot be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.

  14. Perpendicular magnetic anisotropy influence on voltage-driven spin-diode effect in magnetic tunnel junctions: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Frankowski, Marek, E-mail: mfrankow@agh.edu.pl [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); AGH University of Science and Technology, al. Mickiewicza 30, Faculty of Physics and Applied Computer Science, 30-059 Kraków (Poland); Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland)

    2017-05-01

    We study the influence of the perpendicular magnetic anisotropy on the voltage-induced ferromagnetic resonance in magnetic tunnel junctions (MTJs). An MTJ response to the applied radio-frequency voltage excitation is investigated using micromagnetic calculations with the free layer oriented both in-plane and out-of-plane. Our model allows for a quantitative description of the magnetic system parameters such as resonance frequency, sensitivity or quality factor and for a distinction between material-dependent internal damping and disorder-dependent effective damping. We find that the sensitivity abruptly increases up to three orders of magnitude near the anisotropy transition regime, while the quality factor declines due to effective damping increase. We attribute the origin of this behaviour to the changes of the exchange energy in the system, which is calculated using micromagnetic approach. - Highlights: • Micromagnetic approach is used for modelling of voltage-induced spin-diode effect. • Voltage-induced switching simulations are performed. • Spin-diode line is analyzed as a function of perpendicular anisotropy energy. • Effective damping, quality factor and sensitivity are calculated.

  15. Control of polarization and dipole moment in low-dimensional semiconductor nanostructures

    International Nuclear Information System (INIS)

    Li, L. H.; Ridha, P.; Mexis, M.; Smowton, P. M.; Blood, P.; Bozkurt, M.; Koenraad, P. M.; Patriarche, G.; Fiore, A.

    2009-01-01

    We demonstrate the control of polarization and dipole moment in semiconductor nanostructures, through nanoscale engineering of shape and composition. Rodlike nanostructures, elongated along the growth direction, are obtained by molecular beam epitaxial growth. By varying the aspect ratio and compositional contrast between the rod and the surrounding matrix, we rotate the polarization of the dominant interband transition from transverse-electric to transverse-magnetic, and modify the dipole moment producing a radical change in the voltage dependence of absorption spectra. This opens the way to the optimization of quantum dot amplifiers and electro-optical modulators.

  16. Elastic proton-deuteron backward scattering: relativistic effects and polarization observables

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Semikh, S.S.

    1997-10-01

    The elastic proton-deuteron backward reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with 000. Lorentz boost and other relativistic effects in the cross section and spin correlation observables, like tensor analyzing power and polarization transfer etc., are investigated in explicit form. Results of numerical calculations for a complete set of polarization observables are presented. (orig.)

  17. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  18. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  19. Polarization effects in early SUSY searches at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Wang, Liucheng; Xu, Tao; Zhang, Liangliang [Zhejiang University, Department of Physics, Zhejiang Institute of Modern Physics, Hangzhou, Zhejiang (China)

    2015-06-15

    An on-shell effective theory (OSET) approach has been widely used in searches of various supersymmetric signals, in particular, gluino/squark pairs with long cascade decay chains in which complete matrix element calculations may encounter high dimensional integrations. On the other hand, leptons from polarized chargino decays may show a significant boost effect in some scenarios and simulation without polarization information may underestimate or overestimate the lepton p{sub T} cut efficiencies in the first place. We study the polarization effects in leptonic decaying charginos from squarks or gluinos. Taking the polarization effects into account, we find it still justifiable to take only the OSET approach for a large parameter region, for instance, the first two generation squarks due to indistinguishable final states as well as a flat angular distribution in the motion of the lepton. On the other hand, we use the leptonic stop to illustrate the feature and find that the lepton p{sub T} cut efficiencies in cross section measurements can have maximally 25 % reduction or maximally 17 % enhancement in comparison with the kinematics-only approach. The signal rates after the cuts simulated by OSET are then underestimated/overestimated and the real bound on the squark/gluino should be more stringent or loose for a specific choice of the chargino and one can take the simulated efficiencies as a fast-simulation factor to multiply to the OSET simulated results. (orig.)

  20. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  1. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  2. Voltage stress effects on microcircuit accelerated life test failure rates

    Science.gov (United States)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  3. The Effect of Image Potential on the Current-Voltage Characteristics of a Ferritin-layer

    Directory of Open Access Journals (Sweden)

    Eunjung Bang

    2010-11-01

    Full Text Available Considering for the concept of power storage systems, such as those used to supply power to microelectronic devices, ferritins have aroused a lot of interests for applications in bioelectrochemical devices. And electron transfer rates from the proteins to electrode surface are key determinants of overall performance and efficiency of the ferritin-based devices. Here we have investigated the electron transport mechanism of ferritin layer which was immobilized on an Au electrode. The current-voltage (I-V curves are obtained by a conductive atomic force microscope (c-AFM as a function of contact area between AFM tip and the ferritin layer. In the low voltage region, I-V curves are affected by both Fowler-Nordheim tunneling and image force. On the other hand, the experimental results are consistent with a Simmons model in a high voltage region, indicating that, as the voltage increases, the image potential has a dominant effect on the electron transport mechanism. These results are attributed to the film-like character of the ferritin layer, which generates an image potential to lower the barrier height in proportion to the voltage increment.

  4. Enhanced Corrosion Resistance and Interfacial Conductivity of TiC x/a-C Nanolayered Coatings via Synergy of Substrate Bias Voltage for Bipolar Plates Applications in PEMFCs.

    Science.gov (United States)

    Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin

    2018-06-06

    Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.

  5. Effect of Turkish propolis extracts on expression of voltage-gated ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of dimethyl sulfoxide (DMSO) and water extracts of Turkish propolis (WEP) on mRNA expression of Nav 1.5 and 1.7 α isoforms of Voltage-Gated Sodium Channel (VGSC) proteins in PC-3 human prostate cancer cells. Methods: DMSO and WEP (20 μg/mL each) were incubated for 24 h with ...

  6. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  7. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-08-01

    Highlights: • 100% spin-polarized material important for the application in spintronics. • Ferromagnetic nature. • Ductile in nature for mechanical applications. • Semiconducting behavior with a band gap of 0.55 eV in minority spin channel. • Possibly efficient thermoelectric material. - Abstract: The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y{sub 1} type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK{sup −1} at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  8. Design of Position Estimation Strategy of Sensorless Interior PMSM at Standstill Using Minimum Voltage Vector Injection Method

    DEFF Research Database (Denmark)

    Wu, Xuan; Huang, Shoudao; Liu, Xiao

    2017-01-01

    This paper presents a new initial rotor position estimation method for an interior permanent magnet synchronous motor. The proposed method includes two steps: firstly, the minimum voltage vectors are injected to estimate the rotor position. Secondly, in order to identify the magnet polarity...

  9. Triple Line-Voltage Cascaded VIENNA Converter Applied as the Medium-Voltage AC Drive

    Directory of Open Access Journals (Sweden)

    Jia Zou

    2018-04-01

    Full Text Available A novel rectifier based on a triple line-voltage cascaded VIENNA converter (LVC-VC was proposed. Compared to the conventional cascaded H-bridge converters, the switch voltage stress is lower, and the numbers of switches and dc capacitors are fewer under similar operating conditions in the proposed new multilevel converter. The modeling and control for the LVC-VC ware presented. Based on the analysis of the operation principle of the new converter, the power factor correction of the proposed converter was realized by employing a traditional one-cycle control strategy. The minimum average value and maximum harmonic components of the dc-link voltages of the three VIENNA rectifier modules ware calculated. Three VIENNA dc-link voltages were unbalanced under the unbalanced load conditions, so the zero sequence current was injected to the three inner currents for balancing three VIENNA dc-link voltages. Simulation and the results of the experiment verified the availability of the new proposed multilevel converter and the effectiveness of the corresponding control strategy applied.

  10. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    Science.gov (United States)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  11. Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

    Science.gov (United States)

    Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.

    2012-03-01

    Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.

  12. Rain-induced cross-polarization effects on satellite ...

    African Journals Online (AJOL)

    Rain-induced cross-polarization effects on satellite telecommunication in some tropical location. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and ...

