WorldWideScience

Sample records for voltage iv characteristics

  1. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  2. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  3. Driver for solar cell i-v characteristic plots

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G.B.

    1980-01-15

    A bipolar voltage ramp generator applies a linear voltage through a resistor to a solar cell for plotting its current versus voltage (I-v) characteristic between short circuit and open circuit conditions, with automatic stops at the end points. The resistor serves the multiple purpose of providing a current sensing resistor, setting the full-scale current value, and providing a load line with a slope approximately equal to one, such that it will pass through the origin and the approximate center of the i-v curve with about equal distance from that center to each of the end points.

  4. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.;

    2002-01-01

    We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...... unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads...... due to the applied bias voltage. For a armchair metallic nanotube, a reduction of current is observed with substitutional doping due to elastic backscattering by the impurity....

  5. Parameter extraction from I-V characteristics of PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Macabebe, Erees Queen B. [Department of Electronics, Computer and Communications Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108 (Philippines); Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, Charles J. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Dyk, E. Ernest van [Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2011-01-15

    Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)

  6. Current-voltage characteristics of double-strand DNA sequences

    Science.gov (United States)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  7. Current-voltage characteristics of double-strand DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bezerril, L.M.; Moreira, D.A. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@dfte.ufrn.b [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Oliveira, E.L. de; Sousa, J.S. de [Departamento de Fisica, Universidade Federal do Ceara, 60455-760, Fortaleza-CE (Brazil)

    2009-09-07

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  8. I-V characteristics of foilless diodes

    Institute of Scientific and Technical Information of China (English)

    Liu Guo-Zhi; Huang Wen-Hua; Yang Zhan-Feng

    2005-01-01

    Some physical characteristics of foilless diodes are obtained and analysed by numerical simulations. Relations between diode current andconfiguration parameters, i.e. diode voltage and external magnetic field, are investigated.Employing these relations and assuming that the external magnetic field is strong enough, the diode current can be approximately written as Ib=(7.5/x)(x+(0.81-x)/(1+0.7Ld2/δr))(γ0 2/3-1)3/2, in which Ld is the Anode-Cathode(AK) gap, Rc the outer radius of cathode, and Rp the radius of drifting tube; x=ln(Rp/Rc), δr=Rp- Rc. This expression is comparatively accurate for different configuration parameters and voltages; results obtained from this expression are consistent with that of numerical simulations within an error of 10%.

  9. The dynamic response of a hot-wire anemometer: IV. Sine-wave voltage perturbation testing for near-wall hot-wire/film probes and the presence of low-high frequency response characteristics

    Science.gov (United States)

    Teo, C. J.; Khoo, B. C.; Teo, C. J.; Chew, Y. T.

    2001-01-01

    Experiments were performed using the electronic sine-wave voltage-perturbation test to systematically study the frequency responses of near-wall hot-wire probes subjected in turn to varying magnitudes of convective velocity and different effects of wall influence. In addition, quartz-substrate hot-film gauges with various thicknesses of quartz coating were also investigated. Results of the high cut-off frequency obtained using the sine-wave test (fsine) were found to be in fair agreement with those obtained using the square-wave test (fS) both for hot-wire and for hot-film sensors. The sine-wave test response curve exhibited a distinct bulging effect for the hot-film gauges. For the hot-wire sensors, a much weaker bulging effect was also observed. In contrast to fS and fsine, the low frequency response characteristic corresponding to the location of the bulging effect (fbulge) compared much more favourably with the dynamic frequency response (fD) obtained by Khoo et al and Chew et al using a known near-wall fluctuating flow field. Freymuth's theory for non-cylindrical hot-film sensors incorporating the Bellhouse-Schultz model was applied to predict the responses of the hot-film wall gauges when they were subjected to electronic sine-wave testing and dynamic perturbation testing under different parametric conditions. Although it is one-dimensional in nature, the model is capable of predicting most of the trends observed in the present study and previous works by Khoo et al (1998a) and Chew et al (1998a).

  10. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    Performance Characteristics of an Armature Voltage Controlled D.C. Motor. ... the performance characteristics of a test motor are obtained by digital computer analysis. ... speed regulation and response characteristics for the d. c. drive system.

  11. Investigation of pulsed voltage limiters characteristics

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2012-06-01

    Full Text Available A new method for measuring the voltage limit is offered. It has been designed to measure high-power pulsed current of voltage limiters. The error of this method is half as much as the error of the known method of direct measurement. The investigation of dependence of power capability of single-crystal and double-crystal voltage limiters and of the pulsed operation time on pulse duration.

  12. Relationships between Harmonic Characteristics and Different Types of Voltage Source

    Directory of Open Access Journals (Sweden)

    Yusniati Yusniati

    2012-06-01

    Full Text Available This paper discusses about harmonic characteristics due to different types of voltage sources. Usually, the voltage source is sinusoidal. But in actual condition the load that receive voltage sources through the elements where the output voltage of element as input to the load is not pure sinusoidal, for example voltage source at  (PCC between transformer and linear load and nonlinear load. This research has been done with Schhafner Power Quality Analyzer and PM300 Power Quality Analyzer, was focused to all harmonic characteristics as power, voltage, current, power factor (p.f., Harmonic Distortion, and harmonic energy losses cost. The load is Induction Motor with Adjustable Speed Drive (ASD because the Induction Motor with Adjustable Speed Drive (ASD is one of electronic device causes harmonics. The voltage sources in this research are sine wave, square wave and harmonic order combinations of 3rd, 5th and 7th which can create from Schhafner Power Quality Analyzer.

  13. Relationships between Harmonic Characteristics and Different Types of Voltage Source

    Directory of Open Access Journals (Sweden)

    Syafruddin H

    2012-06-01

    Full Text Available This paper discusses about harmonic characteristics due to different types of voltage sources. Usually, the voltage source is sinusoidal. But in actual condition the load that receive voltage sources through the elements where the output voltage of element as input to the load is not pure sinusoidal, for example voltage source at  (PCC between transformer and linear load and nonlinear load. This research has been done with Schhafner Power Quality Analyzer and PM300 Power Quality Analyzer, was focused to all harmonic characteristics as power, voltage, current, power factor (p.f., Harmonic Distortion, and harmonic energy losses cost. The load is Induction Motor with Adjustable Speed Drive (ASD because the Induction Motor with Adjustable Speed Drive (ASD is one of electronic device causes harmonics. The voltage sources in this research are sine wave, square wave and harmonic order combinations of 3rd, 5th and 7th which can create from Schhafner Power Quality Analyzer.

  14. Current-voltage characteristics of quantum-point contacts in the closed-channel regime: Transforming the bias voltage into an energy scale

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Aagesen, M.;

    2006-01-01

    We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our...... analysis is based on a single scaling factor, extracted from the experimental I(V) characteristics. For both polarities, this scaling factor transforms the change of bias voltage into a change of electron energy. The latter is determined with respect to the top of the potential barrier of the contact....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...

  15. A model for voltage collapse study considering load characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.B. [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)

    1994-12-31

    This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.

  16. Current-voltage characteristics and transition voltage spectroscopy of individual redox proteins.

    Science.gov (United States)

    Artés, Juan M; López-Martínez, Montserrat; Giraudet, Arnaud; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2012-12-19

    Understanding how molecular conductance depends on voltage is essential for characterizing molecular electronics devices. We reproducibly measured current-voltage characteristics of individual redox-active proteins by scanning tunneling microscopy under potentiostatic control in both tunneling and wired configurations. From these results, transition voltage spectroscopy (TVS) data for individual redox molecules can be calculated and analyzed statistically, adding a new dimension to conductance measurements. The transition voltage (TV) is discussed in terms of the two-step electron transfer (ET) mechanism. Azurin displays the lowest TV measured to date (0.4 V), consistent with the previously reported distance decay factor. This low TV may be advantageous for fabricating and operating molecular electronic devices for different applications. Our measurements show that TVS is a helpful tool for single-molecule ET measurements and suggest a mechanism for gating of ET between partner redox proteins.

  17. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2016-01-01

    (soiling, shading, discoloration). The premise of the method that is proposed is that different degradation modes affect the light and dark I-V characteristics of the PV module in different ways, leaving distinct signatures. This work focuses on identifying and correlating these specific signatures present......This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation...... in the light and dark I-V measurements, to specific degradation modes; a number of new dark I-V diagnostic parameters are proposed to quantify these signatures. The experimental results show that these dark I-V diagnostic parameters, complemented by light I-V performance and series resistance measurements can...

  18. Breakpoint region in the IV-characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mahfouzi, F.

    2008-02-01

    We study theoretically the IV-characteristics of intrinsic Josephson junctions in HTSC. We solve numerically a set of differential equations for N intrinsic Josephson junctions and investigate the nonlinear dynamics of the system. The charging effect is taken into account. We demonstrate that the breakpoint region in the current-voltage characteristics naturally follows from the solution of the system of the dynamical equations for the phase difference. In the breakpoint region the plasma mode is a stationary solution of the system and this fact might be used in some applications, particularly, in high frequency devices such as THz oscillators and mixers.

  19. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  20. Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires

    Institute of Scientific and Technical Information of China (English)

    LONG Yun-Ze; DUVAIL Jean-Luc; CHEN Zhao-Jia; JIN Ai-Zi; GU Chang-Zhi

    2008-01-01

    We report the current-voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190 ± 6 nm in diameter and σRT : 11.2±2Ω-1cm-1)over a wide temperature range from 300 to 10K. With lowering temperature, the Ⅰ- Ⅴ characteristics become nonlinear around 50 K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV)spectra. The temperature dependence of the resistance below 70 K follows ln R ∝ T-1/2, which can be interpreted as Efros-Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.

  1. Observation of step structures in the I-V characteristics of YBCO thin films

    Science.gov (United States)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1997-08-01

    Many electrical properties of the high Tc superconductors are widely probed utilizing current-voltage characteristics because of its sensitivity to the phase transition. In this work we report on detailed study of YBCO I-V characteristics shape above the critical current in the phase transition vicinity. For a given temperature controlled to a better than 10mK stability over the whole I-V cycle, the applied current has been gradually increased to exceed the critical current. The system has thus been driven to cross over to the mixed state. Using dI/dV versus V plots, it is shown that all the curves are characterized by a fine step structures at current densities higher than the critical ones.

  2. Solar Cell Parameters Extraction from a Current-Voltage Characteristic Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Sanjaykumar J. Patel

    2013-05-01

    Full Text Available The determination of solar cell parameters is very important for the evaluation of the cell performance as well as to extract maximum possible output power from the cell. In this paper, we propose a computational based binary-coded genetic algorithm (GA to extract the parameters (I0, Iph and n for a single diode model of solar cell from its current-voltage (I-V characteristic. The algorithm was implemented using LabVIEW as a programming tool and validated by applying it to the I-V curve synthesized from the literature using reported values. The values of parameters obtained by GA are in good agreement with those of the reported values for silicon and plastic solar cells. change to “After the validation of the program, it was used to extract parameters for an experimental I-V characteristic of 4 × 4 cm2 polycrystalline silicon solar cell measured under 900 W/m. The I-V characteristic obtained using GA shows excellent match with the experimental one.

  3. Double threshold behaviour of I-V characteristics of CoSi2/Si Schottky contacts

    Institute of Scientific and Technical Information of China (English)

    Zhu Shi-Yang(竺士炀); Ru Guo-Ping(茹国平); Qu Xin-Ping(屈新萍); Li Bing-Zong(李炳宗); R.L.Van Meirhaeghe; C.Detavernier; F.Cardon

    2002-01-01

    The forward current-voltage (I-V) characteristics of polycrystalline CoSi2/n-Si(100) Schottky contacts have beenmeasured in a wide temperature range. At low temperatures (≤200K), a plateau-like section is observed in the I-Vmodel based on thermionic emission (TE) and a Gaussian distribution of Schottky barrier height (SBH). Such a doublethreshold behaviour can be explained by the barrier height inhomogeneity, i.e. at low temperatures the current throughpatches with low SBH dominates at small bias region With increasing bias voltage, the Ohmic effect becomes someimportant and the current through the whole junction area exc eeds the patch current, thus resulting in a plateau-likesection in the I-V curves at moderate bias. For the polycrystalline CoSi2/Si contacts studied in this paper, the apparentideality factor of the patch current is much larger than that calculated from the TE model taking the pinch-off effectinto account. This suggests that the current flowing through these patches is of the tunnelling type, rather than thethermionic emission type. The experimental I-V characteristics can be fitted reasonably well in the whole temperatureregion using the model based on tunnelling and pinch-off.

  4. Current–voltage characteristics of manganite–titanite perovskite junctions

    Directory of Open Access Journals (Sweden)

    Benedikt Ifland

    2015-07-01

    Full Text Available After a general introduction into the Shockley theory of current voltage (J–V characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1−yNbyO3, y = 0.002 and p-doped Pr1−xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface.

  5. Branching in current-voltage characteristics of intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-02-15

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.

  6. Branching in current voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mahfouzi, F.

    2007-02-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.

  7. Dispersion effect on the current voltage characteristic of AlGaN/GaN high electron mobility transistors

    Institute of Scientific and Technical Information of China (English)

    Pu Yan; Pang Lei; Chen Xiao-Juan; Yuan Ting-Ting; Luo Wei-Jun; Liu Xin-Yu

    2011-01-01

    The current voltage (IV) characteristics are greatly influenced by the dispersion effects in AlGaN/GaN highelectron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects,which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects,and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements,the trapping effects and self-heating effects can be separated.The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement,the steady state of the bias points must be considered carefully to avoid the dispersion effects.

  8. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses...... or contacts are damaged/degraded). With the recent growth and development of new module level dc-dc optimizers and micro inverters, capable of bidirectional current flow, it is now possible to implement both dark I-V and light I-V measurements as complementary diagnostic tools. By complementing light I-V...... measurements, which reflect both the optical and electrical performance parameters of the PV device, with dark I-V measurements, which focus only on the electrical characteristic of the PV device, the optical factors determining power loss (such as partial shadows, soiling, discoloration of the plastic...

  9. Effect of current-voltage characteristics on plasma reforming

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, N. [Univ. of Science and Technology, Daejeon (Korea, Republic of). Environmental System Engineering; Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division; Hur, M.; Kim, K.T.; Kim, S.J.; Song, Y.H. [Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division

    2010-07-01

    Studies have shown that the energy costs associated with plasma fuel reforming can vary depending on the type of plasma generation technique. The reasons for the different energy costs, however, are not yet clear, since different types of plasma reactor lead to not only different plasma conditions but also lead to different reaction conditions that is not relevant to plasma, such as gas residence time, heat and mass flow conditions. This paper presented the results of a parametric study on methane partial oxidation which was conducted to determine the optimal operating conditions and geometrical design of an arc jet plasma fuel reformer. The arc reactor used in this study was designed to control various operating parameters such as arc length, gas residence time, and gas mixing. Two different types of power supply were tested, notably one that produced high voltage with low current, and one that produced relatively low voltage and high current. The effects of these different voltage-current characteristics on gas reforming process were analyzed based on methane conversion rates, selectivity of products, and thermal efficiencies. The study showed that the input power but not the voltage plays an important role in the present partial oxidation process. The gas residence time was also found to be an important factor in controlling the reformer process. 10 refs., 8 figs.

  10. Current-voltage-temperature characteristics of DNA origami

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Zhong Hong; Norton, Michael L [Department of Chemistry, Marshall University, Huntington, WV 25755 (United States); Sinitskii, Alexander [Department of Chemistry, Rice University, Houston, TX 77005 (United States)

    2009-04-29

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of {approx}0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  11. Characteristics for electrochemical machining with nanoscale voltage pulses.

    Science.gov (United States)

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  12. Current-voltage characteristics of borophene and borophane sheets.

    Science.gov (United States)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2017-08-16

    Motivated by recent experimental and theoretical research on a monolayer of boron atoms, borophene, the current-voltage characteristics of three different borophene sheets, 2Pmmn, 8Pmmn, and 8Pmmm, are calculated using density functional theory combined with the nonequilibrium Green's function formalism. Borophene sheets with two and eight atoms in a unit cell are considered. Their band structure, electron density, and structural anisotropy are analyzed in detail. The results show that the 8Pmmn and 8Pmmm structures that have eight atoms in the unit cell have less anisotropy than 2Pmmn. In addition, although 8Pmmn shows a Dirac cone in the band structure, its current is lower than that of the other two. We also consider a fully hydrogenated borophene, borophane, and find that the hydrogenation process reduces the structural anisotropy and the current significantly. Our findings reveal that the current-voltage characteristics of the borophene sheets can be used to detect the type and the growth direction of the sample because it is strongly dependent on the direction of the electron transport, anisotropy, and details of the unit cell of the borophene.

  13. Study of Voltage-Controlled Characteristics for Thermoelectric Coolers

    Science.gov (United States)

    Wang, Ning; Chen, Ming-Ming; Jia, Hong-Zhi; Jin, Tao; Xie, Ji-Long

    2017-01-01

    Based on the Peltier effect, thermoelectric coolers (TECs) have been widely used in solving thermal management issues for semiconductor devices such as semiconductor laser, charge-coupled devices and nanoelectronic circuits with hot-spots. However, performance control mechanisms especially voltage-controlled parameters for TEC still face challenges. In this paper, a standard mathematical model for multi-stage TECs is proposed with thermal resistances from both sides and performance parameters dependent on voltage. The proposed models agreed with experimental results. Compared with the available model, the relative standard deviations between the obtained equivalent thermal conductivity model and experimental results at 25°C and 50°C are decreased by 88.87% and 30.14%, respectively. Also, the relative standard deviations between the proposed thermoelectric figure of merits model and calculated results based on experiments at two different temperatures are decreased by 84.45% and 62.94%, respectively. The results provide a controllable method of thermoelectric characteristics with high accuracy, which can be employed for early thermometric performance estimation for TEC design.

  14. Improved analytical current voltage characteristics of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Koski, M.; Tuominen, E.; Acerbis, M.; Sinkkonen, J.

    1997-12-31

    Application of the Green`s function method to the calculation of the current voltage characteristics of a pn-junction solar cell makes possible to extract more reliable and exact information about the behavior of the cell. With this method not only the minority carrier diffusion currents but also the drift currents in quasi- neutral regions of the solar cell can be taken into consideration. Furthermore, this approach is not limited to an exponentially decaying minority carrier generation function but is valid for any type of optical generation. In addition, the injection boundary condition is exploited with the result that not only the pn-diode current but also the current resulting from the optical generation depends on the voltage of the solar cell. Applying the method also gives the so called position dependent collection efficiency function which is defined as the probability that an electron-hole pair created at a certain point inside the solar cell will contribute to the current leaving the cell. (orig.) 15 refs.

  15. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  16. Nonlinear I-V characteristics of nanoparticle compacts and nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Herth, Simone [Rensselaer Polytechnic Institute, Troy, NY (United States); Bielefeld University, Bielefeld (Germany); Wang, Xiaoping; Hugener, Teresa; Schadler, Linda; Siegel, Richard [Rensselaer Polytechnic Institute, Troy, NY (United States); Hillborg, Henrik; Auletta, Tommaso [ABB AB, Corporate Research, Schweden (Sweden)

    2007-07-01

    Materials with nonlinear I-V characteristics are commonly used as field grading materials. In many cases, the non-linearity is achieved through the addition of equiaxed fillers to a polymer matrix. These composite field grading materials are optimized in terms of nonlinearity, conductivity, and breakdown strength. One limitation in designing new field grading materials is a robust understanding of the relationship between powder morphology, composition and electrical characteristics of the powder, as well as a robust understanding of the relationship between powder conductivity and non-linearity and composite non-linearity. In this work, treatment of ZnO powder with a SnF{sub 2} solution resulted in a powder that yielded highly non-linear behavior. The highest non-linearity was achieved for powders with at least two different phases and a rough surface, as indicated by transmission electron micrographs. In contrast, the non-linearity of the nanocomposite conductivity is mainly determined by the conductivity of the nanofiller. The electrical behavior of the non-linear powder can be understood by a polarization of the nanoparticles at the interfaces, whereas the nonlinearity of the nanocomposites can be explained by a tunnelling mechanism between two particles.

  17. Transient analysis of a PV power generator charging a capacitor for measurement of the I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Marwan M. [Energy Research Centre, An Najah National University, P.O. Box 721 Nablus (PS)

    2006-10-15

    Measuring the I-V characteristics is of high importance since it can be considered as a quality and performance certificate for each PV generator. The most precise and inexpensive measuring method is represented in capacitor charging by the PV generator. Using the equivalent circuit of the PV generator with a capacitor as load and applying transient analysis on the circuit, we obtain the capacitor charging voltage and current as a function of time, as well as their differentials as a function of short circuit current and capacitor size. The derived equations facilitate the calculation of proper capacitance size for measuring the I-V characteristics, and considers the acquisition speed of the measuring system as demonstrated through two measurement samples in this paper. The capacitor size is directly and indirectly proportional to the short circuit current and open circuit voltage of the PV generator, respectively. Accordingly, the paper presents a capacitance calculation chart, which enables selecting the correct capacitance for measuring the I-V characteristics by a computerized data acquisition system. (author)

  18. Coupling of intrinsic Josephson junctions and subgap structure in the current-voltage characteristics of high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Physical Technical Institute of Tajik Academy of Sciences, Dushanbe (Tajikistan); Nasrulaev, Kh. [Physical Technical Institute of Tajik Academy of Sciences, Dushanbe (Tajikistan); Sargolzaei, M. [Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Oya, G.; Irie, A. [Utsunomiya University, Yoto, Utsunomiya (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama (Japan)

    2002-01-01

    The subgap structure in current-voltage (I-V) characteristics of a stack of intrinsic Josephson junctions in high-T{sub c} superconductors is studied. An analytical formula for the I-V characteristics is obtained which had taken into account the influence of the dynamically breaking of charge neutrality (DBCN) in CuO{sub 2} layers on the subgap structure. It is shown that DBCN does not affect the positions and the amplitudes of the subgap peaks, but changes the curvature of the branches in the I-V characteristics. As a possible manifestation of the non-equivalence of the junction, the experimental I-V characteristics of intrinsic Josephson junctions are presented. (author)

  19. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  20. I-V characteristics simulation of silicon carbide Ti/4H-SiC Schottky diode

    Science.gov (United States)

    Panchenko, P.; Rybalka, S.; Malakhanov, A.; Krayushkina, E.; Radkov, A.

    2016-12-01

    The simulation of current-voltage characteristics for 4H-SiC Schottky diode with Ti Schottky contact has been carried out with used of TCAD program. Obtained current-voltage characteristics has been analyzed and compared with theoretical and experimental results. It is established that the Schottky diode parameters (forward current, ideality coefficient, Schottky barrier height, breakdown voltage) obtained in proposed model are good agreement with data for such type diodes.

  1. Structure of the breakpoint region on current-voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Suzuki, M.

    2008-10-01

    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.

  2. Theoretical method for estimation of power loss due to mismatch in solar cell I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasamurthy, N.; Malathi, B.; Mathur, R.S.

    1978-01-01

    In order to generate power from the solar panels at a required voltage, suitable number of cells should be connected in series and parallel. There exists a mismatch in the solar cell I-V characteristics, when they are produced in a lot. When such cells are connected in a series parallel array, power loss would occur due to the mismatch. A theoretical approach is made to compute the power loss. This would suggest the designer to select proper combination of cells for minimum power loss of any configuration of the solar panel.

  3. Fabrication and current-voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Science.gov (United States)

    Singh, Aparajita; Ratnadurai, Rudraskandan; Kumar, Rajesh; Krishnan, Subramanian; Emirov, Yusuf; Bhansali, Shekhar

    2015-04-01

    Enhanced asymmetric and non-linear characteristics of Ni-NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni-NiOx-Cr and double insulator Ni-NiOx-ZnO-Cr tunnel diodes were fabricated and their I-V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V-1 and 16 V-1. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  4. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  5. The i-V curve curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    CERN Document Server

    Han, Jie; Casey, Tiernan A; Bisetti, Fabrizio; Im, Hong G; Chen, Jyh-Yuan

    2016-01-01

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-V curve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agre...

  6. The influences of the properties of impurities and defects on the dark I-V characteristic curve and output parameters of c-Si solar cells

    Science.gov (United States)

    Lu, Xiaodong; Song, Yang; Gao, Jie; Wang, Xinxin; Zhang, Yufeng

    2017-09-01

    The influences of the coating ratio of electrode, doping concentration of substrate and type of impurities and defects on the dark I-V characteristic curves and output parameters of c-Si solar cells are studied by finite difference method and the dark I-V characteristic curves under different conditions are analyzed by their ideal factors, the results show that: the dark current values under the same bias voltage will increase with the increasing of the coating ratio of electrode or doping concentration of substrate; the influences of donor-like, acceptor-like and recombination-center-like impurities and defects on the dark I-V characteristic curves have threshold effects; the parameters of the impurities and defects smaller than their corresponding threshold will have no obvious influences on dark I-V characteristic curves; the acceptor-like impurities and defects on the surface of c-Si solar cells have no influences on their dark I-V characteristic curve, but the donor-like and recombination-center-like impurities and defects have strong influences on their dark I-V characteristic curve; the variations of the output parameters of c-Si solar cells are analyzed in detail under the different properties of the impurities and defects inside and on the surfaces of c-Si solar cells.

  7. Negative-resistance voltage-current characteristics of superconductor contact junctions for macro-scale applications

    CERN Document Server

    Takayasu, M; Minervini, J V; 10.1109/TASC.2003.812854

    2003-01-01

    Voltage-current characteristics of mechanical pressure contact junctions between superconducting wires are investigated using a voltage-driving method. It is found that the switching regions at low voltages result from negative resistance of the contact junction. The current transport of the contact junctions is discussed from the perspective of two existing models: the multiple Andreev reflections at the two SN interfaces of a SNS (Superconductor/Normal metal /Superconductor) junction and the inhomogeneous multiple Josephson weak-link array. (13 refs).

  8. Investigation of Current-Voltage Characteristics of Ni/GaN Schottky Barrier Diodes for Potential HEMT Applications

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2011-01-01

    Full Text Available In the present work, the I-V characteristics of Ni/GaN Schottky diodes have been studied. The Schottky diodes, having different sizes using Ni/Au and ohmic contacts using Ti/Al/Ni/Au were made on n-GaN. The GaN was epitaxially grown on c-plane sapphire by metal organic chemical vapor deposition (MOCVD technique and had a thickness of about 3.7 µm. The calculated ideality factor and barrier height from current-voltage (I-V characteristics (at 300 K for two GaN Schottky diodes were close to ~1.3 and ~ 0.8 eV respectively. A high reverse leakage current in the order of 10 – 4A/cm2 (at – 1 V was observed in both diodes. A careful analysis of forward bias I-V characteristics showed very high series resistance and calculation for ideality factor indicated presence of other current transport mechanism apart from thermionic model at room temperature.

  9. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    National Research Council Canada - National Science Library

    N Hatefi Kargan

    2013-01-01

    In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation...

  10. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen

    2009-01-01

    Owing to the anisotropic property and small output signals of the piezoelectric nanogenerators (NGs) and the influence of the measurement system and environment, identification of the true signal generated by the NG is critical. We have developed three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity, and random signals, which might change signs but cannot consistently add up or cancel out under designed connection configurations. This study establishes the standards for designing and scale up of integrated nanogenerators. © 2009 American Institute of Physics.

  11. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  12. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  13. Phase-field modeling of switchable diode-like current-voltage characteristics in ferroelectric BaTiO3

    Science.gov (United States)

    Cao, Y.; Shen, J.; Randall, C. A.; Chen, L. Q.

    2014-05-01

    A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO3/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO3 containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from -1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 102. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.

  14. Investigation of Harmonic Characteristics in Printer due to Different Types of Voltage Source

    Directory of Open Access Journals (Sweden)

    C. Risnidar

    2012-01-01

    Full Text Available This paper discusses about harmonic characteristics due to different types of voltage sources. Usually, the voltage source is sinusoidal. But in actual condition the load that receives voltage sources through the elements where the output voltage of element as input to the load is not pure sinusoidal, for example voltage source at Power of Common Coupling (PCC between transformer and linear load and nonlinear load. This research has been done  with Schhafner Power Quality Analyzer and PM300 Power Quality Analyzer, was focused to all harmonic characteristics as power, voltage, current, power factor (p.f., Harmonic Distortion, and harmonic energy losses cost. The load is printer because the printer is one of electronic device causes harmonics. The voltage sources in this research are sine wave, triangle wave and harmonic order combinations of 3rd, 5th and 9th. Why this research discuses voltage source for Harmonic order 3rd, 5th and 9th and don not combination of 3rd, 5th and 7th, because the combination 3rd, 5th and 9th is more complicated then combination of 3rd, 5th and 7th.

  15. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    Science.gov (United States)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  16. Branch structure of IV-characteristics in the capacitively coupled Josephson junctions model with the diffusion current

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Seidel, P. [Institut fuer Festkorperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2007-09-01

    We have solved numerically a system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of N intrinsic junctions and obtained a total branch structure in the current-voltage characteristics (IVC) of the stack. The coupling dependence of the branch's slopes is investigated and demonstrated that the equidistance of the branch structure in capacitively coupled Josephson junctions (CCJJ) model is broken at small values of coupling parameter. Changes in the parameters of the boundary conditions and the use of periodic boundary conditions do not affect this result. In the framework of the CCJJ model with the diffusion current we simulate an experiment and obtain the IV-characteristic with equidistant branch structure at different values of model parameters.

  17. Branch structure of IV-characteristics in the capacitively coupled Josephson junctions model with the diffusion current

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Seidel, P.

    2007-09-01

    We have solved numerically a system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of N intrinsic junctions and obtained a total branch structure in the current-voltage characteristics (IVC) of the stack. The coupling dependence of the branch’s slopes is investigated and demonstrated that the equidistance of the branch structure in capacitively coupled Josephson junctions (CCJJ) model is broken at small values of coupling parameter. Changes in the parameters of the boundary conditions and the use of periodic boundary conditions do not affect this result. In the framework of the CCJJ model with the diffusion current we simulate an experiment and obtain the IV-characteristic with equidistant branch structure at different values of model parameters.

  18. [Study of ignition characteristic of DC voltage plasma ignitor].

    Science.gov (United States)

    Wang, Feng; He, Li-Ming; Lan, Yu-Dan; Du, Hong-Liang

    2011-09-01

    The changing law between interelectrode current, discharge characteristic and jet characteristic of plasma ignitor under different inlet Ar pressure and working current was researched by adopting self-made plasma ignitor. Still, four channels CCD spectrometer was adopted to measure the spectrum characteristic at the exit of ignitor and electron temperature of plasma was calculated according to the spectrum characteristic. The results show that the interelectrode current gradually reduced with rising inlet Ar pressure; The jet length of plasma ignitor firstly increased then reduced with rising inlet Ar flowrate, and also increased with rising working current; The working current of plasma ignitor reduced with rising inlet Ar flowrate, and increased with rising source output current; the electron temperature of plasma ignitor jet increased with rising working current and reduced with rising Ar flowrate. The research results are of certain guidance meanings and reference values for the practical application of plasma ignition system in aeroengine.

  19. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  20. Surge current capabilities and isothermal current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers

    Science.gov (United States)

    Palmour, J. W.; Levinshtein, M. E.; Ivanov, P. A.; Zhang, Q. J.

    2015-06-01

    Isothermal forward current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers (JBS) have been studied for the first time. Isothermal characteristics were measured with JBS having a blocking voltage of 1700 V up to a current density j  ≈  4200 A cm-2 in the temperature range 297-460 K. Quasi-isothermal current-voltage characteristics of these devices were studied with injection of minority carriers (holes) up to j  ≈  7200 A cm-2 and ambient temperatures of 297 and 460 K. The isothermal forward current-voltage characteristics make it possible to numerically calculate (for example, by an iteration procedure) the overheating in an arbitrary operation mode.

  1. Current-Voltage Characteristics of Molecular Devices at Low Bias

    Institute of Scientific and Technical Information of China (English)

    LIAO Yun-Xing; CHEN Hao; R.Note; H.Mizuseki; Y.Kawazoe

    2004-01-01

    We use density functional theory and the Green function formalism with charge energy effect included in the self-consistent calculation of the Ⅰ- Ⅴ characteristics of a single benzene ring with an appendage of cf3, and identify some interesting properties of the Ⅰ-Ⅴ characteristics at low bias. The molecule picks up a fractional charge at zero bias, then the additional fractional charge produces a barrier on the junction of the molecule and contacts to perturb current flow on the molecule. This phenomenon may be useful for the design of future molecular devices.

  2. A New Strategy for Accurately Predicting I-V Electrical Characteristics of PV Modules Using a Nonlinear Five-Point Model

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents the modelling of electrical I-V response of illuminated photovoltaic crystalline modules. As an alternative method to the linear five-parameter model, our strategy uses advantages of a nonlinear analytical five-point model to take into account the effects of nonlinear variations of current with respect to solar irradiance and of voltage with respect to cells temperature. We succeeded in this work to predict with great accuracy the I-V characteristics of monocrystalline shell SP75 and polycrystalline GESOLAR GE-P70 photovoltaic modules. The good comparison of our calculated results to experimental data provided by the modules manufacturers makes it possible to appreciate the contribution of taking into account the nonlinear effect of operating conditions data on I-V characteristics of photovoltaic modules.

  3. Closed-form expression for the current/ voltage characteristics of pin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Taretto, K.; Rau, U.; Werner, J.H. [Institut fuer Physikalische Elektronik, Pfaffenwaldring 47, 70569, Stuttgart (Germany)

    2003-12-01

    A closed-form expression for the current-voltage relationship of pin diodes and pin solar cells is obtained. The model considers drift and diffusion currents, and assumes a uniform electric field in the intrinsic layer, equal diffusion lengths for electrons and holes and a homogeneous generation rate. We show that both drift and diffusion currents must be taken into account to describe the current over a wide range of applied voltage. The inclusion of both transport mechanisms results in diode ideality factors between 1.8 at low, and 1.2 at high applied voltages. Comparisons of current/voltage characteristics and solar cell output parameters obtained from our model with experimental data of thin-film silicon solar cells show that our model accurately explains the output characteristics of pin solar cells. (orig.)

  4. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Voltage-sharing Characteristics of Porcelain Insulators for 750 kV AC Substation%Voltage-sharing Characteristics of Porcelain Insulators for 750 kV AC Substation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shi-ting; PENG Zong-ren; LIAO Jin tao

    2011-01-01

    Considering the complex environment in 750 kV AC substation, porcelain insulators have particular electric field and voltage distribution in comparison with those used in AC transmission line, meanwhile, the investigation of a typical 750 kV AC substation located in Lanzhou with ultraviolet imager (UVI) demonstrated that the corona dis- charge of some insulators is serious due to the improper structure design and installation, so research on porcelain insulators used in substation is needed. The three-dimensional finite element method (FEM) 750 kV AC substation calculation model was established to calculate electric field and voltage distribution of insulators, and the voltage distribution curves along insulators which are classified by type and suspension location were obtained using a novel FEM method which can effectively reduce the calculation amount without losing accuracy, meanwhile, the effect of the grading ring for improving voltage distribution of insulators was studied by adjusting the structure parameters of grad- ing ring. Consequently, an optimization structure of rings was proposed by improving the voltage distribution of insu- lator string and reducing the electric strength of grading ring for the purpose of restricting corona noise, and the on- site observations by UVI showed that the newly manufactured and installed grading ring could obviously avoid the occurrences of corona discharge which validates the optimization design. This paper proposed an effective method combi ning UVI observation and FEM calculation to study voltage-sharing characteristics of porcelain insulators, and the results can provide experiences and references for the design of 750 kV AC substation.

  6. Effect of the mobility on (I-V) characteristics of the MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Benzaoui, Ouassila, E-mail: o-benzaoui@yahoo.fr [Technology Department, Faculty of Technology, 20 August 1955 University, BP 26, El-Hadaiek Street 21000 Skikda, Algeria and Department of Physics, Faculty of Science, Thin Films and Interfaces Laboratory, P. B 325, Ain El Bey Street, Mentouri Univers (Algeria); Azizi, Cherifa, E-mail: aziziche@yahoo.fr [Department of Material Sciences, Larbi Ben M' hidi University, BP 358, Constantine Street, 04000 Oum El-Bouaghi, Algeria and Department of Physics, Faculty of Science, Thin Films and Interfaces Laboratory, P. B 325, Ain El Bey Street, Mentouri Univers (Algeria)

    2013-12-16

    MOSFET Transistor was the subject of many studies and research works (electronics, data-processing, telecommunications...) in order to exploit its interesting and promising characteristics. The aim of this contribution is devoted to the effect of the mobility on the static characteristics I-V of the MOSFET. The study enables us to calculate the drain current as function of bias in both linear and saturated modes; this effect is evaluated using a numerical simulation program. The influence of mobility was studied. Obtained results allow us to determine the mobility law in the MOSFET which gives optimal (I-V) characteristics of the component.

  7. Clinical characteristics of patients with Rutherford category IV, compared with V and VI

    Directory of Open Access Journals (Sweden)

    Taketsugu Tsuchiya

    2015-07-01

    Full Text Available Objective: Patients categorized Rutherford category IV might have different characteristics compared with Rutherford category V and VI. Our study aims were to estimate the clinical differences between Rutherford category IV and Rutherford category V and VI, for those underwent endovascular therapy for isolated infrapopliteal disease, and also to find risk factors for endovascular therapy in Rutherford category IV. Methods: Based on the Japanese multi-center registry data, 1091 patients with 1332 limbs (Rutherford category IV: 226 patients with 315 limbs, Rutherford category V and VI: 865 patients with 1017 limbs were analyzed retrospectively. Results: Patients’ backgrounds and lesions’ characteristics had significant differences. Both freedom rate from major adverse limb event with perioperative death and amputation-free survival rate at 1 year were better in Rutherford category IV than Rutherford category V and VI (93.6% vs 78.3%, 87.7% vs 66.7% and those maintained to 3 years (p  3.0 mg/dL, chronic obstructive pulmonary disease, and coronary artery disease in Rutherford category IV. Conclusion: From the present results, Rutherford category IV should be recognized to have quite different backgrounds and better outcome from Rutherford category V and VI.

  8. Power-Voltage Characteristics of Power System with the Long Transmission Line

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2012-01-01

    Full Text Available Problem statement: Power- Voltage curve provides very important information for voltage stability analysis. The exact long transmission line model consists of the resistance and the reactance. The resistance causes in the active line loss. It is not easy task to achieve the power-voltage curve characteristics of power system with the exact long line model. Approach: This study applies the concept of the Newton-Raphson method to iteratively solve the nonlinear power flow equations. The Power-Voltage (P-V curve characteristic of the system without line loss and with line loss are plotted and compared on various cases. Results: It is found from the study that the resistance of the line obviously provides the negative effects on the voltage stability. The line loss causes in the decrement of the critical point. In addition, it is found that the leading power factor can increase the critical point of P-V curve. Conclusion: The exact long line model should be considered for voltage stability analysis of the system with the long transmission line.

  9. On Calculating the Current-Voltage Characteristic of Multi-Diode Models for Organic Solar Cells

    CERN Document Server

    Roberts, Ken

    2016-01-01

    We provide an alternative formulation of the exact calculation of the current-voltage characteristic of solar cells which have been modeled with a lumped parameters equivalent circuit with one or two diodes. Such models, for instance, are suitable for describing organic solar cells whose current-voltage characteristic curve has an inflection point, also known as an S-shaped anomaly. Our formulation avoids the risk of numerical overflow in the calculation. It is suitable for implementation in Fortran, C or on micro-controllers.

  10. Current-voltage characteristics simulation and analysis of 4H-SiC metal-semiconductor-metal ultraviolet photodetectors

    Institute of Scientific and Technical Information of China (English)

    Junqin Zhang; Yintang Yang; Lifei Lou; Yan Zhao

    2008-01-01

    The current-voltage (I-V) characteristics of 4H-SiC metal-semiconductor-metal (MSM) ultraviolet pho-todetector with different finger widths and spacings, different carrier concentrations and thicknesses of n-type epitaxial layer are simulated. The simulation results indicate that the dark current and the pho-tocurrent both increase when the finger width increases. But the effect of finger width on the dark current is more significant. On the other hand, the effect of finger spacing on the photocurrent is more significant. When the finger spacing increases, the photocurrent decreases and the dark current is almost changeless. In addition, it is found that the smaller the carrier concentration of n-type epitaxial layer is, the smaller the dark current and the larger the photocurrent wiU be. It is also found that I-V characteristics of MSM detector also depend on the epitaxial layer thickness. The dark current of detector is smaller and the photocurrent is larger when the epitaxial layer thickness is about 3 μm.

  11. Output pressure and harmonic characteristics of a CMUT as function of bias and excitation voltage

    DEFF Research Database (Denmark)

    Lei, Anders; Diederichsen, Søren Elmin; Hansen, Sebastian Molbech

    2015-01-01

    The large bandwidth makes CMUT based transducers interesting for both conventional and harmonic imaging. The inherent nonlinear behavior of the CMUT, however, poses an issue for harmonic imaging as it is difficult to dissociate the harmonics generated in the tissue from the harmonic content...... of the transmitted signal. The generation of intrinsic harmonics by the CMUT can be minimized by decreasing the excitation signal. This, however, leads to lower fundamental pressure which limits the desired generation of harmonics in the medium. This work examines the output pressure and harmonic characteristics...... of a CMUT as function of bias and excitation voltage. The harmonic to fundamental ratio of the surface pressures declines for decreasing excitation voltage and increasing bias voltage. The ratio, however, becomes unchanged for bias levels close to the pull-in voltage. The harmonic limitations of the CMUT...

