WorldWideScience

Sample records for voltage iv characteristics

  1. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Erdoğan, Erman, E-mail: e.erdogan@alparslan.edu.tr [Department of Physics, Faculty of Art and Science, Muş Alparslan University, Muş 49250 (Turkey); Kundakçı, Mutlu [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10{sup −5} mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  2. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  3. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  4. {sup 60}Co {gamma} irradiation effects on the current-voltage (I-V) characteristics of Al/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey); Buelbuel, M.M. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)

    2006-12-01

    It is well known that the exposure of any semiconductor surfaces to the {sup 60}Co {gamma}-ray irradiation causes electrically active defects. To investigate the effect of {gamma}-ray irradiation dose on the electrical characteristics of metal-insulator-semiconductor (MIS) Schottky diodes, the fabricated devices were exposed to {gamma} radiation at a dose of 2.12 kGy/h. The total dose range was from 0 to 450 kGy at room temperature. The density of interface states N {sub ss} as a function of E {sub ss}-E {sub v}, the values of series resistance R {sub s} and the bias dependence of the effective barrier height {phi} {sub e} for each dose were obtained from the forward bias I-V characteristics. Experimental results show that the {gamma}-irradiation gives rise to an increase in the zero bias barrier height {phi} {sub BO}, as the ideality factor n, R {sub s} and N {sub ss} decreases with increasing radiation dose.

  5. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.

    2002-01-01

    unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads......We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...

  6. Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV.

    Science.gov (United States)

    Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2011-08-05

    The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.

  7. Current-voltage characteristics of dendrimer light-emitting diodes

    International Nuclear Information System (INIS)

    Stevenson, S G; Samuel, I D W; Staton, S V; Knights, K A; Burn, P L; Williams, J H T; Walker, Alison B

    2010-01-01

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  8. Current-voltage characteristics of dendrimer light-emitting diodes

    Science.gov (United States)

    Stevenson, S. G.; Samuel, I. D. W.; Staton, S. V.; Knights, K. A.; Burn, P. L.; Williams, J. H. T.; Walker, Alison B.

    2010-09-01

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  9. Current-voltage characteristics of dendrimer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, S G; Samuel, I D W [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS (United Kingdom); Staton, S V; Knights, K A; Burn, P L [Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Williams, J H T; Walker, Alison B, E-mail: a.b.walker@bath.ac.u [Department of Physics, University of Bath, Bath, BA2 7AY (United Kingdom)

    2010-09-29

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  10. Voltage current characteristics of type III superconductors

    International Nuclear Information System (INIS)

    Dorofejev, G.L.; Imenitov, A.B.; Klimenko, E.Y.

    1980-01-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb 3 Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T. (author)

  11. Voltage current characteristics of type III superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeiev, G L; Imenitov, A B; Klimenko, E Y [Gosudarstvennyi Komitet po Ispol' zovaniyu Atomnoi Ehnergii SSSR, Moscow. Inst. Atomnoi Ehnergii

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb/sub 3/Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T.

  12. Current-voltage characteristics of porous-silicon structures

    International Nuclear Information System (INIS)

    Diligenti, A.; Nannini, A.; Pennelli, G.; Pieri, F.; Fuso, F.; Allegrini, M.

    1996-01-01

    I-V DC characteristics have been measured on metal/porous-silicon structures. In particular, the measurements on metal/free-standing porous-silicon film/metal devices confirmed the result, already obtained, that the metal/porous-silicon interface plays a crucial role in the transport of any device. Four-contacts measurements on free-standing layers showed that the current linearly depends on the voltage and that the conduction process is thermally activated, the activation energy depending on the porous silicon film production parameters. Finally, annealing experiments performed in order to improve the conduction of rectifying contacts, are described

  13. Parameter extraction from I-V characteristics of PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Macabebe, Erees Queen B. [Department of Electronics, Computer and Communications Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108 (Philippines); Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, Charles J. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Dyk, E. Ernest van [Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2011-01-15

    Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)

  14. Voltage current characteristics of type III superconductors

    Science.gov (United States)

    Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.

  15. I-V Characteristics of a Static Random Access Memory Cell Utilizing Ferroelectric Transistors

    Science.gov (United States)

    Laws, Crystal; Mitchell, Cody; Hunt, Mitchell; Ho, Fat D.; MacLeod, Todd C.

    2012-01-01

    I-V characteristics for FeFET different than that of MOSFET Ferroelectric layer features hysteresis trend whereas MOSFET behaves same for both increasing and decreasing VGS FeFET I-V characteristics doesn't show dependence on VDS A Transistor with different channel length and width as well as various resistance and input voltages give different results As resistance values increased, the magnitude of the drain current decreased.

  16. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  17. A Novel Index for Online Voltage Stability Assessment Based on Correlation Characteristic of Voltage Profiles

    Directory of Open Access Journals (Sweden)

    M. R. Aghamohammadi

    2011-06-01

    Full Text Available Abstract: Voltage instability is a major threat for security of power systems. Preserving voltage security margin at a certain limit is a vital requirement for today’s power systems. Assessment of voltage security margin is a challenging task demanding sophisticated indices. In this paper, for the purpose of on line voltage security assessment a new index based on the correlation characteristic of network voltage profile is proposed. Voltage profile comprising all bus voltages contains the effect of network structure, load-generation patterns and reactive power compensation on the system behaviour and voltage security margin. Therefore, the proposed index is capable to clearly reveal the effect of system characteristics and events on the voltage security margin. The most attractive feature for this index is its fast and easy calculation from synchronously measured voltage profile without any need to system modelling and simulation and without any dependency on network size. At any instant of system operation by merely measuring network voltage profile and no further simulation calculation this index could be evaluated with respect to a specific reference profile. The results show that the behaviour of this index with respect to the change in system security is independent of the selected reference profile. The simplicity and easy calculation make this index very suitable for on line application. The proposed approach has been demonstrated on IEEE 39 bus test system with promising results showing its effectiveness and applicability.