  13. A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua

    2014-01-01

    In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Effects of detector–source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. 133 Ba and 207 Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. - Highlights: ► Effect of the source-detector distance on time spectra was investigated. ► Effect of the detector bias voltage variations on time spectra was examined. ► Optimum detector–source distance was determined for the best time resolution. ► Optimum detector bias voltage was determined for the best time resolution. ► 133 Ba and 207 Bi radioisotopes were used.

  15. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  16. Practical considerations in voltage stability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    This paper deals with some of the most important practical issues related to voltage stability assessment of large practical systems. A brief discussion of the practical aspects of voltage stability problem and prevention of voltage instability is given first, followed by descriptions of different analytical techniques and tools for voltage stability analysis. Presentations of analytical tools is focused on the VSTAB program which incorporates the modal analysis, continuation power flow, and shortest distance to instability techniques, Finally, an example case study of a practical large system is presented. The case study illustrates how modal analysis is used to determine the most effective load shedding scheme for preventing voltage instability. (author) 15 refs., 2 figs., 2 tabs.

  17. Effect of Anode Floating Voltage and its Applications in Characterizing Silicon Drift Detectors

    International Nuclear Information System (INIS)

    Guang-Guo, Wu; Hong-Ri, Li; Kun, Liang; Ru, Yang; De-Jun, Han; Xue-Lei, Cao; Huan-Yu, Wang; Jun-Ming, An; Xiong-Wei, Hu

    2009-01-01

    Anode Boating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm 2 fabricated by a double-side parallel technology. It is demonstrated that the anode Boating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode Boating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (−50 V) of the SDD. Theoretical analysis and experimental results show that the anode Boating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p + inner ring and the n + anode. A fast checking method before detector encapsulation is proposed by employing the anode Boating voltage along with checking the leakage current, potential distribution and drift properties

  18. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  19. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  20. Cryogenic scanning laser microscopy. Investigation of large BSCCO mesas and development of a polarizing microscope

    International Nuclear Information System (INIS)

    Guenon, Stefan Alexander

    2011-01-01

    confirmed that the frequency of the emitted radiation and the bias voltage is determined by the Josephson relation for a wide range of different base temperatures. This way other mechanisms, causing THz radiation, rather than the Josephson effect can be excluded. Concerning the second part: Originally it was planned to extend the low-temperature scanning laser microscope with the facility of polarizing microscopy. The idea was to combine the LTSLM voltage imaging with the possibility of magneto-optical imaging. But it soon turned out that a new design would be necessary. A laser scanning polarizing microscope has certain advantages in comparison with a conventional polarizing microscope: Very high illumination intensities can be reached easily, the resolution can be improved by the factor 1.4 if a confocal optical design is used, and the serial signal processing facilitates the optimization of the signal-to-noise ratio. In addition, it is usually not necessary to remove the contrast of non-magnetic origin by subtracting an image of the uniform magnetized sample from the image of interest. In this thesis a design for a cryogenic scanning polarizing microscope (CSPM) is discussed in detail, tests and first results of the system are presented, and an outlook is given how two proceed with this project.

  1. Heavy quark fragmentation into polarized quarkonium in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    Fragmentation of b-antiquark into polarized B* c -mesons is investigated within the framework of effective theory of heavy quarks. Functions of b fragmentation into longitudinally polarized and transversely polarized S-wave states of b c are calculated with an exact regard tot he first order corrections by 1/m b . Agreement of the results obtained with the corresponding calculations, performed in the quantum chromodynamics, is shown. 17 refs.; 2 figs

  2. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  3. Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production.

    Science.gov (United States)

    Lee, Jung-Yeol; Park, Jeong-Hoon; Park, Hee-Deung

    2017-10-01

    Direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea via conductive materials is reported as an efficient method to produce methane in anaerobic organic waste digestion. A voltage can be applied to the conductive materials to accelerate the DIET between two groups of microorganisms to produce methane. To evaluate this hypothesis, two sets of anaerobic serum bottles with and without applied voltage were used with a pair of graphite rods as conductive materials to facilitate DIET. Initially, the methane production rate was similar between the two sets of serum bottles, and later the serum bottles with an applied voltage of 0.39V showed a 168% higher methane production rate than serum bottles without an applied voltage. In cyclic voltammograms, the characteristic redox peaks for hydrogen and acetate oxidation were identified in the serum bottles with an applied voltage. In the microbial community analyses, hydrogenotrophic methanogens (e.g. Methanobacterium) were observed to be abundant in serum bottles with an applied voltage, while methanogens utilizing carbon dioxide (e.g., Methanosaeta and Methanosarcina) were dominant in serum bottles without an applied voltage. Taken together, the applied voltage on conductive materials might not be effective to promote DIET in methane production. Instead, it appeared to generate a condition for hydrogenotrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  5. Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/GaN heterostructures

    Science.gov (United States)

    Rong, Taotao; Yang, Lin-An; Yang, Lin; Hao, Yue

    2018-01-01

    In this work, we report an investigation of resonant tunneling diodes (RTDs) with lattice-matched and polarization-matched AlInN/GaN heterostructures using the numerical simulation. Compared with the lattice-matched AlInN/GaN RTDs, the RTDs based on polarization-matched AlInN/GaN hetero-structures exhibit symmetrical conduction band profiles due to eliminating the polarization charge discontinuity, which achieve the equivalence of double barrier transmission coefficients, thereby the relatively high driving current, the high symmetry of current density, and the high peak-to-valley current ratio (PVCR) under the condition of the positive and the negative sweeping voltages. Simulations show that the peak current density approaches 1.2 × 107 A/cm2 at the bias voltage of 0.72 V and the PVCR approaches 1.37 at both sweeping voltages. It also shows that under the condition of the same shallow energy level, when the trap density reaches 1 × 1019 cm-3, the polarization-matched RTDs still have acceptable negative differential resistance (NDR) characteristics, while the NDR characteristics of lattice-matched RTDs become irregular. After introducing the deeper energy level of 1 eV into the polarization-matched and lattice-matched RTDs, 60 scans are performed under the same trap density. Simulation results show that the degradation of the polarization-matched RTDs is 22%, while lattice-matched RTDs have a degradation of 55%. It can be found that the polarization-matched RTDs have a greater defect tolerance than the lattice-matched RTDs, which is beneficial to the available manufacture of actual terahertz RTD devices.

  6. Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue

    Science.gov (United States)

    Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku

    2018-02-01

    Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.

  7. Bulk photovoltaic effect in an organi c polar crystal

    NARCIS (Netherlands)

    Vijayaraghavan, R.K.; Meskers, S.C.J.; Abdul Rahim, M.; Das, S.

    2014-01-01

    Organic polar crystals from the donor–acceptor substituted 1,4-diphenybutadiene 1 can generate a short-circuit photocurrent and a photovoltage upon illumination with near UV light. The photocurrent and photovoltage are attributed to a bulk photovoltaic effect. The bulk photovoltaic effect has been

  8. Development of Multi-Functional Voltage Restore System

    Science.gov (United States)

    Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki

    Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.

  9. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fiber-optic voltage measuring system

    Science.gov (United States)

    Ye, Miaoyuan; Nie, De-Xin; Li, Yan; Peng, Yu; Lin, Qi-Qing; Wang, Jing-Gang

    1993-09-01

    A new fibre optic voltage measuring system has been developed based on the electrooptic effect of bismuth germanium oxide (Bi4Ge3O12)crystal. It uses the LED as the light source. The light beam emitted from the light source is transmitted to the sensor through the optic fibre and the intensity of the output beam is changed by the applied voltage. This optic signal is transmitted to the PIN detector and converted to an electric signal which is processed by the electronic circuit and 8098 single chip microcomputer the output voltage signal obtained is directly proportional to the applied voltage. This paper describes the principle the configuration and the performance parameters of the system. Test results are evaluated and discussed.

  11. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  12. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  13. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  14. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  15. Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors

    International Nuclear Information System (INIS)

    Allen, M. W.; Zemlyanov, D. Y.; Waterhouse, G. I. N.; Metson, J. B.; Veal, T. D.; McConville, C. F.; Durbin, S. M.