  12. The Thawing Characteristic of Frozen Tofu under High-Voltage Alternating Electric Field

    Directory of Open Access Journals (Sweden)

    Shilong Deng

    2017-01-01

    Full Text Available To systematically and comprehensively investigate the high voltage alternating electric field (HVAEF thawing processing, we investigated the high-voltage electric field thawing characteristic of the frozen tofu at different voltages for alternating current (AC. The thawing time, thawing loss of frozen tofu, and specific energy consumption (SEC of HVEF system were measured. Seven different mathematical models were then compared to simulate thawing time curves based on root mean square error, reduced mean square of deviation, and modeling efficiency. The results showed that the thawing rate of frozen tofu was notably greater in the high-voltage electric field system when compared to control. Both Linear and Quadratic models were the best mathematical models. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the HVAEF thawing properties of frozen tofu.

  13. Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using I-V and C-V Measurements

    Institute of Scientific and Technical Information of China (English)

    G.Gfüler; (O).Güllü; (S).Karata(s); (O).F.Bakkalo(g)lu

    2009-01-01

    Electrical characteristics of Co/n-Si Schottky barrier diodes are analysed by current-voltage (I- V) and capacitancevoltage (C-V) techniques at room temperature.The electronic parameters such as ideality factor,barrier height and average series resistance are determined.The barrier height 0.76 eV obtained from the C-V measurements is higher than that of the value 0.70 eV obtained from the I-V measurements.The series resistance Rs and the ideality factor n are determined from the d ln( I ) / dV plot and are found to be 193.62Ω and 1.34,respectively.The barrier height and the Rs value are calculated from the H(I) - I plot and are found to be 0.71 eV and 205.95Ω.Furthermore,the energy distribution of the interface state density is determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height.The interface state density Nss ranges from 6.484×1011 cm-2eV-1 in (Ec-0.446) eV to 2.801×1010 cm-2eV-1 in (Ec-0.631) eV,of the Co/n-Si Schottky barrier diode.The results show the presence of a thin interracial layer between the metal and the semiconductor.

  14. Analytical two-dimensional model of solar cell current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Caldararu, F.; Caldararu, M.; Nan, S.; Nicolaescu, D.; Vasile, S. (ICCE, Bucharest (RO). R and D Center for Electron Devices)

    1991-06-01

    This paper describes an analytical two-dimensional model for pn junction solar cell I-V characteristic. In order to solve the two-dimensional equations for the minority carrier concentration the Laplace transformation method is used. The model eliminates Hovel's assumptions concerning a one-dimensional model and provides an I-V characteristic that is simpler than those derived from the one-dimensional model. The method can be extended to any other device with two-dimensional symmetry. (author).

  15. Ab initio I-V characteristics of short C-20 chains

    DEFF Research Database (Denmark)

    Roland, C.; Larade, B.; Taylor, Jeremy Philip

    2002-01-01

    We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the orien......We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...

  16. Measurement system for determination of current-voltage characteristics of PV modules

    Science.gov (United States)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  17. The Current-voltage Characteristics Simulation of the Betavoltaic Power Supply

    Directory of Open Access Journals (Sweden)

    S.U. Urchuk

    2015-12-01

    Full Text Available In order to optimize betavoltaic power supply it was calculated the current-voltage characteristics when changing the depth of the upper p-layer and at changing doping levels structure areas. It is shown that an increase in the depth reduces the short-circuit current and thus reduces the open circuit voltage. It has been observed that the concentration of the lightly doped region more significantly influence on the current-voltage characteristics than the depth of the p-n-junction. The concentration of the n-region, equal to 1014 cm – 3, can be considered as during betavoltaic power supply design. It is shown that, by increasing the power supply activity the conversion efficiency of the structure increases, too.

  18. Master Equation Approach to Current-Voltage Characteristics of Solar Cells

    Science.gov (United States)

    Oh, Sangchul; Zhang, Yiteng; Alharbi, Fahhad; Kais, Sabre

    2015-03-01

    The current-voltage characteristics of solar cells is obtained using quantum master equations for electrons, holes, and excitons, in which generation, recombination, and transport processes are taken into account. As a first example, we simulate a photocell with a molecular aggregate donor to investigate whether a delocalized quantum state could enhance the efficiency. As a second example, we calculate the current-voltage characteristics of conventional p-n junction solar cells and perovskite solar cells using the master equation. The connection between the drift-diffusion model and the master equation method is established. The short-circuit current and the open-circuit voltage are calculated numerically as a function of the intensity of the sunlight and material properties such as energy gaps, diffusion constants, etc.

  19. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  20. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  1. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  2. Current-voltage characteristics of Pb and Sn granular superconducting nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    Current-voltage characteristics of Pb and Sn granular superconducting nanowires were investigated. The nanowires were prepared by electrodeposition in nanoporous membranes. It was observed that phase-slip-centers were formed far below the critical temperature when dc current was introduced inside...

  3. ELASTIC-SCATTERING AND THE CURRENT-VOLTAGE CHARACTERISTICS OF SUPERCONDUCTING NB-INAS-NB JUNCTIONS

    NARCIS (Netherlands)

    VANDERPOST, N; NITTA, J; TAKAYANAGI, H

    1993-01-01

    Superconducting niobium contacts are attached to a 0.8-mum-long epitaxially grown InAs channel sandwiched between insulating InGaAs layers. The current-voltage characteristics show nonlinearities at submultiples of the superconducting energy gap indicative of multiple-Andreev reflections. We demonst

  4. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  5. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is got.

  6. Basic Characteristics of New Developed Higher-Voltage Direct-Current Power-Feeding Prototype System

    Science.gov (United States)

    Babasaki, Tadatoshi; Tanaka, Toshimitsu; Tanaka, Toru; Nozaki, Yousuke; Aoki, Tadahito; Kurokawa, Fujio

    High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48V DC power supply system. The output of the rectifier equipment is 100kW, and the output voltage is 401.4V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.

  7. Effect of spontaneous polarization change on current-voltage characteristics of thin ferroelectric films

    Science.gov (United States)

    Podgorny, Yu. V.; Lavrov, P. P.; Vorotilov, K. A.; Sigov, A. S.

    2015-03-01

    The role of a change in the spontaneous polarization charge in the formation of negative differential conductance regions of the current-voltage characteristics of thin ferroelectric films has been determined. It has been shown that the polarization recovery current, which appears due to partial depolarization of a preliminarily polarized film, prevails over the intrinsic leakage current of the ferroelectric film in the coercive field region and corresponds to the Weibull distribution. The influence of polarization recovery current decreases with decreasing voltage sweep rate.

  8. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2015-10-01

    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  9. Resistance switching memory operation using the bistability in current-voltage characteristics of GaN/AlN resonant tunneling diodes

    Science.gov (United States)

    Nagase, Masanori; Takahashi, Tokio; Shimizu, Mitsuaki

    2016-10-01

    Resistance switching memory operations using the bistability in the current-voltage (I-V) characteristics of GaN/AlN resonant tunneling diodes (RTDs) were investigated to realize an ultrafast nonvolatile memory operating at a picosecond time scale. Resistance switching memory operations based on electron accumulation due to intersubband transitions and electron release due to tunneling current were demonstrated with high reproducibility at room temperature when the leakage of electrons accumulating in the quantum well from the deep level in the AlN barrier was suppressed. A nonvolatile memory for the processor core in a normally off computing system is expected to be realized using the bistability in the I-V characteristics of GaN/AlN RTDs.

  10. Current-voltage characteristics of light-emitting diodes under optical and electrical excitation

    Institute of Scientific and Technical Information of China (English)

    Wen Jing; Wen Yumei; Li Ping; Li Lian

    2011-01-01

    The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.

  11. Luminescence, radiative recombination, and current voltage characteristics in sensitized TiO2 solar cells

    Science.gov (United States)

    Smestad, Greg P.

    1992-12-01

    A connection is made between the luminescence or radiative recombination in an absorber material and the current voltage characteristics of a quantum converter of light. A relationship between luminescence and voltage is derived, using detailed balance and the chemical potential of the excitation, which is similar to that obtained using the techniques of Shockley and Queisser or R. T. Ross. This model relates the absorptivity and photoluminescence efficiency of the light absorber to the I V curve. In this way both thermodynamic properties, or voltage, and the kinetics, or charge transfer and current, can be combined in order to optimize materials and configurations. The model is applied to dye sensitized Ti02 solar cells, and compared with preliminary experimental data for Ru based charge transfer dyes and inorganic compounds. The luminescence model is found to be applicable to dye sensitized converters, as well as to standard silicon solar cells, light detectors, and LEDs.

  12. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    Science.gov (United States)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  13. NONLINEAR CURRENT-VOLTAGE CHARACTERISTICS OF CONDUCTIVE POLYETHYLENE COMPOSITES WITH CARBON BLACK FILLED PET MICROFIBRILS

    Institute of Scientific and Technical Information of China (English)

    Qian-ying Chen; Jing Gao; Kun Dai; Huan Pang; Jia-zhuang Xu; Jian-hua Tang; Zhong-ming Li

    2013-01-01

    Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate)(PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field.The current-voltage (Ⅰ-Ⅴ) curves exhibited nonlinearity beyond a critical value of voltage.The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites.Macroscopic nonlinearity originated from the interracial interactions between CB/PET micro fibrils and additional conduction channels.Combined with the special conductive networks,an illustration was proposed to interpret the nonlinear Ⅰ-Ⅴ characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.

  14. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Science.gov (United States)

    Lebib, A.; Hannanchi, R.; Beji, L.; EL Jani, B.

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  15. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  16. Comment on "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires"

    Institute of Scientific and Technical Information of China (English)

    P. Ohlckers; P. Pipinys

    2009-01-01

    @@ In "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires", Long et al.[1] reported the currentvoltage ( Ⅰ - Ⅴ) characteristics of individual poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in the temperature range from 20 to 50K (Fig. 2(a)). The authors stated that at temperatures equal to 50 K and higher, the Ⅰ - Ⅴ curves were linear. With decreasing temperature the Ⅰ - Ⅴ curves gradually became nonlinear. The temperature behavior of Ⅰ - Ⅴ characteristics is not suitably explained.

  17. Effects of hydrogen bonding on current-voltage characteristics of molecular junctions

    Science.gov (United States)

    Kula, Mathias; Jiang, Jun; Lu, Wei; Luo, Yi

    2006-11-01

    We present a first-principles study of hydrogen bonding effect on current-voltage characteristics of molecular junctions. Three model charge-transfer molecules, 2'-amino-4,4'-di(ethynylphenyl)-1-benzenethiolate (DEPBT-D), 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate (DEPBT-A), and 2'-amino-4,4'-di(ethynylphenyl)-5'-nitro-1-benzenethiolate (DEPBT-DA), have been examined and compared with the corresponding hydrogen bonded complexes formed with different water molecules. Large differences in current-voltage characteristics are observed for DEPBT-D and DEPBT-A molecules with or without hydrogen bonded waters, while relatively small differences are found for DEPBT-DA. It is predicted that the presence of water clusters can drastically reduce the conductivities of the charge-transfer molecules. The underlying microscopic mechanism has been discussed.

  18. Influence of series resistance and cooling conditions on I-V characteristics of SiC merged PiN Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hapka, Aneta, E-mail: hapka@ie.tu.koszalin.pl [Department of Electronics and Computer Science, Koszalin University of Technology, J. J. Sniadeckich 2, Koszalin, Postal Code: 75-453 (Poland); Janke, Wlodzimierz; Krasniewski, Jaroslaw [Department of Electronics and Computer Science, Koszalin University of Technology, J. J. Sniadeckich 2, Koszalin, Postal Code: 75-453 (Poland)

    2012-09-01

    The paper presents the exemplary electro-thermal models of merged PiN Schottky diode - a diode with the parallel PiN junction, protecting the device against the uncontrolled voltage rise, causing so-called thermal runaway. In the presented models, the conductivity modulation effect in the PiN junction is taken into account. The influence of the PiN junction on the non-isothermal I-V characteristics of MPS diodes, for various cooling conditions, is discussed. It is shown, that the thermal runaway is possible, in spite of presence of protecting PiN junction.

  19. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  20. Analytical form of current-voltage characteristic of cylindrical and spherical ionization chambers

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The basic processes of ionization and recombination of gas-filled ionization chamber are presented in this article. A differential equation describing the distribution of current densities in the volume of the ionization chamber is obtained from the balance of the particles and charges densities. As a result of the differential equation solving an analytical form of the current-voltage characteristic of cylindrical and spherical ionization chambers is got.

  1. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Science.gov (United States)

    Ekdahl, Carl

    2016-06-01

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  2. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo, E-mail: swffrog@seu.edu.c [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2009-10-15

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO{sub 2} interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  3. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Institute of Scientific and Technical Information of China (English)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo

    2009-01-01

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO_2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  4. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    Science.gov (United States)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  5. Instabilities in the current-voltage characteristics of submicron BSCCO bridges

    Energy Technology Data Exchange (ETDEWEB)

    Zybtsev, S G [Institute of Radioengineering and Electronics RAS Moscow 125009 (Russian Federation); Pokrovskii, V Ya [Institute of Radioengineering and Electronics RAS Moscow 125009 (Russian Federation); Gorlova, I G [Institute of Radioengineering and Electronics RAS Moscow 125009 (Russian Federation); Latyshev, Yu I [Institute of Radioengineering and Electronics RAS Moscow 125009 (Russian Federation); Timofeev, V N [A.A. Baikov Institute of Metallurgy RAS Moscow (Russian Federation)

    2006-06-01

    The influence of magnetic field and microwave irradiation on dynamical phase separation in submicron Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} bridges has been studied. Strong effect on the shape and metastable character of the step-like I-V characteristics are found. Under a weak field H < 2 Oe and low level microwave irradiation the step-like structure of the I-V characteristics smears out and disappears completely. The average frequency of switching between metastable states grows by 5 orders under increase of magnetic field by only 1 Oe. This behavior is explained in terms of the model of dynamical vortex lines.

  6. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...

  7. A simple method of extracting the polarization charge density in the AlGaN/GaN heterostructure from current-voltage and capacitance-voltage characteristics

    Institute of Scientific and Technical Information of China (English)

    Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo

    2012-01-01

    An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated.The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current-voltage characteristics.With the measured capacitance-voltage curve and the flat-band voltage,the polarization charge density in the AlGaN/GaN heterostructure is investigated,and a simple formula for calculating the polarization charge density is obtained and analyzed.With the approach described in this paper,the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.

  8. Testing to Investigate Stress-LifetimeCharacteristics of High Voltage Printed Circuit Boards

    Science.gov (United States)

    El Korashy, Oliver; Franke, Andreas; Gollor, Matthias

    2014-08-01

    Printed circuit boards (PCBs) are typically used in all electronic equipment, including those conditioning or controlling high voltage (HV) for space satellite applications. With the use of new subsystems that require higher voltages (generally several hundred volts up to tens of kV), stress-lifetime issues are becoming more complex. In order to allow compact design and cost efficient production of HV modules, there is an increasing demand to improve the design of PCBs with encapsulation or conformal coating at higher voltages.Within a PCB there are a number of electrical field interfaces each of which can have individual stress- lifetime characteristics, and the influence of environmental aging should also be considered, which means a large number of sample types should be tested to gain experimental evidence to define the margin for each interface. This paper demonstrates a method to test multiple samples at a fixed DC voltage stress until the event of a breakdown, and presents test results from 6 single-sided encapsulated PCB samples.

  9. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  10. Low voltage lead titanate/Si one-transistor ferroelectric memory with good device characteristics

    Science.gov (United States)

    Sun, C. L.; Chen, S. Y.; Liao, C. C.; Chin, Albert

    2004-11-01

    We have developed one-transistor ferroelectric memory using lead titanate (PTO) as a gate dielectric directly formed on Si without any buffer layer. The PTO/Si metal-oxide-semiconductor field-effect transistor memory has shown a large threshold voltage shift of 1.6 V at only ±4V program/erase voltages. The corresponding good interface was achieved by lowering the anneal temperature to 450 °C. Besides the sharp capacitance change of 0.17μF/Vcm2, it was also evidenced by the high mobility of 169cm2/Vs close to high-κ HfO2. In addition, long retention >1000s and endurance >1011 stress cycles in the device suggested good memory characteristics.

  11. Temperature dependence of current–voltage characteristics of Au/-GaAs epitaxial Schottky diode

    Indian Academy of Sciences (India)

    R Singh; S K Arora; Renu Tyagi; S K Agarwal; D Kanjilal

    2000-12-01

    The influence of temperature on current–voltage (–) characteristics of Au/-GaAs Schottky diode formed on -GaAs epitaxial layer grown by metal organic chemical vapour deposition technique has been investigated. The dopant concentration in the epitaxial layer is 1 × 1016 cm−3 . The change in various parameters of the diode like Schottky barrier height (SBH), ideality factor and reverse breakdown voltage as a function of temperature in the range 80−300 K is presented. The variation of apparent Schottky barrier height and ideality factor with temperature has been explained considering lateral inhomogeneities in the Schottky barrier height in nanometer scale lengths at the metal–semiconductor interface.

  12. Power series fitting of current-voltage characteristics of Al doped ZnO thin film-Sb doped (Ba{sub 0.8}Sr{sub 0.2})TiO{sub 3} heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sirikulrat, N., E-mail: scphi003@chiangmai.ac.th

    2012-02-29

    The current-voltage (I-V) relationship of aluminum doped zinc oxide thin film-antimony doped barium strontium titanate single heterojunction diodes was investigated. The linear I-V characteristics are similar to those of the PN junction diodes. The linear conduction at a low forward bias voltage as predicted by the space charge limited current theory and the trap free square law at a higher forward voltage are observed. The overall current density-voltage (J-V) characteristics of the diodes are found to be well described by the Power Series Equation J= N-Ary-Summation {sub m}C{sub m}V{sup m} where C{sub m} is the leakage constant at particular power m with the best fit for the power m found to be at the fourth and fifth orders for the forward and reverse bias respectively. - Highlights: Black-Right-Pointing-Pointer The n-n isotype heterojunction diodes of ceramic oxide semiconductors were prepared. Black-Right-Pointing-Pointer The current density-voltage (J-V) curves were analyzed using the Power Series (PS). Black-Right-Pointing-Pointer The J-V characteristics were found to be well described with PS at low order. Black-Right-Pointing-Pointer The thermionic emission and diode leakage currents were comparatively discussed.

  13. Temperature dependence of current-and capacitance-voltage characteristics of an Au/4H-SiC Schottky diode

    Science.gov (United States)

    Gülnahar, Murat

    2014-12-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.

  14. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.

  15. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high- Tc superconductors

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.

  16. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-04-15

    Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  17. Current-voltage characteristics in macroporous silicon/SiOx/SnO2:F heterojunctions.

    Science.gov (United States)

    Garcés, Felipe A; Urteaga, Raul; Acquaroli, Leandro N; Koropecki, Roberto R; Arce, Roberto D

    2012-07-25

    We study the electrical characteristics of macroporous silicon/transparent conductor oxide junctions obtained by the deposition of fluorine doped-SnO2 onto macroporous silicon thin films using the spray pyrolysis technique. Macroporous silicon was prepared by the electrochemical anodization of a silicon wafer to produce pore sizes ranging between 0.9 to 1.2 μm in diameter. Scanning electronic microscopy was performed to confirm the pore filling and surface coverage. The transport of charge carriers through the interface was studied by measuring the current-voltage curves in the dark and under illumination. In the best configuration, we obtain a modest open-circuit voltage of about 70 mV and a short-circuit current of 3.5 mA/cm2 at an illumination of 110 mW/cm2. In order to analyze the effects of the illumination on the electrical properties of the junction, we proposed a model of two opposing diodes, each one associated with an independent current source. We obtain a good accordance between the experimental data and the model. The current-voltage curves in illuminated conditions are well fitted with the same parameters obtained in the dark where only the photocurrent intensities in the diodes are free parameters.

  18. Cryogenic temperature dependence of the voltage transfer characteristics of CMOS inverters

    Science.gov (United States)

    Deen, M. J.

    1988-08-01

    The voltage transfer characteristics of CMOS inverters have been studied in detail as a function of temperature between 77 and 300 K and supply voltages between 2 and 20 V. The logic levels, maximum gain, unity gain points, noise margins and other parameters, such as ( VH - VL), all showed a marked improvement as the temperature was lowered. In particular, for one inverter with a supply of 5 V, the maximum gain increased from 57 to 105, ( VIH - VIL) decreased from 0.50 to 0.28 V and ( VH - VL) increased from 4.46 to 4.75 V on decreasing the temperature from 300 to 77 K. For all the inverters, these and other parameters showed a smooth monotonic improvement as the temperature was lowered. These and the other results obtained can be qualitatively explained as due to an increase in the absolute values in the threshold voltages of the PMOS and NMOS transistors and to an increase in the carrier mobility as the temperature was lowered.

  19. Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  20. The influence of microwave irradiation power on current voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mans, M.; Scherbel, J.; Seidel, P.

    2007-02-01

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  1. Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  2. The influence of microwave irradiation power on current-voltage characteristics of intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mans, M [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Scherbel, J [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Seidel, P [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2007-02-15

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  3. Experimental manifestation of the breakpoint region in the current-voltage characteristics of intrinsic Josephson junctions

    OpenAIRE

    Irie, A.; Shukrinov, Yu M.; Oya, G.

    2008-01-01

    The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi$_2$Sr$_2$CaCu$_2$O$_y$ IJJs has been investigated. At 4.2 K, clear breakpoint region is observed on the branches in the IVCs. It is found that the hysteresis observed on the IVC is suppressed due to the coupling compared with that expected from the McCumber parameter. Measurement...

  4. Experimental manifestation of the breakpoint region in the current-voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Irie, A.; Shukrinov, Yu. M.; Oya, G.

    2008-10-01

    The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi2Sr2CaCu2Oy IJJs has been investigated. At 4.2K, clear breakpoint region is observed on the branches in the IVCs. It is found that due to the coupling between junctions, the hysteresis observed on the IVC is small compared to that expected from the McCumber parameter. Measurements agree well with the results predicted by the capacitively coupled Josephson junction model including the diffusion current.

  5. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zuhui [Lee-Kuan-Yew Postdoctoral Fellow, 2007-2010, Nanyang Technological University, Singapore 639798 (Singapore); Jie Binbin; Sah Chihtang, E-mail: bb_jie@msn.com [Department of Physics, Xiamen University, Xiamen 361005 (China)

    2010-12-15

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO{sub 2}/Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  6. Current-voltage characteristics of an individual helical CdS nanowire rope

    Institute of Scientific and Technical Information of China (English)

    Long Yun-Ze; Wang Wen-Long; Bai Feng-Lian; Chen Zhao-Jia; Jin Ai-Zi; Gu Chang-Zhi

    2008-01-01

    This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleacls are attached by focused-ion beam deposition. The current-voltage (Ⅰ - Ⅴ ) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the Ⅰ - Ⅴ curves and oscillation peaks in the differential conductance (dⅠ/dⅤ - Ⅴ) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.

  7. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... automatically through a proportional controller according to the voltage sag level and PV inherent characteristics (i.e., the voltage and power droop). Compared to prior-art LVRT schemes, the proposed method is cost-effective, as it is achieved by simply plugging the proportional controller into a maximum power...

  8. The electric characteristics simulation and structural parameters calculation of Si-based stabilitron with stabilizing voltage 6,5 V

    Directory of Open Access Journals (Sweden)

    Koritko N. N.

    2009-06-01

    Full Text Available The results of an optimization simulation of original manufacturing process and electric characteristics of stabilitrons with stabilizing voltage Ust=(6,5±0,5 V are presented. The flow of manufacturing process of simulated stabilitron includes the n+-type guard rings regions formation in the р-type substrate; the р–n-junction formation in the р-type substrate; intermediate oxide formation; metal deposition. The stabilizing voltage and differential resistance of the stabilitron voltage-current characteristic reverse branch values were received as the result of calculations at the normal, reduced and high temperature.

  9. Phase-field modeling of switchable diode-like current-voltage characteristics in ferroelectric BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shen, J. [Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-05-05

    A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.

  10. Current-voltage characteristics of individual conducting polymer nanotubes and nanowires

    Institute of Scientific and Technical Information of China (English)

    Long Yun-ze; Yin Zhi-Hua; Li Meng-Meng; Gu Chang-Zhi; Duvail Jean-Luc; Jin Ai-zi; Wan Mei-xiang

    2009-01-01

    We report the current-voltage (Ⅰ-Ⅴ) characteristics of individual polypyrrole nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent Ⅰ-Ⅴ curves. It is found that the Ⅰ-Ⅴ data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression)could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition,similar Ⅰ-Ⅴ characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.

  11. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  12. Inverse I-V Injection Characteristics of ZnO Nanoparticle-Based Diodes.

    Science.gov (United States)

    Mundt, Paul; Vogel, Stefan; Bonrad, Klaus; von Seggern, Heinz

    2016-08-10

    Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

  13. Surface Partial Discharge Characteristics of Oil-paper Insulation Under Combined AC-DC Voltage

    Institute of Scientific and Technical Information of China (English)

    SHA Yanchao; ZHOU Yuanxiang; NIE Dexin; WU Zhirong; DENG Jiangang; LU Licheng

    2013-01-01

    The valve side windings of converter transformers bear AC,DC,impulse,and reversal-polarity voltages during operation,which could result in serious insulation problems of the equipment.By performing experiments with surface discharge model of oil-paper insulation at 80 ℃ under combined AC-DC voltage for 200 h,we studied the spectrums and statistical parameters of partial discharges at different discharge stages.Furthermore,some fingerprint parameters were calculated in order to estimate the development situation of partial discharge,while the characteristic gases dissolved in the transformer oil were measured by gas chromatography.The surface discharges in the experiments were observed using a high speed camera,and a full discharge process could be marked off into four stages as follows.①The elementary stage.When a partial discharge occurs near electrodes,electrical charges are injected into the region near electrodes and causing bubble generation.②Due to their high resistivity and low dielectric constant,the bubbles would bare the major part of the voltage applied to samples.Therefore,discharge happens inside the small bubbles,and it emits a lot of light.③Micmmolecules of gas are produced in discharge,and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules.④The carrier charge moves forward to electrodes driven by the applied electric field,till they neutralize with the charge from electrodes,and hence discharge channels are formed subsequently.

  14. Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Guo Wei-Ling; Yan Wei-Wei; Zhu Yan-Xu; Liu Jian-Peng; Ding Yan; Cui De-Sheng; Wu Guo-Qing

    2012-01-01

    In order to investigate their electrical characteristics,high-voltage light-emitting-diodes (HV-LEDs) each containing four cells in series are fabricated.The electrical parameters including varying voltage and parasitic effect are studied.It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6,3.4,4.7,and 6.4.IF increases linearly with the number of cells increasing.Moreover,the performance of the HV-LED with failure cells is examined.The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell.The series resistance of the failure cell is 76.8 Ω,while that of the normal cell is 21.3 Ω.The scanning electron microscope (SEM) image indicates that different metal layers do not contact well.It is hard to deposit the metal layers in the deep isolation trenches.The fabrication process of HV-LEDs needs to be optimized.

  15. Development of a Compensation Scheme for a Measurement Voltage Transformer Using the Hysteresis Characteristics of a Core

    Directory of Open Access Journals (Sweden)

    Hyewon Lee

    2015-04-01

    Full Text Available This paper describes the design, evaluation, and implementation of a compensation scheme for a measurement voltage transformer (VT using the hysteresis characteristics of the core. The error of a VT is caused by the primary winding voltage and secondary winding voltage. The latter depends on the secondary current, whereas the former depends on the primary current, which is an aggregate of the exciting and secondary currents. The secondary current is obtained directly from the secondary voltage and is used to obtain the voltage across the secondary winding. For the primary current, the exciting current is decomposed into two components: core-loss and magnetizing currents. The magnetizing current is obtained by the flux-magnetizing current curve instead of the hysteresis loop to minimize the required loops for compensation. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. Finally, the estimated voltages across the primary and secondary windings are added to the measured secondary voltage for compensation. The scheme can significantly improve the accuracy of a VT. The results of the performance of compensator are shown in the experimental test. The accuracy of the measurement VT improves from 1.0C class to 0.1C class. The scheme can help to significantly reduce the required core cross section of a measurement VT in an electrical energy system.

  16. Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air

    Science.gov (United States)

    Li, Xuechen; Zhao, Huanhuan; Jia, Pengying

    2013-11-01

    Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the current-voltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.

  17. Temperature-dependent current-voltage characteristics of niobium SNIS Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Lacquaniti, V; Andreone, D; Cassiago, C; De Leo, N; Fretto, M; Sosso, A [National Institute of Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M, E-mail: v.lacquaniti@inrim.i [Donetsk Physical and Technical Institute, National Academy of Sciences of Ukraine, Str. Rosa Luxemburg. 72, 83114 Donetsk (Ukraine)

    2010-06-01

    Motivated by a search for a suitable technology to fabricate Josephson junctions with a tunable damping regime, we performed a systematic study of the temperature effect on the critical current in Nb/Al-AlO{sub x}-Nb heterostructures with a nanometer-thick Al interlayer. For Al layer thicknesses ranging from 40 to 110 nm, we have observed a transition from hysteretic (below 4.2 K) to non-hysteretic (above 4.2 K) current-voltage curves. Measured supercurrent-vs-temperature characteristics which significantly differ from those of traditional SIS and SNS devices are interpreted in terms of the superconducting proximity effect between Al and Nb films. Thermal stability and good reproducibility of our junctions are demonstrated.

  18. MOS Capacitance-Voltage Characteristics:V.Methods to Enhance the Trapping Capacitance

    Institute of Scientific and Technical Information of China (English)

    揭斌斌; 薩支唐

    2012-01-01

    Low-frequency and High-frequency Capacitance-Voltage (C-V) curves of Silicon Metal-Oxide-Semiconductor Capacitors,showing electron and hole trapping at shallow-level dopant and deep-level generationrecombination-trapping impurities,are presented to illustrate the enhancement of the giant trapping capacitances by physical means via device and circuit designs,in contrast to chemical means via impurity characteristics previously reported.Enhancement is realized by masking the electron or/and hole storage capacitances to make the trapping capacitances dominant at the terminals.Device and materials properties used in the computed CV curves are selected to illustrate experimental realizations for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.

  19. Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker

    Science.gov (United States)

    Lin, Xin; Wang, Feiming; Xu, Jianyuan; Xia, Yalong; Liu, Weidong

    2016-03-01

    According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic. supported by Science and Technology Project of State Grid Corporation of China (No. GY17201200063), National Natural Science Foundation of China (No. 51277123), Basic Research Project of Liaoning Key Laboratory of Education Department (LZ2015055)

  20. Behavioral characteristics of DSM-IV ADHD subtypes in a school-based population.

    Science.gov (United States)

    Gaub, M; Carlson, C L

    1997-04-01

    From an ethnically diverse sample of 2,744 school children, 221 attention deficit hyperactivity disorder (ADHD) [123 (4.5%) predominantly inattentive (IA), 47 (1.7%) predominantly hyperactive/impulsive (HI), and 51 (19%) combined type (C)] were identified using teacher ratings on a Diagnostic and Statistical Manual of Mental Disorders (4th ed.)(DSM-IV) symptom checklist. Subjects were compared to 221 controls on teacher ratings of behavioral, academic, and social functioning. The results revealed relatively independent areas of impairment for each diagnostic group. The IA children were impaired in all areas, but were rated as displaying more appropriate behavior and fewer externalizing problems than HI or C children. The HI group displayed externalizing and social problems, but was rated as no different than controls in learning or internalizing problems. The C group demonstrated severe and pervasive difficulties across domains. These findings support the validity of the DSM-IV ADHD subtypes; all ADHD groups demonstrated impairment relative to controls, but show different patterns of behavioral characteristics.

  1. The effect of gradually constricted channel on the I-V characteristics of graphene sheets

    Science.gov (United States)

    Zanella, Fernando; Nobrega, K. Z.; Dartora, C. A.

    2016-10-01

    Ideal graphene is a gapless semiconductor consisting of a single layer of carbon atoms regularly arranged in a honeycomb lattice having infinite spatial extent in the (x,y)-plane, in which electrons behave as Dirac massless fermions. Even neglecting interactions with the anchoring substrate, a graphene sheet in real world has finite extent, leading to distinctive features in the conductivity of a given sample. In this letter we study the effect of a gradual channel constriction in graphene nanoribbons on their I-V characteristics, using non-equilibrium Green's function formalism. The constriction width and the border cutting angle are the main parameters to be varied. We found that transmission through the channel is considerably affected by these parameters, presenting sharp peaks at specific energies, which can be attributed to a resonance due to the tuning of energy eigenvalues.

  2. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  3. Characteristics of plasma in culture medium generated by positive pulse voltage and effects of organic compounds on its characteristics

    Science.gov (United States)

    Sato, Y.; Sato, T.; Yoshino, D.

    2016-12-01

    We describe a positive pulse voltage method for generating plasma in culture medium with a composition similar to biological fluids. We also describe the plasma’s characteristics, liquid quality, and the effect of organic compounds in the culture medium on the plasma characteristics through comparisons to a solution containing inorganic salts at the same concentrations as in the culture medium. Light emission with Na and OH spectra was observed within a vapor bubble produced by Joule heating at the tip of the electrode. A downward thermal flow and shock wave were caused by the behavior of the vapor bubble. The culture medium pH gradually increased from 7.9 to 8.3 over the discharge time of 300 s. H2O2 was generated 1.1 mg l-1 in the culture medium after discharge for 300 s, and this value was 0.5 mg l-1 lower than the inorganic salts solution which does not contain organic compounds. This study provides important data that will help facilitate more widespread application of plasma medicine.

  4. Evaluation of E-J characteristics of YBCO coated-conductor by AC inductive method using third-harmonic voltage

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yosuke; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Sawa, H.; Inoue, M.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T

    2004-10-01

    The E-J characteristics were measured for a YBCO coated-conductor by using AC inductive method of third-harmonic voltage. The results are compared with the measurements obtained by the four probe method and DC relaxation method of magnetization. The results by three kinds of measurements meet approximately on a single curve and E-J curve in a wide range of electric field is obtained. Hence, the third-harmonic voltage method is useful for a continuous measurement of J{sub c} property of long coated tape. The obtained E-J characteristics are argued.

  5. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  6. Influence of semiconductor barrier tunneling on the current-voltage characteristics of tunnel metal-oxide-semiconductor diodes

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1983-01-01

    Current–voltage characteristics have been examined for Al–SiO2–pSi diodes with an interfacial oxide thickness of delta[approximately-equal-to]20 Å. The diodes were fabricated on and oriented substrates with an impurity concentration in the range of NA=1014–1016 cm−3. The results show that for low...... forward voltages, the diode current is increased with increased NA, but for higher forward voltages, the diode current is decreased as NA is increased. For the diodes examined in this work, the results presented lead to the conclusion that the diode current should be treated as a superposition...... of multistep tunneling recombination current and injected minority carrier diffusion current. This can explain the observed values of the diode quality factor n. The results also show that the voltage drop across the oxide Vox is increased with increased NA, with the result that the lowering of the minority...

  7. A method for the determination of the standard deviations of the solar cell I-V characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Veissid, N. (Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil)); Cruz, M.T.F. da (Universidade de Sao Paulo, SP (Brazil). Inst. de Fisica); Andrade, A.M. de (Universidade de Sao Paulo, SP (Brazil). Lab. de Microeletronica)

    1990-05-01

    A method for the determination of the standard deviations of the solar cell characteristic curve fitting parameters is presented for the first time. In this method, a Taylor series expansion of the parameters, around their best values, is made resulting in linear functions which permit the determination of the standard deviations with the least-squares method. The parameters, with the respective standard deviations, were determined from the experimental I-V characteristic curves obtained under illuminated and dark conditions. For the studied experimental I-V curves, the diode saturation currents, the diode factor and the shunt resistance showed smaller standard deviations in the dark condition, and the series resistance appeared to be more precise in the illuminated I-V characteristic. (orig.).

  8. Effect of temperature on the current (capacitance and conductance)–voltage characteristics of Ti/n-GaAs diode

    Energy Technology Data Exchange (ETDEWEB)

    Ejderha, K. [Department of Electricity and Energy, Vocational High School of Technical Sciences, Bingol University, 12000 Bingol (Turkey); Duman, S., E-mail: sduman@atauni.edu.tr; Urhan, F. [Department of Physics, Faculty of Sciences, Ataturk University, 25240 Erzurum (Turkey); Nuhoglu, C. [Department of Physics, Faculty of Sciences, Yildiz Technical University, 34220 Istanbul (Turkey); Turut, A. [Department of Engineering Physics, Faculty of Sciences, Istanbul Medeniyet University, 34700 Istanbul (Turkey)

    2014-12-21

    In this study, Ti/n-GaAs Schottky barrier diode has been fabricated by DC magnetron sputtering. The current–voltage, capacitance–voltage, and conductance–voltage characteristics of Ti/n–GaAs diode have been investigated in the temperature range of 80–320 K. The ideality factor and barrier height values have been calculated from the forward current–voltage characteristics. The variation of the diode parameters with the sample temperature has been attributed to the presence of the lateral inhomogeneities of the barrier height. The temperature dependent capacitance–voltage characteristics have been measured to calculate the carrier concentration, diffusion potential, barrier height, and temperature coefficient of the barrier height (α = −0.65 meV K{sup −1}). The fact that the temperature coefficient of the barrier height changes from metal to metal has been ascribed to the chemical nature of the contact metal or metal electronegativity.

  9. Characteristic Analysis of Partial Discharges and Dissolved Gases Generated Cavityin Oil-paper Insulation Under AC-DC Combined Voltages

    Institute of Scientific and Technical Information of China (English)

    HE Zhiman; LI Jian; BAO Lianwei; JIANG Tianyan; WANG Youyuan

    2012-01-01

    Oil-paper insulation is used within most of high voltage direct current(HVDC) converter transformers.Partial discharge(PD) in oil-paper insulation is a major reason for the development of internal faults in HVDC converter transformer,while PDs in oil-paper insulation mainly occur in terms of gas cavity discharges.There are few study results on the development characteristics of partial discharges in oil-paper insulation and dissolved gases in oils of HVDC converter transformers.Based on a gas cavity discharge model of oil-paper insulation,the present study investigates the development characteristics of partial discharges under AC-DC combined voltages and emphatically examines the variation characteristics of dissolved gases in the discharge development process.Experiment and analysis results show that the characteristics of partial discharges and dissolved gases in oils under AC-DC combined voltages are appreciably different with those under AC voltage.These results provide theoretical support for further research on partial discharges and on dissolved gases of other internal insulating defects and are helpful for the fault diagnosis of HVDC converter transformers.

  10. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current-voltage characteristics

    Science.gov (United States)

    Chauhan, A. K.; Aswal, D. K.; Koiry, S. P.; Gupta, S. K.; Yakhmi, J. V.; Sürgers, C.; Guerin, D.; Lenfant, S.; Vuillaume, D.

    2008-03-01

    We report the deposition of 3-aminopropyltrimethoxysilane (APTMS) multilayers on SiOx/Si(p++) substrates by a layer-by-layer self-assembly process. The multilayers were grafted in a glove box having nitrogen ambient with both humidity and oxygen contents water contact angle, ellipsometry, X-rayphotoelectron spectroscopy and atomic force microscope measurements revealed that self-assembling of the multilayers takes place in two distinct stages: (i) the first APTMS monolayer chemisorbs on a hydroxylated oxide surface by a silanization process and, (ii) the surface amino group of the first monolayer chemisorbs the hydrolyzed silane group of other APTMS molecules present in the solution, leading to the formation of a bilayer. The second stage is a self-replicating process that results in the layer-by-layer self-assembly of the multilayers with trapped NH3 + ions. The current-voltage characteristics of the multilayers exhibit a hysteresis effect along with a negative differential resistance, suggesting their potential application in the molecular memory devices. A possible mechanism for the observed hysteresis effect based on filling and de-filling of the NH3 + acting as traps is presented.

  11. First-Principles Electronic Structure Studies of the Current-Voltage Characteristics of Molecular Nanostructures

    Science.gov (United States)

    Pati, Ranjit; Karna, Shashi P.

    2001-03-01

    Recent advancements in the experimental measurement of conductance across a single molecule(M. A. Reed et al, Science, 278) , 252 (1997). have generated great deal of interest in the feasibility of molecular electronic devices. A successful realization of molecule based electronic devices rests on a detailed understanding of the physical principles underlying controlled transport of electron/hole across molecular units. In order to develop such a fundamental understanding, we have investigated current-voltage characteristics of metal atom (Ag, Au) substituted 1,4-dithiobenzene within Green's function approach according to Datta and coworkers( W. Tian et al, J. Chem. Phys., 109), 2874 (1998).. Ab initio Hamiltonian matrix elements are used to construct the Green's function. The calculated conductance spectrum for the molecule with S bonded to Au atoms qualitatively agrees with the experiment^1. However, large quantitative difference between the calculated and measured conductance is noted. The Au and Ag bonded 1,4-dithiobenzene molecules exhibit marked difference in their resistance and conductance spectra. The conductance of the Ag-bonded molecule is calculated to be about 1.5 times larger than that bonded with Au.

  12. Nonlinear current-voltage characteristics of sintered tungsten-vanadium oxide

    Institute of Scientific and Technical Information of China (English)

    Liu Zu-Li; Yang Lin-Feng; Wang Yu; Yao Kai-Lun; Wang Chuan-Cong

    2004-01-01

    We have studied the densification behaviour, microstructure and electrical properties of WO3 ceramics with V2O5as the additive ranging from 0.5 to 15mo1%. Scanning electron microscopic photos indicated that the grain size of WO3-V2O5 specimens is smaller than that of pure WO3. The addition of V2O5 to WO3 showed a tendency to enhance the densification rate and to restrict the grain growth. Electrical properties of all specimens were measured for different electrodes at different temperatures. The formation of the grain boundary barrier layer was confirmed by the non-ohmic I-V behaviour. The nonlinear coefficient was obtained at the current density J=0.01, 0.1 and 1mA-cm2 for a series of WO3-V2O5 samples. The V0.Smol% specimen showed an abnormal phenomenon that the nonlinear characteristics appeared at 350℃ and disappeared at lower and higher temperatures. This implies that it could be applied as a hightemperature varistor. The double Schottky barrier model was adopted to explain the phenomena for the WO3-V2O5varistors.

  13. Annealing effect on I-V characteristic of n-ZnO-p-InSe heterojunction

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2015-12-01

    Full Text Available The article is devoted to studying of influence of vacuum low-temperature annealing on the electrical and photoelectric characteristics of n-ZnO-p-InSe heterostructure. Indium monoselenide (InSe is a semiconductor of the A3B6 group of layered compounds. The basic unit consists of two planes of metal atoms sandwiched between two planes of chalcogen atoms (Se-In-In-Se. The absence of dangling bonds on InSe cleaved surface makes it possible to use this semiconductor as a substrate for fabrication of heterostructures based on semiconductor materials with different symmetries and lattice spacings. Zinc oxide (ZnO is the most suitable material for window materials and solar cells buffer layers application due to its marvelous transparency in the range of visible region. InSe single crystals were grown by the Bridgman technique from a nonstoichiometric melt and characterized by a pronounced layered structure along the whole length of a sample. ZnO thin oxide film was formed on freshly cleaved van der Waals surface of InSe layered crystal. n-ZnO-p-InSe heterostructure was prepared by the method of high-frequency magnetron sputtering. Sensitivity spectral areas were identified by MDR-3 monochromator with a resolution of 2.6 nm/mm. The current-voltage characteristics of the n-ZnO-p-InSe heterostructures showed a clearly pronounced diode character. In the forward bias of the initial samples, the diode factor had the value 3.7 at room temperature. It is shown that vacuum low-temperature annealing reduces shunt currents of the heterojunction, which is reflected in the decrease in the values of n from 3.7 to 2.7.

  14. A Study on the step response characteristics in shielded resistor divider for full lightning impulse voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ik Soo; Lee, Hyeong Ho [Korea Electrotehnology Research Institute, Changwon (Korea, Republic of); Cho, Jung Soo; Park, Jung Hoo [Pusan National University, Pusan (Korea, Republic of)

    1996-02-01

    This paper presents the development technology of standard shielded resistor divider for full lightning impulse voltage. The ability of large-capacity power apparatus to withstand lighting stroke is usually evaluated by means of full lightning impulse voltage. Lightning impulse voltage test has been essential to evaluate the insulation performance of electrical power apparatus. Recently international standard (IEC 60) on high voltage measurement techniques is being revised and requests a formal traceability of high voltage measurements. Therefore, general interest for this area has grown considerably during last years, and several international intercomparisons have already completed worldwide, i.e. Europe, Japan, America etc., In this viewpoint, we have also investigated the step response of the standard shielded resistor divider, which satisfies the IEC recommendation. (author). 7 refs., 14 figs., 2 tabs.

  15. Statistically Modeling I-V Characteristics of CNT-FET with LASSO

    Science.gov (United States)

    Ma, Dongsheng; Ye, Zuochang; Wang, Yan

    2017-08-01

    With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.

  16. Fault Characteristics and Control Strategies of Multiterminal High Voltage Direct Current Transmission Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2015-01-01

    Full Text Available The modular multilevel converter (MMC is an emerging voltage source converter topology suitable for multiterminal high voltage direct current transmission based on modular multilevel converter (MMC-MTDC. This paper presents fault characteristics of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by establishing a three-terminal MMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.

  17. Characteristics of titanium dioxide nanostructures synthesized via electrochemical anodization at different applied voltages

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. L.; Yam, F. K.; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-05-15

    This paper presents the study of the growth of nanostructure titanium dioxide (TiO{sub 2}) via electrochemical anodization method. Both constant and alternating anodization voltage would be applied in this study. The effects of applied voltage on the morphological and structural properties were studied. Images of field emission scanning electron microscope (FE-SEM) revealed that morphology of nanostructure could be manipulated by changing the type and amount of applied voltage. Besides that, X-ray diffraction (XRD) results indicated that crystalline structures (anatase and rutile) could be obtained after being annealed at 700°C for 60 minutes. By analysing the data in XRD measurements, crystallite size of the TiO{sub 2} could be calculated by using the Scherrer method. Besides that, the relationship between mean crystallites sizes and anodization voltage would also be further studied in this paper.

  18. Kinetics deformation of current-voltage characteristics of the varistor oxide structures due to overcharging of the localized states

    Directory of Open Access Journals (Sweden)

    Tonkoshkur A. S.

    2014-12-01

    Full Text Available Prolonged exposure of zinc oxide varistors to the electrical load leads to current-voltage characteristics (CVC deformation, which is associated with a change in the height and width of the intergranular barriers, which are main structural element of the varistors. Polarization phenomena in zinc oxide ceramics are studied in a number of works, but those are mainly limited to the study of the physics of the CVC deformation process and to determining the parameters of localized electronic states involved in this process. This paper presents the results on the simulation of the deformation of pulse CVC of a separate intergranular potential barrier at transient polarization/depolarization, associated with recharging of surface electronic states (SES, which cause this barrier. It is found that at high density of SES their degree of electron filling is small and the effect of DC voltage leads to a shift of pulse current-voltage characteristics into the region of small currents. Conversely, the low density SES are almost completely filled with electrons, and after crystallite polarization CVC is shifted to high currents. Experimental studies have confirmed the possibility of applying the discovered laws to ceramic varistor structures. The proposed model allows interpreting the «anomalous» effects (such as increase in the classification voltage and reduction of active losses power observed during the varistors accelerated aging test.

  19. The interface states and series resistance effects on the forward and reverse bias I-V, C-V and G/{omega}-V characteristics of Al-TiW-Pd{sub 2}Si/n-Si Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Uslu, H.; Altindal, S.; Aydemir, U. [Department of Physics, Gazi University, 06500 Ankara (Turkey); Doekme, I., E-mail: ilbilgedokme@gazi.edu.t [Science Education Department, Gazi Education Faculty, Gazi University, 06500 Ankara (Turkey); Afandiyeva, I.M. [Baku State University, Baku (Azerbaijan)

    2010-07-30

    Illumination intensity effects on the electrical characteristics of Al-TiW-Pd{sub 2}Si/n-Si Schottky structures have been investigated in this study for the first time. The electrical parameters such as ideality factor (n), zero-bias-barrier height ({Phi}{sub B0}), series resistance (R{sub s}), depletion layer width (W{sub D}) and dopping concentration (N{sub D}) of Al-TiW-Pd{sub 2}Si/n-Si Schottky barrier diodes (SBDs) have been investigated by using the forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) measurements in dark and under illumination conditions at room temperature. The values of C and G/{omega} increase with increasing illumination intensity due to the illumination induced electron-hole pairs in the depletion region. The density of interface states (N{sub ss}) distribution profiles as a function of (E{sub c} - E{sub ss}) was extracted from the forward I-V measurements by taking into account the bias dependence of the effective barrier heights ({Phi}{sub e}) for device in dark and under various illumination intensities. The high values of N{sub ss} were responsible for the nonideal behavior of I-V, C-V and G/{omega} characteristics. The values of R{sub s} obtained from Cheung and Nicollian methods decrease with increasing illumination intensity. The high values of n and R{sub s} have been attributed to the particular distribution of N{sub ss}, surface preparation, inhomogeneity of interfacial layer and barrier height at metal/semiconductor (M/S) interface. As a result, the characteristics of SBD are affected not only in N{sub ss} but also in R{sub s}, and these two parameters strongly influence the electrical parameters.

  20. Studies on temperature dependence of current-voltage characteristics of glancing angle deposited indium oxide nanowire on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Aniruddha, E-mail: aniruddhamo@gmail.com; Das, Amit Kumar [Department of Physics, National Institute of technology Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, India-713209 (India); Dey, Anubhab [Indian Institute of Science Education and Research, Thiruvananthapuram, Computer Science Building, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Choudhuri, Bijit [Department of Electronics & Communication Engineering, National Institute of Technology Agartala, Jirania, Tripura, India - 799046 (India)

    2016-05-06

    The 1D perpendicular In{sub 2-x}O{sub 3-y} nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The current - voltage characteristics for the In{sub 2-x}O{sub 3-y}nanocolumnar array based were measured through a gold Schottky contact at different temperatures. The temperature dependent ideality factor was calculated from the observed current – voltage characteristics. The ideality factor was found to vary from 4.19 to 2.75 with a variation in temperature from 313 K to 473 K.

  1. The effects of powder processing parameters on the microstructure and energy absorption characteristics of low voltage ZnO varistors

    OpenAIRE

    McArdle, Damian Michael

    1995-01-01

    The effect of comminution techniques used during the powder preparation stage of zinc oxide varistor powder was studied. The continual requirement for downsizing in electronic components combined with improved performance, demand greater understanding of the parameters influencing the required characteristics. Improvements in energy absorption capability of low voltage zinc oxide varistors are highly desirable from both a commercial and end product performance perspective. Enhanced en...

  2. Double injection, resonant-tunneling recombination, and current-voltage characteristics in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Maltsev, P. P. [Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Leiman, V. G. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Ryabova, N. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States)

    2014-01-14

    We evaluate the effect of the recombination associated with interlayer transitions in ungated and gated double-graphene-layer (GL) structures on the injection of electrons and holes. Using the proposed model, we derive analytical expressions for the spatial distributions of the electron and hole Fermi energies and the energy gap between the Dirac points in GLs as well as their dependences on the bias and gate voltages. The current-voltage characteristics are calculated as well. The model is based on hydrodynamic equations for the electron and hole transports in GLs under the self-consistent electric field. It is shown that in undoped double-GL structures with weak scattering of electrons and holes on disorder, the Fermi energies and the energy gap are virtually constant across the main portions of GLs, although their values strongly depend on the voltages and recombination parameters. In contrast, the electron and hole scattering on disorder lead to substantial nonuniformities. The resonant inter-GL tunneling enables N-shaped current-voltage characteristics provided that GLs are sufficiently short. The width of the current maxima is much larger than the broadening of the tunneling resonance. In the double-GL structures with relatively long GLs, the N-shaped characteristics transform into the Z-shaped characteristics. The obtained results are in line with the experimental observations [Britnell et al., Nat. Commun. 4, 1794–1799 (2013)] and might be useful for design and optimization of different devices based on double-GL structures, including field-effect transistors and terahertz lasers.

  3. Effect of coupling on scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high- superconductors

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2005-01-01

    We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...

  4. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices

    OpenAIRE

    Chen, Chong; Wu, Fan; Geng, Hongwei; Shen, Wei; Wang, Mingtai

    2011-01-01

    The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. B...

  5. Theoretical aspects and methods of parameters identification of the electric traction system devices. method of cyclic current-voltage characteristics

    Directory of Open Access Journals (Sweden)

    T.M.Mishchenko

    2013-02-01

    Full Text Available Purpose. To define the characteristics of numerical calculations of mathematical model with one or more cyclic current voltage characteristics (CVC. This is an urgent problem, since any electric traction system device and electrified track in general, like non-linear passive or active two-terminal network in the present operating mode is described by current-voltage characteristic (CVC, which is based on the given input voltage and input current. Me-thodology. The electromagnetic process calculation in the power circuits of traction electric energy supply is the probabilistic task with solving nonlinear stochastic differential equations requiring for the development of special methods. Given the calculation difficulty, it is reasonable to perform them either by real CVC graph bypass or initially by applying its equivalent replacement with, for example, an ellipse. Findings. Numerical calculations of the mathematical model with one or more cyclic CVC can be performed by “real” CVC bypass or by "idealization" i. e. approximate replacement of real cyclic CVC. Originality. This paper presents the dynamic CVC of the DS3 and 2ES5K electric locomotives at different currents of electric locomotives. Practical value. Cyclic CVC normally and definitely can be applied in the system of electromagnetic state equations while transient state calculating in the traction system. Therefore while calculating the experimentally obtained CVC for the most “difficult and complex” (or/and the “easiest” mode is applied.

  6. The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation

    Science.gov (United States)

    Xie, Ansheng; Li, Shengtao; Zheng, Xiaoquan; Chen, George

    2009-06-01

    The statistical initiation and propagation characteristics of electrical trees in cross-linked polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from China). It was found that the characteristics of electrical trees in the inner region of 66 kV cable insulation differed considerably from those in the outer region under the same test conditions; however, no significant differences appeared in the 110 kV rating cable and above. The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable is much shorter than that in higher voltage rating cables; in addition the growth rate of electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables. By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it was revealed that besides the extrusion process, the molecular weight of base polymer material and its distribution are the prime factors deciding the crystallization state. The crystallization state and the impurity content are responsible for the resistance to electrical trees. Furthermore, it was proposed that big spherulites will cooperate with high impurity content in enhancing the initiation and growth processes of electrical trees via the 'synergetic effect'. Finally, dense and small spherulites, high crystallinity, high purity level of base polymer material and super-clean production processes are desirable for higher voltage rating cables.

  7. The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie Ansheng; Li Shengtao; Zheng Xiaoquan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, George, E-mail: sli@mail.xjtu.edu.c, E-mail: xieansheng@gmail.co, E-mail: xqzheng@mail.xjtu.edu.c, E-mail: gc@ecs.soton.ac.u [School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2009-06-21

    The statistical initiation and propagation characteristics of electrical trees in cross-linked polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from China). It was found that the characteristics of electrical trees in the inner region of 66 kV cable insulation differed considerably from those in the outer region under the same test conditions; however, no significant differences appeared in the 110 kV rating cable and above. The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable is much shorter than that in higher voltage rating cables; in addition the growth rate of electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables. By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it was revealed that besides the extrusion process, the molecular weight of base polymer material and its distribution are the prime factors deciding the crystallization state. The crystallization state and the impurity content are responsible for the resistance to electrical trees. Furthermore, it was proposed that big spherulites will cooperate with high impurity content in enhancing the initiation and growth processes of electrical trees via the 'synergetic effect'. Finally, dense and small spherulites, high crystallinity, high purity level of base polymer material and super-clean production processes are desirable for higher voltage rating cables.

  8. Effects of Unintended Dopants on I-V Characteristics of the Double-Gate MOSFETs,a Simulation Study

    Institute of Scientific and Technical Information of China (English)

    李佩成; 梅光辉; 胡光喜; 王伶俐; 刘冉; 汤庭鳌

    2012-01-01

    In this paper, we study the effects of an unintended dopant in the channel on the current-voltage char-acteristics of a Double-Gate (DG) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). Non-Equilibrium Green's Function (NEGF) approach is used. A quantum transport model to calculate the drain current is presented and subthreshold swing and drain induced barrier lowering (DIBL) effect are studied.

  9. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices

    Science.gov (United States)

    Barker, J. A.; Ramsdale, C. M.; Greenham, N. C.

    2003-02-01

    We have developed a numerical model to predict the current-voltage curves of bilayer conjugated polymer photovoltaic devices. The model accounts for charge photogeneration, injection, drift, diffusion, and recombination, and includes the effect of space charge on the electric field within the device. Charge separation at the polymer-polymer interface leads to the formation of bound polaron pairs which may either recombine monomolecularly or be dissociated into free charges, and we develop expressions for the field dependence of the dissociation rate. We find that the short-circuit quantum efficiency is determined by the competition between polaron pair dissociation and recombination. The model shows a logarithmic dependence of the open-circuit voltage on the incident intensity, as seen experimentally. This additional intensity-dependent voltage arises from the field required to produce a drift current that balances the current due to diffusion of carriers away from the interface.

  10. Impact of exchange-correlation effects on the IV characteristics of a molecular junction

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer

    2008-01-01

    The role of exchange-correlation effects in nonequilibrium quantum transport through molecular junctions is assessed by analyzing the IV curve of a generic two-level model using self-consistent many-body perturbation theory (second Born and GW approximations) on the Keldysh contour...

  11. Analysis of Voltage Transfer Characteristics of Nano-scale SOI CMOS Inverter with Variable Channel Length and Doping Concentration

    Directory of Open Access Journals (Sweden)

    A. Daniyel Raj

    2015-03-01

    Full Text Available During many decades, continuous device performance improvement has been made possible only through device scaling. But presently, due to aggressive scaling at the sub-micron or nanometer region, the conventional planner silicon technology is suffering from the fundamental physical limits. Such imposed limits on further downscaling of silicon planner technology have lead to alternative device technology like Silicon-On-Insulator (SOI technology. Due-to some of its inherent advantages, the Silicon-On-Insulator (SOI technology has reduced the Short-channel-effects (SCEs and thus increased transistor scalability. Till now, intense research interests have been paid in practical fabrication and theoretical modeling of SOI MOSFETs but a little attention has been paid to understand the circuit level performance improvement with nano-scale SOI MOSFETs. The circuit level performance analysis of SOI MOSFET is highly essential to understand the impact of SOI technology on next level VLSI circuit and chip design and for doing so device compact models are high on demand. In such scenario, under present research, a physics based compact device model of SOI MOSFET has been developed. At the first phase of the compact model development, a physics based threshold voltage model has been developed by solving 2-D Poisson’s equation at the channel region and at the second phase, a current-voltage model has been developed with drift-diffusion analysis. Different SCEs, valid at nano-scale, are effectively incorporated in threshold voltage and Current-Voltage model. At the third phase, using the compact model, the Voltage Transfer Characteristics (VTC for a nano-scale SOI CMOS inverter has been derived with graphical analysis. The impacts of different device parameters e.g.; channel length and channel doping concentration on VTC has been investigated through simulation and the results have been analyzed.

  12. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.

    Science.gov (United States)

    Ito, Akira; Yamamoto, Masahiro; Ikeda, Kazushi; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2015-05-01

    Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.

  13. Effect of illumination intensity and temperature on the I-V characteristics of n-C/p-Si heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Babita; Shishodia, P.K.; Kapoor, A.; Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, 110021 New Delhi (India); Soga, Tetsuo; Jimbo, Takashi [Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, 466-8555 Nagoya (Japan); Umeno, Masayoshi [Research Center for Microstructure Devices, Nagoya Institute of Technology, 466-8555 Nagoya (Japan)

    2002-07-01

    Krishna et al. (Sol. Energy Mater. Sol. Cells 65 (2001) 163) have recently developed an heterojunction n-C/p-Si in order to achieve low cost and high-efficiency carbon solar cell. It has been shown that for this structure, the maximum quantum efficiency (25%) appears at wavelength {lambda} (600nm). In this paper, the dependence of I-V characteristics of this heterojunction solar cell on illumination intensity and temperature has been systematically investigated. An estimation of the stability of the solar cell with temperature has been made in terms of the temperature coefficient of I{sub sc} and V{sub oc}. The intensity variation study has been used to estimate the series resistance R{sub s} of the solar cell. The effect of illumination intensity on I-V of n-C/p-Si heterojunction is more complex because the carrier lifetime and the carrier mobility of amorphous carbon are small and also because drift of carriers by built-in electric field plays an important role in these cells. Therefore, the conventional analytical expression for I-V characteristic is not applicable to such solar cells. These structures will not obey the principle of superposition of illuminated and dark current. The experimental results have been analysed by developing empirical relation for I-V.The temperature sensitivity parameters {alpha}, the change in I{sub sc} and {beta}, the change in V{sub oc} per degree centigrade have been computed and are found to be 0.087mA/C and 1mV/C, respectively. This suggests that the heterojunction n-C/p-Si has good temperature tolerance. The value of series resistance has been estimated from the family of I-V curves at various intensities. The R{sub s} is found to be {approx}12{omega}, which is on the higher side from the point of view of photovoltaic application.

  14. Field emission current-voltage curves as a diagnostic for scanning tunneling microscope tips

    Science.gov (United States)

    Meyer, J. A.; Stranick, S. J.; Wang, J. B.; Weiss, P. S.

    1991-12-01

    The current-voltage (I-V) characteristics of a low temperature ultrahigh vacuum scanning tunneling microscope (STM) tip positioned greater than 100 A from a planar surface have been recorded. We find curvature in the Fowler-Nordheim plots (log 10 I/V(sup 2) vs. I/V) due to the tip-plane geometry as has been predicted theoretically. Additionally, oscillations and sharp breaks in these I-V curves are observed over a wide voltage range, 50-1000 V. These I-V curves are used to characterize the STM tips prior to tunneling.

  15. A Current-Mode Buck DC-DC Converter with Frequency Characteristics Independent of Input and Output Voltages Using a Quadratic Compensation Slope

    Science.gov (United States)

    Sai, Toru; Sugimoto, Yasuhiro

    By using a quadratic compensation slope, a CMOS current-mode buck DC-DC converter with constant frequency characteristics over wide input and output voltage ranges has been developed. The use of a quadratic slope instead of a conventional linear slope makes both the damping factor in the transfer function and the frequency bandwidth of the current feedback loop independent of the converter's output voltage settings. When the coefficient of the quadratic slope is chosen to be dependent on the input voltage settings, the damping factor in the transfer function and the frequency bandwidth of the current feedback loop both become independent of the input voltage settings. Thus, both the input and output voltage dependences in the current feedback loop are eliminated, the frequency characteristics become constant, and the frequency bandwidth is maximized. To verify the effectiveness of a quadratic compensation slope with a coefficient that is dependent on the input voltage in a buck DC-DC converter, we fabricated a test chip using a 0.18µm high-voltage CMOS process. The evaluation results show that the frequency characteristics of both the total feedback loop and the current feedback loop are constant even when the input and output voltages are changed from 2.5V to 7V and from 0.5V to 5.6V, respectively, using a 3MHz clock.

  16. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  17. SEMICONDUCTOR DEVICES Multi-bias capacitance voltage characteristic of AlGaN/GaN HEMT

    Science.gov (United States)

    Yan, Pu; Liang, Wang; Tingting, Yuan; Sihua, Ouyang; Lei, Pang; Guoguo, Liu; Weijun, Luo; Xinyu, Liu

    2010-10-01

    The method of multi-bias capacitance voltage measurement is presented. The physical meaning of gate—source and gate—drain capacitances in AlGaN/GaN HEMT and the variations in them with different bias conditions are discussed. A capacitance model is proposed to reflect the behaviors of the gate—source and gate—drain capacitances, which shows a good agreement with the measured capacitances, and the power performance obtains good results compared with the measured data from the capacitance model.

  18. Elucidation of barrier homogeneity in ZnO/P3HT:PCBM junctions through temperature dependent I-V characteristics

    Science.gov (United States)

    Khare, Neeraj; Zubair Ansari, Mohd; Hoye, Robert L. Z.; Iza, Diana C.; MacManus-Driscoll, Judith L.

    2016-07-01

    The current-voltage (I-V) characteristics of ZnO/P3HT:PCBM junctions using as-deposited ZnO and 300 °C-annealed ZnO (prior to device fabrication) were probed as a function of temperature. The ZnO films were synthesized using two scalable, low temperature methods: Atmospheric pressure spatial atomic layer deposition (AP-SALD) and electrodeposition (ED). In both cases the zero bias Schottky barrier height ({Φ\\text{B}} ) decreases and ideality factor (n) increases with a reduction in the operating temperature of the junctions. This was attributed to the presence of barrier inhomogeneities at the interface from surface states/defects in the ZnO causing a localized variation of work function. For the as-deposited ZnO junctions, two mean barrier heights, arising from a large density of surface states was observed. For the annealed ZnO junction one mean barrier height was observed, indicating reduction in the inhomogeneities of barrier height at the interface for the annealed ZnO. The photoresponce of ZnO/P3HT:PCBM junction was higher for the annealed ZnO which is due to the higher mean barrier height and lower value of ideality factor. This demonstrates that moderate annealing of chemically grown ZnO is crucial for reducing surface defects and barrier inhomogeneities.

  19. Characteristics of Overvoltage Protection with Cascade Application of Surge Protective Devices in Low-Voltage AC Power Circuits

    Directory of Open Access Journals (Sweden)

    RADULOVIC, V.

    2015-08-01

    Full Text Available Surge Protective Devices (SPDs are widely used for protection of the equipment in low-voltage AC power circuits against wide variety of surges. Cascade application of SPDs starting at the service entrance of a building and downstream toward near sensitive equipment is intended to ensure optimal energy distribution among installed SPDs, as well as proper equipment protection against surges. Characteristics of overvoltage protection with two-stage application of SPDs have been analyzed in the paper through performed measurements, followed by simulations and numerical modeling using the ATP/EMTP and MATLAB Simulink. Parametric analysis of the protection's characteristics in wide range of influencing factors has been performed in order to define a set of applicable solutions for proper selection and performance of SPDs.

  20. Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Zhang; Yuming, Zhang; Yimen, Zhang, E-mail: zq_xacom@163.co [Key Laboratory of Semiconductor Wide Band-Gap Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-07-15

    According to the avalanche ionization theory, a computer-based analysis is performed to analyze the structural parameters of single- and multiple-zone junction termination extension (JTE) structures for 4H-SiC bipolar junction transistors (BJTs) with mesa structure. The calculation results show that a single-zone JTE can yield high breakdown voltages if the activated JTE dose and the implantation width are controlled precisely and a multiple-zone JTE method can decrease the peak surface field while still maintaining a high blocking capability. The influences of the positive and negative surface or interface states on the blocking capability are also shown. These conclusions have a realistic meaning in optimizing the design of a mesa power device.

  1. MOS Capacitance-Voltage Characteristics Ⅲ.Trapping Capacitance from 2-Charge-State Impurities

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier,or one-energy-level impurity species.Models described include a donor electron trap and an acceptor hole trap,both donors,both acceptors,both shallow energy levels,both deep,one shallow and one deep,and the identical donor and acceptor.Device and material parameters are selected to simulate chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.

  2. Review of curve-fitting error criteria for solar-cell I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Phang, J.C.H.; Chan, D.S.H.

    1986-07-01

    Various methods for recovering solar cell lumped-circuit model parameters from experimental characteristics are briefly reviewed. The advantages of extracting parameters from illuminated characteristics are highlighted. These include the availability of accurate analytical expressions developed recently. A commonly used method of parameter recovery by curve fitting minimises sigma which is defined as the r.m.s. of the relative current errors between the experimental and theoretical characteristics. This method is demonstrated to be unreliable when used with characteristics collected by linear analogue to digital systems, or which have certain data-point distributions. A more-reliable minimisation criterion epsilon is proposed. epsilon is based on the area difference between the experimental and theoretical characteristics. Computation experiments show that the use of epsilon results in much more accurate parameter recovery for both dark and illuminated characteristics, and that its accuracy is almost independent of data-point distribution. epsilon also provides a good basis for comparing the quality of fit of theoretical models to experimental characteristics.

  3. Voltage-ampere characteristics of YBCO coated conductor under inhomogeneous oscillating magnetic field

    Science.gov (United States)

    Geng, J.; Shen, B.; Li, C.; Zhang, H.; Matsuda, K.; Li, J.; Zhang, X.; Coombs, T. A.

    2016-06-01

    Direct current carrying type II superconductors present a dynamic resistance when subjected to an oscillating magnetic field perpendicular to the current direction. If a superconductor is under a homogeneous field with high magnitude, the dynamic resistance value is nearly independent of transport current. Hoffmann and coworkers [Hoffmann et al., IEEE Trans. Appl. Supercond. 21, 1628 (2011)] discovered, however, flux pumping effect when a superconducting tape is under an inhomogeneous field orthogonal to the tape surface generated by rotating magnets. Following their work, we report the whole Voltage-Ampere (V-I) curves of an YBCO coated conductor under permanent magnets rotating with different frequencies and directions. We discovered that the two curves under opposite rotating directions differ from each other constantly when the transport current is less than the critical current, whereas the difference gradually reduces after the transport current exceeds the critical value. We also find that for different field frequencies, the difference between the two curves decreases faster with lower field frequency. The result indicates that the transport loss is dependent on the relative direction of the transport current and field travelling, which is distinct from traditional dynamic resistance model. The work may be instructive for the design of superconducting motors.

  4. Modelling Of Converter Characteristics of Wind Energy Conversion System during Voltage Sags

    Directory of Open Access Journals (Sweden)

    Pratyusha Dikkala,

    2014-01-01

    Full Text Available The proposed system presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. This hybrid system allows maximum utilization of freely available renewable energy sources like wind and photovoltaic energies. For this, an adaptive maximum power point tracking (MPPT algorithm along with standard perturbs and observe method will be used for the system. The turbine rotor speed is the main determinant of mechanical output from wind energy and Solar cell operating voltage in the case of output power from solar energy. Permanent Magnet Synchronous Generator is coupled with wind turbine for attaining wind energy conversion system. This paper addresses dynamic modeling and control of a grid-connected wind–PV–battery hybrid system with versatile power transfer. The hybrid system, unlike conventional systems, considers the stability and dispatch-ability of its power injection into the grid. The hybrid system can operate in three different modes, which include normal operation without use of battery, dispatch operation, and averaging operation. This paper also indicates the merits of the proposed system.

  5. Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kyung Ho; Yeom, Sang Bu [Changwon National University, Changwon(Korea); Hong, JUNG Pyo; Hur Jin; Kang Do Hyunc [Hanyang University(Seoul Campus), Seoul(Korea)

    2002-02-01

    In order to design the Linear DC Motor (LDM) With improved characteristics, transient and steady state analysis are required. Furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis if LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the Sartre at each time Also, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust. The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the proposed method. (author). 11 refs., 20 figs., 2 tabs.

  6. Upper drift region double step partial SOI LDMOSFET: A novel device for enhancing breakdown voltage and output characteristics

    Science.gov (United States)

    Jamali Mahabadi, S. E.

    2016-01-01

    A new LDMOSFET structure called upper drift region double step partial silicon on insulator (UDDS-PSOI) is proposed to enhance the breakdown voltage (BV) and output characteristics. The proposed structure contains two vertical steps in the top surface of the drift region. It is demonstrated that in the proposed structure, the lateral electric field distribution is modified by producing two additional electric field peaks, which decrease the common peaks near the drain and gate junctions. The electric field distribution in the drift region is modulated and that of the buried layer is enhanced by the two steps in the top surface of the drift region, thereby resulting in the enhancement of the BV. The effect of device parameters, such as the step height and length in the top surface of the drift region, the doping concentration in the drift region, and the buried oxide length and thickness, on the electric field distribution and the BV of the proposed structure is studied. Simulation results from two-dimensional ATLAS simulator show that the BV of the UDDS-PSOI structure is 120% and 220% higher than that of conventional partial SOI (C-PSOI) and conventional SOI (C-SOI) structures, respectively. Furthermore, the drain current of the UDDS-PSOI is 11% larger than the C-PSOI structure with a drain-source voltage VDS = 100 V and gate-source voltage VGS = 5 V. Simulation results show that Ron in the proposed structure is 74% and 48% of that in C-PSOI and C-SOI structures, respectively.

  7. [Characteristics and Outcomes of Treatment in Patients with Stage IV Colorectal Cancer with Mismatch Repair Deficiency].

    Science.gov (United States)

    Ishibashi, Keiichiro; Chika, Noriyasu; Suzuki, Okihide; Ito, Tetsuya; Amano, Kunihiko; Kumamoto, Kensuke; Fukuchi, Minoru; Kumagai, Youichi; Mochiki, Erito; Ishida, Hideyuki

    2016-11-01

    Mismatch repair(MMR)protein deficiency in colorectal cancer is well correlated with high-level microsatellite instability (MSI-H). There are little data on mismatch repair deficiency(dMMR)colorectal cancers in Japan. In addition, we have no available data on the therapeutic efficacy of oxaliplatin(oxa)-based chemotherapy, one of the standard treatment regimens for metastatic colorectal cancer, for patients with dMMR colorectal cancer. The subjects were 254 patients with Stage IV colorectal cancer whose tumors were immunohistochemically stained for MMR proteins, MLH1, MSH2, MSH6, and PMS2. Patients who underwent R0 resection were excluded. Clinicopathologic factors and the efficacy of oxa-based chemotherapy were compared between patients with dMMR colorectal cancer and those with mismatch repair proficient(pMMR)colorectal cancer. There were 7(2.8%)patients with dMMR. Four patients demonstrated both MLH1 and PMS2 loss, while 3 patients demonstrated both MSH2 and MSH6 loss. Though the dMMR had a higher frequency in female patients(p=0.02) and a lower frequency in those with liver metastasis(pcolorectal cancers was lower than those(4-11%)reported in Western countries. Therefore, the clinical significance of universal screeningfor dMMR in all colorectal cancer samples may not be valid. Concerningsurvival benefit, oxa-based chemotherapy seems to be an effective alternative in clinical practice for metastatic colorectal cancer patients with dMMR.

  8. Characteristics of Rainfall in Wind Field of a Downburst and Its Effects on Motion of High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-01-01

    Full Text Available Despite most weather-related failures of high-voltage transmission lines (HVTLs being attributed to the downbursts accompanied by heavy rainfall, research works mainly focused on the behaviors of the high-voltage transmission tower-line structures under dry downburst winds. This paper thus presents a preliminary study to discuss the characteristics of rainfall in the downbursts and their effects on responses of HVTLs. Based on Vicroy model, the velocities of raindrops and their loads and pressure ratios of downburst wind-driven rain and only downburst wind on the surface of HVTLs per unit length are obtained. A downburst wind-rain induced vibration model is established to calculate the effects of the rainfall intensity and wind velocities on the motions of HVTLs. To verify the feasibility and accuracy of the model, the model is applied to evaluate responses of HVTLs with measured aerodynamic coefficients. The responses of HVTLs from the evaluated (the model and the field observation results are compared. The results indicated that the model is feasible and can capture main features of the rainfall acting on HVTLs in the downbursts. Furthermore, the effects of rainfall cannot be neglected, and more attention should be paid to the wet downbursts and their effects on aerodynamic property of HVTLs.

  9. Characteristics of ADHD among Omani Schoolchildren Using "DSM-IV": Descriptive Study

    Science.gov (United States)

    Al-Sharbati, Marwan M.; Zaidan, Ziad A. J.; Dorvlo, Atsu S. S.; Al-Adawi, Samir

    2011-01-01

    Background: There is a dearth of studies describing the characteristics of ADHD among schoolchildren attending child psychiatry clinics in the Arab world. Most of the previous quests have focused on community surveys or themes that hampered international comparison. Aim: This study screened for the presence of ADHD as well as investigates the…

  10. Time dependent and temperature dependent properties of the forward voltage characteristic of InGaN high power LEDs

    Directory of Open Access Journals (Sweden)

    P. L. Fulmek

    2017-03-01

    Full Text Available Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED. Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based

  11. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    Science.gov (United States)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  12. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr [School of Electronics Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shon, Chae-Hwa [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Lee, Se-Hee, E-mail: shlees@knu.ac.kr [Department of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  13. Frequency-dependent capacitance-voltage and conductance-voltage characteristics of low-dielectric-constant SiOC(-H) thin films deposited by using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Young; Lee, Heang Seuk; Woo, Jong Kwan; Choi, Chi Kyu; Lee, Kwang Man; Hyun, Myung Taek [Jeju National University, Jeju (Korea, Republic of); Navamathavan, Rangaswamy [Chonbuk National University, Chonju (Korea, Republic of)

    2010-12-15

    We report on the electrical characteristics of the metal-insulator-semiconductor (MIS) structure of low-dielectric-constant SiOC(-H) films. SiOC(-H) thin films were deposited on p-Si(100) substrates by using a plasma-enhanced chemical vapor deposition (PECVD) system. The frequency dependence of the capacitance-voltage (C-V) and the conductance-voltage (G/{omega}-V) characteristics of the A1/SiOC(-H)/p-Si(100)/Al MIS structures was analyzed. C-V and G/{omega}-V measurements were carried out over a frequency range of 1 kHz to 5 MHz. Based on our analysis, the C-V and the G/{omega}-V characteristics confirmed that the surface states and the series resistance were important parameters that strongly influenced the electrical properties of the A1/SiOC(-H)/p-Si(100)/Al MIS structures.

  14. Current–voltage characteristics of Ag, Al, Ni–()CdTe junctions

    Indian Academy of Sciences (India)

    P C Sarmah; A Rahman

    2001-08-01

    Schottky barriers of Ag, Al, Ni–()CdTe structures have been prepared and studied. The films were prepared by rf sputtering and doped with Cd metal. Diode ideality factor of these junctions are greater than unity and barrier height varies from 0.6–0.7 eV and are affected by room illumination. Photovoltaic effect of these junctions was very poor and fill factor below 0.4. Low doping concentration, high defect density, presence of an interfacial layer and presence of high series resistance are perceived to affect the – characteristic.

  15. Effect of π Orbital on I/V Characteristics and Transmission in Molecular Diode Structures with Au Contacts

    Directory of Open Access Journals (Sweden)

    A. Mallaiah

    2017-02-01

    Full Text Available The electronic transport properties of electrons in a molecules are observed by using Non equilibrium Green’s function(NEGF. We present a extremely through and careful computational approach well ordered method to do a framework analysis of donor (CH3 and acceptor (CN molecules connected between the Au(111 contacts, and also observed current progress through molecular devices depends on number of bonds or not. Such observations implementation through not possible by standard quantum chemistry soft wares. The results shows I-V characteristics, Transport spectrum and Transport analysis can effectively tune the molecules works like a conventional semi-conductor based diodes, these results invoke to design the logic gates and logic circuits.

  16. Design and characteristics of series–series and series–parallel topologies fed from constant-voltage fixed-frequency supply

    Indian Academy of Sciences (India)

    KUNWAR ADITYA

    2017-02-01

    Characteristics of series–series and series–parallel topologies when fed from a constant-voltage fixed-frequency supply have been studied. Characterization helps understanding the fundamentals of the topologies and helps in selection of particular topology for a particular application. For studying the characteristics a prototype of IPT coils has been developed in the laboratory. Parameters of the coil have been found using finite-element analysis software JMAG. Characteristics have been simulated in MATLAB Simulink andresults obtained have been compared with those obtained from the hardware implementation of the characteristic. It has been shown in this paper that series–series topology has ideal current-source characteristics and series–parallel topology has ideal voltage-source characteristics.

  17. Anomalous forward I-V characteristics of Ti/Au SiC Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.J.; Wright, N.G.; Johnson, C.M.; O' Neill, A.G. [Newcastle upon Tyne Univ. (UK). Dept. of Electr. and Electron. Eng.; Hilton, K.P.; Uren, M.J. [Defence Evaluation Research Agency, Malvern, Worcestershire (United Kingdom)

    1999-07-30

    The aim of this study was to improve the adhesion of Au Schottky contacts to SiC. In order to do this, before the deposition of the Au layer, a thin layer of Ti was deposited. However, this resulted in an anomalous step in the forward bias electrical characteristic for some diodes. An equivalent circuit model is introduced to explain this irregularity in terms of two barrier heights. PSPICE is used to simulate this model. Simulated and experimental data are in good agreement over the temperature range 25 to 250 C. (orig.)

  18. The effect of concentration of H$_2$ physisorption on the current–voltage characteristic of armchair BN nanotubes in CNT–BNNT–CNT set

    Indian Academy of Sciences (India)

    R AZIMIRAD; A H BAYANI; S SAFA

    2016-10-01

    In this research, we have studied physisorption of hydrogen molecules on armchair boron nitride (BN) nanotube (3,3) using density functional methods and its effect on the current–voltage ($I–V$) characteristic of the nanotube as a function of concentration using Green’s function techniques. The adsorption geometries and energies, charge transfer and electron transport are calculated. It is found that H$_2$ physisorption can suppress the $I–V$ characteristic of the BN nanotube, but it has no effect on the band gap of the nanotube. As the H$_2$concentration increases, under the same applied bias voltage, the current through the BN nanotube first increases and then begins to decline. The current–voltage characteristic indicates that H$_2$ molecules can be detected by aBN-based sensor.

  19. Effect of inductive and capacitive coupling on the current-voltage characteristic and electromagnetic radiation from a system of Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Zemlyanaya, E. V.; Bashashin, M. V.

    2017-01-01

    We have studied the current-voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current-voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current-voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and it is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.

  20. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    Science.gov (United States)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  1. Measurement of Solar Cell Parameters with Dark Forward I-V Characteristics

    Directory of Open Access Journals (Sweden)

    J. Salinger

    2006-01-01

    Full Text Available The grade of a solar cell depends mainly on the quality of the starting material. During the production of this material, many impurities are left in the bulk material and form defect levels in the band-gap, which act as generation-recombination centers or charge carrier traps. These levels influence the efficiency of solar cells. Therefore knowledge of the parameters of these levels, e.g., energy position, capture cross section and concentration, is very useful for solar cell engineering. In this paper emphasis is placed on a simple and fast method for obtaining these parameters, namely measurements of dark characteristics. Preliminary results are introduced, together with the difficulties and limits of this method. 