    2011-01-01

    Significant polarity-related effects were observed in the near-surface atomic composition and valence band electronic structure of ZnO single crystals, investigated by x-ray photoemission spectroscopy using both Al K α (1486.6 eV) and synchrotron radiation (150 to 1486 eV). In particular, photoemission from the lowest binding energy valence band states was found to be significantly more intense on the Zn-polar face compared to the O-polar face. This is a consistent effect that can be used as a simple, nondestructive indicator of crystallographic polarity in ZnO and other wurtzite semiconductors.

  16. W-Band Circularly Polarized TE11 Mode Transducer

    Science.gov (United States)

    Zhan, Mingzhou; He, Wangdong; Wang, Lei

    2018-06-01

    This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.

  17. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  18. The effects of polarized light therapy in pressure ulcer healing.

    Science.gov (United States)

    Durović, Aleksandar; Marić, Dragan; Brdareski, Zorica; Jevtić, Miodrag; Durdević, Slavisa

    2008-12-01

    Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E) were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C). A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH) was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80 +/- 19.18; C: 22,97 +/- 25,47; p = 0.0005), rank of pressure ulcer (E: 5.90 +/- 2.48; C: 8.6 +/- 1.05; p = 0.0005) and total PUSH score (E: 7.35 +/- 3.17; C: 11.85 +/- 2.35; p = 0,0003). The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  19. The effect of polarized light on the organization of collagen secreted by fibroblasts.

    Science.gov (United States)

    Akilbekova, Dana; Boddupalli, Anuraag; Bratlie, Kaitlin M

    2018-04-01

    Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm 2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.

  20. Excellent polarization-independent reflector based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Xu Cheng; Xu Lin-Min; Qiang Ying-Huai; Zhu Ya-Bo; Liu Jiong-Tian; Ma Jian-Yong

    2011-01-01

    A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R > 99.5%) and wide angular bandwidth (θ ≈ 20°, R > 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm∼1.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Low operating voltage n-channel organic field effect transistors using lithium fluoride/PMMA bilayer gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Dhar, A., E-mail: adhar@phy.iitkgp.ernet.in

    2015-10-15

    Highlights: • Alternative to chemically crosslinking of PMMA to achieve low leakage in provided. • Effect of LiF in reducing gate leakage through the OFET device is studied. • Effect of gate leakage on transistor performance has been investigated. • Low voltage operable and low temperature processed n-channel OFETs were fabricated. - Abstract: We report low temperature processed, low voltage operable n-channel organic field effect transistors (OFETs) using N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C{sub 8}) organic semiconductor and poly(methylmethacrylate) (PMMA)/lithium fluoride (LiF) bilayer gate dielectric. We have studied the role of LiF buffer dielectric in effectively reducing the gate leakage through the device and thus obtaining superior performance in contrast to the single layer PMMA dielectric devices. The bilayer OFET devices had a low threshold voltage (V{sub t}) of the order of 5.3 V. The typical values of saturation electron mobility (μ{sub s}), on/off ratio and inverse sub-threshold slope (S) for the range of devices made were estimated to be 2.8 × 10{sup −3} cm{sup 2}/V s, 385, and 3.8 V/decade respectively. Our work thus provides a potential substitution for much complicated process of chemically crosslinking PMMA to achieve low leakage, high capacitance, and thus low operating voltage OFETs.

  2. Influence of a pulse duration of high-voltage supply on the efficiency of ozone synthesis in the 'needle-plane' electrode system

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Karas, V.I.; Kotjukov, O.V.; Poliakov, O.V.; Pugach, S.G.

    2007-01-01

    We present the results of studies of the electrodynamic characteristics of a barrier less discharge with electrodes of the 'needle-plane' type and a high-voltage pulse of positive polarity, being applied to the edge electrode. The efficiency of ozone synthesis is determined as a function of the pulse duration and repetition rate. It is shown that the electrodynamic characteristics of the discharge and the effectiveness of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of the pulse supply

  3. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  4. The effect of external visible light on the breakdown voltage of a long discharge tube

    Science.gov (United States)

    Shishpanov, A. I.; Ionikh, Yu. Z.; Meshchanov, A. V.

    2016-06-01

    The breakdown characteristics of a discharge tube with a configuration typical of gas-discharge light sources and electric-discharge lasers (a so-called "long discharge tube") filled with argon or helium at a pressure of 1 Torr have been investigated. A breakdown has been implemented using positive and negative voltage pulses with a linear leading edge having a slope dU/ dt ~ 10-107 V/s. Visible light from an external source (halogen incandescent lamp) is found to affect the breakdown characteristics. The dependences of the dynamic breakdown voltage of the tube on dU/ dt and on the incident light intensity are measured. The breakdown voltage is found to decrease under irradiation of the high-voltage anode of the tube in a wide range of dU/ dt. A dependence of the effect magnitude on the light intensity and spectrum is obtained. Possible physical mechanisms of this phenomenon are discussed.

  5. Neuroprotective effect of interleukin-6 regulation of voltage-gated Na+ channels of cortical neurons is time- and dose-dependent

    Directory of Open Access Journals (Sweden)

    Wei Xia

    2015-01-01

    Full Text Available Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours by studying voltage-gated Na + channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na + currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na + channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.

  6. Effects of film polarities on InN growth by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xu, K.; Yoshikawa, A.

    2003-01-01

    Effects of the film polarity on InN growth were investigated in molecular-beam epitaxy (MBE). It was found that N-polarity InN could be grown at higher temperatures than In-polarity one. For the In-polarity films, which were grown on Ga-polar GaN template, the highest growth temperature was limited below 500 deg. C, and the surface morphology and crystal quality tended to be poor mainly because of the tolerated low growth temperature. While for the N-polarity InN films, which were grown on MBE-grown N-polar GaN, the growth temperature could be as high as 600 deg. C. The step-flow-like growth morphology was achieved for the InN films grown with N polarity at 580 deg. C. The resulting full widths of half maximum of x-ray rocking curve around InN (002) and (102) reflections were about 200-250 and 950-1100 arc sec, respectively. The photoluminescence of the InN films peaked at 0.697 eV. The recording Hall mobility of InN film grown in N polarity is 1400 cm 2 /V s with a background carrier concentration of 1.56x10 18 cm -3 at room temperature. For both-polarity films, we found N-rich condition was necessary for the stable InN growth

  7. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  8. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  9. Molecular Catalysis at Polarized Interfaces Created by Ferroelectric BaTiO3 (Postprint)

    Science.gov (United States)

    2017-02-06

    densities of 20–120 mC cm2 are considerably larger than what is accessible in the parallel plate cell at voltages below the dielectric breakdown limit (at...attachment. The results of reactions performed with 4b are summarized in Fig. 5. When used as a homogeneous catalyst , 2 mM 4b reacted with 2mM 1 in CH2Cl2 to...exploited to control the selectivity of non-faradaic reactions. Polarized interfaces are commonly prepared by applying a voltage to an electrode in

  10. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  11. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  12. Studies of radiation blistering effects on voltage holding

    International Nuclear Information System (INIS)

    Miley, G.H.

    1975-01-01

    The surfaces of niobium and tungsten wires were blistered by 300-keV helium-ion irradiation and then tested for voltage holding. A cylindrical projection-tube technique was employed so that regions of strong electron emission could be observed and later examined with a scanning electron microscope (SEM). Blistering was found to cause significant increases in pre-breakdown currents. However, these currents tend to saturate over a region corresponding to around 200-400 kV/cm surface field such that the ultimate voltage breakdown limit is not seriously reduced. Emission image observations and SEM photographs suggest that, in many cases, parts of the blistered surface are gradually erected by the strong surface fields, but this may not occur until after several arc breakdowns. SEM photographs also indicate that vapor from the anode may play an important part in the breakdown mechanism. Implications of these results to the design of devices important to fusion development, such as direct collectors and ion sources, are briefly discussed. The importance of future in situ irradiation-voltage experiments is also stressed. (U.S.)

  13. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  14. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  15. The effects of polarized light therapy in pressure ulcer healing

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2008-01-01

    Full Text Available Background/Aim. Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. Methods. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C. A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. Results. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80±19.18; C: 22,97±25,47; p = 0.0005, rank of pressure ulcer (E: 5.90±2.48; C: 8.6±1.05; p = 0.0005 and total PUSH score (E: 7.35±3.17; C: 11.85±2.35; p = 0,0003. The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. Conclusion. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  16. Lowering effect of radioactive irradiation on breakdown voltage and electron avalanche pulse characteristics

    International Nuclear Information System (INIS)

    Kawahashi, Akira; Nakano, Toru; Hosokawa, Tatsuzo; Miyoshi, Yosinori.

    1976-01-01

    In the time resolving measurement of the growing process and breakdown of electron avalanche in a gap of uniform electric field, the phenomenon that DC breakdown voltage slightly lowered was observed when β ray was irradiated as the initial electron source, as compared with unirradiated condition. Beta source used is 90 Sr- 90 Y of 2 mCi in radiative equilibrium. The experimental results and the examination are described in detail. In brief, the remarkable superposition of succeeding avalanche pulse over the preceeding avalanche pulse waveform was observed under the gap condition in which the breakdown voltage decreased in β-ray irradiation. Thus this superposition of avalanche pulses is considered as one of the causes of the breakdown voltage reduction. When β source is used as the initial electron source, the number of supplied initial electrons is very large as compared with unity, and at the same time, a great number of initial electrons can be supplied within the diffusion radius r of avalanche. Then the effect of initial electron number n 0 was considered by employing a diagram for breakdown scheme. The transition from Townsend type breakdown to streamer type breakdown occurs owing to increasing n 0 , and in that condition, the breakdown voltage lowers slightly. (Wakatsuki, Y)

  17. An in-situ photocathode loading system for the SLC Polarized Electron Gun

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Skarpaas, K.

    1992-12-01

    An ultra-high vacuum loadlock system capable of operating at high voltage has been added to the SLC Polarized Electron Gun. The unit incorporates facilities for heat cleaning, activating and measuring the quantum efficiency of photocathodes. A tray of up to four photocathodes can be exchanged without bringing the activation unit or gun up to atmosphere. Low voltage quantum efficiencies of 20% have been obtained for bulk GaAs at 633 nm and 6% for a 0.3 micron GaAs layer at 755 nm. Results for other cathodes as well as operational characteristics are discussed

  18. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  19. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    Directory of Open Access Journals (Sweden)

    Keng Huat Koh

    2014-06-01

    Full Text Available This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force and V (driving voltage within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  20. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    Science.gov (United States)

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  1. Polarization effects in above-threshold ionization with a mid-infrared strong laser field

    Science.gov (United States)

    Kang, Hui-Peng; Xu, Song-Po; Wang, Yan-Lan; Yu, Shao-Gang; Zhao, Xiao-Yun; Hao, Xiao-Lei; Lai, Xuan-Yang; Pfeifer, Thomas; Liu, Xiao-Jun; Chen, Jing; Cheng, Ya; Xu, Zhi-Zhan

    2018-05-01

    Using a semiclassical approach, we theoretically study the above-threshold ionization of magnesium by intense, mid-infrared laser pulses. The formation of low-energy structures in the photoelectron spectrum is found to be enhanced by comparing with a calculation based on the single-active electron approximation. By performing electron trajectory and recollision-time distribution analysis, we demonstrate that this phenomenon is due to the laser-induced ionic core polarization effects on the recolliding electrons. We also show that the polarization effects should be experimentally detectable. Our finding provides new insight into ultrafast control of strong-field photoionization and imaging of polar molecules.

  2. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  3. Irreversible magnetic-field dependence of ferromagnetic resonance and inverse spin Hall effect voltage in CoFeB/Pt bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Il [Department of Materials Science and Engineering, Korea University, Seoul, 136-713 (Korea, Republic of); Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Seo, Min-Su [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of)

    2017-01-01

    Magnetic field (H) sweeping direction dependences of the mixed voltage V{sub mix} induced by the inverse-spin Hall effect(ISHE) and spin-rectified effect (SRE) in a CoFeB (5 nm)/Pt (10 nm) bilayer structure are investigated using the ferromagnetic resonance in the TE mode cavities and coplanar waveguide methods. Conventionally, the magnitude of ISHE voltage V{sub ISH} (symmetric) excluding the SRE (antisymmetric component) was unavoidably separated from the fitting curve of V{sub mix} (a sum of a symmetric and an antisymmetric part) for one direction of H-source. By studying the ratio of the two voltage parts with the bi-directional H sweeping, the optimized V{sub ISH} (no SRE condition) value which also include a well-defined spin Hall angle can be obtained via the linear response relation of ISHE and SRE components. - Highlights: • Hysteretic behavior of ferromagnetic resonance spectra in the CoFeB/Pt sample. • Hysteretic behavior of inverse-spin Hall effect voltage in the CoFeB/Pt sample. • Proportion of inverse spin-Hall effect voltage can be determined by the cavity mode. • The hysteretic behavior arise from the unsaturated magnetization limit. • The well-defined spin Hall angle which consider a hysteresis can be obtained.

  4. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  5. Polarization splitter based on interference effects in all-solid photonic crystal fibers.

    Science.gov (United States)

    Mao, Dong; Guan, Chunying; Yuan, Libo

    2010-07-01

    We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.

  6. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  7. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil.

    Directory of Open Access Journals (Sweden)

    Christopher J Love

    Full Text Available It has long been known that there is a sustained electrical potential (voltage difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50-200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored.

  8. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  9. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  10. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  11. Initial operating experience and recent development on the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Schmor, P.W.; Law, W.M.; Levy, C.D.P.; McDonald, M.

    1988-01-01

    A polarized H - ion source using optical pumping techniques has been developed at TRIUMF. This source was used to demonstrate (on an ion source test stand) the feasibility of producing 10- μA of ∼ 60% polarized H - ion beam in a dc mode suitable for injection into the TRIUMF cyclotron. The source has been installed in a 300 kV high voltage terminal connected to the cyclotron via a recently constructed beam transport line. A polarization of 80% is anticipated near the end of 1988 after the installation of a superconducting solenoid to the source. In this paper the authors describe the initial operating experience, recent developments, and the future plans for the TRIUMF optically pumped polarized ion source

  12. Voltage regulation in distribution networks with distributed generation

    Science.gov (United States)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  13. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W; Silverstein, Brian L [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  14. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  15. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  16. Polarized particle levitation in hexapole field

    International Nuclear Information System (INIS)

    Jones, T.B.; Kallio, G.A.; Robinson, K.S.

    1976-06-01

    Proposed here is a novel electrostatic levitation scheme which uses the force exerted by a non-uniform electric field on a polarized particle. The scheme differs from conventional quadrupole levitation devices principally in that the levitated particle is uncharged. In order to provide the proper force required to achieve dynamic stabilization, a very intense non-uniform time-varying electric field produced by a three-dimensional hexapole electrode structure is utilized. The primary advantage of this levitation scheme might accrue in target fabrication operations where particle charge is undesirable or where reproducible charging of the particles themselves is difficult, due to high resistivity. The disadvantages of this scheme, as compared to charged particle levitation, are (i) a more complex electrode structure and (ii) significantly higher voltages. The scheme has possible application to molecular mass spectrometry, in situations where un-ionized but strongly polar or polarizable molecules are to be trapped or confined for analysis

  17. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  18. Asymmetry distributions and mass effects in dijet-events at a polarized HERA

    CERN Document Server

    Maul, M; Mirkes, E; Rädel, G

    1998-01-01

    The asymmetry distributions for several kinematic variables are considered for finding a systematic way to maximize the signal for the extraction of the polarized gluon density. The relevance of mass effects for the corresponding dijet cross section is discussed and the different approximations for including mass effects are compared. We also compare via the programs PEPSI and MEPJET two different Monte Carlo (MC) approaches for simulating the expected signal in the dijet asymmetry at a polarized HERA.