  2. A unified discharge voltage characteristic for VRLA battery capacity and reserve time estimation

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-01-01

    Determining the capacity and discharge reserve time of a valve regulated lead acid battery is a highly non-trivial task. This is due to the dependence of the capacity and discharge reserve time on the discharge operating conditions as well as the battery condition. Operating conditions include discharge rate, ambient temperature and initial state of charge (SOC), while battery conditions include battery state of health and battery type. A simple approach is presented for estimating the SOC and discharge reserve time throughout a discharge. In addition, an estimation of capacity can be made at the completion of a shallow discharge. The approach employs a unified discharge characteristic that is shown to be robust to variations in operating conditions as well as battery condition. The approach provides a good degree of accuracy without the cost of complexity. Results are presented that demonstrate the estimation of the SOC to be well within 10% throughout the discharge and the reserve time (and capacity) to be within 10% from the early stages of the discharge. (author)

  3. Electron energy dependence of characteristics of fluorescent plates for ultrahigh-voltage electron microscopes.

    Science.gov (United States)

    Nishi, R; Yoshida, K; Takaoka, A; Katsuta, T

    1996-03-01

    The characteristics of fluorescent plates for high energy electron beams (0.5-2.0 MeV) are examined. The thickness and the optical transparency of plates strongly affect the luminous broadening and intensity. The spatial luminous broadening in fluorescent plates is measured and is simply represented by the rise width of a knife edge image. When the thickness is much smaller than the range of incident electrons, the rise width is 1/4-1/5 of the thickness in the case of YAG single crystal plates that are transparent for light, while the rise width is nearly equal to the thickness for the packed P22 powder plates that are opaque for light. To suppress the luminous broadening under 50 microm, the thickness of YAG plates has to be thinner than 250 microm in the energy region around 2 MeV. Under the same condition of the rise width, the luminous intensity of YAG plates is twice as high as that of the P22 plates.

  4. Effect of Light Intensity and Temperature on the Current Voltage Characteristics of Al/ SY/ p- Si Organic-Inorganic Heterojunction

    Science.gov (United States)

    Imer, Arife Gencer; Ocak, Yusuf Selim

    2016-10-01

    An organic-inorganic contact was fabricated by forming a thin film of sunset yellow dye ( SY) on a p- Si wafer. The device showed a good rectification property, and the sunset yellow thin film modified the barrier height (Φb) of Al/ p- Si contact by influencing the space charge region. The heterojunction had a strong response to the different illumination intensities and showed that it can be suitable for photodiode applications. The I- V measurements of the device were also applied in the temperature range of 100-500 K. It was seen that characteristic parameters of the device were strongly dependent upon temperature. While the value of Φb increased, the ideality factor ( n) decreased with the increase in temperature. This variation was attributed to spatial inhomogeneity at the interface. The Norde function was used to determine the temperature-dependent series resistance and Φb values, and there was a good agreement with that of ln I- V data. The values of the Richardson constant ( A*) and mean Φb were determined as 29.47 Acm-2 K-2 by means of a modified activation energy plot, matching with a theoretical one, and 1.032 eV, respectively. Therefore, it was stated that the current voltage characteristic with the temperature can be explained by thermionic emission theory with Gaussian distribution of the Φb at the interface.

  5. NBTI-Aware Transient Fault Rate Analysis Method for Logic Circuit Based on Probability Voltage Transfer Characteristics

    Directory of Open Access Journals (Sweden)

    Zhiming Yang

    2016-01-01

    Full Text Available The reliability of Very Large Scale Integration (VLSI circuits has become increasingly susceptible to transient faults induced by environmental noise with the scaling of technology. Some commonly used fault tolerance strategies require statistical methods to accurately estimate the fault rate in different parts of the logic circuit, and Monte Carlo (MC simulation is often applied to complete this task. However, the MC method suffers from impractical computation costs due to the size of the circuits. Furthermore, circuit aging effects, such as negative bias temperature instability (NBTI, will change the characteristics of the circuit during its lifetime, leading to a change in the circuit’s noise margin. This change will increase the complexity of transient fault rate estimation tasks. In this paper, an NBTI-aware statistical analysis method based on probability voltage transfer characteristics is proposed for combinational logic circuit. This method can acquire accurate fault rates using a discrete probability density function approximation process, thus resolving the computation cost problem of the MC method. The proposed method can also consider aging effects and analyze statistical changes in the fault rates. Experimental results demonstrate that, compared to the MC simulation, our method can achieve computation times that are two orders of magnitude shorter while maintaining an error rate less than 9%.

  6. Section IV.D.3 for DOE 2013 Annual Report: Novel Phosphazene-based Compounds to Enhance Safety and Stability of Cell Chemistries for High Voltage Applications (INL)

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Gering; Mason K. Harrup; Eric J. Dufek; Sergiy V. Sazhin; Harry W. Rollins; David K. Jamison; Fred F. Stewart; John Burba

    2013-09-01

    Electrolytes play a central role in performance and aging in most electrochemical systems. As automotive and grid applications place a higher reliance on electrochemical stored energy, it becomes more urgent to have electrolyte components that enable optimal battery performance while promoting battery safety and longevity. Safety remains a foremost concern for widespread utilization of Li-ion technology in electric-drive vehicles, especially as the focus turns to higher voltage systems (5V). This work capitalizes on the long established INL expertise regarding phosphazene chemistry, aimed at battery-viable compounds for electrolytes and electrodes that are highly tolerant to abusive conditions. This report showcases our 2013 work for the DOE applied battery research (ABR) program, wherein testing results are summarized for INL electrolytes and alternative anode materials.

  7. Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

    Directory of Open Access Journals (Sweden)

    Bernd M. Briechle

    2012-11-01

    Full Text Available We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current–voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  8. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    Science.gov (United States)

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  9. Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current-voltage characteristics.

    Science.gov (United States)

    Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng

    2015-07-15

    In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.

  10. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices.

    Science.gov (United States)

    Chen, Chong; Wu, Fan; Geng, Hongwei; Shen, Wei; Wang, Mingtai

    2011-04-19

    The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency.

  11. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  12. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  13. A novel method for measuring carrier lifetime and capture cross-section by using the negative resistance I-V characteristics of a barrier-type thyristor

    Energy Technology Data Exchange (ETDEWEB)

    Li Hairong; Li Siyuan, E-mail: hrli@lzu.edu.c [Institute of Microelectronics, Lanzhou University, Lanzhou 730000 (China)

    2010-08-15

    A brand new and feasible method for measuring the carrier lifetime and capture cross-section of a barrier by using the negative resistance segment of the I-V characteristics of a barrier-type thyristor (BTH) is put forward. The measuring principle and calculation method are given. The BTH samples are experimentally measured and the results are analyzed in detail. (semiconductor devices)

  14. Voltage stability analysis considering the load dynamic characteristics and the voltage control devices; Analisis de estabilidad de voltaje considerando las caracteristicas dinamicas de la carga y dispositivos de control de voltaje

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Alvarez, Enrique

    2001-09-15

    The research work presented in this thesis, is centered in the voltage stability analysis of medium term considering the effect of the load characteristics and its interaction with the voltage control device models in the transmission network. More concretely, a type of load model is defined and studied with desirable characteristics for the study of the voltage stability, the generic load models derived from field tests and from the application of identification techniques and it is analyzed the influence of the application of control systems to improve the system stability margins. Also, alternatives to the power system modeling for the voltage stability study in complex systems are reviewed. In the first place a fundamental analysis of the voltage characteristics and stability in a simplified power system is presented and the method of adopted analysis is introduced. It is shown that the instability phenomenon is manifested as a singular type bifurcation induced from the critical way of voltage when the system is operated under stress conditions. Next, the contribution of the action of the control devices to the stability margin is analyzed and criteria of the stability analyses are deducted based on the study of such mode. Following a linear model of the power system with desirable characteristics for the study of the voltage stability of medium term is proposed and the characteristics of stability in the context of the study of complex systems are interpreted. The proposed analysis tool is based on the physical notion that the behavior of the voltage control systems in the generators is very rapid with regard to the behavior of the load and has its main application in the preliminary study of the voltage stability of medium and long term. From this model, an analytical tool based on the application of techniques of linear analysis is proposed to approach the problem of determination of critical voltage areas and the contribution of control devices to the

  15. Memcapacitive characteristics in reactive-metal (Mo, Al)/HfO{sub X}/n-Si structures through migration of oxygen by applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Paul; Noh, Young Jun; Baek, Yoon-Jae; Zheng, Hong; Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, Gyeonggi-do 449-728 (Korea, Republic of); Kang, Chi Jung [Department of Physics, Myongji University, Gyeonggi-do 449-728 (Korea, Republic of); Lee, Hyun Ho [Department of Chemical Engineering, Myongji University, Gyeonggi-do 449-728 (Korea, Republic of)

    2016-02-01

    Memcapacitive characteristics were investigated in metal-oxide-semiconductor (MOS) structure of reactive electrode (Mo, Al) and hafnium oxide (HfO{sub X}) on n-type Si substrate. The capacitance-voltage curves exhibited sequentially changing capacitance with memory function as repeating voltage sweeps, featured the memcapacitive behaviors. The saturation capacitance was decreased by repeating +V sweeps, while barely changed by −V sweeps. Also, the capacitance-time curves disclosed the same tendency. However, the MOS structure with inert Pt electrode did not show the capacitance change. The memcapacitive behaviors were induced by the migration of oxygen ions from HfO{sub X} to reactive electrodes by applied voltage, which altered the permittivity of HfO{sub X}.

  16. Rome III vs Rome IV criteria for irritable bowel syndrome: A comparison of clinical characteristics in a large cohort study.

    Science.gov (United States)

    Vork, L; Weerts, Z Z R M; Mujagic, Z; Kruimel, J W; Hesselink, M A M; Muris, J W M; Keszthelyi, D; Jonkers, D M A E; Masclee, A A M

    2017-08-14

    The Rome criteria for irritable bowel syndrome (IBS) have been revised and are expected to apply only to the subset of Rome III IBS subjects with abdominal pain as predominant symptom, occurring at least once a week. The aim of this study was to determine the percentage of Rome III IBS subjects that fulfills Rome IV criteria and to evaluate differences between Rome IV-positive and Rome IV-negative subjects. Four hundred and four Rome III IBS subjects completed a 14-day end-of-day symptom diary, the Gastrointestinal Symptom Rating Scale (GSRS), Hospital Anxiety and Depression Scale, and RAND 36-item Short-Form Health Survey (SF-36). Diary-based surrogate Rome IV criteria were defined as occurrence of abdominal pain at least 1 day each week with a severity of ≥2 (mild; definition 1) or ≥3 (considerable; definition 2). Using surrogate Rome IV criteria, 353 (87.4%, definition 1) and 249 (61.6%, definition 2) subjects were defined as Rome IV positive. These patients were more often female, younger, and recruited from secondary/tertiary care compared with Rome IV-negative subjects. They also presented with higher abdominal pain scores and gastrointestinal (GI) symptom severity on both end-of-day diary and GSRS, higher psychological symptom scores, and lower quality of life compared with Rome IV-negative subjects. The Rome IV IBS population likely reflects a subgroup of Rome III IBS patients with more severe GI symptomatology, psychological comorbidities, and lower quality of life. This implies that results from Rome III IBS studies may not be directly comparable to those from Rome IV IBS populations. © 2017 John Wiley & Sons Ltd.

  17. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  18. Current-voltage characteristics and charge DLTS spectra of proton-bombarded Schottky diodes on semi-insulating GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Thurzo, I. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Hrubcin, L. (Inst. of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia)); Bartos, J. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Pincik, E. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia))

    1993-10-01

    Changes in the current-voltage characteristics and charge DLTS spectra of Schottky diodes on semi-insulating GaAs after irradiation by protons at different energies and doses are presented and discussed. Apart from a progressive degradation of the Schottky barriers with enhanced proton energy and dose, there is a threshold, positioned between 10[sup 14] and 10[sup 15] protons/cm[sup 2], for observing trap-limited transients. (orig.)

  19. Modeling and control of threshold voltage based on pull-in characteristic for micro self-locked switch

    Science.gov (United States)

    Deng, Jufeng; Hao, Yongping; Liu, Shuangjie

    2017-09-01

    Micro self-locked switches (MSS), where execution voltage corresponds to the output signal, are efficient and convenient platforms for sensor applications. The proper functioning of these sensing devices requires driving accurate displacement under execution voltage. In this work, we show how to control the actuating properties of MSSS. This switch comprises microstructures of various shapes with dimensions from 3.5 to 180 μm, which are optimized to encode a desired manufacture deviation by means of mathematical model of threshold voltage. Compared with pull-in voltage, threshold voltage is more easy to control the pull-in instability point by theoretical analysis. With the help of advanced manufacture technology, switch is processed in accordance with the proposed control method. Then, experimental results show that it is better, which have been validated by corresponding experiments. In addition, they can be known from experiments that the manufacturing technology is advanced and feasible, and its high resilience and stably self-locked function can achieve instantaneously sensing.

  20. Experimental and modeling study of the capacitance-voltage characteristics of metal-insulator-semiconductor capacitor based on pentacene/parylene

    KAUST Repository

    Wondmagegn, Wudyalew T.

    2011-04-01

    The capacitance-voltage (C-V) characteristics of metal-insulator- semiconductor (MIS) capacitors consisting of pentacene as an organic semiconductor and parylene as the dielectric have been investigated by experimental, analytical, and numerical analysis. The device simulation was performed using two-dimensional drift-diffusion methods taking into account the Poole-Frenkel field-dependent mobility. Pentacene bulk defect states and fixed charge density at the semiconductor/insulator interface were incorporated into the simulation. The analysis examined pentacene/parylene interface characteristics for various parylene thicknesses. For each thickness, the corresponding flat band voltage extracted from the C-V plot of the MIS structure was more negative than - 2.4 V. From the flat band voltage the existence of a significant mismatch between the work functions of the gate electrode and pentacene active material has been identified. Experimental and simulation results suggest the existence of interface charge density on the order of 3 × 1011 q/cm2 at the insulator/semiconductor interface. The frequency dispersion characteristics of the device are also presented and discussed. © 2011 Elsevier B.V.

  1. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells.

    Science.gov (United States)

    Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve

    2015-04-24

    This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.

  2. Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells

    Science.gov (United States)

    Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve

    2015-01-01

    This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581

  3. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  4. High-voltage electrical stimulation for the management of stage III and IV pressure ulcers among adults with spinal cord injury: demonstration of its utility for recalcitrant wounds below the level of injury.

    Science.gov (United States)

    Recio, Albert C; Felter, Cara E; Schneider, Anna Corrine; McDonald, John W

    2012-01-01

    patients with spinal cord injury (SCI) have many factors that are associated with pressure ulcer formation, including paralysis, loss of sensation, poor nutrition, anemia, and skin maceration related to incontinence. Treatment of these ulcers involves relieving pressure, improving nutrition and skin hygiene, treating infections, removing necrotic tissues, and applying the appropriate dressings. However, some cases are not responsive to the above treatment. Electrical stimulation (ES) is thought to enhance soft tissue healing through promotion of protein synthesis, inhibition of bacterial growth, facilitation of epithelial tissue migration, improvement of blood flow, and tensile strength. This data is mainly based on evidence from animal studies and very few rigorously controlled studies conducted in humans. To demonstrate the effectiveness of ES in the treatment of recalcitrant pressure ulcers. Retrospective case series describing the care of adults with SCI and recalcitrant pressure ulcers. ES was applied directly into the wound bed: 60 minutes per session, 3-5 times per week; with an intensity of 100 milliamperes and a frequency of 100 pulses per second. Polarity was negative initially and was switched weekly. The amplitude and wave form were maintained throughout. The long-standing (11-14 months) pressure ulcers were completely healed after 7 to 22 weeks of treatment with high-voltage ES. This case series demonstrates the effectiveness of ES for enhanced healing of Stage III-IV ulcers otherwise unresponsive to standard wound care. Further study is needed to identify the most effective protocol for ES therapy in the treatment of recalcitrant pressure ulcers.

  5. Characteristics of type IV collagen unfolding under various pH conditions as a model of pathological disorder in tissue.

    Science.gov (United States)

    Shimizu, Akio; Kawai, Kenichi; Yanagino, Miki; Wakiyama, Toshiko; Machida, Minoru; Kameyama, Kohji; Naito, Zenya

    2007-07-01

    The overall structure of type IV collagen is the same at neutral and acidic pH, as determined by circular dichroism spectra. The heating rate dependence of denaturation midpoint temperature (T(m)) shows that type IV collagen is unstable at body temperature, similarly to type I collagen. The heating rate dependence of T(m) at neutral pH has two phases, but that at acidic pH apparently has a single phase. The T(m) of the first phase (lower T(m)) at neutral pH is consistent with that at acidic pH, and the activation energy of these phases is consistent, within experimental error. The triple helix region of type IV collagen corresponding to the second phase (higher T(m)) at neutral pH is thermally stable when compared to the triple helical structure at acidic pH. At acidic pH, as the loosely packed and unstable region has spread throughout the whole molecule, the thermal transition is thought to be cooperative and is observed as a single phase. Structural flexibility is related to protein function and assembly; therefore, the unstable structure and increased flexibility of type IV collagen induced at acidic pH may affect diseases accompanied by type IV collagen disorder.

  6. Characteristics of a micro-gap argon barrier discharge excited by a saw-tooth voltage at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Zhang, Qi; Jia, Pengying; Chu, Jingdi; Zhang, Panpan; Dong, Lifang

    2017-03-01

    Using two water electrodes, a micro-gap dielectric barrier discharge excited by a saw-tooth voltage is investigated in atmospheric pressure argon. Through electrical and optical measurements, it is found that, at a lower driving frequency, a stepped discharge mode is obtained per half voltage cycle. Moreover, the duration and amplitude of the current plateau increase with the increase in the applied peak voltage. With the increase in the driving frequency, the stepped discharge mode transits into a pulsed one after a multi-peak mode. During this process, a diffuse discharge at a lower frequency transits into a filamentary one at a higher frequency. Temporal evolutions of the discharges are investigated axially based on fast photography. It is found that the stepped mode is in atmospheric pressure Townsend discharge (APTD) regime. However, there is a transition from APTD to atmospheric pressure glow discharge for the pulsed mode. Spectral intensity ratio of 391.4 nm to 337.1 nm is used to determine the averaged electron energy, which decreases with increasing peak voltage or driving frequency.

  7. Use of vacuum tubes in test instrumentation for measuring characteristics of fast high-voltage semiconductor devices

    Science.gov (United States)

    Berning, D.

    1981-01-01

    Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.

  8. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in the ionization chamber are considered. On the basic of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage.

  9. Novel Step-Up DC/DC Converter with No Right Half Plane Zero and Reduced Switched Voltage Stress Characteristics

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen

    2014-01-01

    Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state and the v...

  10. High Voltage Design Guide. Volume IV. Aircraft

    Science.gov (United States)

    1983-01-01

    by the reaction of urea with formaldehyde. An amino resin. Urethane. See Isocyanate Resins. Vinyl Resin. A synthetic resin formed by the polymerization...oxidation reactions are sludge, asphalt , a:ids, organic esters, soaps, and oxides. Oil color, as an index of the degree of refineme.. for unused oils...Materials Alkyd resins Acrylic plastics Cellulose esters Asphalt Cork Chloride flux Epoxy resins Copper (bare) Masonite Fiber board Melamine resins Greases

  11. Characteristics of AlGaN/GaN/AlGaN double heterojunction HEMTs with an improved breakdown voltage

    Institute of Scientific and Technical Information of China (English)

    Ma Juncai; Zhang Jincheng; Xue Junshuai; Lin Zhiyu; Liu Ziyang; Xue Xiaoyong; Ma Xiaohua; Hao Yue

    2012-01-01

    We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer,which leads to a higher potential barrier at the backside of the twodimensional electron gas channel and better carrier confinement.This,remarkably,reduces the drain leakage current and improves the device breakdown voltage.The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (~ 100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs (~50 V) for the device with gate dimensions of 0.5 × 100 μm and a gate-drain distance of 1μm.The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm,a maximum power-added efficiency of 62.3% and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz.

  12. Adsorption behavior and current-voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon

    OpenAIRE

    2002-01-01

    Using scanning tunneling microscopy and spectroscopy we have studied both the geometric distribution and the conduction properties of organic shell capped CdSe nanocrystals adsorbed on hydrogen-passivated Si(100). At submonolayer concentrations, the nanocrystal distribution on the surface was found to be highly nonhomogeneous, with an aggregation of most of the nanocrystals into islands of monolayer thickness. I-V spectra collected on nanocrystals adsorbed on n- and p-type substrates showed a...

  13. Flashover Characteristics of Flat Plate Model Under DC Voltage in Wind-sand Condition%风沙条件下的平板模型直流沿面放电特性

    Institute of Scientific and Technical Information of China (English)

    司马文霞; 马高权; 杨庆

    2008-01-01

    The influence of sand dust on discharge of external insulation has caused widespread concern. At present, the research results show wind-sand electricity has a remarkable effect on the discharge characteristics of insulator and has little influence on the discharge characteristics of air gap. The flashover of insulator strings occurs along the insulator surface and air gaps, and the sand dust deposited on the insulator surface may affect the flashover characteristics of insulator strings. This paper studies the flashover characteristics of flat plate model under DC voltage in wind-sand condition. The experimental results show that under positive polarity voltage, the flashover voltage of the flat plate model has a maximum value, while under negative polarity voltage, the flashover voltage of the flat plate model has a minimum value with a certain degree of sand dust deposition. The wind or sand in sand-dust weather has an important effect on the flashover characteristics of the flat plate model. In certain variation range of electric charge, electric charge of sand dust has little effect on the flashover voltage of flat plate model under DC voltage. The deposition of sand has significant influence on the flashover process of flat plate model, which is related to the deposition density and moisture content of sand particle.

  14. Current-voltage characteristics of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x}/Ag multifilamentary tapes in zero applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A. [Institute of Cryogenics, University of Southampton, Southampton (United Kingdom); Institute of Physics and Technology of Materials, Bucharest (Romania); Miu, L.; Popa, S. [Institute of Physics and Technology of Materials, Bucharest (Romania); Yang, Y.; Beduz, C. [Institute of Cryogenics, University of Southampton, Southampton (United Kingdom)

    1997-05-01

    Current-voltage characteristics of multifilamentary Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x}/Ag tapes (short samples) produced by the 'powder in tube' technique were measured at different temperatures close to the mean-field critical temperature, and inzero applied magnetic field. After performing the required corrections due to the current flowing in the silver matrix, the I-V curves were interpreted in terms of current-induced unbinding of the thermally created vortex-antivortex pairs. Two possible mechanisms for appearance of a finite critical current in zero applied magnetic field are discussed: the Jensen-Minnhagen quasi-two-dimensional (2D) approach, that takes into account the interlayer Josephson coupling, and a model of size limitation of vortex fluctuations. From our analysis, it seems that the latter model is more suitable for this kind of superconducting material, due probably to an accentuated intrinsic anisotropy. (author)

  15. Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: Microstructural characteristics and electrochemical responses

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eung Seok [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2014-02-15

    Highlights: • The effect of voltage waveform on the anodic film structure is significant. • The anodic film by asymmetric-sine wave is denser than that by half-sine wave. • Asymmetric-sine wave results in excellent electrochemical properties. -- Abstract: The present study investigated how the voltage waveform influenced the microstructural characteristics and electrochemical responses of the anodic film on AZ91 Mg alloy coated by plasma electrolytic oxidation (PEO). PEO coatings of AZ91 Mg alloy were performed for 600 s in an alkaline silicate electrolyte with respect to the voltage waveform such as half-sine and asymmetric-sine waveforms. Microstructural observations on cross section of the anodic film utilizing scanning electron microscope revealed that the anodic film formed via asymmetric-sine wave was much denser in structure than that via half-sine counterpart since the occurrence of the cathodic breakdown between the anodic pulses could effectively suppress the formation of the micro-pores and discharge channels in the anodic films. Thereby, the hardness and corrosion properties of the anodic film formed by asymmetric-sine wave were found to be superior to those by half-sine wave. In addition, electrochemical responses were interpreted in relation to the equivalent circuit model consisting of resistor and capacitor elements within an electrical cell.

  16. S-shaped current-voltage characteristics of polymer composite films containing graphene and graphene oxide particles

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Fefelov, S. A.; Komolov, A. S.; Aleshin, A. N.

    2016-12-01

    The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.

  17. Asymmetry of Polarization Reversal and Current-Voltage Characteristics of Pt/PZT-Film/Pt:Ti/SiO2/Si-Substrate Structures

    Directory of Open Access Journals (Sweden)

    S. L. Bravina

    2011-01-01

    Full Text Available The characterization of the asymmetries of bipolar charge-voltage and current-voltage loops of polarization reversal and unipolar current-voltage curves for Pt/PZT-film/Pt:Ti/SiO2/Si-substrate systems was performed in the dynamic mode. The asymmetry of local deformation-voltage loops was observed by piezoresponse force microscopy. The comparison of the dependences of introduced asymmetry factors for the bipolar charge-voltage and current-voltage loops and unipolar current-voltage curves on drive voltage indicates the interconnection of ferroelectric and electrical space charge transfer asymmetries.

  18. Triorganotin(IV) complexes with biologically potent schiff bases: infrared, ¹¹⁹Sn spectral characteristics and antimicrobial applications.

    Science.gov (United States)

    Rehman, W; Khan, J; Muhammad, B; Shah, S W H; Rashid, R

    2012-05-01

    This review paper has attempted information specific to the title compound. This survey of the literature data provides useful information about the design and stabilities of the triorganotin with biologically active ligands. Up to now, considerable efforts have been made to synthesize and characterize triorganotin(IV) schiff base complexes with the general formulae R3ML [R = organic group, M: Sn and L: schiff base] and many studies have been focused in order to understand bioassay results. Users with an interest in this substance are strongly encouraged for future research that this is still a very open field.

  19. REGIMES ANALYSIS OF THE VOLTAGE PULSE REGULATORS ON THE BASIC OF THE INVARIANCE PROPERTY OF THE CONTROL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Penin A.A.

    2009-04-01

    Full Text Available Regime characteristic values are determined relative to character values of regulation curve of switching regulator. Regime changing and the correspondence between various regime parameters are examined as a geometric (projective transformation. This makes possible to validate the regime definition, to restrict the range of their variation on the rising area of the control characteristic, to realize the linearization of this characteristic, to compare different pulse regulators.

  20. Measurements and analysis of current-voltage characteristic of a pn diode for an undergraduate physics laboratory

    CERN Document Server

    Cataldo, Enrico; Maccarrone, Francesco; Paffuti, Giampiero

    2016-01-01

    We show that in a simple experiment at undergraduate level, suitable to be performed in classes of science and engineering students, it is possible to test accurately, on a popular 1N4148 p-n diode, the range of the junction currents where the Shockley equation model can be considered satisfactory. The experiment benefits from a system of temperature control and data collection driven in a LabVIEW environment. With these tools a large quantity of data can be recorded in the temporal frame of a lab session. Significant deviations of the experimental I-V with respect to the ideal behaviour curve predicted by the Shockley equation are observed, both at low and high current. A better agreement over the entire range is obtained introducing, as is customary, a four parameters model, including a parallel and a series resistance. A new iterative fitting procedure is presented which treats the I-V data of different regimes on the same level, and allows a simultaneous determination of the four parameters for each tempe...

  1. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Science.gov (United States)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  2. Self-field effects on critical current density and current-voltage characteristics in superconducting YBaCuO thick films

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.D.; Hart, C.; Martinez, C.M.; Ares, O. [Superconductivity Lab, IMRE-University of Havana, Vedado 10400, Havana (Cuba)

    1999-07-01

    The self-field and percolative influences on transport measurements of polycrystalline bridges engraved on YBaCuO thick film have been investigated. A maximum in the dependence of the critical current density on cross-sectional area of the bridge (A = 0.003 mm{sup 2}-0.3 mm{sup 2}) has been found experimentally, in samples with low critical current densities (J{sub c}<50 A cm{sup -2}). The result of the measurements are in agreement with Mulet and coworkers, who have predicted that, under certain conditions, the self-field effects on transport measurements are negligible and the J{sub c} dependence on the sample dimensions is determined by the percolative character of the transport current. Self-field influences have also been observed in current-voltage characteristics, which have been analysed using the Ambegaokar-Halperin phase-slip theory. By allowing the noise parameter ({gamma}) to change with temperature, magnetic field and transport current, adequate agreement between theoretical and experimental current-voltage characteristics has been obtained. The dependence of the noise parameter with the transport current is demonstrated to be related with the self-field. (author)

  3. MOS Capacitance-Voltage Characteristics Ⅱ.Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance-Voltage(C V)curves of Metal OxideSemiconductor Capacitors(MOSC),including electron and hole trapping at the dopant donor and acceptor impurities,are presented to illustrate giant trapping capacitances,from > 0.01Cox to > 10Cox.Five device and materials parameters are varied for fundamental trapping parameter characterization,and electrical and optical signal processing applications.Parameters include spatially constant concentration of the dopant-donor-impurity electron trap,NDD,the ground state electron trapping energy level depth measured from the conduction band edge,EC-ED,the degeneracy of the trapped electron at the ground state,gD,the device temperature,T,and the gate oxide thickness,xox.

  4. Performance Characteristics ofAC Contactor During Voltage Sag%晃电故障下交流接触器的工作特性分析

    Institute of Scientific and Technical Information of China (English)

    林抒毅; 许志红

    2011-01-01

    电磁式交流接触器是一种应用广泛的低压电器产品,当晃电故障发生时,交流接触器可能因为不稳定电压而频繁接通或分断,对系统造成很大的影响。论文以CJ20.63A交流接触器为研究对象,建立考虑触头运动情况的电磁机构吸合过程、吸持阶段以及释放过程的磁路动态计算方程,并通过实验验证了模型的正确性。针对不同的合闸相角和工作状态进行仿真,分析了发生晃电故障时电压下降幅度、晃电故障持续时间、晃电故障发生时刻及电压相角变化对接触器工作特性的影响。结果表明,吸合阶段的晃电影响与吸合时问有直接关系,吸合以后的晃电故障影响存在临界%Electromagnetic contactor is a kind of widely used electric product. When the voltage drops suddenly, the contactor will be open or closed frequently, and the circuit will be influenced seriously. Based on the research of CJ20-63A contactor dynamic equations were established during closing, cIosed and opening processes; the movement process of the moving contact and the bounce of the contacts were considered at the meantime. The experimental data shows the model is correct. Simulations were carried out with respect to different working states and various closing phase angles. Influences of the range, duration and occurrence time of voltage drop, and the variation of voltage phases on performance characteristics of contactors were analyzed; the result indicates that the influences of voltage sag on the contactor are related to the closing time directly in the closing process; and a critical time value should be considered after the contactor is closed. This research provides the basic for the further study on the intelligent AC contactor with anti-voltage sag.

  5. Room-temperature I-V characteristics of a single hollow La₂/₃Ca₁/₃MnO₃ microparticle.

    Science.gov (United States)

    Saleta, M E; Granada, M; Curiale, J; Benavides, R; Troiani, H E; Sánchez, R D

    2011-07-13

    In this work we present an electrical characterization of La₂/₃Ca₁/₃MnO₃ particles obtained by spray pyrolysis. We optimized the synthesis conditions to obtain the desired compound with the expected structure and the ferromagnetic transition at the same temperature as the bulk material. We found that a post-deposition thermal treatment enhances the magnetic properties of the samples. The study of structural, morphological and magnetic properties shows that the walls of the hollow spheres are constituted by grains on the nanometer scale. The I-V characterization shows typical signatures of tunneling transport. This behavior can be associated with the grain boundaries within the microparticle's wall acting as tunnel barriers.

  6. 钙钛矿太阳能电池中S形伏安特性研究∗%S-shap ed current-voltage characteristics in p erovskite solar cell

    Institute of Scientific and Technical Information of China (English)

    石将建; 孟庆波; 卫会云; 朱立峰; 许信; 徐余颛; 吕松涛; 吴会觉; 罗艳红; 李冬梅

    2015-01-01

    Analysis of the DC current-voltage (I-V ) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments, limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells, the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features, which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to

  7. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2013-02-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  8. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2012-01-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  9. Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells

    Science.gov (United States)

    Niemegeers, Alex; Burgelman, Marc

    1997-03-01

    A simple analytical theory is presented to explain the measured roll over and cross over behaviour of the IV characteristics of thin film CdTe solar cells. It involves a classical description of the CdS/CdTe junction and the CdTe/back contact structure and is extended with a new description of minority carrier current in the CdTe contact region. This extension is crucial in describing the light dependence of the forward IV curves, and hence cross over. The same model also explains the measured CV curves. It is shown that analysis of the capacitance measurement can yield additional information about the doping density of CdTe in the vicinity of the contact. A relationship between the fill factor of the solar cell and the barrier height of the back contact is derived; this relation is useful as a new, practical criterion for the quality of the back contact. The results of this simple analytical model are confirmed by full numerical calculations of the dc and ac characteristics.

  10. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Islam, S. M. Z. [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458 (United States); Department of Electrical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Gayen, Taposh [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458 (United States); Tint, Naing; Alfano, Robert, E-mail: ralfano@sci.ccny.cuny.edu [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Electrical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Shi, Lingyan [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Biomedical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Seredych, Mykola; Bandosz, Teresa J. [Department of Chemistry, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States)

    2014-11-07

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm{sup 2}) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm{sup 2}) is found to be superlinear, showing a relation of I = P{sup n}, where n = 1.4.

  11. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    Science.gov (United States)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.; Alfano, Robert

    2014-11-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ˜10.60% under a tungsten lamp (12.1 mW/cm2) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm2) is found to be superlinear, showing a relation of I = Pn, where n = 1.4.

  12. A new switching characteristics of highly doped multi-quantum well

    CERN Document Server

    Song, C K

    1999-01-01

    A new type of hysteretic current-voltage characteristics, which switched from a low conductance off-state into a high conductance on-state at a threshold voltage and the high conductance state was sustained even when the bias voltage reduced below the threshold voltage, was experimentally observed for the highly doped multi-quantum well structure. The characteristics were attributed to confinement of electrons and impact ionization of the confined electrons out of the quantum wells. The test devices employing 10 periods of quantum wells were fabricated by using AlGaAs/GaAs semiconductor heterostructure and I-V characteristics were examined.

  13. An accurate simulation study on capacitance-voltage characteristics of metal-oxide-semiconductor field-effect transistors in novel structures

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae; Park, Byung-Gook

    2017-09-01

    An essential and important method for physical and electrical characterization of a metal-oxide-semiconductor (MOS) structure is the capacitance-voltage (C-V) measurement. Judging from the C-V characteristics of a MOS structure, we are allowed to predict the DC and AC behaviors of the field-effect transistor and extract a set of primary parameters. The MOS field-effect transistor (MOSFET) technology has evolved to enhance the gate controllability over the channel in order for effectively suppressing the short-channel effects (SCEs) unwantedly taking place as device scaling progresses. For the goal, numerous novel structures have been suggested for the advanced MOSFET devices. However, the C-V characteristics of such novel MOS structures have not been seldom studied in depth. In this work, we report the C-V characteristics of ultra-thin-body (UTB) MOSFETs on the bulk Si and silicon-on-insulator (SOI) substrates by rigorous technology computer-aided design (TCAD) simulation. For higher credibility and accuracy, quantum-mechanical models are activated and empirical material parameters are employed from the existing literature. The MOSFET structure and the material configurations are schemed referring advanced logic technology suggested by the most recent technology roadmap. The C-V characteristics of UTB MOSFETs having a floating body with extremely small volume are closely investigated.

  14. Harmonic Transfer Characteristic of Capacitor Voltage Transformer%电容式电压互感器的谐波传递特性研究

    Institute of Scientific and Technical Information of China (English)

    郜洪亮; 李琼林; 余晓鹏; 张振安; 代双寅; 刘书铭

    2013-01-01

    Synthetically considering the impacts of such factors as stray capacitance and so on, an equivalent circuit model of harmonic transfer characteristic of capacitor voltage transformer (CVT) is established, based on this model and in the manner of stepwise calculating equivalent impedances and transfer functions of different orders in the established model, the harmonic transfer characteristic of CVT is calculated and analyzed in depth. Based on Matlab/Simulink the simulative verification of the harmonic transfer characteristic of CVT is performed, and based on actual CVT the practical physical experiment and research on the harmonic transfer characteristic of CVT and the measuring error are carried out, and there is a better consistency between results from experiments and simulative analysis. It is found out that not only the working point deviation of series resonant circuit is the factor impacting the harmonic transfer characteristic of CVT, but also the stray capacitance at primary side of the intermediate transformer and the stray capacitance of compensation reactor greatly affect the harmonic transfer characteristic of CVT, and they make the amplitude-versus-frequency curve of the transfer function appearing spike effect and valley effect and lead to a larger measuring error.%针对电容式电压互感器(capacitor voltage transformer, CVT)的谐波传递特性,综合考虑杂散电容等因素影响,建立等效电路模型,采用逐级计算各级等效阻抗和传递函数的方法,对 CVT 谐波传递特性进行深入计算和分析。基于Matlab/Simulink仿真工具对CVT谐波传递特性开展了仿真验证,并针对实际CVT开展了CVT谐波传递特性和测量误差的实际物理试验研究,试验结果与仿真分析结果具有较好的一致性。发现影响 CVT 谐波传递特性的因素不仅是 LC 串联谐振回路额定工作点的偏移,中间变压器一次侧和补偿电抗器的杂散电容对CVT谐波传递特

  15. Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Trezza, M.; Cirillo, C.; Sabatino, P.; Carapella, G.; Attanasio, C. [CNR-SPIN Salerno and Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, Fisciano I-84084 (Italy); Prischepa, S. L. [Belarusian State University of Informatics and Radioelectronics, P. Browka 6, Minsk 220013 (Belarus)

    2013-12-16

    We report on the transport properties of an array of N∼30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H, which can be both consistently described by quantum tunneling of phase slips.

  16. 云南山地风电场电压不均衡特性研究%Research on Characteristics of Voltage Unbalanced in Yunnan Mountain Wind Farm

    Institute of Scientific and Technical Information of China (English)

    刘凤馨; 王兴刚

    2015-01-01

    介绍云南省风电场多位于山区,风机分布不规则,沿山势走向呈长条状分布,集电线路长且各台风机出力不均匀,容易导致风电场内部出现电压越限的情况。根据云南山地风电场的特征建立了典型模型,研究山地风电场内部电压不均衡情况,并且验证了在大规模电力系统仿真计算中采用的风电场一般等值模型的适用性。%Wind farm in Yunnan province is located in the mountains, the wind machine irregular distribution, to form a long strip shape distribution along the mountains. Wind farm collecting circuit is long and every wind generator output is not uniform, easy to cause the wind farm voltage exceed the limit. This paper established the typical model according to the characteristics of Yunnan mountain wind farm, studied the mountain wind farm voltage imbalance, and validated the applicability of wind farm equivalent model used in the ordinary in large-scale power system simulation.

  17. Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;

    2015-01-01

    Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring......-of-system components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...... for monitoring single or independent PV strings, and is based on evaluating the ratio of certain operation points on the string I-V curve. The second method is applicable to PV systems with identical strings, and is based on monitoring and inter-comparison of string I-V curve parameters. For PV systems with non...

  18. Electrodynamic stabilization conditions for high-temperature superconducting composites with different types of current-voltage characteristic nonlinearity

    Science.gov (United States)

    Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.

    2014-06-01

    The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.

  19. Annealing effects on capacitance-voltage characteristics of a-Si/SiN(x) multilayer prepared using hot-wire chemical vapour deposition.

    Science.gov (United States)

    Panchal, A K; Rai, D K; Solanki, C S

    2011-04-01

    Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.

  20. Characteristics of gambling and problematic gambling in the Norwegian context: a DSM-IV-based telephone interview study.

    Science.gov (United States)

    Götestam, K Gunnar; Johansson, Agneta

    2003-01-01

    The gaming business has increased considerably during the past years, and there are also some indications that the prevalence of pathological gambling has also increased. As it is important to know the problem size and character, an epidemiological study was performed in a representative sample of the Norwegian population (N = 2014; response rate 47.8%). The proportion that never gambled was 31.2%, and a majority (47.2%) gambled sometimes, while 21.0% gambled often. Men (25.5%) gambled more often than women (17.7%). Lotto was the most popular game with 76.0%, followed by football tip (10.8%), slot machines (5.1%), and lotteries (4.9%). For some types of plays, there was a discrepancy between rank for playing, and for problematic playing. Slot machines gave higher problematic playing rank. The mean prevalence of problematic gambling (pathological gambling plus at-risk gambling) was 0.60%, with higher prevalence for those younger and for men. Men 18-30 had a very high prevalence (2.83), compared to men over 30 (0.28%) and females 18-30 (0.84) and over 30 (0.12%). The total problematic gambling frequency was 1.97% for 18-30 years, and 0.1% over 30. There are no problematic gamblers over 50 in the material. The DSM-IV with its only 10 questions gives a conservative estimate of pathological gambling. There were significant correlations between degree of gambling and some established risk factors.

  1. Irreversibility in room temperature current-voltage characteristics of NiFe2O4 nanoparticles: A signature of electrical memory effect

    Science.gov (United States)

    Dey, P.; Debnath, Rajesh; Singh, Swati; Mandal, S. K.; Roy, J. N.

    2017-01-01

    Room temperature I-V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe2O4 nanoparticles, having different particle size (V~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. "Hysteretic" nature of I-V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe2O4 nanoparticles having V=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe2O4 nanoparticles, having small nanoscopic particle size.

  2. Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Raghvendra K Pandey

    2015-08-01

    Full Text Available The paper describes the properties and potential applications of a novel hybrid varistor device originating from biased voltage induced modified nonlinear current-voltage (I-V characteristics. Single crystal of an oxide semiconductor in the family of iron-titanates with the chemical formula of Fe2TiO5 (pseudobrookite has been used as substrate for the varistor. The modifications of the varistor characteristics are achieved by superimposition of a bias voltage in the current path of the varistor. These altered I-V characteristics, when analyzed, reveal the existence of embedded transistors coexisting with the varistor. These transistors exhibit mutual conductance, signal amplification and electronic switching which are the defining signatures of a typical transistor. The tuned varistors also acquire the properties of signal amplification and mutual conductance which expand the range of applications for a varistor beyond its traditional use as circuit protector. Both tuned varistors and the embedded transistors have attributes which make them suitable for many applications in electronics including at high temperatures and for radiation dominated environments such as space.

  3. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  4. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  5. 阻尼振荡波电压和工频电压下XLPE电缆局部放电特性的对比研究%Comparative Study on Partial Discharge Characteristics of XLPE Cable under Damped Oscillating Wave Voltage and AC Voltage

    Institute of Scientific and Technical Information of China (English)

    薛荣; 张龙; 黄志伟; 张伟; 李洪杰

    2015-01-01

    The partial discharge characteristics of four defects in heat-shrinkable cable accessories, which were termination without stress tube, incorrect use of insulation tape as semi-conductive adhesive tape in the middle joint, void and metal particles on the surface of XLPE insulation, were studied by AC volt-age method and damped oscillating wave voltage method. The partial discharge inception voltage and pat-terns under damped oscillating wave voltage and AC voltage were compared. The results show that the two methods are consistent in the study of partial discharge characteristics, and there are obvious differ-ences in the partial discharge statistical characteristics of various defects.%采用工频电压法和阻尼振荡波电压法研究热缩式电缆附件在4种缺陷情况下的局部放电特性,对比分析两种电压情况下的局部放电起始电压和局放模式。结果表明:两种方法在局部放电特性研究中具有一致性,各种缺陷的局部放电统计特征具有较为明显的差异。

  6. Analysis of the Relationship Between Dynamic Load Characteristics and Voltage Stability%浅析负荷动态特性与电压稳定性的关系

    Institute of Scientific and Technical Information of China (English)

    廖青华; 张锐

    2011-01-01

    阐述了电压稳定的定义与电压失稳机理,对电压稳定与负荷动态特性的关系进行了定性分析,强调了负荷动态特性在电压稳定分析中的重要作用,指出了目前用于电压稳定分析的动态负荷模型存在的问题,说明建立恰当的动态负荷模型是确保电压稳定分析准确性的关键。%Definition of voltage stability and mechanics of voltage collapse are presented. The relationship between voltage stability and Dynamic Load Characteristics is qualitatively analyzed. The importance of Dynamic Load Characteristics in voltage stability analysis is emphasized. The problems of Dynamic Load model in voltage stability analysis at present are pointed out. Appropriate modeling of Dynamic Load is crucial in accurate voltage stability analysis.

  7. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study.

    Science.gov (United States)

    Popovic, Marko A; Foust, Amanda J; McCormick, David A; Zecevic, Dejan

    2011-09-01

    The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.

  8. I-V measurements of Ge-Se-Sn chalcogenide glassy alloys

    Directory of Open Access Journals (Sweden)

    Vandana Kumari

    2015-03-01

    Full Text Available Current-voltage characteristics and DC electrical conductivity were studied for Ge30-xSe70Snx (x = 8, 11, 14, 17 and 20 glassy thin pellets of diameter 12 mm and thickness 1 mm prepared under a constant load of 5 tons using a well-known melt quenching technique in bulk as a function of composition. The I-V characteristics were recorded at room temperature as well as elevated temperatures up to 300 °C. The experimental data suggests that glass containing 20 at.% of Sn has the minimum resistance allowing maximum current through the sample as compared to other counterparts of the series. Therefore, DC conductivity is found to increase with increasing Sn concentration. Composition dependence of DC conductivity is discussed in terms of the bonding between Se and Sn. Plots between ln I and V1/2 provide linear relationship for both low and high voltage range. These results have been explained through the Pool-Frenkel mechanism. The I-V characteristics show ohmic behaviour in the low voltage range and this behaviour turns to non-ohmic from ohmic in the higher voltage range due to voltage induced temperature effects.

  9. Light regulated I-V hysteresis loop of Ag/BiFeO3/FTO thin film

    Science.gov (United States)

    Wei, Lujun; Sun, Bai; Zhao, Wenxi; Li, Hongwei; Chen, Peng

    2017-01-01

    A hysteresis loop of current-voltage characteristics based multiferroic BiFeO3 nanoribbons memory device is observed. Moreover, the white-light can greatly regulate both the current-voltage hysteresis loop and the ferroelectric hysteresis loop. The stored space charges within the electrodes/BiFeO3 interface can lead to hysteresis-type I-V characteristics of Ag/BiFeO3/FTO devices. The white-light controlled I-V loop and ferroelectric loop result from photon-generated carries. Since the I-V hysteresis loop and ferroelectric hysteresis loop have a potential application prospect to the memory devices, these two white-light controlled the hysteresis loops curves are likely to provide promising opportunity for developing the multi-functional memory devices.

  10. A change of in vivo characteristics depending on specific activity of radioiodinated (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-pIV] as a ligand for sigma receptor imaging.

    Science.gov (United States)

    Akhter, Nasima; Shiba, Kazuhiro; Ogawa, Kazuma; Tsuji, Shiro; Kinuya, Seigo; Nakajima, Kenichi; Mori, Hirofumi

    2008-01-01

    The radioiodinated (+)-p-iodovesamicol [(+)-pIV], which shows a high binding affinity for sigma-1 (sigma-1) receptors, is prepared by an exchange reaction. The specific activity (SA) is fairly low and therefore is insufficient for clinical use. In this study, we prepared (+)-[(125)I]pIV with a high SA from tributylstannyl precursor and compared the in vivo characteristics between high and low SA by imaging sigma-1 receptors in the central nervous system. In the biodistribution study, a difference in brain accumulation was observed between the two methods. At 30 min postinjection, the brain accumulation (1.58%ID/g) of low SA [0.6-1.1 TBq/mmol (16-30 Ci/mmol)] (+)-[(125)I]pIV was higher than that (1.34%ID/g) of high SA [>88.8 TBq/mmol (>2400 Ci/mmol)] (+)-[(125)I]pIV. In the blocking study, the brain uptake of high SA (+)-[(125)I]pIV was reduced more significantly by the coadministration of sigma ligands such as pentazocine, haloperidol or SA4503 than that of low SA (+)-[(125)I]pIV. These results showed that nonspecific binding of high SA (+)-[(125)I]pIV in the brain was lower than that of low SA (+)-[(125)I]pIV, and high SA (+)-[(125)I]pIV bound more specifically to sigma-1 receptors in the brain than low SA (+)-[(125)I]pIV. In contrast, in the blood-binding study, high SA (+)-[(125)I]pIV (58.4%) bound to blood cells with higher affinity than low SA (+)-[(125)I]pIV (46.0%). In metabolite studies, blood metabolites of high SA (+)-[(125)I]pIV (57.3+/-3.5%) were higher than those of low SA (+)-[(125)I]pIV (45.5+/-4.1%) at 30 min postinjection. Higher SA may be apt to bind to blood cells with higher affinity and to be metabolized faster.

  11. A change of in vivo characteristics depending on specific activity of radioiodinated (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-pIV] as a ligand for sigma receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima [Department of Biotracer Medicine, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan); Shiba, Kazuhiro [Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan)], E-mail: shiba@med.kanazawa-u.ac.jp; Ogawa, Kazuma [Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan); Tsuji, Shiro [School of Health Sciences, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan); Kinuya, Seigo; Nakajima, Kenichi [Department of Biotracer Medicine, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan); Mori, Hirofumi [Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Ishikawa (Japan)

    2008-01-15

    The radioiodinated (+)-p-iodovesamicol [(+)-pIV], which shows a high binding affinity for sigma-1 ({sigma}-1) receptors, is prepared by an exchange reaction. The specific activity (SA) is fairly low and therefore is insufficient for clinical use. In this study, we prepared (+)-[{sup 125}I]pIV with a high SA from tributylstannyl precursor and compared the in vivo characteristics between high and low SA by imaging {sigma}-1 receptors in the central nervous system. In the biodistribution study, a difference in brain accumulation was observed between the two methods. At 30 min postinjection, the brain accumulation (1.58%ID/g) of low SA [0.6-1.1 TBq/mmol (16-30 Ci/mmol)] (+)-[{sup 125}I]pIV was higher than that (1.34%ID/g) of high SA [>88.8 TBq/mmol (>2400 Ci/mmol)] (+)-[{sup 125}I]pIV. In the blocking study, the brain uptake of high SA (+)-[{sup 125}I]pIV was reduced more significantly by the coadministration of sigma ligands such as pentazocine, haloperidol or SA4503 than that of low SA (+)-[{sup 125}I]pIV. These results showed that nonspecific binding of high SA (+)-[{sup 125}I]pIV in the brain was lower than that of low SA (+)-[{sup 125}I]pIV, and high SA (+)-[{sup 125}I]pIV bound more specifically to {sigma}-1 receptors in the brain than low SA (+)-[{sup 125}I]pIV. In contrast, in the blood-binding study, high SA (+)-[{sup 125}I]pIV (58.4%) bound to blood cells with higher affinity than low SA (+)-[{sup 125}I]pIV (46.0%). In metabolite studies, blood metabolites of high SA (+)-[{sup 125}I]pIV (57.3{+-}3.5%) were higher than those of low SA (+)-[{sup 125}I]pIV (45.5{+-}4.1%) at 30 min postinjection. Higher SA may be apt to bind to blood cells with higher affinity and to be metabolized faster.

  12. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  13. Interplanetary Type IV Bursts

    CERN Document Server

    Hillaris, Alexander; Nindos, Alexander

    2016-01-01

    In this work we study the characteristics of moving type IV radio bursts which extend to the hectometric wavelengths (interplanetary type IV or type IV IP bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprised 48 Interplanetary type IV bursts observed by the Wind/WAVES in the 13.825 MHz?20 KHz frequency range. The dynamic spec tra of the RSTN, DAM, ARTEMIS-IV, CULGOORA, Hiraiso and IZMIRAN Radio-spectrographs were used to track the evolution of the events in the low corona; these were supplemented with SXR ?ux recordings from GOES and CME data from LASCO. Positional information for the coronal bursts were obtained by the Nan\\c{c}ay radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs and SXR ?ares. The majority of the events (45) were characterized as compact; their duration was on average 106 min. This type of events were, mostly, associated with M and X class ?ares (40 out of 45) and fast CMEs; 32 of these events had CME...

  14. Study of current-voltage characteristics of ferromagnetic α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide under magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vijayasri, G., E-mail: vsvijiguna.physics@gmail.com; Bhowmik, R. N. [Department of Physics, Pondicherry University, R..Venkataraman Nagar, Kalapet, Puducherry – 605 014 (India)

    2015-06-24

    We report the influence of magnetic field on I-V characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} sample. Synchrotron X-ray diffraction pattern and Raman Spectroscopy have confirmed rhombohedral structure with space group R3C in the sample. The sample exhibits ferromagnetic feature at room temperature and non saturation of magnetization up to 7Tesla suggests the effect of non-collinear structure (canting) of the spins on the ferromagnetic properties. We have recorded I-V characteristics of the sample under magnetic field to study the effect of non-collinear spin structure on the electrical properties. Space charge limited current mechanism controlled the nature of non-linear I-V curves and the curves are significantly affected by magnetic field.

  15. The current-voltage characteristics of polymer/C60 diodes in the dark: A direct way to assess photovoltaic devices efficiency parameters

    Science.gov (United States)

    Koehler, M.; Yamamoto, N. A. D.; Macedo, A. G.; Grodniski, D. Z.; Roman, L. S.; da Luz, M. G. E.

    2013-07-01

    A general description of dark transport properties in bi-layer organic photovoltaic devices formed by a heterojunction of a semiconducting co-polymer and fullerene (C60) is presented. The copolymers are composed of thiophene, phenylene, and fluorene units, where the thiophene content is kept constant while the fluorene/phenylene ratio is varied. Measurements show that the j × V characteristics display typical diode behavior (exponential increasing) at low and are space-charge limited at high voltages. Extending a theoretical analysis by Koehler et al. [J. Appl. Phys. 92, 5575 (2002)], a model which assumes a space-charge dependent inner series resistance—attributed to molecular and morphological aspects of the materials—is proposed. It turns out to be general and able to nicely fit the experimental curves for all the studied samples. Furthermore, the model quantifies relevant parameters (the effective mobility and the diode reverse saturation current j0) which will determine the systems efficiency. The framework hence allows to foremost the devices functioning under illumination from direct experiments of the active material in the dark.

  16. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  17. Verification of a thermal interpretation of BSCCO-2223/Ag current voltage hysteresis

    Science.gov (United States)

    Sastry, P. V. P. S. S.; Nguyen, D. N.; Usak, P.; Schwartz, J.

    2004-03-01

    The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN2) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN2 temperature with and without a thermal insulation sheet upon the tape during ramping up over Ic and ramping down back under Ic. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm-1. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.

  18. Verification of a thermal interpretation of BSCCO-2223/Ag current-voltage hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P V P S S [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Nguyen, D N [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Usak, P [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Sk84239 (Slovakia); Schwartz, J [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States)

    2004-03-01

    The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN{sub 2}) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN{sub 2} temperature with and without a thermal insulation sheet upon the tape during ramping up over I{sub c} and ramping down back under I{sub c}. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm{sup -1}. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.

  19. Synthesis mechanism of low-voltage praseodymium oxide doped zinc oxide varistor ceramics prepared through modified citrate gel coating.

    Science.gov (United States)

    Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

  20. Studies of the Effect of Load Static Characteristics on Node Static Voltage Stability%负荷静态特性对节点静态电压稳定性影响规律的分析

    Institute of Scientific and Technical Information of China (English)

    傅旭; 付翀丽; 黄明良

    2015-01-01

    The effect of ZIP load characteristics on node static voltage stability is analyzed in detail. It is pointed out that the constant power component in ZIP load determines the degree of static voltage stability of the node. A new index for voltage stability based on locally measurable quantities considering the load static characteristics is presented. A simple calculation method for calculating the Thevenin equivalent parameter is provided. The proposed index is tested on IEEE 57-bus systems, and the simulation results indicate that this index can correctly reflect the effect of load static characteristics on node voltage stability, and the calculation of the Thevenin equivalent parameter is simple, thus it is suitable for the on-line monitoring of static voltage stability.%详细分析ZIP负荷特性对节点静态电压稳定性的影响规律,指出ZIP负荷中的恒定功率分量决定了该节点的静态电压稳定程度,提出一种基于局部测量的计及负荷静态特性的电压稳定指标,并给出一种简单的计算节点戴维南等值参数的计算方法。IEEE 57节点仿真表明所提指标可以很好地考虑负荷静态特性对节点电压稳定性的影响,并且戴维南等值参数计算简单,适合于静态电压稳定的在线监控。

  1. Modelling of current-voltage characteristics of infrared photo-detectors based on type – II InAs/GaSb super-lattice diodes with unipolar blocking layers

    Directory of Open Access Journals (Sweden)

    Vishnu Gopal

    2015-09-01

    Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.

  2. Diagnostics of defects in AlGaN/GaN high electron mobility transitor (HEMT) epi-layers via spectroscopic photo current-voltage (IV) measurements with variable-wavelength ultraviolet (UV) and visible light excitation

    Science.gov (United States)

    Khanal, Min P.; Ozden, Burcu; Mirkhani, Vahid; Yapabandara, Kosala; Shehzad Sultan, Muhammad; Park, Minseo; Shen, Li

    The reliability and performance of the nitride high electron mobility transistors (HEMTs) have been plagued by deleterious phenomena such as current collapse which is believed to be produced by electrically-active deep-level defects (or traps) that reside at the surface/interfaces and in the bulk of the AlGaN/GaN HEMT layers. Therefore, identification of their physical/spectral locations and understanding the nature of defects is very important to improve the reliability of AlGaN/GaN HEMTs. In this work, deep-level defects and traps located in the AlGaN/GaN HEMT epi-layers were investigated by using spectroscopic photo IV measurements. An array of Schottky contacts was constructed on the HEMT layer produced by metal-organic chemical vapor deposition (MOCVD). The photo IV measurement was performed by collecting the photo current generated by the variable-wavelength UV/visible light illumination. It was successfully demonstrated that this technique can provide the information on the distribution of electrically-active defects along the in-depth direction and across the HEMT wafers. Therefore, it can be concluded that the spectroscopic measurements can be useful to assess the uniformity of defect distribution both along the in-depth direction and across the AlGaN/GaN wafers. Corresponding author.

  3. Interplanetary Type IV Bursts

    Science.gov (United States)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  4. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  5. Unlikely Combination of Experiments With a Novel High-Voltage CIGS Photovoltaic Array: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Sekulic, B. R.

    2006-05-01

    A new high-voltage array comprising bipolar strings of copper indium gallium diselenide (CIGS) photovoltaic (PV) modules was inaugurated in 2005. It is equipped with a unique combination of tests, which likely have never before been deployed simultaneously within a single array: full current-voltage (I-V) traces, high-voltage leakage current measurements, and peak-power tracking or temporal stepped-bias profiling. The array nominally produces 1 kW power at 1 sun. The array's electrical characteristics are continuously monitored and controlled with a programmable electronic load interfaced to a data acquisition system (DAS), that also records solar and meteorological data. The modules are mounted with their frames electrically isolated from earth ground, in order to facilitate measurement of the leakage currents that arise between the high voltage bias developed in the series-connected cells and modules and their mounting frames. Because the DAS can perform stepped biasing of the array as a function of time, synchronous detection of the leakage current data with alternating bias is available. Leakage current data and their dependence on temperature and voltage are investigated. Array power data are analyzed across a wide range of varying illuminations and temperatures from the I-V traces. Array performance is also analyzed from an energy output perspective using peak-power tracking data.

  6. Two-phase characteristics of the feeding fluid of Cerro Prieto IV wells (Mexico) obtained by gas equilibrium; Caracteristicas bifasicas del fluido de alimentacion de pozos de Cerro Prieto IV (Mexico), obtenidas por equilibrio gaseoso

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Reyes, Rosa Maria; Arellano-Gomez, Victor Manuel; Portugal-Marin, Enrique [Instituto de Investigaciones Electricas (Mexico); De Leon-Vivar, Jesus [Comision Federal de Electricidad, Residencia General de Cerro Prieto, B.C (Mexico)

    2008-10-15

    The gas composition of fluids produced by CP IV geothermal wells from the Cerro Prieto field was studied in order to identify different types of fluids entering the wells by estimating their temperature and excess steam. A method based on the Fischer Tropsch reaction and H2S equilibrium with pyrite-pyrrhotite as mineral buffer (FTHSH3) was used. The results for the reservoir natural state indicated the presence of fluids with heterogeneous reservoir temperature (between 275 and 310 degrees Celsius) and excess steam values, which were found from negative (boiled liquid that has lost steam when flowing to the well) to one (steam phase with zero liquid saturation). The study for individual wells in which boiling processes were identified, showed that through time, the feeding fluids consist of a two-phase mixture with different liquid/steam proportions. Also, the results suggested that a steam phase could occur at CP IV which is added to the feeding fluid, depending on the operation conditions of the wells. The origin of this steam could be the boiling of the deeper liquid due to a pressure drop. [Spanish] Se estudio la composicion gaseosa de los fluidos producidos por pozos geotermicos del sector CP IV del campo de Cerro Prieto para tratar de distinguir aportes de fluidos diferentes mediante la estimacion de su temperatura de yacimiento y del exceso de vapor. Se utilizo un metodo de equilibrio gaseoso basado en la reaccion de Fischer Tropsch y el equilibrio combinado pirita-pirrotita (FT-HSH3). Los resultados obtenidos indican que en el estado inicial del yacimiento existen fluidos que muestran heterogeneidad en los valores de temperatura de yacimiento (entre 275 y 310 grados Celsius), asi como en el exceso de vapor con valores desde negativos (liquido que despues de ebullir ha perdido vapor en su trayecto hacia el pozo) hasta uno (vapor con cero saturacion de liquido). El estudio individual de los pozos con fenomenos de ebullicion muestra que a traves del tiempo

  7. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    Science.gov (United States)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  8. Influence of Photovoltaic Micro-Source Characteristics on Voltage Stability of the Series Micro-Grid%光伏微源特性对串联型微网电压稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    杨维满; 王兴贵

    2013-01-01

    The influences of photovoltaic micro-source characteristics on voltage stability of the series micro-grids (SMGs), whose inverters are connected in series, are analyzed. Firstly the system architecture of SMGs is analyzed; then a photovoltaic array model under complex environment is established and the relations between output voltage of SMGs and micro-source dc link voltages are discussed; finally the influencing mechanism of micro-source characteristics on output voltage of SMGs is analyzed in detail, and a voltage stability control strategy of SMGs based on hybrid energy storage is researched. The validity of the proposed control strategy is verified by results of simulation and experiments.%针对微源逆变器串联连接的微网系统,分析了光伏微源特性对串联型微网(series micro-grids,SMGs)系统电压稳定性的影响。首先分析了系统结构;其次建立了复杂环境条件下光伏阵列模型,讨论了各微源直流链电压与系统输出电压之间的关系;最后分析了微源特性对 SMGs 输出电压的影响机理,并研究了基于混合储能的稳定性控制策略。算例结果验证了该控制策略的有效性。

  9. FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions

    Science.gov (United States)

    Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani

    2017-01-01

    Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.

  10. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  11. 宁夏嘉泽风电场低电压穿越特性仿真分析%Simulation analysis of low voltage through characteristic for Ningxia Jiaze Wind Farm

    Institute of Scientific and Technical Information of China (English)

    杨雪红

    2014-01-01

    通过电力系统全数字仿真装置(Advanced Digital Power System Simulator,ADPSS)对嘉泽风电场建立仿真模型,采用单台风电机代替同型号风电场风电机组的方法,获得不同运行方式下风电场最低电压及风电场内各风电机组机端电压,以验证整个风电场的低电压穿越能力。结果表明:在不同运行工况下,嘉泽风电场具备低电压穿越特性,符合国家标准要求。%By Advanced Digital Power System Simulator (ADPSS) makes simulation modeling of Jiaze Wind Farm,using single wind-driven generator to substitute for the same type wind-driven generators of wind farm,acquires the lowest voltage of the wind farm under different operation mode and each wind-driven generator’s port voltage in wind farm,verifies the low voltage through capability of whole wind farm. The result shows that under the different operation mode,Jiaze Wind Farm owns low voltage through characteristic and accords with the requirements of national standard.

  12. Prediction of Supersonic Store Separation Characteristics Including Fuselage and Stores of Noncircular Cross Section, Volume IV. Appendices C and D, Details of Program II.

    Science.gov (United States)

    1980-11-01

    VOLUME IV - APPENDICES C AND D, DETAILS OF PROGRAM II Joseph Mullen, Jr. Frederick K. Goodwin Marnix F. E. Dillenius Nielsen Engineering & Research...location in store source panel coordinates of leading edge of wing, feet RAZ semi-axis in vertical direction of elliptic body, feet RBY semi-axis in

  13. Voltage Characteristic of Power System Based on Centralized Grid with Wind Power%集中式风电并网的电力系统电压特性研究

    Institute of Scientific and Technical Information of China (English)

    尤毅; 陈炯聪; 余南华

    2014-01-01

    Aiming at problems of impact on stable voltage of power system after grid connecting with wind power,working principle,each part of model and output characteristic of wind power generating unit on the basis of doubly-fed induction generator was introduced and relevant model was established in simulation software.By means of simulation,steady state output characteristic of the wind power generating unit was verified and power system voltage was studied.Grid-connected wind power system and impact on system voltage characteristic by different load configuration was simulated.Meanwhile, system working curve was analyzed.Combining with practical working conditions,running trajectory of system voltage was explained.In addition,voltage stability characteristics of the wind power generating system were stated in aspects of fault position and dynamic load working mechanism.%针对风电并网后给电力系统电压稳定方面带来影响的问题,介绍了以双馈感应发电机为基础的风力发电机组工作原理、各部分模型及输出特性,并在仿真软件中搭建模型,通过仿真验证风力发电机组的稳态输出特性,研究接入风电的电力系统电压现象,通过搭建仿真算例模拟了风电并网系统在不同负荷配置方式下对系统电压特性的影响,对系统的工作曲线进行了分析,并结合实际工况对系统电压的运行轨迹做了解释,从故障位置、动态负荷工作机理等方面对风机系统的电压稳定特点进行阐述。

  14. Local I-V characteristics of high-k ultra-thin ZrO{sub 2}- and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}-films.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Dominik; Grube, Matthias; Erben, Elke; Schroeder, Uwe; Weber, Walter [namlab Gmbh, D-01187 Dresden (Germany); Mueller, Johannes; Weinreich, Wenke [Fraunhofer-CNT, D-01099 Dresden (Germany); Geelhaar, Lutz; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, D-10117 Berlin (Germany); Mikolajick, Thomas [namlab Gmbh, D-01187 Dresden (Germany); Chair of Nanoelectronic Materials, 01062 Dresden (Germany)

    2011-07-01

    In order to produce ultra thin ZrO{sub 2}-films, with a dielectric constant high enough to satisfy industry demands, it is necessary to reach the tetragonal crystalline phase. This can be achieved either by high temperature deposition or by a post deposition annealing step. Both however induce high leakage currents. Small amounts of Al{sub 2}O{sub 3} can be incorporated in ZrO{sub 2} to reduce leakage current. To get more insight into the charge carrier transport mechanisms involved, a thickness series of ultra thin ZrO{sub 2}- and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}-films were deposited by ALD and subjected to different rapid thermal annealing processes. These layers were examined by GI-XRD, TEM, I-V-, C-V-Spectroscopy and conductive atomic force microscopy. Thus, leakage currents are reduced to 3.2.10{sup -8}(A)/(cm{sup 2}) at 1 V while maintaining the high k value (CET=1 nm at 1 V for a 10 nm film). CAFM studies demonstrate how the crystallization effects the charge transport mechanisms on the mesoscopic scale. Local I-V curves acquired on amorphous films and at grain boundaries in nanocrystalline films in yield lower breakdown voltages and higher leakage currents at crystallite grain boundaries.

  15. 智能电网下低压电力线通信的特性研究%Study on Communication Characteristic of Low Voltage Electric Power Lines in Smart Grid

    Institute of Scientific and Technical Information of China (English)

    邵昱; 李晨; 王超; 王珏; 闫帅榜

    2014-01-01

    提出智能电网环境下的通信方式,并说明低压电力线通信的优点。研究分析了低压电力线通信的时变性、深衰减、多径性、电磁干扰等特点。在分析电力载波通信(power line communication,PLC)原理及特点的基础上,提出利用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术来提高系统的传输性能。对智能电网环境下低压电力线通信技术的应用进行展望,并列举低压电力线通信在超远程抄表、网络连接等方面的应用。%This paper proposes a kind of communication way under the background of smart grid and explains merits of low voltage electric power line communication.It studies and analyzes time-varying characteristic,deep attenuation,multipath characteristic and electromagnetic interference of low voltage electric power line communication.On the basis of analyzing power line communication principles and features,it proposes to use orthogonal frequency division multiplexing technology to improve transmission performance of the system.In addition,it looks into distance application of low voltage electric power line communication technology under the background of smart grid and enumerates application cases of low voltage e-lectric power line communication in extra long distance meter reading,network connection,and so on.

  16. Effects of substrate voltage on noise characteristics and hole lifetime in SOI metal-oxide-semiconductor field-effect transistor photon detector.

    Science.gov (United States)

    Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi

    2014-09-08

    Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.

  17. Preparation of n-ZnO/p-CuO Coaxial Nanocable Heterojunction and Its I-V Characteristic%n-ZnO/p-CuO同轴纳米线异质结的制备及其I-V特性

    Institute of Scientific and Technical Information of China (English)

    彭伟; 李金钗

    2013-01-01

    n-ZnO/p-CuO coaxial nanocable heterojunctions were fabricated b' a t (o)-step method.The ZnO nanowires were first synthesized on silicon(100) substrates via a thermal vapor deposition route.Then the CuO shells with uniform,intensive and ultrafine CuO nanoparticles were prepared on the surfaces of ZnO nanowires using the ion beam sputtering technology combining thermal oxidation process.Scanning electron microscopy (SEM),X-ray diffraction (XRD),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy (HR-TEM) were used to study the morphology,composition and crystal structure of ZnO/CuO samples.The results indicate that the grown ZnO nanowires have Wurtzite single-crystalline structure and the CuO nanoshells display polycrystalline structure.The current-voltage (I-V) measurement based on the n-ZnO/p-CuO hetrojunctions showed an excellent typical semiconductor rectification characteristic.The n-ZnO/p-CuO coaxial nanocable heterojunctions,with large heterojunction area,large light illumination surface area and strong surface chemical activity,have promising applications in the fields of nano-rectifiers with high current density,solar cells,photosensitive devices and gas sensors.%采用热蒸发气相沉积法在Si(100)衬底上生长直径约为60~70 nm的氧化锌(ZnO)纳米线,迸一步运用离子束溅射技术和热氧化工艺在ZnO纳米线表面形成含有均匀密集分布的超细氧化铜(CuO)纳米颗粒的CuO壳层,构成n-ZnO(核芯)/p-CuO(壳层)同轴纳米线异质结.扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)用于研究样品的形貌、成分和晶体结构.实验结果表明,生长的ZnO纳米线呈纤锌矿单晶结构,CuO壳层为多晶结构.I-V曲线表明该同轴纳米线异质结构具有优良的二极管整流特性.这种具有大的异质结面积和高的比表面受光面积及强的表面化学活性的n-ZnO/p-CuO同轴纳

  18. Voltage-sharing Characteristics and Protection Value Setting of Modular Multilevel Converter at Static DC Charging State%MMC静态直流充电时电容均压特性研究和保护定值整定

    Institute of Scientific and Technical Information of China (English)

    李超; 唐志军; 林国栋; 邹焕雄; 翟博龙; 陈锦山

    2016-01-01

    A common problem in the static DC charging process of modular multilevel converter is voltage polarization.Some sub-modules”voltage sags even cause startup and shutdown repeatedly.In order to analyze the voltage-sharing characteristics of MMC,firstly,equivalent impedance of energy-absorbing source is introduced into the simulation model of sub-module;secondly,the mechanism of voltage polarization is studied based on the improved model;finally,a setting process of static DC charging tolerance time protection is proposed which can reduce the degree of voltage polarization.The static DC charging experiment and single tower test are conducted at Xiamen HVDC flexible transmission project and the results show consistence between simulation and experiment,which prove the feasibility of the improved simulation model of the sub-module,the mechanism analysis result of voltage polarization,the correction of static DC charging tolerance time protection value setting method.%模块化多电平换流器在静态直流充电时存在电容电压两极分化的问题,部分子模块甚至因电压跌落导致反复启动。先通过引入取能电源等效阻抗动态参数改进子模块等效模型,然后根据改进后模型仿真分析了电容电压两极分化的机理,最后在仿真基础上提出了静态直流充电耐受时间定值整定方法,通过优化保护定值降低电容电压两极分化程度。依托厦门柔性直流输电工程进行了静态直流充电和单个阀塔加压试验,试验结果与仿真结果基本一致,验证了所提子模块等效模型、电容电压两极分化机理分析和保护定值整定方法的正确性。

  19. Current-voltage characteristics with several threshold currents in insulating low-doped La1-xSrxMnO3 (x=0.10) thin films

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kun; FENG Jiafeng; HE Meng; L(U) Huibin; JIN Kuijuan; ZHOU Yueliang; YANG Guozhen3

    2008-01-01

    The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves at 120 K showed hysteresis with several threshold currents corresponding to the switching in resistance to metastable low resistance states, and finally, four closed loops were formed. A mode was proposed, which was based on the low-temperature canted antiferromagnetism ordering for a lightly doped insulating regime.

  20. Programable Driver for Voltage-Controlled Oscillators

    Science.gov (United States)

    Fowler, L. E.; Mcneil, J. A.

    1985-01-01

    Electronically programable read-only memory (EPROM) and digital-to-analog converter provide customized time-varying voltage for frequency modulation. Voltage used to modulate IMPATT oscillator that serves as microwave pump for solid-state maser in low-noise amplifier. EPROM simple to tailor voltage waveform to suit characteristics of given maser. Digital information for waveform programed into EPROM chip; digital-to-analog converter reads information and produces corresponding analog wave. Principle readily adapted to other applications.

  1. Impact of roll-over-shaped current–voltage characteristics and device properties of Ag(In,Ga)Se2 solar cells

    Science.gov (United States)

    Umehara, Takeshi; Nakada, Kazuyoshi; Yamada, Akira

    2017-01-01

    The roll-over shape often observed in the current–voltage curve of Ag(In,Ga)Se2 (AIGS) solar cells degrades the open circuit voltage (V OC) and particularly the fill factor (FF). The origin of the roll-over shape was investigated by experimental measurements and device simulation. By combining AC Hall measurement and the peel-off process, we estimated the AIGS hole concentration to be 2.2 × 1012 cm‑3. Theoretical simulation revealed that the roll-over shape is attributed to this low hole concentration. Under an applied forward bias, the band bending near the back contact of the AIGS layer forms an intrinsic semiconductor owing to the injected electrons, leading to the formation of an inverted diode. To solve this issue, the addition of NaF by the postdeposition treatment of the AIGS layer was performed. As a result, the hole concentration of the AIGS layer increased, significantly improving its V OC, FF, and conversion efficiency.

  2. Effects of SILAR cycle on the electrical characteristics of Cd/CdSe/n-Si/Au-Sb structure

    OpenAIRE

    2011-01-01

    Cd/CdSe/n-Si/Au-Sb structures have been fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method under various SILAR cycles. The characteristics parameters of these structures such as barrier height, ideality factor, series resistance are calculated from the current-voltage (I-V) measurements and the barrier height, carrier concentration are calculated from reverse bias capacitance-voltage (C-V) measurements at 300 kHz frequency and room temperature. Furthermore, t...

  3. A Deep Search for Faint Galaxies Associated with Very Low-Redshift C IV Absorbers: A Case with Cold-Accretion Characteristics

    CERN Document Server

    Burchett, Joseph N; Werk, Jessica K; Howk, J Christopher; Prochaska, J Xavier; Ford, Amanda Brady; Davé, Romeel

    2013-01-01

    Studies of QSO absorber-galaxy connections are often hindered by inadequate information on whether faint/dwarf galaxies are located near the QSO sight lines. To investigate the contribution of faint galaxies to QSO absorber populations, we are conducting a deep galaxy redshift survey near low-z C IV absorbers. Here we report a blindly-detected C IV absorption system (z(abs) = 0.00348) in the spectrum of PG1148+549 that appears to be associated either with an edge-on dwarf galaxy with an obvious disk (UGC 6894, z(gal) = 0.00283) at an impact parameter of rho = 190 kpc or with a very faint dwarf irregular galaxy at rho = 23 kpc, which is closer to the sightline but has a larger redshift difference (z(gal) = 0.00107, i.e., dv = 724 km/s). We consider various gas/galaxy associations, including infall and outflows. Based on current theoretical models, we conclude that the absorber is most likely tracing (1) the remnants of an outflow from a previous epoch, a so-called 'ancient outflow', or (2) intergalactic gas ac...

  4. [Fabrication of improved multi-slit equipment to obtain the input-output characteristics of computed radiography systems: correction of the heel effect, and application to high tube-voltage experiments].

    Science.gov (United States)

    Maehata, Itsumi; Hayashi, Hiroaki; Takegami, Kazuki; Ujita, Syohei; Kimoto, Natsumi; Konishi, Yuki; Fukuda, Ikuma

    2014-09-01

    Multi-slit equipment is a new experimental apparatus that can measure the input-output characteristics of a CR (computed radiography) system with limited influence of the fading effect. Kimoto et al. recently proposed a new type of multi-slit apparatus in which the multi-slit setup, the insertion region of the phosphor plate, and plate shielding are integrated to create a single handy-type item (an all-in-one type multi-slit apparatus). However, some problems remained unsolved. The aims of this study were to devise a setup for application to high tube voltage conditions, and to improve the all-in-one type multi-slit equipment so as to correct the heel effect. We examined the capabilities of our improved multi-slit equipment using diagnostic X-ray apparatus and found that it can obtain input-output characteristics with 5% accuracy for tube voltages of 40-140 kV and SID (source to image receptor distances) of 50-200 cm.

  5. Research on impedance characteristics of voltage regulator module in high-performance computer%高性能计算机中电压调节模块阻抗特性研究

    Institute of Scientific and Technical Information of China (English)

    姚信安; 宋飞; 胡世平

    2011-01-01

    To solve system instability caused by the interaction between individually designed power modules/sub-systems in high-performance computer, the input and output impedance characteristics of voltage regulator module for multi-core processor were thoroughly studied. The small-signal model and system block diagram of voltage regulator module were developed, and various transfer functions were presented. Then, the feedback compensator was designed, and the open-loop and closed-loop impedance characteristics were simulated and measured. The simulation and measurement results lay a foundation for the improvement of system stability.%针对高性能计算机中电源模块或子系统之间相互作用而导致的不稳定性问题,详细研究了多核处理器电压调节模块的输入输出阻抗特性.建立了电压调节模块的小信号模型和系统框图,求出了各种传递函数,设计了反馈补偿回路,并对开环和闭环阻抗特性进行了仿真和实际测量.仿真和测量结果为解决系统稳定性问题打下了基础.

  6. Negative-Resistance Characteristics Analysis of Poly-Silicon Resistors Formed on the Flow Sensor

    Institute of Scientific and Technical Information of China (English)

    Dianzhong Wen

    2006-01-01

    In this paper we put forward a new concept about effective trapping center concentration NeT which is decreasing with the trapped charge Q corresponding to index movement, based on that, we discuss the I-V and temperature characteristics of polysilicon resistors. The new concept presents ideal theoretical interpretion for the originally observed current-voltage negative-resistance characteristics of polysilicon resistors formed on the flow sensor, and also for poly-silicon film resistors.The final results agree well with the theoretical current-voltage characteristics.

  7. Capacitance-voltage and retention characteristics of Pt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness

    Science.gov (United States)

    Tang, M. H.; Sun, Z. H.; Zhou, Y. C.; Sugiyama, Y.; Ishiwara, H.

    2009-05-01

    The metal-ferroelectric-insulator-semiconductor (MFIS) structure diodes with SrBi2Ta2O9 (SBT) as ferroelectric thin film and HfO2 as insulating buffer layer were fabricated. The electrical properties of MFIS structure were investigated for different HfO2 buffer layer thickness. The experimental results show that the memory window extended significantly as the HfO2 layer thickness increased from 6 to 10 nm. It is also observed that the leakage current was reduced to about 10-10 A at applied voltage of 4 V, and the high and low capacitances remained distinguishable for over 8 h even if we extrapolate the measured data to 10 years.

  8. DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation

    Science.gov (United States)

    Park, Yong-Jun; Kwon, Jung-Hun; Sim, Jae-Yong; Hwang, Ju-Na; Seo, Cheong-Won; Kim, Ji-Ho; Lim, Kee-Joe

    2014-08-01

    We have discussed a cross-linked polyethylene (XLPE) nanocomposite insulating material that is able to DC voltage applications. Nanocomposites, which are composed in polymer matrix mixed with nano-fillers, have received considerable attention because of their potential benefits as dielectrics. The nano-sized alumina oxide (Al2O3)/XLPE nanocomposite was prepared, and three kinds of test, such as DC breakdown, DC polarity reversal breakdown, and volume resistivity were performed. By the addition of nano-sized Al2O3 filler, both the DC breakdown strength and the volume resistivity of XLPE were increased. A little homogeneous space charge was observed in Al2O3/XLPE nanocomposite material in the vicinity of electrode through the polarity reversal breakdown test. From these results, it is thought that the addition of Al2O3 nano-filler is effective for the improvement of DC electrical insulating properties of XLPE.

  9. Influence of interface traps inside the conduction band on the capacitance–voltage characteristics of InGaAs metal–oxide–semiconductor capacitors

    Science.gov (United States)

    Taoka, Noriyuki; Yokoyama, Masafumi; Kim, Sang Hyeon; Suzuki, Rena; Iida, Ryo; Takenaka, Mitsuru; Takagi, Shinichi

    2016-11-01

    We investigated the influences of the AC response with interface/bulk-oxide traps near the conduction band (CB) and a low effective density of states (DOS) on the accumulation capacitance C acc of an n-type InGaAs metal–oxide–semiconductor (MOS) capacitor. We found that the capacitance associated with the interface traps inside the CB significantly increases C acc compared to the C acc value constrained by a low DOS. These results indicate that accurate characterization inside the CB and considering the capacitance due to the interface traps inside the CB in the MOS capacitance–voltage curves are indispensable for accurate characterization of InGaAs MOS interface properties.