  19. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem; Francis, Lijo; Amy, Gary L.; Ghaffour, NorEddine

    2014-01-01

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  20. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem

    2014-08-13

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  1. Voltage Balancing Control of Diode-Clamped Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    ŞCHIOP Adrian

    2013-10-01

    Full Text Available In this paper is developed a control scheme for mono-phase diode clamped inverter to achieve balancing voltages on inverter capacitors. First, it develops a control scheme without taking into account the need to balance voltage on two capacitors. It examines the effects on the output voltage inverter, and then it realizes two control schemes that will balance the voltages. The simulations of control schemes were performed in OrCAD Pspice.

  2. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  3. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p-n diodes and InGaN LEDs

    Science.gov (United States)

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-12-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal-organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p-n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm-3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10-3-3.4 × 10-3 Ω·cm2, and the turn-on voltages of the diodes.

  4. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.

    2017-11-27

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  5. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-01-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  6. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  7. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  8. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  9. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  10. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  11. Investigation of fatigue behavior of Pb(Zr0.45Ti0.55)O3 thin films under asymmetric polarization switching

    Science.gov (United States)

    Zhu, Hui; Chen, Yueyuan; Chu, Daping; Feng, Shiwei; Zhang, Yingqiao; Wang, Pengfei

    2016-09-01

    The fatigue of lead zirconate titanate (PZT) thin films was measured under repetitive switching using asymmetric square waves. The remnant polarization and coercive voltage were found to present regular changes in the initial 10 s, independent of the asymmetry or frequency of switching waves. We attributed the change to the relaxation of stress in the film and identified a coercive voltage V 0 of 0.6 V for the stress-free film. By comparing the coercive voltage and V 0, we found that a built-in electric field was induced by asymmetric switching, where the direction and magnitude were dependent on the degree of waveform asymmetry. Furthermore, the fatigue speed was suggested to be closely related to the generation rate of oxygen vacancies. It was confirmed by our result that a faster decay of remnant polarization can be obtained by applying square waves with a higher degree of asymmetry or symmetry of square waves with a lower frequency.

  12. Perturbed stationary-state description of the polarization effect in innershell ionization

    International Nuclear Information System (INIS)

    Basbas, G.; Land, D.J.

    1983-01-01

    A one-parameter trial initial-state wavefunction correlated to a projectile (polarized) is described and used to calculate innershell ionization cross sections for collisions with heavy charged particles. The variational principle is used to determine the parameter. The minimized energy gives the binding effect as a function of projectile position. Existing codes can be readily adapted to incorporate the trial wavefunction. Comparison with the previous theory of the polarization effect is made. Results for K-shell ionization of titanium by protons in the 0.3 to 2.4 MeV energy range agree with measured values

  13. Responsive demand to mitigate slow recovery voltage sags

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; da Silva, Luiz Carlos Pereira; Xu, Zhao

    2012-01-01

    , and reactive power reserve for peak load management through price responsive methods and also as energy providers through embedded generation technologies. This article introduces a new technology, called demand as voltagecontrolled reserve, which can help mitigation of momentary voltage sags. The technology...... faults. This article presents detailed models, discussion, and simulation tests to demonstrate the technical viability and effectiveness of the demand as voltage-controlled reserve technology for mitigating voltage sags....... can be provided by thermostatically controlled loads as well as other types of load. This technology has proven to be effective in distribution systems with a large composition of induction motors, when voltage sags present slow recovery characteristics because of the deceleration of the motors during...

  14. Dominant spin-flip effects for the hadronic-produced J/ψ polarization at the Tevatron

    International Nuclear Information System (INIS)

    Wu Xinggang; Fang Zhenyun

    2009-01-01

    Dominant spin-flip effects for the direct and prompt J/ψ polarizations at Tevatron run II with collision energy 1.96 TeV and rapidity cut |y J/ψ | 8 [ 3 S 1 ] into J/ψ is especially discussed with care. It is found that the spin-flip effect shall always dilute the J/ψ polarization, and with a suitable choice of the parameters a 0,1 and c 0,1,2 , the J/ψ polarization puzzle can be solved to a certain degree. At large transverse momentum p t , α for the prompt J/ψ is reduced by ∼50% for f 0 =v 2 and by ∼80% for f 0 =1. We also study the indirect J/ψ polarization from the b decays, which however is slightly affected by the same spin-flip effect and then shall provide a better platform to determine the color-octet matrix elements.

  15. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  16. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are

  17. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  18. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  19. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Directory of Open Access Journals (Sweden)

    Lars Jäger

    2016-09-01

    Full Text Available Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl-N-phenylamino]-biphenyl (NPB with the polar electron transporting material tris-(8-hydroxyquinolate aluminum (Alq3. Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  20. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Science.gov (United States)

    Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang

    2016-09-01

    Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  1. Effect of electric and magnetic fields on current-voltage characteristics of a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Minasyants, M.Kh.; Badalyan, G. G.; Shahinian, A. A.

    1997-01-01

    The effect of electric and magnetic fields on current-voltage characteristics is studied for the lamellar phase in the lyotropic liquid-crystal sodium pentadecylsulfonate (SPDS)-water and lecithin-water systems. It has been found that the current-voltage characteristics of both systems have hysteresis. In the case of ionogenic SPDS, the hysteresis is formed due to ion current caused by the spatial reorientation of domains consisting of parallel lamellar fragments; in the case of lecithin, whose molecules contain dipoles, the hysteresis is formed due to the spatial reorientation of domains caused by the interaction of the resultant dipole moment of the domains with the electric field. It is shown that the introduction into lamellae of cetylpyridine bromide, which has an intrinsic magnetic moment, changes the resultant magnetic moment of domains and, thus, also the hysteresis loop of the current-voltage characteristic. The systems studied show the 'memory' effect with respect to both the electric and magnetic fields. Field-induced processes of domain reorientation were recorded by the method of small-angle x-ray scattering

  2. Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    International Nuclear Information System (INIS)

    Allman, B. E.; Lee, W.-T.; Motrunich, O. I.; Werner, S. A.

    1999-01-01

    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  4. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  5. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  6. Generation and detection of spin polarization in parallel coupled double quantum dots connected to four terminals

    International Nuclear Information System (INIS)

    An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun

    2011-01-01

    A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.

  7. Simple apparatus for polarization sensing of analytes

    Science.gov (United States)

    Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2000-09-01

    We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.

  8. Ion peak narrowing by applying additional AC voltage (ripple voltage) to FAIMS extractor electrode.

    Science.gov (United States)

    Pervukhin, Viktor V; Sheven, Dmitriy G

    2010-01-01

    The use of a non-uniform electric field in a high-field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer increases sensitivity but decreases resolution. The application of an additional AC voltage to the extractor electrode ("ripple" voltage, U(ripple)) can overcome this effect, which decreases the FAIMS peak width. In this approach, the diffusion ion loss remains minimal in the non-uniform electric field in the cylindrical part of the device, and all ion losses under U(ripple) occur in a short portion of their path. Application of the ripple voltage to the extractor electrode is twice as efficient as the applying of U(ripple) along the total length of the device. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  9. Transmittance and Tunneling Current through a Trapezoidal Barrier under Spin Polarization Consideration

    Science.gov (United States)

    Noor, F. A.; Nabila, E.; Mardianti, H.; Ariani, T. I.; Khairurrijal

    2018-04-01

    The transmittance and tunneling current in heterostructures under spin polarization consideration were studied by employing a zinc-blended structure for the heterostructures. An electron tunnels through a potential barrier by applying a bias voltage to the barrier, which is called the trapezoidal potential barrier. In order to study the transmittance, an Airy wave function approach was employed to find the transmittance. The obtained transmittance was then utilized to compute the tunneling current by using a Gauss quadrature method. It was shown that the transmittances were asymmetric with the incident angle of the electron. It was also shown that the tunneling currents increased as the bias voltage increased.