  10. Capacitance-voltage profile characteristics of Schottky barrier structure with InAs quantum dots grown on InAlAs/InP(001)

    Energy Technology Data Exchange (ETDEWEB)

    Baira, M. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Departement de Physique, Faculte des Sciences, 5019 Monastir (Tunisia); Ajjel, R. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Departement de Physique, Faculte des Sciences, 5019 Monastir (Tunisia)]. E-mail: ridha.ajjel@fsm.rnu.tn; Maaref, H. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Departement de Physique, Faculte des Sciences, 5019 Monastir (Tunisia); Salem, B. [Laboratoire de Physique de la Matiere-LPM (UMR-CNRS 5511), INSA de Lyon, Batiment Blaise Pascal, 7 Avenue J. Capelle, 69621 Villeurbanne (France); Bremond, G. [Laboratoire de Physique de la Matiere-LPM (UMR-CNRS 5511), INSA de Lyon, Batiment Blaise Pascal, 7 Avenue J. Capelle, 69621 Villeurbanne (France); Gendry, M. [Laboratoire d' Electronique, Optoelectronique et Microsystemes-LEOM (UMR-CNRS 5512), Ecole Centrale de Lyon, 36 Avenue G. de Collongue, 69134 Ecully (France); Marty, O. [Laboratoire d' Electronique-LENAC, Universite Lyon 1, F-69622 Villeurbanne, Lyon (France)

    2006-03-15

    Capacitance-voltage, C(V) studies have been carried out on Schottky barrier structure containing a sheet of self-organized InAs quantum dots (QDs) grown on InAlAs lattice matched to InP in order to deduce the electrical properties of the QDs. Three electron levels have been detected in n-type material, and were attributed to the s ground, the p excited, and the d excited states. Some parameters of the structure, such as the position of the InAs QD plane, the electron concentration in the QDs and an approximate QD height were deduced from the C(V) profile analysis. These results are in good agreement with the transmission electron microscopy (TEM) study realized on the structure.

  11. VOLTAGE REGULATORS OF SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available Synchronous generators are the primary source of electrical power autonomous electrosupply systems, including backup systems. They are also used in a structure of rotating electricity converters and are widely used in renewable energy as part of wind power plants of small, mini and micro hydroelectric plants. Increasing the speed and the accuracy of the system of the voltage regulation of synchronous generators is possible due to the development of combined systems containing more stabilizers. The article illustrates the functional schemes of circuit voltage stabilizers and frequency synchronous generators (with electromagnetic excitation and permanent magnet excitation and describes the features of their work, including two and three-aggregate rotating converters of electricity used in uninterruptible power supply systems. To improve the technical characteristics of the system of stabilization we have proposed functional solutions for stabilizers of synchronous generators made on the base of direct frequency converters and using a transformer with a rotating magnetic field. To improve the reliability of and to improve the operational characteristics of the autonomous independent sources of electricity we suggest creating the main functional blocks and the elements of the stabilization system in a modular way. The functional circuit solutions of voltage regulators of synchronous generators and the characteristics of their work considered in the article, are able to improve the efficiency of pre-design work in the development of new technical solutions for stabilizing the voltage and the frequency in synchronous generators of electrosupply autonomous systems

  12. Transient Voltage Recorder

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    2002-01-01

    A voltage transient recorder can detect lightning induced transient voltages. The recorder detects a lightning induced transient voltage and adjusts input amplifiers to accurately record transient voltage magnitudes. The recorder stores voltage data from numerous monitored channels, or devices. The data is time stamped and can be output in real time, or stored for later retrieval. The transient recorder, in one embodiment, includes an analog-to-digital converter and a voltage threshold detector. When an input voltage exceeds a pre-determined voltage threshold, the recorder stores the incoming voltage magnitude and time of arrival. The recorder also determines if its input amplifier circuits clip the incoming signal or if the incoming signal is too low. If the input data is clipped or too low, the recorder adjusts the gain of the amplifier circuits to accurately acquire subsequent components of the lightning induced transients.

  13. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation

    Directory of Open Access Journals (Sweden)

    Xia Xiao

    2016-08-01

    Full Text Available Optical voltage transformers (OVTs have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory.

  14. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation.

    Science.gov (United States)

    Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu

    2016-01-01

    Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions-laboratory, in the field off-line and during on-site operation-were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory.

  15. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation

    Science.gov (United States)

    Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu

    2016-01-01

    Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895

  16. 含风电接入配电系统电压跌落传播特性分析%Analyzing Voltage Sag Propagation Characteristics of Distribution Systems with Wind Power

    Institute of Scientific and Technical Information of China (English)

    王宾; 董新洲; 潘贞存; 薄志谦

    2011-01-01

    The low voltage ride through (LVRT) capability is one of the most important problems in the large-scale wjnd generators connecting to the distribution grid. Since the most voltage sags in the system are caused by faults in feeders, the voltage sags propagation characteristics is key to the design of control strategy of LVRT for wind turbines. In order to enhance the LVRT capacity of wind farm by shortening fault duration from the point of the feeder protection, the profiles of line voltage variations at the fault point are presented with different un-balance fault situations. The extreme voltage aberration and the occurrence conditions in different earthing resistance and residual situations are quantified. The uncommon extreme sags with phase-phase faults is discovered, which may cause the mis-operation of relay. It is also found that the main factors causing extreme sags with phase-ground fault is the value of residual degree factor.%大容量风电并网面临的主要问题之一是风力发电机的低电压穿越问题.为从馈线保护的角度提高风电场的低电压穿越能力,分析了风力发电机并网点感受到的电压跌落特性,探讨了不同过渡电阻和接地程度系数下故障点电压相量的变化特性,量化分析了风力发电机并网点电压跌落畸变极值及产生条件,指出相间短路故障时存在超越状态,对保护的动作特性影响较大,接地故障时电压跌落的畸变极值受接地程度系数的影响严重.

  17. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  18. Inductive voltage divider modeling in Matlab

    Science.gov (United States)

    Andreev, S. A.; Kim, V. L.

    2017-01-01

    Inductive voltage dividers have the most appropriate metrological characteristics on alternative current and are widely used for converting physical signals. The model of a double-decade inductive voltage divider was designed with the help of Matlab/Simulink. The first decade is an inductive voltage divider with balanced winding, the second decade is a single-stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The study shows errors and differences that appeared between the third degree reduced model and a twenty degree unreduced model. The obtained results of amplitude error differ no more than by 7 % between the reduced and unreduced model.

  19. A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C IV ABSORBERS: A CASE WITH COLD-ACCRETION CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Burchett, Joseph N.; Tripp, Todd M. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States); Werk, Jessica K.; Prochaska, J. Xavier [UCO/Lick Observatory, University of California, Santa Cruz, CA 95140 (United States); Howk, J. Christopher [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Davé, Romeel, E-mail: jburchet@astro.umass.edu [University of the Western Cape, Bellville, Cape Town 7535 (South Africa)

    2013-12-20

    Studies of QSO absorber-galaxy connections are often hindered by inadequate information on whether faint/dwarf galaxies are located near the QSO sight lines. To investigate the contribution of faint galaxies to QSO absorber populations, we are conducting a deep galaxy redshift survey near low-z C IV absorbers. Here we report a blindly detected C IV absorption system (z {sub abs} = 0.00348) in the spectrum of PG1148+549 that appears to be associated either with an edge-on dwarf galaxy with an obvious disk (UGC 6894, z {sub gal} = 0.00283) at an impact parameter of ρ = 190 kpc or with a very faint dwarf irregular galaxy at ρ = 23 kpc, which is closer to the sightline but has a larger redshift difference (z {sub gal} = 0.00107, i.e., δv = 724 km s{sup –1}). We consider various gas/galaxy associations, including infall and outflows. Based on current theoretical models, we conclude that the absorber is most likely tracing (1) the remnants of an outflow from a previous epoch, a so-called {sup a}ncient outflow{sup ,} or (2) intergalactic gas accreting onto UGC 6894, ''cold mode'' accretion. The latter scenario is supported by H I synthesis imaging data that shows the rotation curve of the disk being codirectional with the velocity offset between UGC 6894 and the absorber, which is located almost directly along the major axis of the edge-on disk.

  20. Multiple steady state current-voltage characteristics in drift-diffusion modelisation of N type and semi-insulating GaAs Gunn structures

    Science.gov (United States)

    Manifacier, J. C.

    2010-12-01

    Theoretical and numerical investigations of carriers transport in N-Semi-Insulating (SI)-N and P-SI-P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n/ dE) diodes. SI(N -) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current-voltage solutions when numerical modelisation is made using the drift-diffusion model.

  1. THE MATHEMATICAL MODEL FOR DESCRIBING TRANSIENT CHARACTERISTICS OF TCSC BASED ON CAPACITOR VOLTAGE SYNCHRONIZATION MODE%电容电压同步下TCSC暂态特性的数学描述

    Institute of Scientific and Technical Information of China (English)

    葛俊; 童陆园; 耿俊成

    2001-01-01

    When the capacitor voltage is taken as synch-ronizing signal, there is obvious overshoot and oscillations in Thyristor Controlled Series Compensation(TCSC) tra nsients. However, the mechanism for this phenomenon is not explained in existing literatures yet. By the Topology method , this paper chooses conduction angle of thyristors as the object function an d builds a two-order difference equation mathematical model describing T CSC transient behaviors under capacitor voltage synchronization mode. Based on t he derived model, the factors affecting TCSC transient characteristics are discu ssed. Also the transient mechanism of TCSC is revealed under capacitor voltage synchronization mode.The model is verified by digital simulation results.%当选择电容电压作为同步信号时,可控串被(TCSC)的暂态过程会出现明显的超调和振荡,对于这一现象,前人还从未给出相应的机理解释。该文以晶闸管导通角为建模对象,采用拓扑建模法建立了能描述电容电压同步下TCSC暂态特性变化规律的二阶差分数学模型。借助该模 型可分析影响暂态过程的相关因素,进而从本质上揭示了电容电压同步下TCSC的暂态机理。 数字仿真结果验证了所建模型的正确性。

  2. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  3. Mixed voltage VLSI design

    Science.gov (United States)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  4. 异步电动机在不对称电压下运行时的性能变化%Operation characteristics change of induction motor at asymmetrical voltage

    Institute of Scientific and Technical Information of China (English)

    胡浩

    2015-01-01

    分析了三相异步电动机在不对称三相电压下运行性能(电机定子电流、电磁转矩和效率)的变化情况,结果表明,三相异步电动机在不对称电压运行时,至少有一相电流超过额定电流,电机转矩减少和效率降低。总结了不对称电压对电动机危害的一些情况,给出了电机运行时对三相电压对称度的要求。%The change of three-phase induction motor’ operation characteristics is analyzed and calculated at asymmetrical three-phase voltage, including stator current, electromagnetic torque and efficiency etc. of the motor. The results show that, while at least one phase current is over the rated current, the motor’ torque reduction and its efficiency reduction will decrease. Circs of damaging motor at asymmetrical three-phase voltage are summarized.

  5. Preliminary evaluation of the air and fuel specific-impulse characteristics of several potential ram-jet fuels IV : hydrogen, a-methylnaphthalene, and carbon / Benson E. Gammon

    Science.gov (United States)

    Gammon, Benson E

    1951-01-01

    A preliminary analytical evaluation of the air and fuel specific-impulse characteristics of hydrogen, a-methylnapthalene, and graphite carbon has been made. Adiabatic constant-pressure combustion flame temperatures for each fuel at several equivalence ratios were calculated for an initial air temperature of 560 degrees R and a pressure of 2 atmospheres.

  6. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  7. Hydraulic demand characteristics of self-supported C-IV-N and K-I-N I&E fuel elements in a zirconium C-Reactor tube

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.

    1960-01-13

    This report discusses the isothermal hydraulic demand characteristics were determined by laboratory experiment for full charges of self-supported I&E fuel elements in a zirconium process tube. Pressure drop, flow rate data, and the calculations of annulus-to-hole flow ratio are presented. For self-supported fuel elements, pressure drop does not vary with temperature as much as it dies for non-self-supported furl elements.

  8. Maximum Power Point tracking algorithm based on I-V characteristic of PV array under uniform and non-uniform conditions

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Iman-Eini, H.; Asaei, B.

    2012-01-01

    This paper presents a new algorithm based on characteristic equation of solar cells to determine the Maximum Power Point (MPP) of PV modules under partially shaded conditions (PSC). To achieve this goal, an analytic condition is introduced to determine uniform or non-uniform atmospheric condition...... to verify the accuracy and validity of the proposed method, different simulations are carried out in MATLAB-Simulink environment for various atmospheric conditions. © 2012 IEEE....

  9. New method of parameters extraction from dark I-V curve

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, A.; Marchand, J.J.; Fave, A.; Laugier, A. [INSA de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere

    1997-12-31

    It is very necessary, for solar cells, to obtain a low series resistance and to be able to determine it with accuracy because it is an important parameter of fill factor and efficiency improvement. In the case of low series resistance, the authors have developed a new method of parameters extraction from only one dark I-V characteristic. They have also improved another technique (the integral) of series resistance extraction. They have compared these two methods to two other ones (the derivative and Lee et al. method). The method gives very good results. Moreover, it is very simple to use and presents the advantage of being independent of the voltage step in contrary to the derivative and to the integral. They have then applied their technique to a whole solar cell I-V curve and the results are very good.

  10. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  11. A Distance Protection Scheme Not Affected by Transient Characteristic of Capacitor Voltage Transformer for HV Long Transmission Line%不受电容式电压互感器暂态特性影响的距离保护

    Institute of Scientific and Technical Information of China (English)

    焦在滨; 齐倩; 杨黎明; 王优胤; 宁荣

    2014-01-01

    受电容式电压互感器(capacitive voltage transformer, CVT)暂态特性的影响,高压输电线路距离保护易发生暂态超越而误动,影响电力系统的安全稳定运行。提出了一种不受 CVT 暂态特性影响的距离保护新原理。该原理以 CVT能够正确传变工频量为基础,通过基于矩阵束的准确工频量提取方法计算保护安装处电压电流的工频量,利用贝瑞龙模型计算长距离输电线路整定点处的电压和电流,最终以整定点为观测点,通过传统的距离保护算法与方向元件配合确定故障点的位置,该原理不受CVT暂态特性的影响,同时考虑了长距离输电线路分布参数效应对距离保护的影响,具有较好的性能,仿真结果验证了所提算法的有效性。%Affected by transient characteristic of capacitor voltage transformer (CVT), the distance protection for HV transmission line is easily to mal-operate due to transient overreach, thus the secure and stable operation of power grid is affected. A new distance protection scheme that is not affected by the transient characteristics of CVT is proposed and its principle is as following:firstly, on the basis that the CVT can transmit and transform power frequency phasor, by means of the matrix pencil based accurate power frequency phasor extraction method the power frequency phasors of voltage and current at the position where the protection is installed are calculated;secondly, the voltage and current at the position of the long distance transmission line, where the protection is set, are calculated by Bergeron model; finally, coordinating with directional element and taking the setting point as the observation point, the fault point is located by traditional distance protection algorithm. The proposed principle is not affected by transient characteristic of CVT and the impacts of distributed parameters of the long distance transmission line are taken into account, thus the

  12. Improving transition voltage spectroscopy of molecular junctions

    Science.gov (United States)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian S.

    2011-04-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln(I/Vα) with α<2. On the basis of a simple Lorentzian transmission model we analyze theoretical ab initio as well as experimental I-V curves and show that the voltage required to determine the molecular levels can be reduced by ~30% as compared to conventional TVS. As for conventional TVS, the symmetry/asymmetry of the molecular junction needs to be taken into account in order to gain quantitative information. We show that the degree of asymmetry may be estimated from a plot of Vmin(α) vs α.

  13. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  14. Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/ n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range

    Science.gov (United States)

    Güçlü, Çiğdem Ş.; Özdemir, Ahmet Faruk; Altindal, Şemsettin

    2016-12-01

    In this study, current conduction mechanisms of the sample (Au/Ti)/Al2O3/ n-GaAs were investigated in detail using current-voltage (I-V) measurements in the temperature range of 80-380 K. The semilogarithmic I-V plots reveal two distinct linear regions with different slopes between 0.07-0.30 and 0.30-0.69 V which are called as Region I (RI) and Region II (RII), respectively. The ideality factor ( n) and zero-bias barrier height (Φ_{{bo}}) were found to be strong functions of temperature and voltage. In both regions, as the temperature increases, Φ_{{bo}} increases, whereas the value of n decreases. The high value of n at low temperatures is an evidence of deviation from thermionic emission, and it cannot be explained solely by tunneling mechanism, the existence of surface states and interfacial layer. Therefore, the Φ_{{bo}} versus q/kT plots were drawn for two linear regions of lnI-V plots, and these plots also revealed two distinct linear regions with different slopes between two temperature regions of 80-170 and 200-380 K which are called as low- and high-temperature range (LTR and HTR), respectively. Such behavior of these plots confirmed the existence of double Gaussian distribution (DGD) in the samples which in turn has mean barrier heights bar{Φ}_{{bo}} and standard deviations ( σ s). These values were obtained from the intercept and slope of these plots as 0.38 eV and 0.061 V for LTR and as 0.88 eV and 0.142 V for HTR (in RI), whereas they were obtained as 0.37 eV and 0.061 V for LTR and as 0.92 eV and 0.148 V for HTR (in RII), respectively. Thus, the modified ln( I s/ T 2)- q 2 σ s 2 /2 k 2 T 2 versus q/ kT plots were drawn, and the values of (bar{Φ}_{{bo}}) and effective Richardson constant ( A *) were extracted from the intercept and slope of these plots as 0.39 eV and 7.07 A/cm2 K2 for LTR and as 0.92 eV and 8.158 A/cm2 K2 for HTR (in RI), whereas they were extracted as 0.38 eV and 7.92 A/cm2 K2 for LTR and as 0.94 eV and 4.66 A/cm2 K2 for HTR

  15. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  16. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  17. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  18. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  19. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    OpenAIRE

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar; Cecati, Carlo

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbala...

  20. Gallium Nitride Electrical Characteristics Extraction and Uniformity Sorting

    Directory of Open Access Journals (Sweden)

    Shyr-Long Jeng

    2015-01-01

    Full Text Available This study examined the output electrical characteristics—current-voltage (I-V output, threshold voltage, and parasitic capacitance—of novel gallium nitride (GaN power transistors. Experimental measurements revealed that both enhanced- and depletion-mode GaN field-effect transistors (FETs containing different components of identical specifications yielded varied turn-off impedance; hence, the FET quality was inconsistent. Establishing standardized electrical measurements can provide necessary information for designers, and measuring transistor electrical characteristics establishes its equivalent-circuit model for circuit simulations. Moreover, high power output requires multiple parallel power transistors, and sorting the difference between similar electrical characteristics is critical in a power system. An isolated gate driver detection method is proposed for sorting the uniformity from the option of the turn-off characteristic. In addition, an equivalent-circuit model for GaN FETs is established on the basis of the measured electrical characteristics and verified experimentally.

  1. Influence of Ce(III/Ce(IV - supplements on the Characteristics of Humidity Sensors with TiO2 Films Prepared via a Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Kozhukharov, S.

    2013-04-01

    Full Text Available Humidity sensors have been prepared via a sol-gel method to deposit TiO2 films with additions of Ce-compounds on alumina substrates, with interdigitated silver palladium electrodes. Observations by scanning electron microscopy (SEM were performed in order to determine the surface morphology of the respective layers. Structural and compositional characterization was done by X-ray diffraction analysis (XRD, and energy dispersive X-ray spectroscopy (EDX for investigation of the relation between the film structures and the parameters of the respective sensors. The influence of Ce-compounds on the electrical characteristics of the samples as humidity sensing elements has been evaluated by an impedance analyzer.Los sensores de humedad han sido desarrollados mediante el método sol-gel para depositar películas superficiales basadas en TiO2 con adiciones de compuestos de cerio sobre sustratos de corindón y electrodos de aleación de plata y paladio. Se han realizado observaciones mediante el Microscopio Electrónico de Barrido (MEB para determinar la morfología superficial de las capas respectivas. Las caracterizaciones de la estructura y composición han sido realizadas mediante Difracción de Rayos X (DRX y espectroscopía de dispersión energética de rayos X (EDERX, con el fin de investigar la relación entre la estructura de las capas y los parámetros de los sensores respectivos. La influencia de los compuestos de cerio sobre las características eléctricas de los sensores de humedad obtenidos se ha evaluado mediante el análisis de impedancia eléctrica.

  2. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.

    Science.gov (United States)

    Kim, Hui-Seon; Park, Nam-Gyu

    2014-09-04

    Current-voltage (I-V) characteristics of CH3NH3PbI3 perovskite solar cells are studied using a time-dependent current response with stepwise sweeping of the bias voltage. Compared with the crystalline Si solar cell showing time-independent current at a given bias voltage, the perovskite solar cells exhibit time-dependent current response. The current increases with time and becomes steady at forward scan from short-circuit to open-circuit, whereas it is decayed and saturated with time at reverse scan from open-circuit to short-circuit. Time-dependent current response eventually leads to I-V hysteresis depending on the scan direction and the scan rate. Crystal size of CH3NH3PbI3 and the mesoporous TiO2 (mp-TiO2) film are found to influence I-V hysteresis, where the I-V hysteresis is alleviated as crystal size increases and in the presence of mp-TiO2. The capacitance observed at low frequency (0.1 to 1 Hz), associated with dipole polarization, tends to diminish as size of perovskite and mp-TiO2 layer thickness increases, which suggests that the origin of hysteresis correlates to the capacitive characteristic of CH3NH3PbI3 and the degree of hysteresis depends strongly on perovskite crystal size and mesoporous TiO2 layer.

  3. Reliability and Characterization of High Voltage Power Capacitors

    Science.gov (United States)

    2014-03-01

    ix LIST OF FIGURES Figure 1.   System level overview of IPC EVCS (from [3]). ..............................................2   Figure 2...permittivity EVCS electric vehicle charging system GPIB general-purpose interface bus GW giga-watt HVST high voltage stress test IV current voltage...Power Converter (IPC). This converter is being used for the Electric Vehicle Charging Station ( EVCS ), currently being investigated and installed in

  4. Experimental and theoretical studies of a high temperature cesium-barium tacitron, with application to low voltage-high current inversion. Final report, April 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.S.; El-Genk, M.S.

    1994-02-01

    A low voltage/high current switch refer-red as ``Cs-Ba tacitron`` is studied for use as a dc to ac inverter in high temperature and/or ionizing radiation environments. The operational characteristics of the Cs-Ba tacitron as a switch were investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. Operation parameters measured include switching frequencies up to 20 kHz, hold-off voltages up to 200 V, current densities in excess of 15 A/CM{sup 2}, switch power density of 1 kW/cm{sup 2}, and a switching efficiency in excess of 90 % at collector voltages greater than 30 V. Also, if the discharge current is circuit limited to a value below the maximum thermal emission current density, the voltage drop is constant and below 3 V.

  5. Voltage verification unit

    Science.gov (United States)

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  6. DC Voltage Insulation Characteristics and Influencing Factors for Coaxial Cylinder SF6 Gap%同轴圆柱SF6气体间隙直流绝缘特性及其影响因素

    Institute of Scientific and Technical Information of China (English)

    冀肖彤; 汤浩; 李金忠

    2012-01-01

    Coaxial cylinder is the basic structure in DC SF6 gas-insulated equipment. The basic research platform of DC SF6 gas-insulation characteristics was developed to study the insulation characteristics of different gap length and gas pressure. Based on these test results, the calculation model of breakdown voltage of SF6 in long length coaxial cylinder gap was established. Besides, the effect of surface roughness, metallic conducting particle and electrode surface area were also researched and analyzed. The calculation model which is obtained from similar non-uniformity of field and surface roughness with DC SF6 gas-insulated equipment can be used for insulation optimization.%同轴圆柱是直流SF6气体绝缘设备的基本结构,研制了不同间隙长度和不同气体压力下直流SF6气体绝缘特性基础研究平台,通过试验研究建立了长间隙同轴圆柱SF6间隙直流击穿电压计算模型,对影响间隙直流绝缘特性的表面粗糙度、金属导电微粒、电极表面积大小进行了试验研究和分析.由与直流气体绝缘设备的电场不均匀系数和表面粗糙相似的电极得出的击穿电压计算模型,可为SF6气体间隙绝缘优化提供依据.

  7. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    Science.gov (United States)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  8. The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Science.gov (United States)

    Hortigon-Vinagre, M. P.; Zamora, V.; Burton, F. L.; Green, J.; Gintant, G. A.; Smith, G. L.

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and higher throughput platforms have emerged as potential tools to advance cardiac drug safety screening. This study evaluated the use of high bandwidth photometry applied to voltage-sensitive fluorescent dyes (VSDs) to assess drug-induced changes in action potential characteristics of spontaneously active hiPSC-CM. Human iPSC-CM from 2 commercial sources (Cor.4U and iCell Cardiomyocytes) were stained with the VSD di-4-ANEPPS and placed in a specialized photometry system that simultaneously monitors 2 wavebands of emitted fluorescence, allowing ratiometric measurement of membrane voltage. Signals were acquired at 10 kHz and analyzed using custom software. Action potential duration (APD) values were normally distributed in cardiomyocytes (CMC) from both sources though the mean and variance differed significantly (APD90: 229 ± 15 ms vs 427 ± 49 ms [mean ± SD, P < 0.01]; average spontaneous cycle length: 0.99 ± 0.02 s vs 1.47 ± 0.35 s [mean ± SD, P < 0.01], Cor.4U vs iCell CMC, respectively). The 10–90% rise time of the AP (Trise) was ∼6 ms and was normally distributed when expressed as 1/Trise2 in both cell preparations. Both cell types showed a rate dependence analogous to that of adult human cardiac cells. Furthermore, nifedipine, ranolazine, and E4031 had similar effects on cardiomyocyte electrophysiology in both cell types. However, ranolazine and E4031 induced early after depolarization-like events and high intrinsic firing rates at lower concentrations in iCell CMC. These data show that VSDs provide a minimally invasive, quantitative, and accurate method to assess hiPSC-CM electrophysiology and detect subtle drug-induced effects for drug safety screening while highlighting a need to standardize experimental protocols across preparations. PMID:27621282

  9. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    Science.gov (United States)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  10. High Voltage Distribution

    Science.gov (United States)

    Norbeck, Edwin; Miller, Michael; Onel, Yasar

    2010-11-01

    For detector arrays that require 5 to 10 kV at a few microamps each for hundreds of detectors, using hundreds of HV power supplies is unreasonable. Bundles of hundreds of HV cables take up space that should be filled with detectors. A typical HV module can supply 1 ma, enough current for hundreds of detectors. It is better to use a single HV module and distribute the current as needed. We show a circuit that, for each detector, measures the current, cuts off the voltage if the current exceeds a set maximum, and allows the HV to be turned on or off from a control computer. The entire array requires a single HV cable and 2 or 3 control lines. This design provides the same voltage to all of the detectors, the voltage set by the single HV module. Some additional circuitry would allow a computer controlled voltage drop between the HV and each individual detector.

  11. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  12. Voltage dependence of the Na-K pump.

    Science.gov (United States)

    De Weer, P; Gadsby, D C; Rakowski, R F

    1988-01-01

    Present evidence demonstrates that the Na-K pump rate is voltage dependent, whereas early work was largely inconclusive. The I-V relationship has a positive slope over a wide voltage range, and the existence of a negative slope region is now doubtful. Monotonic voltage dependence is consistent with the reaction cycle containing a single voltage-dependent step. Recent measurements suggest that this voltage-dependent step occurs during Na translocation and may be deocclusion of Na+. In addition, two results suggest that K translocation is voltage insensitive: (a) large positive potentials appear to have no influence on Rb-Rb exchange or associated conformational transitions; and (b) transient currents associated with Na translocation appear to involve movement of a single charge, which is sufficient for a 3Na-2K cycle. The simplest interpretation is that the pump's cation binding sites supply two negative charges. Pre-steady-state measurements demonstrate that Na translocation precedes the pump cycle's rate-limiting step, presumably K translocation. But, because K translocation seems voltage insensitive, the voltage dependence of the steady-state pump rate probably reflects that of the concentration of the intermediate entering this slow step. Further pump current and flux data (both transient and steady-state), carefully determined over a range of conditions, should increase our understanding of the voltage-dependent step(s) in the Na-K pump cycle.

  13. Low-voltage gyrotrons

    Science.gov (United States)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  14. Random instabilities of current-voltage curves of BSCCO-2223/Ag multifilamentary tapes in LN2 at 77 K

    CERN Document Server

    Usak, P

    2003-01-01

    The measurement of the current-voltage (I-V) characteristics of BSCCO-2223/Ag multifilamentary tapes in a silver matrix has been performed on short samples (of several centimetres) as well as on long tape (1 m), wound in the form of a helical one-layer coil. Measurements at 77 K and in zero external magnetic field have revealed good reproducibility of the I-V hysteresis in most runs. Nevertheless, strange irregularities have sometimes been observed in the I-V curve behaviour during current ramping up and down. Quasi-reproducible drops from the ascending hysteretic branch in the direction of the descending one have been measured at higher voltage levels (approx 1 mV cm sup - sup 1) on the curve measured on the helical coil. These have recently been explained by a sudden change in the heat transfer coefficient [1]. Rarely and non-reproducibly we have also observed these drops on short samples at E approx 1 x 10 sup - sup 2 V m sup - sup 1 , (and even under 1 x 10 sup - sup 3 V m sup - sup 1). The accidental dro...

  15. Using of the Form Characteristics in Determining the Genre of Archival Records Arşiv Belgelerinin Türünün Belirlenmesinde Form Özelliklerinin Kullanılması

    Directory of Open Access Journals (Sweden)

    Niyazi Çiçek

    2005-12-01

    Full Text Available Record genre is one of the descriptive felds that is used in the process of describing archival records. Today, in archival applications the genre of a record is generally limited to the medium, such as the records being on paper, electronic records or microform. Describing the genre correctly helps users and archivists to understand the functions and characteristics of records. However, this research shows that there are more terms related to the records production that can be used to describe the genre of a record. The main purpose of this essay is to suggest that the content of the records be the decisive element in describing type. Arşiv belgeleri tanımlanırken kullanılan niteleme alanlarından biri de belge türüdür. Günümüzde arşiv uygulamalarında belgelerin kağıt, elektronik evrak ya da mikrofilm gibi çoğu kez bulunduğu ortama göre türlere ayrıldığı görülmektedir. Oysa, tür doğru tanımlandığında hem kullanıcıya hem de arşivciye belgenin fonksiyonuyla birlikte yapısal özellikleri hakkında bilgi verir. Bu yüzden türe karar verilirken belgelerin biçimsel taraflarına mı yoksa içerikle birlikte form özelliklerini de yansıtan karakteristik yapılarına mı bakılması gerektiği öncelikli olarak çözülmesi gereken bir sorundur. Bu makalede karakteristik özelliklerin esas alınması gerektiği savunulmuştur.

  16. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  17. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  18. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  19. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  20. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  1. 电压反馈型半桥DC-DC变换器动力学特性%Dynamical Characteristic for Voltage-Feedback Half-Bridge DC-DC Converter

    Institute of Scientific and Technical Information of China (English)

    袁臣虎; 万健如; 李光叶; 周海亮

    2012-01-01

    Voltage-feedback half-bridge DC-DC converter, namely VCHB DC-DC, a dominant component of SMPS system, has rich dynamical characteristic. For revealing internal relation between system stability and circuit parameters, VCHB DC-DC converter was studied in detail. According to practical closed-loop control logic, the general simulation model was set up by using the exact state equations. And the general discrete mathematical model was deduced by stroboscopic maps. Nonlinearity characteristic of VCHB DC-DC converter under different parameters was simulated and analyzed by numerical method. Experimental results show that VCHB DC-DC converter is sensitive to transformer ratio, filter capacitor, inductive storage and error scale factor, while it is not sensitive to changes in error integral coefficient and load. The research results could serve as guidance for circuit parameters selection in VCHB DC-DC converter application.%电压反馈型半桥DC-DC (VCHB DC-DC)变换器组成的开关电源系统是强非线性系统,为揭示其系统稳定性与电路参数之间的内在关系,对VCHB DC-DC变换器进行了研究.结合其实际闭环控制逻辑,利用VCHB DC-DC变换器精确状态方程,建立VCHB DC-DC变换器仿真模型,采用频闪映射对其状态变量进行离散迭代映射,推导其统一的离散数学模型.对不同参数下VCHB DC-DC变换器非线性特性进行仿真和数值分析,并进行相应实验验证.研究结果表明,变压器变比、滤波电容、储能电感和误差比例系数的改变对VCHB DC-DC变换器稳定性影响大,而误差积分系数和负载的变化对其影响较弱.研究成果可为VCHB DC-DC变换器实际应用时的电路参数选取提供指导.

  2. Voltage Regulators for Photovoltaic Systems

    Science.gov (United States)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  3. The effect of used deformation, metal sheath and heat treatment on the I-V curve of ex situ MgB 2 composite

    Science.gov (United States)

    Kováč, P.; Hušek, I.; Melišek, T.

    2004-01-01

    Current-voltage characteristics of MgB 2 composite wires made of ex situ process using Cu, Fe and stainless steel (SS) sheaths have been measured at 4.2 K in the self-field and external magnetic field between 2 and 4 T. It was found that the used mode of deformation (drawing, rotary swaging and two-axial rolling) influences the slope of I-V curve due to affected grain connectivity. Final heat treatment at 950 °C/0.5 h improves grain connectivity apparently, which results in I-V characteristic with very high n-exponents. The n-exponents of multi-core wires measured in external field are apparently lower due to a current sharing among the non-uniform filaments surrounded by high resistance matrix.

  4. Studying Voltage Transformer Ferroresonance

    Directory of Open Access Journals (Sweden)

    Hamid Radmanesh

    2012-09-01

    Full Text Available This study studies the effect of Circuit Breaker Shunt Resistance (CBSR, Metal Oxide Vaistor (MOV and Neutral earth Resistance (NR on the control of ferroresonance in the voltage transformer. It is expected that NR can controlled ferroresonance better than MOV and CBSR. Study has been done on a one phase voltage transformer rated 100 VA, 275 kV. The simulation results reveal that considering the CBSR and MOV exhibits a great mitigating effect on ferroresonance overvoltages, but these resistances cannot control these phenomena for all range of parameters. By applying NR to the system structure, ferroresonance has been controlled and its amplitude has been damped for all parameters values.

  5. Effect of the gate width to the IGBT on state voltage drop%栅极宽度对IGBT通态压降的影响

    Institute of Scientific and Technical Information of China (English)

    关艳霞; 姜秀丽

    2011-01-01

    The I-V characteristics of PT-IGBT was simulated Using'silvaco'.Comparing the I-V characteristic curves of the different widths of the gate electrode,the different values of on-state voltage drop of the different widths of the gate electrode were extracted at the same current density,so then the curves of on-state voltage drop to the gate electrode was gained.The simulation consequence is consistent with theory.For the same cell size there is an optimal value of the width of the gate electrode.The on-state voltage drop is reduced throgh reasonable designing.%利用silvaco软件对PT-IGBT的I-V特性进行了仿真,在同一电流密度下提取了不同栅极宽度IGBT的通态压降,得到了通态压降随栅极宽度变化的曲线,该仿真结果与理论分析一致。对于相同的元胞尺寸,栅极宽度存在最优值,只要合理地选取,可以有效地降低通态压降。

  6. 二极管特性简化模型在染料敏化太阳能电池电流-电压曲线拟合及在光电特性参数评估中的应用%Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    张平; 王弋; 付立民; 艾希成; 张建平

    2015-01-01

    In the present work, we investigated the dynamics of charge col ection and recombination in dye-sensitized solar cel s (DSSCs) spanning a large region of bias voltages using transient photoconductivity. The rate of charge col ection was much faster than that of charge recombination at varied voltages, which was responsible for the nearly uniform charge col ection efficiency. Based on this result, we simplified the diode characteristic model, which al owed us to directly fit the current-voltage (I-V) curve. A series of parameters related to the photo-to-electric processes in working DSSCs could be extracted from the proposed model, which could be used to evaluate the processes of charge generation, transport, and recombination in DSSCs, as wel as the rectification of DSSC devices. We applied the fitting method to DSSCs with different 4-tert-butyl pyridine (TBP) concentrations of electrolyte. It was found that the rate of charge recombination significantly differed while that of charge col ection was rather constant under different TBP concentrations, which was in good agreement with the results of I-V curve fitting. In addition, this research shows that the change of TBP concentration significantly affects the ideality factor (m) of DSSC devices.%利用瞬态光电导技术研究了在一个大的偏压范围内染料敏化太阳能电池(DSSC)中的电荷收集和电荷复合过程的动力学。结果表明,在不同的电压下电荷收集速率远快于电荷复合速率,用以解释电荷的收集效率几乎不变。基于这个结果,简化了DSSC二极管特性模型,从而实现了对电流-电压(I-V)曲线的直接拟合。利用这一模型拟合的结果提取出一系列与工作条件下DSSC光电转化过程相关的参数,可以用以描述包括电荷生成、电荷收集和复合以及DSSC器件的整流特性等关键性质。将这一拟合方法应用于不同叔丁基吡啶(TBP)浓度电解液的电池,获得的结果表明

  7. Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice.

    Science.gov (United States)

    Connaughton, V P; Maguire, G

    1998-04-01

    Whole-cell voltage-gated currents were recorded from bipolar cells in the zebrafish retinal slice. Two physiological populations of bipolar cells were identified. In the first, depolarizing voltage steps elicited a rapidly activating A-current that reached peak amplitude or = 10 ms after step onset and did not inactivate. IK was antagonized by internal caesium and external tetraethylammonium. Bipolar cells expressing IK also expressed a time-dependent h-current at membrane potentials calcium-dependent potassium current (IK(Ca)) were identified. Depolarizing voltage steps > -50 mV activated ICa, which reached peak amplitude between -20 and -10 mV. ICa was eliminated in Ca+2-free Ringer and blocked by cadmium and cobalt, but not tetrodotoxin. In most cells, Ica was transient, activating rapidly at -50 mV. This current was antagonized by nickel. The remaining bipolar cells expressed a nifedipine-sensitive sustained current that activated between -40 and -30 mV, with both slower kinetics and smaller amplitude than transient ICa. IK(Ca) was elicited by membrane depolarizations > -20 mV. Bipolar cells in the zebrafish retinal slice preparation express an array of voltage-gated currents which contribute to non-linear I-V characteristics. The zebrafish retinal slice preparation is well-suited to patch clamp analyses of membrane mechanisms and provides a suitable model for studying genetic defects in visual system development.

  8. Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles.

    Science.gov (United States)

    Meshik, Xenia; Choi, Min; Baker, Adam; Malchow, R Paul; Covnot, Leigha; Doan, Samuel; Mukherjee, Souvik; Farid, Sidra; Dutta, Mitra; Stroscio, Michael A

    2016-11-22

    This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na(+) and K(+) channels have the highest conductance. Cells in proximity to UV-excited TiO2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na(+) currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO2. Electrostatic force microscopy confirmed that electric fields can be induced in TiO2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO2.

  9. Photovoltaic performance parameters at the nanoscale from in situ I-V curve measurements

    Science.gov (United States)

    Naseem, Sadia; Tennyson, Elizabeth; Leite, Marina

    Monocrystalline photovoltaic (PV) devices exhibit higher efficiencies than polycrystalline devices, but the high manufacturing costs associated with single crystal solar cells pose a hindrance to their wide implementation. Polycrystalline CuInxGa(1 - x)Se2 (CIGS) material with high optical absorbance and low cost/Watt, is a promising alternative. Yet, the efficiency of this low-cost technology is still substantially lower than the theoretical values estimated by the Shockley-Queisser limit. This is likely due to microstructural non-uniformities, which cannot be accessed by macroscopic light I-V measurements. Therefore, we spatially resolve the electrical response of these devices by `local' I-Vs. For that, we utilize a 100x objective as a local excitation source and LabVIEW to map the PV performance with sub-micronscale resolution through extrapolation of key parameters from pixel by pixel I-V curves. Extraction of performance parameters such as short-circuit current, opencircuit voltage fill factor, and maximum power point can provide useful information regarding optimal microstructural characteristics. This information is not only valuable for CIGS-based devices, but also will be an essential tool for maximizing performance across all PV technologies.

  10. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan;

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  11. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  12. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the magnetic system and stabilizers asynchronous generator of electricity parameters confirmed by the patents for the invention of the Russian Federation. The proposed technical solution voltage stabilizer asynchronous generators, can reduce the weight of the block capacitors excitation and reactive power compensation, as well as to simplify the control system power circuit which has less power electronic devices. For wind power plants it is an important issue not only to stabilize the voltage of the generator, but also the frequency of the current. Recommend functionality stabilizer schemes parameters of electric power made for direct frequency converters with artificial and natural switching power electronic devices. It is also proposed as part of stabilization systems use single-phase voltage, three-phase transformers with rotating magnetic field, reduce the level of electromagnetic interference generated by power electronic devices for switching, enhance the efficiency and reliability of the stabilizer.

  13. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  14. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  15. IV access in dental practice.

    LENUS (Irish Health Repository)

    Fitzpatrick, J J

    2009-04-01

    Intravenous (IV) access is a valuable skill for dental practitioners in emergency situations and in IV sedation. However, many people feel some apprehension about performing this procedure. This article explains the basic principles behind IV access, and the relevant anatomy and physiology, as well as giving a step-by-step guide to placing an IV cannula.