  10. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    Science.gov (United States)

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  11. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  12. Correlation effects on spin-polarized electron-hole quantum bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Saini, L. K., E-mail: drlalitsaini75@gmail.com; Sharma, R. O., E-mail: sharmarajesh0387@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat – 395 007 (India); Nayak, Mukesh G. [Department of Physics, Silvassa College (Silvassa Institute of Higher Learning), Silvassa 396 230 (India)

    2016-05-06

    We present a numerical calculation for the intra- and interlayer pair-correlation functions, g{sub ll’}(r), of spin-polarized electron-hole quantum bilayers at zero temperature. The calculations of g{sub ll’}(r) are performed by including electron correlations within the dynamical version of the self-consistent mean-field approximation of Singwi, Tosi, Land and Sjölander (qSTLS). Our study reveals that the critical layer density decreases (increases) due to the inclusion of finite width (mass-asymmetry) effect during the phase-transition from charge-density wave to Wigner crystal ground-state by yielding the pronounced oscillatory behavior ing{sub ll}(r). The results are compared with recent findings of spin-polarized electron-hole quantum bilayers with mass-symmetry and zero width effects. To highlight the importance of dynamical character of correlations, we have also compared our results with the STLS results.

  13. Monolayer alignment on azobenzene surfaces during UV light irradiation: Analysis of optical polarized absorption measurement results and theoretical treatment

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2006-01-01

    The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4 ' -cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S 2 (t) using the optical polarized absorption measurement is also investigated

  14. Broadband non-polarizing beam splitter based on guided mode resonance effect

    Science.gov (United States)

    Ma, Jian-Yong; Xu, Cheng; Qiang, Ying-Huai; Zhu, Ya-Bo

    2011-10-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm~1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.

  15. Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes

    Science.gov (United States)

    Berthier, S.; Boulenguez, J.; Bálint, Z.

    2007-01-01

    The scales of many Lepidoptera and the elytra of quite a number of Coleoptera possess specialized micro- and nano-structures that produce special polarization effects. They are constituted by concave multilayered cavities. This leads to two different effects: (1) interferential non-polarized coloration by reflection near normal incidence in the middle of the cavities and (2) polarized interferential colouration at lower wavelength after double reflection near the Brewster incidence at the periphery of the cavities. The macroscopic appearance resembles the “pointillist effect” with one of the component polarized while the other one is not. The first one can be extinguished with linear polarizer so that the colour is modified. In most insects, the structure is locally symmetric; hence, no macroscopic effects can be seen. In certain species, this symmetry is partly broken, and a slight effect can be observed. In the wing dorsal surface of the fascinating neotropical butterflies genus Suneve, perpendicular structures of two different kinds in size polarize the reflected light. The larger one is constituted by the convex cover scales whose apex falls perpendicularly on the bases of the following scales, creating long polarized valley (50 μm width) transversally running across the wing. The smaller one is constituted by the ridges of the scales (2 μm apart) that polarize light in the perpendicular direction. Adapted multilayered structures can be deposited onto banknotes to create anti-counterfeiting patterns as a further development of protection and security. Different effects can be produced by the use of such structures. (1) Changes of luminosity: A specific pattern will be constituted by two different areas: one with horizontal concave multilayered structures, and the other one with vertical structures. Under unpolarized light, the reflected spectra of these different areas are identical and no pattern appears. Under polarized light, i.e., through a linear

  16. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    Science.gov (United States)

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  17. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    International Nuclear Information System (INIS)

    Lotfi, E; Rezania, H; Arghavaninia, B; Yarmohammadi, M

    2016-01-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength. (paper)

  18. Peculiarities of annihilation of polarized positronium in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2005-01-01

    Features of positronium annihilation (PA) in polarized media are investigated. Strong exchange interaction with nonpaired electrons of paramagnetic atoms essentially accelerates the PA in comparison with annihilation of free positrons. The value of the spin projection on the direction of polarized nonpaired electrons has essential effect on the orthopositronium lifetime and on the width of the gamma spectrum annihilation line. It is shown that these features of PA permit to use it for studying the paramagnetic polarization [ru

  19. Substrate effects in high gain, low operating voltage SnSe2 photoconductor

    Science.gov (United States)

    Krishna, Murali; Kallatt, Sangeeth; Majumdar, Kausik

    2018-01-01

    High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently drawn a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported inter-digitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ≈ {10}3 A W-1 and ≈ 8.66× {10}4 A W-1 at operating voltages of 1 mV and 100 mV, respectively—a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device—providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.

  20. Electrothermal and microstructural characterization of varistors ceramics used in high-voltage surge arresters; Caracterizacao eletrotermica e microestrutural de ceramicas varistoras utilizadas em para-raios de altas tensoes

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Flavio Bittencourt; Furtado, Jose G. de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Nobrega, Maria C. de S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia

    2008-07-01

    In this work is studied the electrothermal behavior of varistor ceramic blocks used in high voltage surge arresters of transmission and distribution lines, relating this behavior to microstructural characteristics of the studied varistor ceramics. We studied blocks of zinc oxide varistors with nominal voltage of 4.0 kV, by and voltage-capacitance characterization curves, reference voltage test, impulse residual voltage, polarization tests and induced degradation tests. On the other hand, the microstructural characterization was made by scanning electron microscopy and energy-dispersive spectroscopy. The obtained results allow to correlate the behavior of the resistive component of the leakage current with the microstructural characteristics of the studied varistors, specially in pre-breakdown region. (author)

  1. Target correlation and polarization effects on the electron impact ionization of He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Hari P, E-mail: hps1@physics.ucf.edu [Physics Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-03-28

    We have reported here the results of our investigation of the effects of electron correlation and polarization of the target in the incident channel on the electron impact ionization of the helium atom. The triple differential cross section (TDCS) is calculated for 28.6 eV incident electron energy for the case when the two final-state outgoing electrons share 4.0 eV excess energy equally and unequally and leave in the opposite direction. The electron correlation and polarization of the He-target in the initial state are considered completely ab initio using the recently extended multiconfiguration Hartree-Fock method. The electron correlation between the two outgoing electrons in the final state is included through the variationally determined screening potential. It is found that both target correlation and polarization in the incident channel play an important role; the polarization has larger effect on the TDCS than the target correlation. We compared our results with available experimental and theoretical data.

  2. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  3. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  4. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  5. The Effect of Polar Lipids on Tear Film Dynamics

    KAUST Repository

    Aydemir, E.; Breward, C. J. W.; Witelski, T. P.

    2010-01-01

    In this paper, we present a mathematical model describing the effect of polar lipids, excreted by glands in the eyelid and present on the surface of the tear film, on the evolution of a pre-corneal tear film. We aim to explain the interesting

  6. Lightning Overvoltage on Low-Voltage Distribution System

    Science.gov (United States)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  7. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  8. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon

    2017-08-01

    Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.

  9. Optically induced Hall effect in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M; Gray, E Mac A, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-03-01

    We describe an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a Hall voltage resulting from nonequilibrium magnetization induced by the spin-carrier electrons accumulating at the transverse boundaries of the sample as a result of asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are presented by discussing the dominant spin relaxation mechanisms in semiconductors.

  10. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    Science.gov (United States)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  11. Experimental realization of a silicon spin field-effect transistor

    OpenAIRE

    Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian

    2007-01-01

    A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...

  12. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  13. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  14. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    Science.gov (United States)

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  15. Capacitance-voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer

    Science.gov (United States)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae

    2018-02-01

    Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.

  16. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  17. Effects of the input polarization on JET polarimeter horizontal channels

    International Nuclear Information System (INIS)

    Gaudio, P.; Gelfusa, M.; Murari, A.; Orsitto, F.; Boboc, A.

    2013-01-01

    In the past, the analysis of JET polarimetry measurements were carried out only for the vertical channels using a polarimetry propagation code based on the Stokes vector formalism [1,2]. A new propagation code has been developed therefore for the horizontal chords to simulate and interpret the measurements of the Faraday rotation and Cotton–Mouton phase shift in JET. The code has been used to develop a theoretical study to the effect of the input polarization on the eventual quality of the measurements. The results allow choosing the best polarization to optimize the polarimetric measurements for the various experiments

  18. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  19. Atomic mean-square displacements and the critical-voltage effect in cubic solid solutions

    International Nuclear Information System (INIS)

    Shirley, C.G.; Fisher, R.M.

    1979-01-01

    The critical-voltage phenomena observed in high-voltage electron microscope images of bend contours as well as in corresponding Kikuchi or convergent-beam diffraction patterns provide sensitive methods of determining submicroscopic alloy parameters such as Debye temperatures, short-range order, and atomic scattering factors. Only a very limited number of critical voltages can be observed in metal crystals in the voltage range usually available, 100 to 1200 kV, so that quantitative interpretation of the data must be based on a few-parameter model which incorporates all the pertinent factors. A satisfactory two-parameter model has been developed which can be used to interpret or compute the critical voltages of substitutional solid solutions as functions of composition, temperature and short-range order. In the alloy systems Fe-Cr, Ni-Au, Cu-Au and Cu-Al, sufficient critical voltage data are available to derive the model parameters which pertain to atomic bonding in the lattice. In addition to atomic scattering amplitudes, the critical voltage depends strongly on the atomic mean-square displacements. The static contribution to the mean-square displacements is large in alloys with large atomic-radius disparity, and is especially sensitive to short-range order in f.c.c. solid solutions. Well-defined best estimates for the model parameters are used to predict the critical voltage and its sensitivity to composition, temperature and short-range order for a large number of solid solutions. Systems for which critical-voltage studies may be of considerable interest are indicated. (author)

  20. Effect of polar surfaces on organic molecular crystals

    Science.gov (United States)

    Sharia, Onise; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team

    Polar oxide materials reveal intriguing opportunities in the field of electronics, superconductivity and nanotechnology. While behavior of polar surfaces has been widely studied on oxide materials and oxide-oxide interfaces, manifestations and properties of polar surfaces in molecular crystals are still poorly understood. Here we discover that the polar catastrophe phenomenon, known on oxides, also takes place in molecular materials as illustrated with an example of cyclotetramethylene tetranitramine (HMX) crystals. We show that the surface charge separation is a feasible compensation mechanism to counterbalance the macroscopic dipole moment and remove the electrostatic instability. We discuss the role of surface charge on degradation of polar surfaces, electrical conductivity, optical band-gap closure and surface metallization. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.

  1. Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process

    International Nuclear Information System (INIS)

    Yu Jun-Ting; Chen Shu-Ming; Chen Jian-Jun; Huang Peng-Cheng; Song Rui-Qiang

    2016-01-01

    Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. (paper)

  2. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  3. Effects of polarity, hydrophobicity, and density of ionic liquids on cellulose solubility.

    Science.gov (United States)

    Abe, Mitsuru; Kuroda, Kosuke; Sato, Daiki; Kunimura, Haruhito; Ohno, Hiroyuki

    2015-12-28

    We have synthesised novel ionic liquids (ILs) to show both cellulose dissolution ability and LCST-type phase transition after mixing with water. To realise both polar and hydrophobic properties, tetraalkylphosphonium cations and a series of carboxylate anions were employed to assume hydrophobic and highly polar properties, respectively. Effects of their alkyl chain length on the water compatibility and cellulose solubility of the corresponding ILs were systematically examined. We succeeded in synthesising novel ILs which dissolve cellulose and separable with water at moderate temperature. Through the present study, we have clarified that not only polarity but also density of ILs is an important factor in designing the ILs for cellulose dissolution.

  4. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies...

  5. Polarization-maintaining performance of large effective area, higher order modes fiber in a coiled configuration

    Science.gov (United States)

    Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.

    2018-02-01

    Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.

  6. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein. Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%. The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.

  7. Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky

    International Nuclear Information System (INIS)

    Ugolnikov, Oleg S.; Postylyakov, Oleg V.; Maslov, Igor A.

    2004-01-01

    The paper presents a review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths 550 and 700nm. The basic factors affecting (usually decreasing) the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. These effects were distinguished from each other, and a method of multiple-scattering separation is discussed. The results are compared with the data of numerical simulation of radiative transfer in the atmosphere for different aerosol models. The whole twilight period is divided into different stages with different mechanisms forming the twilight-sky polarization properties

  8. Multifunction Voltage-Mode Filter Using Single Voltage Differencing Differential Difference Amplifier

    Directory of Open Access Journals (Sweden)

    Chaichana Amornchai

    2017-01-01

    Full Text Available In this paper, a voltage mode multifunction filter based on single voltage differencing differential difference amplifier (VDDDA is presented. The proposed filter with three input voltages and single output voltage is constructed with single VDDDA, two capacitors and two resistors. Its quality factor can be adjusted without affecting natural frequency. Also, the natural frequency can be electronically tuned via adjusting of bias current. The filter can offer five output responses, high-pas (HP, band-pass (BP, band-reject (BR, low-pass (LP and all-ass (AP functions in the same circuit topology. The output response can be selected by choosing the suitable input voltage without the component matching condition and the requirement of additional double gain voltage amplifier. PSpice simulation results to confirm an operation of the proposed filter correspond to the theory.

  9. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  10. Vacuum-polarization effects in global monopole space-times

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Lousto, C.O.

    1991-01-01

    The gravitational effect produced by a global monopole may be approximated by a solid deficit angle. As a consequence, the energy-momentum tensor of a quantum field will have a nonzero vacuum expectation value. Here we study this ''vacuum-polarization effect'' around the monopole. We find explicit expressions for both left-angle φ 2 right-angle ren and left-angle T μν right-angle ren for a massless scalar field. The back reaction of the quantum field on the monopole metric is also investigated

  11. Low Voltage Ride-Through Capability of a Single-Stage Single-Phase Photovoltaic System Connected to the Low-Voltage Grid

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The progressively growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSO) to update or revise the existing grid codes in order to guarantee the availability, quality and reliability of the electrical system. It is expected that the future PV systems connected...... to the low-voltage grid will be more active with functionalities of low voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in low voltage ride through operation in order...... to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability...

  12. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  13. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  14. The effects of vacuum polarization on thermonuclear reaction rates

    Science.gov (United States)

    Gould, Robert J.

    1990-01-01

    Added to the pure Coulomb potential, the contribution from vacuum polarization increases the barrier, reducing the wave function (u) for reacting nuclei within the range of nuclear forces. The cross section and reaction rate are then reduced accordingly by a factor proportional to u squared. The effect is treated by evaluating the vacuum polarization potential as a small correction to the Coulomb term, then computing u in a WKB formulation. The calculation is done analytically employing the small r power-series expansion for the Uehling potential to express the final result in terms of convenient parameters. At a temperature of 1.4 x 10 to the 7th K the (negative) correction is 1.3 percent for the fundamental fusion process p + p yields d + e(+) + nu.

  15. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  16. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  18. Voltage regulator for generator

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K

    1989-01-17

    It is an object of this invention to provide a voltage regulator for a generator charging a battery, wherein even if the ambient temperature at the voltage regulator rises abnormally high, possible thermal breakage of the semiconductor elements constituting the voltage regulator can be avoided. A feature of this invention is that the semiconductor elements can be protected from thermal breakage, even at an abnormal ambient temperature rise at the voltage regulator for the battery charging generator, by controlling a maximum conduction ratio of a power transistor in the voltage regulator in accordance with the temperature at the voltage regulator. This is achieved through a switching device connected in series to the field coil of the generator and adapted to be controlled in accordance with an output voltage of the generator and the ambient temperature at the voltage regulator. 6 figs.

  19. A simple method to increase effective PMT gain by amplifier circuit powered from voltage divider

    International Nuclear Information System (INIS)

    Popov, V.; Majewski, S.; Wojtsekhowski, B.; Guerin, D

    2001-01-01

    A novel concept is introduced of additional effective signal amplification by employing a dedicated circuit to process anode or dynode signals prior to sending them through a standard 50 /spl Omega/ line/cable. The circuit is entirely powered by the current flowing through the base voltage divider. Additional gain factors of 2-10 were easily achieved with preserved operation speed and rate capability up to several MHz. This additional signal boost can be used in many applications where higher gain and/or lower PMT operational voltages are desirable. For example, in the case of a PMT employed in a low input light signal (such as a Cherenkov counter), this technique will permit operation at a lower voltage and, therefore, will result in better operational PMT stability and longer PMT lifetime. At present, two experimental set-ups at Jefferson Lab are using PMT bases using this concept

  20. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  1. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G.D. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lin, Lu-Kuei; Lee, Shang-Fan [Taiwan Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan (China); Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-07-01

    Highlights: • Co-doped ZnO thin-films were grown with varying V{sub O} concentartion. • PCAR measurements were done to study the SPC. • High spin polarization was observed above a certain V{sub O} concentartion. • High V{sub O} samples provide a high density of completed percolation path. • This complete percolation path gives rise to high SPC. - Abstract: Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  2. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  3. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    Science.gov (United States)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  4. Target mass effects in polarized deep-inelastic scattering

    International Nuclear Information System (INIS)

    Piccione, A.