  16. Optimal condition of memristance enhancement circuit using external voltage source

    Directory of Open Access Journals (Sweden)

    Hiroya Tanaka

    2014-05-01

    Full Text Available Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

  17. 高压静电场处理对香蕉果实成熟生理的影响%Effect of High Voltage Electrostatic Field Treatment on Quality Characteristics of Green-mature Bananas during Postharvest Storage

    Institute of Scientific and Technical Information of China (English)

    赵瑞平; 范三红; 刘福虎; 李里特

    2011-01-01

    以香蕉果实为试验材料,在(20±1)℃试验冷库中贮藏21d,贮藏期间用-100kV/m和-200kV/m的高压静电场连续处理并测定果实的呼吸强度、乙烯释放量、硬度、果皮颜色变化以及果肉淀粉和可溶性糖含量的变化。结果表明:连续高压静电场处理可以使香蕉果实的呼吸跃变和乙烯释放高峰提前,淀粉转化为糖的速度快而且比对照早,果皮叶绿素含量明显低于对照,同时处理后的果肉硬度下降,低于对照;并且-200kV/m处理组的效果要优于-100kV/m处理组。说明高压静电场连续处理促进了香蕉果实的成熟,尤以-200kV/m处理组比对照提前成熟4d。%In this study,green-mature bananas were stored at(20 ± 1) ℃ and 85%-90% humidity for 21 days and at the same time exposed continuously to-100 or-200 kV/m high voltage electrostatic fields(HVEF).Respiration intensity,ethylene production,pericarp color,firmness,and the contents of chlorophyll,soluble sugar and starch of the fruits were investigated during the storage period.The results indicated that the occurrence of respiration peaks and ethylene production in banana fruits were accelerated by negative HVEF treatment;the conversion of starch to sugars was faster and began earlier,chlorophyll content was considerably decreased,and the reduction of fruit firmness was lower when compared with the control.Moreover,-200 kV/m HVEF treatment had more desired effect on quality characteristics of green-mature bananas than-100 kV/m HVEF treatment.This study demonstrates that continuous HVEF treatment can promote the postharvest ripening of green-mature bananas,in particular-200 kV/m HVEF treatment group,which ripened 4 days before the control.

  18. Dibromidodimethyldipyridineplatinum(IV

    Directory of Open Access Journals (Sweden)

    Mairéad E. Kelly

    2008-11-01

    Full Text Available In the title complex, [PtBr2(CH32(C5H5N2], the PtIV metal centre lies on a twofold rotation axis and adopts a slightly distorted octahedral coordination geometry. The structure displays weak intramolecular C—H...Br hydrogen-bonding interactions.

  19. Marketing produktu Karel IV.

    OpenAIRE

    Mikšů, Šárka

    2009-01-01

    Goal of the thesis Marketing of the product Karel IV. is to propose chanels of marketing communication and indicate possibilities of next product's development. Theoretical part is based on marketing plan and it's partition. In the practical part you can find market analysis and competing products analysis, product's evolution description and marketing research.

  20. PLATO IV Accountancy Index.

    Science.gov (United States)

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  1. Measurement of volt-ampere characteristics of the SiPM on wafer level with setup based on the PA200 BlueRay probe station

    Science.gov (United States)

    Popova, Elena; Buzhan, Pavel; Kayumov, Fred; Stifutkin, Alexey

    2017-01-01

    Setup for measurement of volt-ampere characteristics of the Silicon photomultipliers (SiPMs) on wafer level consisting of the probe station PA200 BlueRay with embedded computer and SourceMeter Keithley 2400 was built. The setup is controlled by the homegrown software which allows adjustment of the measurements accuracy and speed. Firstly, complete I-V curves for a few samples of the chosen SiPM structure on the wafer are measured. Based on it the range of breakdown voltage and current level are defined which are used to correct the software settings. After that the whole wafer scan is made. The resulting I-V curves are used for SiPM selection (sorting) by current value at some predefined overvoltage (the difference between applied voltage and the breakdown one). Breakdown voltage is defined as: max ((dI/dU)/I).

  2. LabVIEW software for analyzing Langmuir probe characteristics in magnetized plasma

    Science.gov (United States)

    Gandhi, S.; Binwal, S.; Kabariya, H.; Karkari, S. K.

    2016-03-01

    This paper describes the methodology for processing Ampere-Volts (I-V) characteristics of the Langmuir probe in magnetized plasma using graphical programming language based on LabVIEW. Computing the plasma parameters from I-V characteristic involves several steps that include signal processing, interpolation, linear and non-linear curve fitting based on physical models, finding the derivatives of the experimental curve and determining the zero-crossing of the probe current as a function of the applied voltage. These operations are practically tedious to perform manually causing systematic errors in output parameters. To overcome this challenge, software is developed to analyze the planar Langmuir probe characteristics in magnetized plasma. The software allows simultaneous display of different plasma parameters that helps to verify the consistency of the analyzed plasma parameters with the standard probe theory. Using this software, plasma parameters are obtained in a linear plasma device and its characteristics are discussed.

  3. CNFET Based Voltage Differencing Transconductance Amplifier

    Science.gov (United States)

    Laxya; Prasad, Dinesh; Mainuddin; Islam, S. S.

    2017-08-01

    In CMOS Technology basic Problem mainly includes dopant fluctuation, tunnelling effect and line edge roughness below 45nm technology. Carbon Nanotube based structures is better option for widen the Moore’s law due to its scalability channel electrostatics and higher mobility. In this manuscript we demonstrate an optimum design for linear property of CNTFET based VDTA at 32nm technology node. The proposed circuit consist of VDTA with CNTFET having two voltage input and two current outputs so that it works as voltage and transconductance operation to obtain the high performance. The minimum supply voltages of ±0.9V with 32nm technology mode are used. The CNTFET-VDTA performance is simulated on HSPICE. In this paper CNFET-based VDTA provides better results of DC transfer characteristics as compared with CMOS. All the simulation results are performed on HSPICE.

  4. A novel high-voltage device structure with an N+ ring in substrate and the breakdown voltage model

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Zhu Jinluan; Wang Weidong; Yue Hongwei; Jin Liangnian

    2011-01-01

    A novel high-voltage device structure with a floating heavily doped N+ ring embedded in the substrate is reported,which is called FR LDMOS.When the N+ ring is introduced in the device substrate,the electric field peak of the main junction is reduced due to the transfer of the voltage from the main junction to the N+ ring junction,and the vertical breakdown characteristic is improved significantly.Based on the Poisson equation of cylindrical coordinates,a breakdown voltage model is developed.The numerical results indicate that the breakdown voltage of the proposed device is increased by 56% in comparison to conventional LDMOS.

  5. Deployment of low-voltage regulator considering existing voltage control in medium-voltage distribution systems

    Directory of Open Access Journals (Sweden)

    Hiroshi Kikusato

    2016-01-01

    Full Text Available Many photovoltaic (PV systems have been installed in distribution systems. This installation complicates the maintenance of all voltages within the appropriate range in all low-voltage distribution systems (LVDSs because the trends in voltage fluctuation differ in each LVDS. The installation of a low-voltage regulator (LVR that can accordingly control the voltage in each LVDS has been studied as a solution to this problem. Voltage control in a medium-voltage distribution system must be considered to study the deployment of LVRs. In this study, we installed LVRs in the LVDSs in which the existing voltage-control scheme cannot prevent voltage deviation and performed a numerical simulation by using a distribution system model with PV to evaluate the deployment of the LVRs.

  6. LEO high voltage solar array arcing response model. Interim report, February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.N.

    1987-02-01

    A series of mathematical models were developed that describe the electrical behavior of a large solar cell array floating electrically in the low Earth orbit (LEO) space plasma and struck by an arc at a point of negative bias. There are now three models in this series: ARCII, which is a fully analytical, linearized model; ARCIII, which is an extension of ARCIII that includes solar cell inductance as well as load reactance; Nonlinear ARC, which is a numerical model able to treat effects such as non-linearized, i.e., logarithmic solar cell I/V characteristics, conductance switching as a solar cell crosses plasma ground on a voltage excursion and non-ohmic plasma leakage current collection.

  7. The degradation and recovery properties of AlGaN/GaN high-electron mobility transistors under direct current reverse step voltage stress

    Institute of Scientific and Technical Information of China (English)

    Shi Lei; Feng Shi-Wei; Guo Chun-Sheng; Zhu Hui; Wan Ning

    2013-01-01

    Direct current (DC) reverse step voltage stress is applied on the gate of an AlGaN/GaN high-electron mobility transistor (HEMT).Experiments show that parameters degenerate under stress.Large-signal parasitic source/drain resistance (Rs/RD) and gate-source forward I-V characteristics are recoverable after breakdown of the device under test (DUT).Electrons trapped by both the AlGaN barrier trap and the surface state under stress lead to this phenomenon,and surface state recovery is the major reason for the recovery of device parameters.

  8. Analyzing of Dynamic Voltage Restorer in Series Compensation Voltage

    Directory of Open Access Journals (Sweden)

    Naser Parhizgar

    2012-02-01

    Full Text Available The Dynamic Voltage Restorer (DVR is a series-connected compensator to generate a controllable voltage to against the short-term voltage disturbances. The technique of DVR is an effective and cost competitive approach to improve voltage quality at the load side. This study presents a single-phase and threephase DVR system with reduced switch-count topology to protect the sensitive load against abnormal voltage conditions. Most basic function, the DVR configuration consist of a two level Voltage Source Converter (VSC, a dc energy storage device, a coupling transformer Connected in shunt with the ac system This study presents the application of Dynamic Voltage Restorer (DVR on power distribution systems for mitigation of voltage sag at critical loads. DVR is one of the compensating types of custom power devices. The DVR, which is based on forced-commutated Voltage Source Converter (VSC has been proved suitable for the task of compensating voltage sags/swells. Simulation results are presented to illustrate and understand the performances of DVR in supporting load voltages under voltage sags/swells conditions.

  9. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  10. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  11. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar;

    2013-01-01

    problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0....

  12. Partial discharge characteristics of twisted pairs for inverter-fed motor under square impulse voltage%高频方波脉冲下变频电机绞线对的局部放电特性分析

    Institute of Scientific and Technical Information of China (English)

    徐慧慧; 吴广宁; 朱光亚; 罗杨; 曹开江; 张依强

    2012-01-01

    基于脉冲电流传感器建立了一套方波脉冲下的局部放电测试系统,并对模拟变频电机匝间绝缘的绞线对试样进行局部放电试验.测试并分析了脉冲电压的频率和上升时间对局部放电起始放电电压、平均放电量和放电次数的影响,探讨了绞线对在方波脉冲电压下的局部放电机理,为更深入地研究方波脉冲电压下绝缘老化机理打下了坚实的基础.%Inverter-fed traction motor is one of the key components in electric locomotive for high-speed railway, of which insulation system reliability can guarantee the safety and stability of locomotive. Partial discharge (PD) is one of the most important factors causing previous failure of the insulation of inverter-fed motors. In this paper, a partial discharge testing system under square impulse voltage based on impulse current sensor was built. And PD tests were conducted on twisted pairs simulating inter-turn insulation of inverter-fed motor. The influence of voltage rise-time and frequency on PD inception voltage, average discharge quantity, and discharge numbers were analyzed. Meanwhile this paper discussed the PD mechanism of the twisted pairs under square impulse voltage. This can provide more strong foundation for further studies on insulation ageing mechanism of square impulse voltage.

  13. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    . An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  14. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  15. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  16. Enhanced Design Alternative IV

    Energy Technology Data Exchange (ETDEWEB)

    N. E. Kramer

    1999-05-18

    This report evaluates Enhanced Design Alternative (EDA) IV as part of the second phase of the License Application Design Selection (LADS) effort. The EDA IV concept was compared to the VA reference design using criteria from the ''Design Input Request for LADS Phase II EDA Evaluations'' (CRWMS M&O 1999b) and (CRWMS M&O 1999f). Briefly, the EDA IV concept arranges the waste packages close together in an emplacement configuration known as ''line load''. Continuous pre-closure ventilation keeps the waste packages from exceeding the 350 C cladding and 200 C (4.3.13) drift wall temperature limits. This EDA concept keeps relatively high, uniform emplacement drift temperatures (post-closure) to drive water away from the repository and thus dry out the pillars between emplacement drifts. The waste package is shielded to permit human access to emplacement drifts and includes an integral filler inside the package to reduce the amount of water that can contact the waste form. Closure of the repository is desired 50 years after first waste is emplaced. Both backfill and a drip shields will be emplaced at closure to improve post-closure performance.

  17. Effect of Repetitive Impulse Voltage Rise Time on Partial Discharge Characteristics of Inverter-fed Motor Insulation%重复脉冲上升时间对变频电机绝缘局部放电特征的影响

    Institute of Scientific and Technical Information of China (English)

    王剑; 王燕; 赵世林; 王鹏; 周凯

    2015-01-01

    为研究重复脉冲电压上升时间对变频电机绝缘的局部放电特征影响规律,基于超高频天线、检波技术和宽带、高速数据采集和传输技术设计了重复脉冲电压下变频电机绝缘局部放电检测系统。研究了变频电机匝间绝缘在不同上升时间重复脉冲电压下的局部放电统计特性并对其机理进行了分析。结果表明:在微秒级的上升时间下,脉冲电压极性快速翻转导致变频电机绝缘薄弱处空间电荷电场和外部电场叠加,易超过局部放电起始电压,从而产生次数较多的小幅值放电,且放电幅值随着上升时间的减小而增大,但单个周期放电总量逐渐减少。因此设计耦合传感器时应根据重复脉冲上升时间和局部放电脉冲频域能量分布特点,设计高频响应较好的传感器,避免脉冲电源干扰使测试灵敏度降低,从而得到准确反映电机绝缘水平的PDIV和RPDIV。%To study the effect of repetitive impulse voltage rise time on the partial discharge(PD) characteristics of inverter-fed motor insulation, we designed a PD detection system for inverter-fed motor insulation under repetitive impulse voltage based on ultra-high frequency antenna, detection technology and broadband, and high-speed data acquisition & transmission technology. The PD statistical characteristics of the interturn insulation of inverter-fed motor under different impulse voltage rise time were obtained by the system, and their mechanism was analyzed. The results show that when the voltage rise time is under μs level, the electric field of space charge of the weak insulation caused by the fast reversal of voltage polarity would superpose the external electric field, which would exceed the partial discharge inception voltage(PDIV) and produce many times of PD with low magnitude. The PD magni-tude increases with the decrease of the rise time, but the total discharge amount in one cycle decreases

  18. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    Science.gov (United States)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  19. Hospitalization Costs for Patients Undergoing Orthopedic Surgery Treated With Intravenous Acetaminophen (IV-APAP) Plus Other IV Analgesics or IV Opioid Monotherapy for Postoperative Pain.

    Science.gov (United States)

    Maiese, Brett A; Pham, An T; Shah, Manasee V; Eaddy, Michael T; Lunacsek, Orsolya E; Wan, George J

    2017-02-01

    To assess the impact on hospitalization costs of multimodal analgesia (MMA), including intravenous acetaminophen (IV-APAP), versus IV opioid monotherapy for postoperative pain management in patients undergoing orthopedic surgery. Utilizing the Truven Health MarketScan(®) Hospital Drug Database (HDD), patients undergoing total knee arthroplasty (TKA), total hip arthroplasty (THA), or surgical repair of hip fracture between 1/1/2011 and 8/31/2014 were separated into postoperative pain management groups: MMA with IV-APAP plus other IV analgesics (IV-APAP group) or an IV opioid monotherapy group. All patients could have received oral analgesics. Baseline characteristics and total hospitalization costs were compared. Additionally, an inverse probability treatment weighting [IPTW] with propensity scores analysis further assessed hospitalization cost differences. The IV-APAP group (n = 33,954) and IV opioid monotherapy group (n = 110,300) differed significantly (P opioid monotherapy group (US$12,540 ± $9564 vs. $13,242 ± $35,825; P opioid monotherapy. This difference was driven by medical costs; importantly, there was no difference in pharmacy costs. Generalizability of the results may be limited to patients admitted to hospitals similar to those included in HDD. Dosing could not be determined, so it was not possible to quantify utilization of IV-APAP or ascertain differences in opioid consumption between the 2 groups. This study did not account for healthcare utilization post-discharge.

  20. No-Voltage Meter

    Science.gov (United States)

    1976-02-01

    VW- IKft, 1/4 H4 -Wv- IK!1, I/4W INTERNAL VOLTAGE NOTE ALL TRANSISTORS ARE 2N43A OR EQUIVALENT GERMANIUM ALLOY PNP AA ALKALINE BATTERY...D-,, regardless of polarity. This signal is then full-wave rectified by the diode-connected Germanium transistor bridge, T,, T-,, T3, and T4... Transistor T5 acts as a second current limiter. Resistor R2 was selected to give 90 f# of full-scale meter deflection with an input signal of 115 volts

  1. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...... to guide these grid-connected distributed power generation systems. In order to verify the response of such systems for voltage disturbance, mainly for evaluation of voltage sags/dips, a Voltage Sag Generator (VSG) is needed. This paper evaluates such sag test devices according to IEC 61000 in order...... to provide cheaper solutions to test against voltage sags. Simulation and experimental results demonstrate that the shunt impedance based VSG solution is the easiest and cheapest one for laboratory test applications. The back-to-back fully controlled converter based VSG is the most flexible solution...

  2. The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics

    DEFF Research Database (Denmark)

    Lilliedal, Mathilde Raad; Medford, Andrew James; Vesterager Madsen, Morten

    2010-01-01

    Inflection point behaviour is often observed in the current–voltage (IV) curve of polymer solar cells. This phenomenon is examined in the context of flexible roll-to-roll (R2R) processed polymer solar cells in a large series of devices with a layer structure of: PET–ITO–ZnO–P3HT:PCBM–PEDOT:PSS–Ag...... curve and a corresponding poor performance or lack of photovoltaic behaviour. Upon exposure to 1000 Wm−2 illumination at ca. 85 °C and repeated IV scans (photo-annealing) the inflection point gradually disappeared, and performance drastically increased over time. The characteristics and stability...... of this “photo-annealing” behaviour was further investigated by studying the effects of several key factors: temperature, illumination and atmosphere. The results consistently showed that the inflection point is a dynamic phenomenon which can be removed under specific conditions. Subsequently, chemical...

  3. High Voltage Design Guide. Volume V. Spacecraft

    Science.gov (United States)

    1983-01-01

    connector are soldered, with the possible exception of very high voltage points. Even then rudimentary connectors such as that shown In figura 13 ar used...addition, large stresses will be imposed on the struc- tural (high resistance) member. This conductor movement will flex and stretch the conductors, placing...materials used for airplane systems provided they meet the electrical, chemical, and mechanical characteristic requirements imposed by the design

  4. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... analysis, which is simple for computation and requires moderate automation and communication infrastructure. The proposed method is suitable for a hierarchical control structure where a supervisory controller has the provision to adapt the settings of local PV inverter controllers for overall system...

  5. Two mutations in the IV/S4-S5 segment of the human skeletal muscle Na+ channel disrupt fast and enhance slow inactivation.

    Science.gov (United States)

    Alekov, A K; Peter, W; Mitrovic, N; Lehmann-Horn, F; Lerche, H

    2001-06-29

    Fast and slow inactivation (FI, SI) of the voltage-gated Na+ channel are two kinetically distinct and structurally dissociated processes. The voltage sensor IV/S4 and the intracellular IV/S4-S5 loop have been shown to play an important role in FI mediating the coupling between activation and inactivation. Two mutations in IV/S4-S5 of the human muscle Na+ channel, L1482C/A, disrupt FI by inducing a persistent Na+ current, shifting steady-state inactivation in the depolarizing direction and accelerating its recovery. These effects were more pronounced for L1482A. In contrast, SI of L1482C/A channels was enhanced showing a more complete SI and a 3-fold slowing of its recovery. Effects on SI were more pronounced for L1482C. The results indicate an important role of the IV/S4-S5 loop not only in FI but also in SI of the Na+ channel.

  6. 基于电压控制特性的电压源型多端直流/交流系统潮流求解%Power Flow Solving of VSC Multi-terminal DC/AC System Based on Voltage Control Characteristics

    Institute of Scientific and Technical Information of China (English)

    杨堤; 程浩忠; 姚良忠; 曾平良

    2016-01-01

    The voltage source converter based high voltage direct current (VSC-HVDC) transmission technology has good application prospects owing to its excellent controllability,voltage stability and good adaptability to power supply for load center,wind power accommodation,and power transmission among islands.The present research on power flow of VSC-HVDC system is mostly based on constant power control mode without considering the practical converter voltage control characteristics.In order to more accurately reflect the voltage control characteristics of VSC in the actual power grid,a voltage control model based on VSC is developed.As well,converter loss,AC filter,and converter capacity limit are considered in the power flow model.And a general power flow algorithm is proposed for power flow of the VSC based multi-terminal DC/AC system.Some cases with changed DC grid power injection,N -1 contingency and multi-terminal DC/AC system,are built and analyzed.The case analysis indicates that the power flow algorithm is able to reflect the voltage control ability of DC converters,while verifying the effectiveness,rationality and algorithm rapidity based on voltage control characteristics.%由于基于电压源型换流器的高压直流(VSC-HVDC)输电技术具有良好的可控性,对负荷中心供电、风电消纳、孤岛电力传输等适应能力强,电压稳定性好,因此具有良好的应用前景。当前对VSC-HVDC 系统主要基于定功率控制模式进行潮流计算,而很少考虑到实际的换流器电压控制能力。为了更加精确地反映实际电网中 VSC 的电压控制特性,文中建立了基于 VSC 的电压控制模型,考虑了换流器损耗、交流滤波器、换流器容量限制等的影响,并基于电压控制特性提出了 VSC多端直流/交流系统的通用潮流求解方法。对直流电网功率分布变化和 N -1故障以及多端直流/交流系统的潮流算例分析表明,所提的潮流算法能够反

  7. Voltage Swells Improvement in Low Voltage Network Using Dynamic Voltage Restorer

    Directory of Open Access Journals (Sweden)

    R. Omar

    2011-01-01

    Full Text Available Problem statement: Voltage disturbances are the most common power quality problem due to the increased use of a large numbers of sophisticated electronic equipment in industrial distribution system. The voltage disturbances such as voltage sags, swells, harmonics, unbalance and flickers. High quality in the power supply is needed, since failures due to such disturbances usually have a high impact on production cost. There are many different solutions to compensate voltage disturbances but the use of a DVR is considered to be the most cost effective method. The objective of this study is to propose a new topology of a DVR in order to mitigate voltage swells using a powerful power custom device namely the Dynamic Voltage Restorer (DVR. Approach: New configuration of a DVR with an improvement of a controller based on direct-quadrature-zero method has been introduced to compensate voltage swells in the network. Results: The effectiveness of the DVR with its controller were verify using Matlab/Simulinks SimPower Toolbox and then implemented using 5KVA DVR experimental setup. Simulations and experimental results demonstrate the effective dynamic performance of the proposed configuration. Conclusion: The implimentation of the proposed DVR validate the capabilities in mitigating of voltage swells effectiveness.During voltage swells, the DVR injects an appropriate voltage to maintain the load voltage at its nominal value.

  8. Adaptive Voltage Stability Protection Based on Load Identification Using Phasor Measurement Units

    DEFF Research Database (Denmark)

    Liu, Leo; Bak, Claus Leth; Chen, Zhe

    2011-01-01

    collapse. In this paper, the online load identification using measurement-based approach based on Phasor Measurement Units (PMU) was proposed to evaluate the proximity to voltage instability in order to prevent voltage collapse. In the scenarios of disturbances, the proximity to voltage collapse...... with respect to load characteristics was evaluated. Based on different load characteristics, different control and protection schemes were implemented, i.e. shunt capacitor connection, on-load tap changer blocking and load shedding. The results showed that load-based adaptive voltage control and protection...... scheme based on PMUs is promising, as it prevented the voltage collapse and minimized the load shedding area....

  9. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  10. Psychopathological characteristics of patients seeking for bariatric surgery, either affected or not by binge eating disorder following the criteria of the DSM IV TR and of the DSM 5.

    Science.gov (United States)

    Vinai, Piergiuseppe; Da Ros, Annalisa; Speciale, Maurizio; Gentile, Nicola; Tagliabue, Anna; Vinai, Paolo; Bruno, Cecilia; Vinai, Luisa; Studt, Stacia; Cardetti, Silvia

    2015-01-01

    We evaluate whether there are any significant differences in psychopathology between severe obese patients affected by Binge Eating Disorder diagnosed following both the DSM IV TR and the DSM5 criteria, and severe obese patients not having an eating disorder. 118 severe obese patients seeking treatment at a center for bariatric surgery in northern Italy were asked to take part in the current study for a period of six months. Average participant age was 44.27 years, SD 12.42. Age ranged from 18 to 67 years. Average patient BMI was 45.03, SD 7.11, ranging from 32.14 to 66.16 kg/m(2). Seventy seven of the patients (65.3%) were females and 41 (34.7%) were males. BED diagnosis was determined following the diagnostic criteria of both the DSM IV TR and the DSM 5. The presence of other eating disorders was excluded through a clinical screening using the Eating Disorder Inventory (EDI). Patient eating habits and the presence of emotional eating were appraised using the Three-Factor Eating Questionnaire. Levels of depression and anxiety were evaluated using the Beck Depression Inventory and the State Trait Anxiety Inventory. 57 out of 118 patients were found to be affected by BED following the DSM 5 criteria; among them 24 followed those of the DSM IV TR. BED patients scored higher on four subscales of the Eating Disorders Inventory: Drive for thinness (DT), Bulimia (B), Body dissatisfaction (BD) and Interoceptive awareness (IA) on the STAI and on the Disinhibition and Hunger subscales of the TFEQ. The results confirm the presence of high levels of psychopathology among patients diagnosed with BED, even if they have been diagnosed following the criteria of the DSM 5. There is a great overlap in psychopathology between BED patients diagnosed following the DSM IV TR and the DSM 5 criteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    Science.gov (United States)

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores.

  12. Variable Temperature Current-Voltage Measurements of CdTe Solar Cells

    Science.gov (United States)

    Smith, A. D.

    2000-03-01

    We have used a 2" x 2" Peltier heat pump chip powered with 24 V from a computer power supply to build a variable temperature stage for current voltage measurements of solar cells. A voltage divider was used to achieve several different set point temperatures from 25 oC to -24 oC. This system was used with a halogen lamp to study the electrical performance of polycrystalline thin-film solar cells fabricated in our group. These cells have the superstrate structure glass/SnO2:F/CdS/CdTe/metal.(1) The I-V characteristic shows evidence of a blocking back-diode which sets in below room temperature. This behavior will be related to the diffusion into the CdTe of the metals used for our back contact.(2) 1. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan, Appl. Phys. Lett. 69, 3045-3047 (1996). 2. D. Grecu and A.D. Compaan, Appl. Phys. Lett. 75, 361-363 (1999).

  13. Partial Discharge Characteristics of Floating Potential Defect in SF6 Gas under Oscillating Lightning Impulse Voltage%振荡型雷电冲击电压下SF6气体中悬浮电位缺陷的局部放电特性研究

    Institute of Scientific and Technical Information of China (English)

    李军浩; 车斌; 林敏; 张亮; 高原; 杨景刚

    2014-01-01

    为模拟悬浮电位缺陷,设计了一种悬浮电位缺陷模型,并通过构建可产生符合IEC 60060-3标准要求的振荡型雷电冲击电压试验平台及相应的局部放电检测系统,对GIS中最常见的悬浮电位缺陷在振荡型雷电冲击电压下的局部放电特性进行研究,分析最大放电幅值、放电次数等随外加电压增加的变化规律。结果表明:在振荡型雷电冲击电压作用下,悬浮电位放电发生在外施电压的下降沿和上升沿处,随着外加电压的增加,放电最大幅值和放电次数均增加,且放电次数的增加幅度大于放电幅值的增加幅度。%To simulate floating potential defect, we designed a floating potential defect model. By setting up an experiment platform that can produce oscillating lightning impulse voltage that counld meet the re-quirements of IEC60060-3 and partial discharge measurement system, we studied the partial discharge characteristics of the common floating potential defect in SF6 gas under oscillating lightning impulse volt-age. The variation of discharge amplitude maximum and discharge number with the increase of voltage was studied. The results show that under the effect of oscillating lightning impulse voltage, the partial dis-charge of floating potential happen at the falling edge and rising edge of voltage. With the increase of voltage, the discharge amplitude maximum and discharge number increase, and the increase extent of the discharge number is greater than that of the discharge amplitude.

  14. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  15. Detecting loss mechanisms of c-Si PV modules in-situ I-V measurement

    Science.gov (United States)

    Guo, Siyu; Schneller, Eric; Walters, Joe; Davis, Kristopher O.; Schoenfeld, Winston V.

    2016-09-01

    PV module reliability is alsways an important issue for PV industry. In an outdoor PV system, PV modules suffer from degradation due to different factors. It is then very important to determine the loss mechanisms of a PV module and making improvement based on this. It is found in this work that due to mismatch effect, using fitting method to extract I-V characteristics might not be well applied on a PV module, especially when it has non-uniform degradation problem. This work proposes a method to accurately quantify the power loss of PV modules due to different degradation mechanisms, including series resistance (Rs) loss, non-uniform shunting loss and number of shunted cells, uniform shunting loss, uniform current loss, non-uniform current (mismatch) loss, recombination current (J01 and J02) losses of a PV module. All required input information are the measured current-voltage (I-V) curves and short circuit current- open circuit voltage (Isc-Voc) of PV module initial state and final state. The method is first applied to a simulated PV module with various degradation problems. Power loss due to each loss mechanism for the simulated PV module is then extracted using the proposed method and a pie chart can be generated. Comparing with the actual power loss on each loss mechanism, the method proposed in this work is proved to be very accurate. The method is then further applied to a degradated PV module istalled in an outdoor PV system. The power loss on series resistance, shunting and current mismatch are effectively identified and the number of shunted cells is accurately calculated. In the real application, this method can be used in both indoor and outdoor characterization, which can be very beneficial for PV degradation analysis of PV modules and systems.

  16. Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.

    Science.gov (United States)

    Shimomura, Takushi; Irie, Katsumasa; Nagura, Hitoshi; Imai, Tomoya; Fujiyoshi, Yoshinori

    2011-03-04

    Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.

  17. Low bias stress and reduced operating voltage in SnCl{sub 2}Pc based n-type organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Obaidulla, SK. Md., E-mail: obaidulla20@gmail.com; Goswami, D. K., E-mail: xdipak@gmail.com, E-mail: dipak@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Giri, P. K., E-mail: giri@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2014-05-26

    Vacuum deposited tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) field-effect transistors were fabricated on polymethylmethacrylate/aluminum oxide (PMMA/Al{sub 2}O{sub 3}) bilayer gate dielectric, with reduced operating voltage and low contact resistance. The devices with top contact Ag electrodes exhibit excellent n-channel behavior with electron mobility values of 0.01 cm{sup 2}/Vs, low threshold voltages ∼4 V, current on/off ratio ∼10{sup 4} with an operating voltage of 10 V. Bias stress instability effects are investigated during long term operation using thin film devices under vacuum. We find that the amount of bias stress of SnCl{sub 2}Pc based thin film transistor is extremely small with characteristic relaxation time >10{sup 5} s obtained using stretched exponential model. Stressing the SnCl{sub 2}Pc devices by applying 10 V to the gate for half an hour results in a decrease of the source drain current, I{sub DS} of only ∼10% under low vacuum. These devices show highly stable electrical behavior under multiple scans and low threshold voltage instability under electrical dc bias stress (V{sub DS} = V{sub GS} = 10 V, for 2 h) even after 40 days.

  18. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir

    2014-10-01

    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  19. Diaquatetrabromidotin(IV trihydrate

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2012-09-01

    Full Text Available The title compound, [SnBr4(H2O2]·3H2O, forms large colourless crystals in originally sealed samples of tin tetrabromide. It constitutes the first structurally characterized hydrate of SnBr4 and is isostructural with the corresponding hydrate of SnCl4. It is composed of SnIV atoms octahedrally coordinated by four Br atoms and two cis-related water molecules. The octahedra exhibit site symmetry 2. They are arranged into columns along [001] via medium–strong O—H...O hydrogen bonds involving the two lattice water molecules (one situated on a twofold rotation axis while the chains are interconnected via longer O—H...Br hydrogen bonds, forming a three-dimensional network.

  20. Enhanced Model of Nonlinear Spiral High Voltage Divider

    Directory of Open Access Journals (Sweden)

    V. Panko

    2015-04-01

    Full Text Available This paper deals with the enhanced accurate DC and RF model of nonlinear spiral polysilicon voltage divider. The high resistance polysilicon divider is a sensing part of the high voltage start-up MOSFET transistor that can operate up to 700 V. This paper presents the structure of a proposed model, implemented voltage, frequency and temperature dependency, and scalability. A special attention is paid to the ability of the created model to cover the mismatch and influence of a variation of process parameters on the device characteristics. Finally, the comparison of measured data vs. simulation is presented in order to confirm the model validity and a typical application is demonstrated.

  1. Low voltage varistor ceramics based on SnO2

    Indian Academy of Sciences (India)

    S R Dhage; V Ravi; O B Yang

    2007-12-01

    The nonlinear current ()–voltage () characteristics of tin dioxide doped with either Nb2O5 and CoO or Sb2O3 and CoO show promising values of nonlinear coefficient () values (∼11) with low breakdown voltages (B, ∼40 V mm-1). The pentavalent antimony or niobium acts as donor and increases the electronic conductivity. The crucial parameter for obtaining low breakdown voltage is the grain size, which depends upon sintering duration and temperature of these oxide ceramics.

  2. CMOS voltage references an analytical and practical perspective

    CERN Document Server

    Kok, Chi-Wah

    2013-01-01

    A practical overview of CMOS circuit design, this book covers the technology, analysis, and design techniques of voltage reference circuits.  The design requirements covered follow modern CMOS processes, with an emphasis on low power, low voltage, and low temperature coefficient voltage reference design. Dedicating a chapter to each stage of the design process, the authors have organized the content to give readers the tools they need to implement the technologies themselves. Readers will gain an understanding of device characteristics, the practical considerations behind circuit topology,

  3. dBASE IV basics

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.

    1994-09-01

    This is a user`s manual for dBASE IV. dBASE IV is a popular software application that can be used on your personal computer to help organize and maintain your database files. It is actually a set of tools with which you can create, organize, select and manipulate data in a simple yet effective manner. dBASE IV offers three methods of working with the product: (1) control center: (2) command line; and (3) programming.

  4. Phase IV of Drug Development

    OpenAIRE

    Viraj Suvarna

    2010-01-01

    Not all Phase IV studies are post-marketing surveillance (PMS) studies but every PMS study is a phase IV study. Phase IV is also an important phase of drug development. In particular, the real world effectiveness of a drug as evaluated in an observational, non-interventional trial in a naturalistic setting which complements the efficacy data that emanates from a pre-marketing randomized controlled trial (RCT). No matter how many patients are studied pre-marketing in a controlled environment, ...

  5. Confirmatory Factor Analysis of the WAIS-IV/WMS-IV

    Science.gov (United States)

    Holdnack, James A.; Zhou, Xiaobin; Larrabee, Glenn J.; Millis, Scott R.; Salthouse, Timothy A.

    2011-01-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory…

  6. Confirmatory Factor Analysis of the WAIS-IV/WMS-IV

    Science.gov (United States)

    Holdnack, James A.; Zhou, Xiaobin; Larrabee, Glenn J.; Millis, Scott R.; Salthouse, Timothy A.

    2011-01-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory…

  7. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    Directory of Open Access Journals (Sweden)

    Jairo Blanco

    2011-07-01

    Full Text Available This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the effects on disturbance magnitude and phase. The study shows that the influence of an induction motor on voltage sag propagation results in increased voltage sag severity. Voltage sags caused by induction motor starting and transformer energising have no zero-sequence component, so they are only affected by type 3 transformers. The influence of fault resistance on voltage sag magnitude and phase characteristics is examined and some aspects of interest in characterising these electromagnetic disturbances is identified.

  8. Electrical characteristics of Pt-ZnO Schottky nano-contact

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrical characteristics of Pt-ZnO Schottky nano-contact have been studied. Well aligned ZnO nanorod arrays were synthesized by two-step wet-chemical method. A Pt-coated conducting probe of atomic force microscope was placed on the head face of the ZnO nanorod, thereby forming a Pt-ZnO nano-contact. The I-V characteristic curve shows that the Pt-ZnO nano-contact exhibits rectifying effect, like a Schottky diode with an ideality factor of 3.2 and a reverse-bias breakdown voltage more than -10 V. The study suggests that a high electric field is induced on the ZnO beneath the contact point when a bias voltage is applied, hence, the Schottky barrier thickness is decreased, and results in easier tunneling across the Pt-ZnO interface and a large ideality factor.

  9. Damage Induced by Neutron Radiation on Output Characteristics of Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Biljana Simić

    2013-01-01

    Full Text Available This study investigates the effects of neutron radiation on I-V characteristics (current dependance on voltage of commercial optoelectronic devices (silicon photodiodes, phototransistors, and solar panels. Current-voltage characteristics of the samples were measured at room temperature before and after irradiation. The diodes were irradiated using Am-Be neutron source with neutron emission of 2.7×106 n/s. The results showed a decrease in photocurrent for all samples which could be due to the existence of neutron-induced displacement defects introduced into the semiconductor lattice. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  10. Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.

    Science.gov (United States)

    Zhang, Joel Z; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A

    2012-08-31

    Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.

  11. Ehlers-Danlos syndrome type IV

    Directory of Open Access Journals (Sweden)

    Germain Dominique P

    2007-07-01

    Full Text Available Abstract Ehlers-Danlos syndrome type IV, the vascular type of Ehlers-Danlos syndromes (EDS, is an inherited connective tissue disorder defined by characteristic facial features (acrogeria in most patients, translucent skin with highly visible subcutaneous vessels on the trunk and lower back, easy bruising, and severe arterial, digestive and uterine complications, which are rarely, if at all, observed in the other forms of EDS. The estimated prevalence for all EDS varies between 1/10,000 and 1/25,000, EDS type IV representing approximately 5 to 10% of cases. The vascular complications may affect all anatomical areas, with a tendency toward arteries of large and medium diameter. Dissections of the vertebral arteries and the carotids in their extra- and intra-cranial segments (carotid-cavernous fistulae are typical. There is a high risk of recurrent colonic perforations. Pregnancy increases the likelihood of a uterine or vascular rupture. EDS type IV is inherited as an autosomal dominant trait that is caused by mutations in the COL3A1 gene coding for type III procollagen. Diagnosis is based on clinical signs, non-invasive imaging, and the identification of a mutation of the COL3A1 gene. In childhood, coagulation disorders and Silverman's syndrome are the main differential diagnoses; in adulthood, the differential diagnosis includes other Ehlers-Danlos syndromes, Marfan syndrome and Loeys-Dietz syndrome. Prenatal diagnosis can be considered in families where the mutation is known. Choriocentesis or amniocentesis, however, may entail risk for the pregnant woman. In the absence of specific treatment for EDS type IV, medical intervention should be focused on symptomatic treatment and prophylactic measures. Arterial, digestive or uterine complications require immediate hospitalisation, observation in an intensive care unit. Invasive imaging techniques are contraindicated. Conservative approach is usually recommended when caring for a vascular

  12. Effects of ageing on the electrical characteristics of Zn/ZnS/n-GaAs/In structure

    Science.gov (United States)

    Güzeldir, B.; Sağlam, M.

    2016-04-01

    Zn/ZnS/n-GaAs/In structure has been fabricated by the Successive Ionic Layer Adsorption and Reaction (SILAR) method and the influence of the time dependent or ageing on the characteristic parameters are examined. The current-voltage (I-V) of the structure have been measured immediately, 1, 3, 5, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 165 days after fabrication of this structure. The characteristics parameters of this structure such as barrier height, ideality factor, series resistance are calculated from the I-V measurements. It has been seen that the changes of characteristic parameters such as barrier height, ideality factor and series resistance of Zn/ZnS/n-GaAs/In structure have lightly changed with increasing ageing time.

  13. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions

    Institute of Scientific and Technical Information of China (English)

    GAO Xi-Li; ZHANG Xiao-Zhong; WAN Cai-Hua; WANG Ji-Min

    2012-01-01

    Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated.For reverse applied voltages,a-C:N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages.After the excitation of repeated high reverse applied voltages,the current-voltage curves show obvious hysteresis behaviors at low temperatures.These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.%Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated. For reverse applied voltages, a-C.N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages. After the excitation of repeated high reverse applied voltages, the current-voltage curves show obvious hysteresis behaviors at low temperatures. These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.

  14. DSM-IV Progress Report.

    Science.gov (United States)

    Hohenshil, Thomas H.