    1998-01-01

    We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)

  5. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  6. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  7. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  8. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    Science.gov (United States)

    Padhee, Varsha

    converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.

  9. An electrostatic elliptical mirror for neutral polar molecules.

    Science.gov (United States)

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  10. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  11. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    Science.gov (United States)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  12. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  13. Differential Effect of Contrast Polarity Reversals in Closed Squares and open L-Junctions.

    Directory of Open Access Journals (Sweden)

    Mark M Schira

    2011-03-01

    Full Text Available Scene segmentation depends on interaction between geometrical and photometric factors. It has been shown that reversals in contrast polarity at points of highest orientation discontinuity along closed contours significantly impair shape discrimination performance, while changes in contrast polarity at straight(er contour segments do not have such deleterious effects (Spehar 2002. Here we employ (semi high resolution fMRI (1.5x1.5x1.5mm to investigate the neuronal substrate underlying these perception effects. Stimuli consisted of simple elements a squares with contrast reversals along straight segments; b squares with contrast reversals in the corner (highest orientation discontinuity; c L-Junctions with contrast reversals along the straight ends; d L-Junctions with contrast reversals in the corner. Element with contrast polarity reversals are easy to distinguish though appear geometrically equivalent. For squares with contrast polarity reversals only along straight lines we find significantly lower BOLD modulation compared to any of the control conditions, which show similar responses to each other. In the light of previous psychophysical work (Spehar 2002, Elder and Zucker, 1993 we speculate that this effect is due to closure perception. We observe this across a wide range of areas on occipital cortex.

  14. Three-level boost converter with zero voltage transition

    Directory of Open Access Journals (Sweden)

    Kuo-Ing Hwu

    2017-06-01

    Full Text Available As compared with the traditional boost converter, the three-level boost converter possesses several advantages, such as lower switch voltage stresses and lower inductor current ripple. To improve the efficiency, this paper proposes a zero voltage transition (ZVT three-level boost converter. With the proposed ZVT circuit, the switches can achieve soft switching. Moreover, by using the voltage balance control, the output voltage can be equally across the output capacitors. In this study, the effectiveness of the proposed topology is verified by the experimental results based on the field-programmable gate array control.

  15. Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor

    International Nuclear Information System (INIS)

    Luo Jun; Zhao Sheng-Lei; Mi Min-Han; Zhang Jin-Cheng; Ma Xiao-Hua; Hao Yue; Chen Wei-Wei; Hou Bin

    2016-01-01

    The effects of gate length L G on breakdown voltage V BR are investigated in AlGaN/GaN high-electron-mobility transistors (HEMTs) with L G = 1 μm∼ 20 μm. With the increase of L G , V BR is first increased, and then saturated at L G = 3 μm. For the HEMT with L G = 1 μm, breakdown voltage V BR is 117 V, and it can be enhanced to 148 V for the HEMT with L G = 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage. A similar suppression of the impact ionization exists in the HEMTs with L G > 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with L G = 3 μm∼20 μm, and their breakdown voltages are in a range of 140 V–156 V. (paper)

  16. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  17. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  18. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Duan Xiao-Ling; Zhang Jin-Cheng; Xiao Ming; Zhao Yi; Ning Jing; Hao Yue

    2016-01-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage ( V B ) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. (paper)

  19. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.

  20. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  1. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  2. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  3. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hourdakis, C J, E-mail: khour@gaec.gr [Ionizing Radiation Calibration Laboratory-Greek Atomic Energy Commission, PO Box 60092, 15310 Agia Paraskevi, Athens, Attiki (Greece)

    2011-04-07

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, U-bar{sub P}, the average, U-bar, the effective, U{sub eff} or the maximum peak, U{sub P} tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average U-bar or the average peak, U-bar{sub p} voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k{sub PPV,kVp} and the average k{sub PPV,Uav} conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated - according to the proposed method - PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from U-bar{sub p} and U-bar measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements.

  4. Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy

    International Nuclear Information System (INIS)

    Lee, Yi-Chi; Tsai, Chin-Chun; Chui, Hsiang-Chen; Chang, Yi-Hsiu; Chen, Ying-Yu

    2010-01-01

    This work analyses the effects of polarization and pressure in caesium 6S-8S two-photon spectroscopy. The linewidth was broadened and the frequency was shifted by a change of polarization states. The frequency shift and the linewidth broadening of the caesium 6S-8S two-photon transition were measured as a function of laser power using one single-frequency Ti:sapphire ring cavity laser, two caesium cells and two quarter-wave plates to ensure polarization states of light, and we showed that the linewidth cannot be evaluated just by fitting data to a Lorentzian shape. As determined by fitting the data to a Voigt profile, the natural linewidth is independent of the polarization states of the pump beams, the laser power and the pressure. Caesium 6S-8S two-photon transitions pumped by a circularly polarized beam have narrower linewidths and smaller shifts than those pumped by a linearly polarized beam. The light shift obtained by pumping with the circularly polarized beam is -6.75(57) Hz (mW mm -2 ) -1 , and that obtained by pumping with a linearly polarized beam is -7.25(45) Hz (mW mm -2 ) -1 . These results agree closely with theoretical calculations. The pressure shift is -588(387) Hz mPa -1 . This work shows how to evaluate two-photon transitions with a Voigt profile, and then helps us to understand two-photon transitions with different polarization states, and improve the signal quality obtained when they are used as frequency markers.

  5. Study of excess carrier dynamics in polar, semi-polar, and non-polar (In,Ga)N epilayers and QWs

    Energy Technology Data Exchange (ETDEWEB)

    Aleksiejunas, R. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Lubys, L.; Jarasiunas, K. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Wernicke, T.; Hoffmann, V.; Netzel, C.; Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Institute of Solid State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-15

    We studied carrier recombination and diffusion in GaN/sapphire templates, (In,Ga)N layers, and (In,Ga)N quantum well structures oriented along the polar [0001], semi-polar [11-22], and non-polar [11-20] orientations by means of light induced transient grating, differential transmission, and photoluminescence optical techniques. We show that the lifetime of excess carriers drops by orders of magnitude when changing the orientation from polar to non-polar, both in GaN templates and (In,Ga)N layers. We attribute the shorter lifetime to carrier trapping by extended structural defects that are more abundant in non-polar grown samples. In addition, we observe pronounced carrier localization effects in the semi- and non-polar layers. We show that thick (In,Ga)N layers inherit the properties of the GaN templates. However, the thin quantum well structures show a lower carrier trapping activity. So, a better electrical quality can be assumed as compared to the thick (In,Ga)N layers. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Eslami, E.; Barjasteh, A.; Morshedian, N.

    2015-01-01

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap

  7. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  8. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  9. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Science.gov (United States)

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Staff Workshop Take notice that the Federal Energy Regulatory Commission will hold a Workshop on Voltage Coordination on High Voltage Grids on Thursday, December 1, 2011...

  10. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  11. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

    Science.gov (United States)

    Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-01

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  12. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    International Nuclear Information System (INIS)

    Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng

    2015-01-01

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr 0.52 Ti 0.48 )-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g m -V g ) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric

  13. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.; Rosenthal, S.E.; Hanson, D.L.; Smith, J.R.; Maenchen, J.E.; Wenger, D.F.; Bernard, M.A.

    1993-01-01

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, and even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations

  14. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  15. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  16. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  17. Collective effects in spin polarized plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.

    1984-10-01

    A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei

  18. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  19. Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain

    Science.gov (United States)

    Sattari, Farhad; Mirershadi, Soghra

    2018-01-01

    We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.

  20. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.