    1992-01-01

    Notes that Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-IV) will become one of most frequently used reference documents in counseling profession. Describes progress being made in development of DSM-IV, scheduled for publication in 1994. Describes revision process and proposed organizational changes and new diagnostic…

  15. Voltage Collapse Risk Associated to Under-Voltage Capacitive Compensation in Electric Power System Operation

    Directory of Open Access Journals (Sweden)

    Heraldo S. Barbuy

    2009-01-01

    Full Text Available Problem statement: In the operation of an Electric Power System (EPS, it has been usual to provide reactive power injection to avoid an under-voltage bus condition. In some situations an adequate voltage profile will not be a guarantee against Voltage Collapses (VCs that may cause blackouts as seen in many occurrences around the world. The repeatedly injection of reactive power can turn a bus into a characteristic too much capacitive. Under this condition and in the presence of a considerable percentage of the constant power load type, there will be a high risk of a VC. Any of the indices proposed in the literature as VC Proximity Indicators (VCPIs may alert the operator about the risk. Approach: In order to elucidate the problem stated, simulations were performed using MatLab/SimPowerSystems. It was used a basic example system composed by an infinite-bus feeding, through a large impedance line, a bus load whose power could be increased in ramp manner. It is also included a shunt capacitive compensation at the load bus every time the voltage value reaches 0.9 pu. Therefore, the VC risk increase could be shown by means of graphic results and the indications of some VCPIs sensitivity indices (including the new proposed index. Results: The graphics obtained in this study is a contribution to illustrate the voltage collapse risk problem when dealing with adjustments of voltage profile to meet the system requirements. Also, a VCPI sensitivity indicator using apparent load power was tested. The results have shown that all VCPI responses are very similar for a given case and electric system. Conclusion/Recommendations: Any VCPI information can help in the decision stage between either more reactive power injection or load shedding. A routine can also be developed for a supervisory program in order to alert the operator about VC risks.

  16. 基于矢量控制策略的永磁直驱风机在不同电压跌落程度下的故障特性分析%Fault Characteristic Analysis of Permanent Magnetic Synchronous Generator Based on Vector Control Strategy Under Different Levels of Voltage Drop

    Institute of Scientific and Technical Information of China (English)

    秦泽宁; 杨国生; 周泽昕; 王文焕; 王晓阳

    2016-01-01

    随着我国风电规模的不断扩大,永磁直驱风电机组获得广泛应用。首先,研究基于矢量控制策略的永磁直驱风机在不同电压跌落程度下的故障特性分析,在PSCAD/EMTDC中建立永磁直驱风机的网侧矢量控制和机侧零d轴电流控制搭配下的仿真模型;然后,分析当机端电压分别发生轻微跌落和严重跌落时,永磁直驱风机的故障电流特性和直流母线电压及有功、无功的变化规律;最后,针对限制短路故障电流和直流母线过电压,提出保障风机安全稳定运行的建议方法,为大规模永磁直驱式风力发电系统接入配电网提供技术支持。%With the continuous expansion of wind power, permanent magnetic synchronous generator (PMSG) has won a wide application. Firstly, this paper makes fault characteristic analysis of the PMSG based on vector control strategy under different levels of voltage drop. The simulation model of the permanent magnetic synchronous generator with grid-side vector control and machine-side zero d-axis current control in the PSCAD/EMTDC is built. Then, the fault current characteristic of PMSG and the change law of DC bus voltage and active and reactive power are studied when the terminal voltage drops slightly and drops severely. Finally, in order to limit the short-circuit fault current and DC bus over-voltage, recommended method for ensuring safe and stable operation of the wind turbine is proposed, which provides technical support for the large-scale direct-drive permanent magnetic wind power generation system’s access to distribution network.

  17. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  18. Resistive switching characteristic of electrolyte-oxide-semiconductor structures

    Science.gov (United States)

    Chen, Xiaoyu; Wang, Hao; Sun, Gongchen; Ma, Xiaoyu; Gao, Jianguang; Wu, Wengang

    2017-08-01

    The resistive switching characteristic of SiO2 thin film in electrolyte-oxide-semiconductor (EOS) structures under certain bias voltage is reported. To analyze the mechanism of the resistive switching characteristic, a batch of EOS structures were fabricated under various conditions and their electrical properties were measured with a set of three-electrode systems. A theoretical model based on the formation and rupture of conductive filaments in the oxide layer is proposed to reveal the mechanism of the resistive switching characteristic, followed by an experimental investigation of Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) to verify the proposed theoretical model. It is found that different threshold voltage, reverse leakage current and slope value features of the switching I-V characteristic can be observed in different EOS structures with different electrolyte solutions as well as different SiO2 layers made by different fabrication processes or in different thicknesses. With a simple fabrication process and significant resistive switching characteristic, the EOS structures show great potential for chemical/biochemical applications. Project supported by the National Natural Science Foundation of China (No. 61274116) and the National Basic Research Program of China (No. 2015CB352100).

  19. Voltage Sensors Monitor Harmful Static

    Science.gov (United States)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  20. Voltage balancing strategies for serial connection of microbial fuel cells

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno; Buret, François

    2015-07-01

    The microbial fuel cell (MFC) converts electrochemically organic matter into electricity by means of metabolisms of bacteria. The MFC power output is limited by low voltage and low current characteristics in the range of microwatts or milliwatts per litre. In order to produce a sufficient voltage level (>1.5 V) and sufficient power to supply real applications such as autonomous sensors, it is necessary to either scale-up one single unit or to connect multiple units together. Many topologies of connection are possible as the serial association to improve the output voltage, or the parallel connection to improve the output current or the series/parallel connection to step-up both voltage and current. The association of MFCs in series is a solution to increase the voltage to an acceptable value and to mutualize the unit's output power. The serial association of a large number of MFCs presents several issues. The first one is the hydraulic coupling among MFCs when they share the same substrate. The second one is the dispersion between generators that lead to a non-optimal stack efficiency because the maximum power point (MPP) operation of all MFCs is not permitted. Voltage balancing is a solution to compensate non-uniformities towards MPP. This paper presents solutions to improve the efficiency of a stack of serially connected MFCs through a voltage-balancing circuit. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  1. Soft computing techniques in voltage security analysis

    CERN Document Server

    Chakraborty, Kabir

    2015-01-01

    This book focuses on soft computing techniques for enhancing voltage security in electrical power networks. Artificial neural networks (ANNs) have been chosen as a soft computing tool, since such networks are eminently suitable for the study of voltage security. The different architectures of the ANNs used in this book are selected on the basis of intelligent criteria rather than by a “brute force” method of trial and error. The fundamental aim of this book is to present a comprehensive treatise on power system security and the simulation of power system security. The core concepts are substantiated by suitable illustrations and computer methods. The book describes analytical aspects of operation and characteristics of power systems from the viewpoint of voltage security. The text is self-contained and thorough. It is intended for senior undergraduate students and postgraduate students in electrical engineering. Practicing engineers, Electrical Control Center (ECC) operators and researchers will also...

  2. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching

    Science.gov (United States)

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-01

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoOx layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoOx interface by the accumulation and depletion of oxygen vacancies.

  3. Field Measurement and Analysis of the Impedance and Attenuation Characteristics of the Low -voltage Power Line Narrowband Carrier Channel%低压电力线窄带载波通信信道阻抗与衰减特性的现场测量及分析

    Institute of Scientific and Technical Information of China (English)

    李丰; 田海亭; 王思彤; 袁瑞铭; 梁贵书

    2011-01-01

    低压电力线载波通信已经成为智能电网建设中重要的本地通信手段,但低压电力线通信环境恶劣,影响通信性能,因此必须测量并掌握低压电力线的信道特征.本文针对低压电力线窄带载波通信应用于电力集抄系统的现状,给出了现场测量阻抗和衰减特性所采用的方法,并对有代表性的台区进行了现场测量,分析总结了测量得到的不同类型低压电力线信道在80 ~ 500kHz频段内的阻抗和衰减特性,可为低压电力线载波通信现场环境的研究提供参考.%Low - voltage power line carrier communication (LV - PLC) has become an important mean of local communication in the undergoing China' s smart grids. But the poor environment on the low voltage power line has a bad effect on the performances of LV - PLC, measuring and understanding of the power line channel characteristics become vital. In view of the existing situation of the narrow - band LV - PLC widely being used in the remote power - meter reading system, the paper provides field measurement methods of the impedance and attenuation characteristics, and implements a field measurement on the selection of some typical distribution networks, then compares and summarizes impedance and attenuation characteristics measured in the frequency range of 80 ~ 500 kHz. A practical reference is provided for the study of real environments of the LV - PLC in this paper.

  4. Self-rehealing characteristics of a sodium current limiter and its over current coordination for low voltage distribution systems; Natoriumu (Na) genryu soshi no jiko fukkyu tokusei to teiatsu haiden kairo oyo ni okeru kadenryu kyocho

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Hamano, S.; Mori, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1994-07-20

    As one of the short circuits protection techniques in a power circuit, there is a technique called the current-limiting breaking. When a short circuit current commences to flow after a short circuit occurs, this technique limits and breaks this current under a certain value by some measures before this current reaches to the crest value. There is a current-limiting fuse in the best known one as a functional element doing the current-limiting breaking. However in case of a current-limiting fuse, when an element is fused off, because a current can not be flowed, it has to be replaced. As a new element to eliminate this defect and moreover with a current-limiting function, a self-rehealing type current-limiting element possessing the alkaline metal, Na as an element has been developed. In this report, as for this element called Na current-limiting element, together with elucidating a rehealing process after the current-limiting action experimentally in detail, an overcurrent coordination is investigated when this element is applied to a main circuit of the control center, which is one of the low voltage distribution systems. 5 refs., 8 figs., 1 tab.

  5. Low Voltage Power Supply Incorporating Ceramic Transformer

    CERN Document Server

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  6. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  7. Dynamic Analysis of Power System Voltage Stability.

    Science.gov (United States)

    Gebreselassie, Assefa

    This thesis investigates the effects of loads and voltage regulators on the dynamic voltage stability of power systems. The analysis focuses on the interactions of machine flux dynamics with loads and voltage control devices. The results are based on eigenvalue analysis of the linearized models and time simulation of the nonlinear models, using models from the Power System Toolbox, a Matlab -based package for the simulation and small signal analysis of nonlinear power systems. The voltage stability analysis results are developed using a single machine single load system with typical machine and network parameters and the NPCC 10-machine system. Dynamic models for generators, exciters and loads are used. The generator is modeled with a pair of poles and one damper circuit in both the d-axis and the q-axis. Saturation effects are included in the model. The IEEE Type DC1 DC commutator exciter model is used for all the exciters. Five different types of loads: constant impedance, constant current, constant power, a first order induction motor model (slip model) and a third order induction motor model (slip-flux model) are considered. The modes of instability and the stability limits of the different representation of loads are examined for two different operating modes of the exciters. The first, when all the exciters are on automatic control and the second when some exciters are on manual control. Modal participation factors are used to determine the characteristics of the critical modes. The characteristics of the unstable modes are verified by performing time simulation of the nonlinear models. Oscillatory and non-oscillatory instabilities are experienced by load buses when all the exciters are on automatic control and some exciters are on manual control respectively, for loads which are predominantly constant power and induction motors. It is concluded that the mode of instability does not depend on the type of loads but on the operating condition of the exciters

  8. The transfer voltage standard for calibration outside of a laboratory

    Directory of Open Access Journals (Sweden)

    Urekar Marjan

    2017-01-01

    Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019

  9. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W.; Silverstein, Brian L. [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  10. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate vario...... power quality disturbances, such as interruptions, sags and imbalances. Simulation studies have been performed. The effectiveness of the proposed method has been demonstrated under the simulated typical power disturbances....

  11. Requirement of ultra-high voltage GIS arrester to voltage gradient of metal-oxide varistor

    Institute of Scientific and Technical Information of China (English)

    HE JinLiang; HU Jun; MENG BoWen; ZHANG Bo; ZHU Bin; CHEN ShuiMing; ZENG Rong

    2009-01-01

    The surge arrestor with excellent protection characteristics would decrease the overvoltage level ap-plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The ar-restor for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite ele-ment method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the re-sulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrestor would be controlled smaller than 10%. The result in this paper provides the fundamental technical in-dex for the study of the high voltage gradient ZnO varistors.

  12. Requirement of ultra-high voltage GIS arrester to voltage gradient of metal-oxide varistor

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The surge arrester with excellent protection characteristics would decrease the overvoltage level ap- plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The arrester for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite element method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the resulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrester would be controlled smaller than 10%. The result in this paper provides the fundamental technical index for the study of the high voltage gradient ZnO varistors.

  13. 振荡电压下电缆典型缺陷局部放电的统计特征及定位研究%Statistical Characteristic and Location of Partial Discharge Caused by Typical Defects in Power Cable Under Damped Oscillation Voltage

    Institute of Scientific and Technical Information of China (English)

    常文治; 葛振东; 时翔; 马国明; 陈志勇; 崔潇; 李成榕; 陈雪薇; 唐志国

    2013-01-01

    Oscillating wave test system (OWTS) possesses such advantages as calibratable detection results,not causing deterioration in power cable insulation,especially suitable to field testing and so on while it is utilized to detect partial discharge (PD) occurred at the position of power cable,where defects exist,under damped oscillation voltage.To research statistical characteristic of PD caused by power cable defects under damped oscillation voltage,four circumstances are preset to simulate four typical cable defects,they are:A) incorrect winding-up of insulation adhesive tape at intermediate joint core,B) a nadel at the surface of conductor core pricking into insulation layer of cable,C) breakage of outer semiconducting layer of cable body and D) a extrinsic metal pin pricking into main insulation layer of cable but not touching with both surfaces of conductor core and inner semiconducting layer.Using self-developed OWTS,the PD signals caused by preset circumstances are measured,and then the phasic statisticalcircumstances are measured,and then the phasic statistical characteristics of PD caused by the four circumstances with different severities are analyzed by the phase analysis of oscillation voltage.Analysis results show that all location errors of the four preset circumstances do not exceed 10cm.The PD signals caused by circumstance A concentrate within two phase intervals of oscillation voltage from 20° to 70° and from 200° to 280° respectively and the densest distribution appears nearby 230°,and in grey image they sparsely distribute in triangle shape,and the discharge density in the negative half-cycle is slightly denser than in positive half-cycle; the PD signals caused by circumstance B concentrate within two phase intervals of oscillation voltage from 20° to 110° and from 200° to 280° respectively and in grey image they symmetrically distribute in rectangular shape,and the distribution densities in positive and negative half-cycle are basically

  14. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    Science.gov (United States)

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  15. A matter of quantum voltages.

    Science.gov (United States)

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  16. The Modern RPG IV Language

    CERN Document Server

    Cozzi, Robert

    2006-01-01

    This updated, classic work on the RPG language covers all the new functions and features that have been added since 2003, including new op codes and built-in functions, new chapters on free-format RPG IV and Web programming interfaces, information on implementing XML within RPG IV, and expanded information on procedures. This reference guide takes both novice and experienced RPG IV programmers through the language, from its foundation to its most advanced techniques. More than 100 charts and tables, as well as 350 real-life code samples of functions and operations are included, showing readers

  17. Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics

    Science.gov (United States)

    Çaldiran, Z.; Aydoğan, Ş.; İncekara, Ü.

    2016-05-01

    In this study, a device applications of organic material Fast Green FCF (C37H34N2Na2O10S3Na2) has been investigated. After chemical cleaning process of boron doped H-Si crystals, Al metal was coated on the one surface of crystals by thermal evaporation and fast green organic materials were coated on other surface of crystals with spin coating method (coating parameters; 800 rpm for 60 s). Finally, Ni metal was coated on Fast Green by sputtering and we obtained the Ni/Fast Green FCF/n-Si/Al Schottky type diode. And then we calculated the basic diode parameters of device with current-voltage (I-V) and capacitance- voltage (C-V) measurements at the room temperature. We calculated the ideality factory (n), barrier height (Φb) of rectifing contact from I-V measurements using thermionic emission methods. Furthermore, we calculated ideality factory (n), barrier height (Φb) and series resistance (Rs) of device using Cheung and Norde functions too. The diffusion potential, barrier height, Fermi energy level and donor concentration have been determined from the linear 1/C2-V curves at reverse bias, at room temperature and various frequencies. Besides we measured the current-voltage (I-V) at under light and analyzed the characteristics of the solar cell device.

  18. VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK

    African Journals Online (AJOL)

    VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF RUMUOLA DISTRIBUTION NETWORK. ... The artificial neural networks controller engaged to controlling the dynamic voltage ... Article Metrics.

  19. Impedance of goat eye lens at different DC voltages.

    Science.gov (United States)

    Kohli, K S; Rai, D V; Jindal, V K; Goyal, N

    1998-09-01

    A computer assisted AC impedance system is used to measure the DC voltage-current (V-I) characteristics and AC impedance of a goat eye lens using a two-probe Ag-AgCl electrode system. The measurement of the V-I characteristics shows that when a DC voltage from 0 mV to 30 mV is applied, the resultant current decreases from an initial value of 0.58 microA to 0.006 microA. However, when the voltage is increases beyond 30 mV, the current increases and reaches a value of 0.9 microA at 100 mV. The data on the frequency response (0.01-10 Hz) of the impedance of lens tissue show an inverse relationship with frequency. The effect of various DC voltages, namely 0, 30, 50, 100 and 200 mV, on the impedance of the eye lens is also investigated over a frequency range of 0.01-10 Hz. The measurement results for both V-I characteristics and AC impedance further suggest the presence of a 30 mV voltage compartment in the goat eye lens.

  20. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  1. Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode

    Science.gov (United States)

    Resfa, A.; Menezla, Brahimi. R.; Benchhima, M.

    2014-08-01

    This work aims to determine the characteristic I (breakdown voltage) of the inverse current in a GaAs PN junction diode, subject to a reverse polarization, while specifying the parameters that influence the breakdown voltage of the diode. In this work, we simulated the behavior of the ionization phenomenon by impact breakdown by avalanche of the PN junctions, subject to an inverse polarization. We will take into account both the trapping model in a stationary regime in the P+N structure using like material of basis the III-V compounds and mainly the GaAs semi-insulating in which the deep centers have in important densities. We are talking about the model of trapping in the space charge region (SCR) and that is the trap density donor and acceptor states. The carrier crossing the space charge region (SCR) of W thickness creates N electron—hole pairs: for every created pair, the electron and the hole are swept quickly by the electric field, each in an opposite direction, which comes back, according to an already accepted reasoning, to the crossing of the space charge region (SCR) by an electron or a hole. So the even N pair created by the initial particle provoke N2 ionizations and so forth. The study of the physical and electrical behaviour of semiconductors is based on the influence of the presence of deep centers on the characteristic I(V) current-tension, which requires the calculation of the electrostatic potential, the electric field, the integral of ionization, the density of the states traps, the diffusion current of minority in the regions (1) and (3), the current thermal generation in the region (2), the leakage current in the surface, and the breakdown voltage.

  2. Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels*

    Science.gov (United States)

    Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.

    2012-01-01

    Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417

  3. Electrical characteristics of polycrystalline Si layers embedded into high-k Al{sub 2}O{sub 3} gate layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungjun; Cho, Kyoungah [Department of Electrical Engineering and Institute of Nano Science, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Sangsig [Department of Electrical Engineering and Institute of Nano Science, Korea University, Seoul 136-701 (Korea, Republic of)], E-mail: sangsig@korea.ac.kr

    2008-09-30

    The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high-k Al{sub 2}O{sub 3} (alumina) gate layers are investigated in this work. The capacitance versus voltage (C-V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C-V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al{sub 2}O{sub 3} layers in the MASAS capacitor. Also, current versus voltage (I-V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I-V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.

  4. The low threshold voltage n-type silicon transistors based on a polymer/silica nanocomposite gate dielectric: The effect of annealing temperatures on their operation

    Science.gov (United States)

    Hashemi, Adeleh; Bahari, Ali; Ghasemi, Shahram

    2017-09-01

    In this work, povidone/silica nanocomposite dielectric layers were deposited on the n-type Si (100) substrates for application in n-type silicon field-effect transistors (FET). Thermogravimetric analysis (TGA) indicated that strong chemical interactions between polymer and silica nanoparticles were created. In order to examine the effect of annealing temperatures on chemical interactions and nanostructure properties, annealing process was done at 423-513 K. Atomic force microscopy (AFM) images show the very smooth surfaces with very low surface roughness (0.038-0.088 nm). The Si2p and C1s core level photoemission spectra were deconvoluted to the chemical environments of Si and C atoms respectively. The obtained results of deconvoluted X-ray photoelectron spectroscopy (XPS) spectra revealed a high percentage of silanol hydrogen bonds in the sample which was not annealed. These bonds were inversed to stronger covalence bonds (siloxan bonds) at annealing temperature of 423 K. By further addition of temperature, siloxan bonds were shifted to lower binding energy of about 1 eV and their intensity were abated at annealing temperature of 513 K. The electrical characteristics were extracted from current-Voltage (I-V) and capacitance-voltage (C-V) measurements in metal-insulator-semiconductor (MIS) structure. The all n-type Si transistors showed very low threshold voltages (-0.24 to 1 V). The formation of the strongest cross-linking at nanostructure of dielectric film annealed at 423 K caused resulted in an un-trapped path for the transport of charge carriers yielding the lowest threshold voltage (0.08 V) and the highest electron mobility (45.01 cm2/V s) for its FET. By increasing the annealing temperature (473 and 513 K) on the nanocomposite dielectric films, the values of the average surface roughness, the capacitance and the FET threshold voltage increased and the value of FET electron field-effect mobility decreased.

  5. Current-voltage curves of gold quantum point contacts revisited

    DEFF Research Database (Denmark)

    Hansen, K.; Nielsen, S K.; Brandbyge, Mads;

    2000-01-01

    We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...... clean ultra-high-vacuum conditions at room temperature. The I - V curves are found to he almost linear in contrast to previous reports. Tight-binding calculations of I - V curves for one- and two-atom contacts are in excellent agreement with our measurements. On the other hand, clearly nonlinear I - V...

  6. Genetics Home Reference: mucopolysaccharidosis type IV

    Science.gov (United States)

    ... Mucopolysaccharidosis type IV (MPS IV), also known as Morquio syndrome, is a progressive condition that mainly affects ... Management Genetic Testing (3 links) Genetic Testing Registry: Morquio syndrome Genetic Testing Registry: Mucopolysaccharidosis, MPS-IV-A ...

  7. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  8. pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures

    OpenAIRE

    Jyh-Liang Wang; Po-Yu Yang; Tsang-Yen Hsieh; Chuan-Chou Hwang; Miin-Horng Juang

    2013-01-01

    Highly sensitive and stable pH-sensing properties of an extended-gate field-effect transistor (EGFET) based on the aluminum-doped ZnO (AZO) nanostructures have been demonstrated. The AZO nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at 85°C. The AZO sensing nanostructures were connected with the metal-oxide-semiconductor field-effect transistor (MOSFET). Afterwards, the current-voltage (I-V) characteristics and ...

  9. Anticancer platinum (IV) prodrugs with novel modes of activity.

    Science.gov (United States)

    Chin, Chee Fei; Wong, Daniel Yuan Qiang; Jothibasu, Ramasamy; Ang, Wee Han

    2011-01-01

    Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.

  10. Unbalanced Voltage Compensation in Low Voltage Residential AC Grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Munk-Nielsen, Stig

    2016-01-01

    This paper describes the design and test of a control algorithm for active front-end rectifiers that draw power from a residential AC grid to feed heat pump loads. The control algorithm is able to control the phase to neutral or phase to phase RMS voltages at the point of common coupling....... The voltage control was evaluated with either active or reactive independent phase load current control. The control performance in field operation in a residential grid situated in Bornholm, Denmark was investigated for different use cases....

  11. Automated Voltage Control in LHCb

    CERN Document Server

    Granado Cardoso, L; Jacobsson, R

    2011-01-01

    LHCb is one of the 4 LHC experiments. In order to ensure the safety of the detector and to maximize efficiency, LHCb needs to coordinate its own operations, in particular the voltage configuration of the different subdetectors, according to the accelerator status. A control software has been developed for this purpose, based on the Finite State Machine toolkit and the SCADA system used for control throughout LHCb (and the other LHC experiments). This software permits to efficiently drive both the Low Voltage (LV) and High Voltage (HV) systems of the 10 different sub-detectors that constitute LHCb, setting each sub-system to the required voltage (easily configurable at run-time) based on the accelerator state. The control software is also responsible for monitoring the state of the Sub-detector voltages and adding it to the event data in the form of status-bits. Safe and yet flexible operation of the LHCb detector has been obtained and automatic actions, triggered by the state changes of the ...

  12. Regular structures in 5CB liquid crystals under the joint action of ac and dc voltages

    Science.gov (United States)

    Aguirre, Luis E.; Anoardo, Esteban; Éber, Nándor; Buka, Ágnes

    2012-04-01

    A nematic liquid crystal with high, positive dielectric anisotropy (5CB) has been studied under the influence of the combined action of a dc and an ac electric field. Broad frequency, voltage, and cell thickness ranges were considered. Pattern morphologies were identified; the thresholds and critical wave numbers were measured and analyzed as a function of frequency, dc-to-ac voltage ratio, and thickness. The current-voltage characteristics were simultaneously detected.

  13. HIGH VOLTAGE SMALL – SIZED ALTERNATIVE CURRENT RESISTIVE DIVIDERS FROM MICROWIRE

    Directory of Open Access Journals (Sweden)

    Berzan V.P.

    2011-04-01

    Full Text Available The paper discusses the design parameters and characteristics of the new product, the resistive voltage divider produced from microwire for measuring high-voltage alternating current. Resistive dividers are designed for use in AC circuits and power-frequency electric traction network traffic. Dividers have smaller mass-dimensional size compared with the measuring voltage transformers and higher accuracy class 0.2 at a fixed frequency.

  14. Study on the instantaneous protection reliability of low voltage circuit breakers

    Institute of Scientific and Technical Information of China (English)

    LU Jian-guo; DU Tai-hang; LUO Yan-yan

    2007-01-01

    This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics Calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.

  15. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Arash Toudeshki; Norman Mariun; Hashim Hizam; Noor Izzri Abdul Wahab

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  16. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  17. Why Batteries Deliver a Fairly Constant Voltage until Dead

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md. Mainul; MacCarthy, Patrick

    2012-01-01

    Two characteristics of batteries, their delivery of nearly constant voltage and their rapid failure, are explained through a visual examination of the Nernst equation. Two Galvanic cells are described in detail: (1) a wet cell involving iron and copper salts and (2) a mercury oxide dry cell. A complete description of the wet cell requires a…

  18. Why Batteries Deliver a Fairly Constant Voltage until Dead

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md. Mainul; MacCarthy, Patrick

    2012-01-01

    Two characteristics of batteries, their delivery of nearly constant voltage and their rapid failure, are explained through a visual examination of the Nernst equation. Two Galvanic cells are described in detail: (1) a wet cell involving iron and copper salts and (2) a mercury oxide dry cell. A complete description of the wet cell requires a…

  19. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...

  20. Simple buck/boost voltage regulator

    Science.gov (United States)

    Paulkovich, J.; Rodriguez, G. E.

    1980-01-01

    Circuit corrects low or high supply voltage, produces regulated output voltage. Circuit has fewer components because inductory/transformer combination and pulse-width modulator serve double duty. Regulator handles input voltage variation from as low as one half output voltage to as high as input transistor rating. Solar arrays, fuel cells, and thermionic generators might use this regulator.

  1. 30 CFR 18.47 - Voltage limitation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Voltage limitation. 18.47 Section 18.47 Mineral... § 18.47 Voltage limitation. (a) A tool or switch held in the operator's hand or supported against his... particular voltage(s) are provided in the design and construction of the equipment, its wiring,...

  2. Study of the breakdown voltage of SiPMs

    CERN Document Server

    Chmill, V; Klanner, R; Nitschke, M; Schwandt, J

    2016-01-01

    The breakdown behaviour of SiPMs (Silicon PhotoMultiplier) with pixel sizes of 15$\\times $15, 25$\\times $25, 50$\\times $50, and 100$\\times $100 $\\mu $m$^2$, manufactured by KETEK, has been investigated. From the current-voltage characteristics measured with and without illumination by LED light of 470 nm wavelength, the current-breakdown voltage, $V_I$, and from linear fits of the voltage dependence of the SiPM gain, measured by recording pulse-area spectra, the gain-breakdown voltage, $V_G$, have been obtained. The voltage dependence of the Geiger-breakdown probability was determined from the fraction of zero photoelectron events with LED illumination. By comparing the results to a model calculation, the photodetection-breakdown voltage, $V_{PD}$, has been determined. Within experimental uncertainties, $V_I$ and $V_{PD}$ are equal and independent of pixel size. For $V_G$, a dependence on pixel size is observed. The difference $V_I - V_G$ is about 1 V for the SiPM with 15 $\\mu $m pixels, decreases with pixel ...

  3. Study of the breakdown voltage of SiPMs

    Science.gov (United States)

    Chmill, V.; Garutti, E.; Klanner, R.; Nitschke, M.; Schwandt, J.

    2017-02-01

    The breakdown behaviour of SiPMs (Silicon PhotoMultiplier) with pixel sizes of 15 × 15 , 25 × 25 , 50 × 50, and 100 × 100 μm2, manufactured by KETEK, has been investigated. From the current-voltage characteristics measured with and without illumination by LED light of 470 nm wavelength, the current-breakdown voltage, VI, and from linear fits of the voltage dependence of the SiPM gain, measured by recording pulse-area spectra, the gain-breakdown voltage, VG, have been obtained. The voltage dependence of the Geiger-breakdown probability was determined from the fraction of zero photoelectron events with LED illumination. By comparing the results to a model calculation, the photodetection-breakdown voltage, VPD, has been determined. Within experimental uncertainties, VI and VPD are equal and independent of pixel size. For VG, a dependence on pixel size is observed. The difference VI -VG is about 1 V for the SiPM with 15 μm pixels, decreases with pixel size and is compatible with zero for the SiPM with 100 μm pixels.

  4. Conductance hysteresis in the voltage-dependent anion channel.

    Science.gov (United States)

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths.

  5. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  6. Portable High Voltage Impulse Generator

    Directory of Open Access Journals (Sweden)

    S. Gómez

    2011-07-01

    Full Text Available This paper presents a portable high voltage impulse generator which was designed and built with insulation up to 20 kV. This design was based on previous work in which simulation software for standard waves was developed. Commercial components and low-cost components were used in this work; however, these particular elements are not generally used for high voltage applications. The impulse generators used in industry and laboratories are usually expensive; they are built to withstand extra high voltage and they are big, making them impossible to transport. The proposed generator is portable, thereby allowing tests to be made on devices that cannot be moved from their location. The results obtained with the proposed impulse generator were satisfactory in terms of time and waveforms compared to other commercial impulse generators and the standard impulse wave simulator.

  7. 应用牛顿法的高压直流输电系统非特征谐波潮流算法%Non-Characteristic Harmonic Load Flow Algorithm Based on Newton-Raphson Method for High Voltage Direct Current System

    Institute of Scientific and Technical Information of China (English)

    蒋国顺; 李建华; 夏道止; 黄莹

    2011-01-01

    针对高压直流输电系统非特征谐波潮流算法中非线性方程组具有变量多、维数高的特点,采用牛顿-拉夫逊算法迭代求解,提高了非特征谐波算法的收敛性,推导了换流装置交流侧三相电流和直流侧电压及Y、d换流变压器△绕组内零序环流的解析式.根据交、直流网络与换流装置的相互关系,组成换流站母线三相谐波电流平衡方程、直流网络谐波电流平衡方程,形成了修正方程式,以统一基波和特征谐波潮流结果为初值,运用牛顿-拉夫逊算法迭代求解全系统非线性方程组.采用该算法计算了南方电网云广±800 kV特高压直流输电系统非特征谐波潮流,计算结果合理,收敛性良好,证明了所提算法的正确性和有效性.%In the non-characteristic harmonic load flow algorithm for high voltage direct current (HVDC) system, the nonlinear equations are charactered by the multivariable and huge dimension.Newton-Raphson iterative method is applied to improve the convergence of the non-characteristic harmonic load flow algorithm.The analytic expressions of three phases AC current, DC voltage, and circulation current at △ side in Y, d transformer are deduced.According to the relationship between the AC-DC network and converter device, balance equations of three-phase harmonic current of AC bus and DC network harmonic current are deduced, the modified equation for whole system is hence constructed and solved iteratively by taking the unified fundamental and characteristic harmonic load flow as the initial value.The non-characteristic harmonic load flows of China Southern Power Grid Yunguang ± 800 kV UHVDC transmission system are evaluated to verify the reasonableness and effectiveness.

  8. Temperature Characteristics of BJMOSFET

    Institute of Scientific and Technical Information of China (English)

    ZENG Yun; YAN Min; YANG Hong-guan; GAO Yun

    2005-01-01

    The resolution expression for the temperature dependence of the current and threshold voltage is deduced as well as the analysis of temperature characteristics of BJMOSFET. Equivalent circuit of analysis and simulation has been established for the BJMOSFET temperature characteristics. By using the general circuit simulation software of PSpice9 and computer simulation, characteristic graphs of the BJMOSFET output characteristic, transient characteristic and amplitude-frequency characteristic with temperature variation are obtained. The results accorded very good with theoretical analysis and proved that BJMOSFET has better temperature characteristics than traditional MOSFET.

  9. A low voltage CMOS low drop-out voltage regulator

    Science.gov (United States)

    Bakr, Salma Ali; Abbasi, Tanvir Ahmad; Abbasi, Mohammas Suhaib; Aldessouky, Mohamed Samir; Abbasi, Mohammad Usaid

    2009-05-01

    A low voltage implementation of a CMOS Low Drop-Out voltage regulator (LDO) is presented. The requirement of low voltage devices is crucial for portable devices that require extensive computations in a low power environment. The LDO is implemented in 90nm generic CMOS technology. It generates a fixed 0.8V from a 2.5V supply which on discharging goes to 1V. The buffer stage used is unity gain configured unbuffered OpAmp with rail-to-rail swing input stage. The simulation result shows that the implemented circuit provides load regulation of 0.004%/mA and line regulation of -11.09mV/V. The LDO provides full load transient response with a settling time of 5.2μs. Further, the dropout voltage is 200mV and the quiescent current through the pass transistor (Iload=0) is 20μA. The total power consumption of this LDO (excluding bandgap reference) is only 80μW.

  10. Implementation of Dynamic Voltage Restorer for Mitigation of Voltage Sag

    Directory of Open Access Journals (Sweden)

    K.Vinod Kumar

    2013-07-01

    Full Text Available Power quality is one of major concerns in the present. It has become important, especially with the introduction of sophisticated devices, whose performance is very sensitive to the quality of power supply. The dynamic voltage restorer (DVR is one of the modern devices used in distribution systems to improve the power quality. In this paper, emergency control in distribution systems is discussed by using the proposed multifunctional DVR control strategy.Also, themultiloop controller using the Posicast and P+Resonant controllers is proposed in order to improve the transient response and eliminate the steady state error in DVR response,respectively.The proposed process is applied to some riots in load voltage effected by induction motors starting, and a three-phase short circuit fault. The three-phase short circuits, and the large induction motors are suddenly started then voltage sags areoccurred.The innovation here is that by using the Multifunctional Dynamic Voltage Restorer, improve the power quality in distribution side. Simulation results show the capability of the DVR to control the emergency conditions of the distribution systems by using MATLAB/Simulink software.

  11. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  12. Control of ion energy and angular distributions using voltage waveform

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.

    1999-07-01

    A number of plasma-aided microelectronics manufacturing processes sensitively depend on the ion characteristics at the substrate, in particular the ion energy (IEDF) and angular (IADF) distribution functions. The outcome of these processes can be much more precisely controlled if one has direct control over the IEDFs and IADFs. Past studies have explored the influence of rb bias voltage amplitude and frequency, inductive power deposition and gas pressure on the ion characteristics at the substrate. The factor that influences the ion dynamics most is however the time-dependent sheath voltage and, as demonstrated in this paper, sheath voltage can be accurately controlled using the rf bias voltage waveform. In this paper, the authors computationally examine the influence of the rf bias voltage waveform on the IEDFs and IADFs at the substrate in an inductively coupled plasma (ICP) reactor. This study has been conducted using a coupled set of the Hybrid Plasma Equipment Model (HPEM) and a circuit model, and the Plasma Chemistry Monte Carlo Simulation (PCMCS).

  13. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel.

    Science.gov (United States)

    Fraceto, Leonardo F; Oyama, Sérgio; Nakaie, Clóvis R; Spisni, Alberto; de Paula, Eneida; Pertinhez, Thelma A

    2006-08-20

    The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na+ channel, residues 1644-1664. The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1H-15N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Deltadelta(1H-15N), show that benzocaine affects residues L1653, M1655 and S1656 while lidocaine slightly perturbs residues I1646, L1649 and A1659, L1660, near the N- and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H2O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na+ channel functionality as well as the various facets of LA pharmacological activity are proposed in this work.

  14. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  15. Wide Operational Range Processor Power Delivery Design for Both Super-Threshold Voltage and Near-Threshold Voltage Computing

    Institute of Scientific and Technical Information of China (English)

    Xin He; Gui-Hai Yan; Yin-He Han; Xiao-Wei Li

    2016-01-01

    The load power range of modern processors is greatly enlarged because many advanced power management techniques are employed, such as dynamic voltage frequency scaling, Turbo Boosting, and near-threshold voltage (NTV) technologies. However, because the efficiency of power delivery varies greatly with different load conditions, conventional power delivery designs cannot maintain high efficiency over the entire voltage spectrum, and the gained power saving may be offset by power loss in power delivery. We propose SuperRange, a wide operational range power delivery unit. SuperRange complements the power delivery capability of on-chip voltage regulator and off-chip voltage regulator. On top of SuperRange, we analyze its power conversion characteristics and propose a voltage regulator (VR) aware power management algorithm. Moreover, as more and more cores have been integrated on a singe chip, multiple SuperRange units can serve as basic building blocks to build, in a highly scalable way, more powerful power delivery subsystem with larger power capacity. Experimental results show SuperRange unit offers 1x and 1.3x higher power conversion efficiency (PCE) than other two conventional power delivery schemes at NTV region and exhibits an average 70%PCE over entire operational range. It also exhibits superior resilience to power-constrained systems.

  16. Defect Measurements and Performance Testing of CZT Detectors Using I-DLTS, TCT, I-V, C-V and γ-Ray Spectroscopy

    Science.gov (United States)

    Gul, Rubi; Li, Zheng; Keeter, Kara; Rodriguez, Rene; James, Ralph

    2008-05-01

    Performance testing and the measurement of the defect levels of CZT detectors from different manufacturers are investigated by means of I-DLTS (Current Deep Level Transient Spectroscopy), TCT (Transient Charge Technique), I-V, C-V and γ-Ray Spectroscopy. Studies include measuring defects parameters such as energy levels in the band gap, carrier capture cross-section and defect density have been determined by using I-DLTS. The space charge density, induced current and collected charge were obtained by using TCT. Detector's electric characteristics and detection performance tests are carried out by using I-V, C-V and γ-Ray Spectroscopy. I-DLTS data is collected in the temperature range of 10-330 K. Different mid-band energy traps, ranging from Ec-0.01 eV to Ec-0.31 eV, mostly native acceptor defects, are identified. The TCT parameters are obtained by measuring laser induced current transients with 50-1100 V bias voltages across the detector. The maximum value of collected electrons and the typical measured space charge density, at 1100V is found of the order of 10^10. Resistivity, performance and depletion of the detectors are determined by I-V and γ-Ray Spectroscopy.

  17. Scaling and disorder analysis of local I-V curves from ferroelectric thin films of lead zirconate titanate.

    Science.gov (United States)

    Maksymovych, Peter; Pan, Minghu; Yu, Pu; Ramesh, Ramamoorthy; Baddorf, Arthur P; Kalinin, Sergei V

    2011-06-24

    Differential analysis of current-voltage characteristics, obtained on the surface of epitaxial films of ferroelectric lead zirconate titanate (Pb(Zr(0.2)Ti(0.8))O(3)) using scanning probe microscopy, was combined with spatially resolved mapping of variations in local conductance to differentiate between candidate mechanisms of local electronic transport and the origin of disorder. Within the assumed approximations, electron transport was inferred to be determined by two mechanisms depending on the magnitude of applied bias, with the low-bias range dominated by the trap-assisted Fowler-Nordheim tunneling through the interface and the high-bias range limited by the hopping conduction through the bulk. Phenomenological analysis of the I-V curves has further revealed that the transition between the low- and high-bias regimes is manifested both in the strength of variations within the I-V curves sampled across the surface, as well as the spatial distribution of conductance. Spatial variations were concluded to originate primarily from the heterogeneity of the interfacial electronic barrier height with an additional small contribution from random changes in the tip-contact geometry.

  18. THE ANALYSIS OF STEADY VOLTAGE ON THE ACCESSION OF DC TRACTION SUBSTATIONS

    Directory of Open Access Journals (Sweden)

    V. H. Sychenko

    2009-09-01

    Full Text Available Research results of voltage modes at traction substation buses in primary, regional and traction network are presented in the article. Numeric characteristics of probability density distributions are obtained. Autocorrelation functions of positive and negative sequence voltages are analyzed.

  19. Investigation on Concentrated V(IV)/V(V) Redox Reaction by Rotating Disc Voltammetry

    Institute of Scientific and Technical Information of China (English)

    WEN Yue-Hua; ZHANG Hua-Min; QIAN Peng; MA Hai-Peng; YI Bao-Lian; YANG Yu-Sheng

    2007-01-01

    The kinetic characteristics of the concentrated V(IV)/V(V) couple have been studied at a glassy carbon electrode in sulfuric acid using rotating-disc electrode and cyclic voltammetry. The kinetics of the V(IV)/V(V) redox couple reaction was found to be electrochemically quasi-reversible with the slower kinetics for the V(V) reduction than that for the V(IV) oxidation. And, dependence of diffusion coefficients and kinetic parameters of V(IV) species on the V(IV) and H25O4 concentration was investigated. It is shown that the concentration of active species V(IV)centration, the diffusion coefficients of V(IV) were gradually reduced whereas its kinetics was improved considerably,espicially in the case of Ⅴ(Ⅳ)and H2SO4 up to 2 and 4 mol·L-1.

  20. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.