  18. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  19. [High voltage accidents, characteristics and treatment].

    Science.gov (United States)

    Hülsbergen-Krüger, S; Pitzler, D; Partecke, B D

    1995-04-01

    High-voltage injuries cause localised entrance and exit burns, extensive arc, flame and flash burns and, even more dangerous, necrosis of the underlying muscles on the pathway of the current through the body. Therefore it should be recognized that the ensuing disease is more like a crush injury than a thermal burn. The extent of injury cannot be judged by the percentage and depth of the skin burn. Diagnostic fasciotomies, radical debridement, and in many cases early amputation are necessary to prevent life-threatening complications. Over a period of 10 years, 43 patients with high-voltage injuries have been treated at the Hamburg Burn Center, 36 of them in primary care. Common causes of injury were accidents in railway areas (28%), using portable aluminium ladders near overhead power lines (9.3%), and working on electrical equipment (30.2%). Six of the primary care patients died (16.6%), and 34.9% had an amputation of one or more extremities. Nearly all patients underwent several debridement and split-skin graft procedures. In 30% of cases additional free and pedicled flaps were needed to cover soft tissue defects. Ten patients (23.3%) sustained fractures and other injuries from falls, seven (16.3%) of them severe polytrauma. Initial cardiac arrhythmics were diagnosed in 16.6% of the primarily treated patients. Thirty per cent of our patients had neurological complications such as peripheral paresis, tetraplegia and paraplegia, 20.7% of these caused solely by the electric current.

  20. Current-voltage characteristics of quantum-point contacts in the closed-channel regime: Transforming the bias voltage into an energy scale

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Aagesen, M.

    2006-01-01

    We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...

  1. Hysteretic current-voltage characteristics in RF-sputtered nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Villafuerte, Manuel; Juarez, Gabriel; Heluani, Silvia P. de; Comedi, David

    2007-01-01

    We have measured the current-voltage characteristics at room temperature of a nanocrystalline TiO 2 thin film fabricated by reactive RF-sputtering deposition and sandwiched between ITO (indium-tin-oxide)-buffered glass substrate and an indium top electrode. The I-V characteristics are ohmic for low voltages and become non-linear, hysteretic and asymmetric as the voltage is increased. The system is shown to be well represented by two distinct resistance states in the non-ohmic region. Current transient evolutions were also measured for constant voltage excitations. The resistance is stable in time for voltages in the ohmic regime. In contrast, for voltages in the non-ohmic regime, the resistance has a small variation for a short period of time (order of tens seconds) and then increases with time. For those transients, long characteristic times (on the order of tens of minutes up to hours) were found. The behavior of the system is discussed on the basis of experimental results reported in the literature for similar systems and existing models for electric-field induced resistive switching

  2. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    Science.gov (United States)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  3. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  4. A model for voltage collapse study considering load characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L B [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)

    1994-12-31

    This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.

  5. Loss characteristics of FLTD magnetic cores under fast pulsed voltage

    International Nuclear Information System (INIS)

    Wang Zhiguo; Sun Fengju; Qiu Aici; Jiang Xiaofeng; Liang Tianxue; Yin Jiahui; Liu Peng; Wei Hao; Zhang Pengfei; Zhang Zhong

    2012-01-01

    The test platform has been developed to generate exciting pulsed voltages with the rise time less than 30 ns. The loss characteristics of cores of 25 μm 2605TCA Metglas and 50 μm DG6 electrical steel were then studied. A characteristic parameter, the gradient of the voltage pulse applied per unit core area, is proposed to describe the exciting condition applied on magnetic cores. The loss of the DG6 core is about 4 times that of the 2605TCA core. Most loss of the DG6 core, about 75%, is due to eddy current. For the 2605TCA core, the percentage is about 28%. (authors)

  6. Partial discharge characteristics and mechanism in voids at impulse voltages

    International Nuclear Information System (INIS)

    Zhao, X F; Guo, Z F; Wang, Y Y; Li, J H; Li, Y M; Yao, X

    2011-01-01

    Partial discharge (PD) characteristics and mechanism in artificial cavities in an epoxy plate have been investigated for different void dimensions and impulse voltage waveforms. A differential measurement system was developed in order to detect PD current pulses effectively. Experimental results showed that the 50% probability PD inception voltage (PDIV 50 ) increases initially as the cavity diameter decreases at constant depth for double exponential impulses as well as oscillating impulses, but after aging, it becomes independent of the cavity diameter. Moreover, some distinctive characteristics of PD (e.g. main discharge and reverse discharge during the rise and fall phases of the applied voltage) were also investigated. The differences of the PD propagation and the mechanism between double exponential impulses and oscillating impulse were discussed

  7. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1976-01-01

    A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.

  8. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    In this paper, the performance study of a separately excited d. c. motor whose speed is controlled by armature voltage variation is presented. Both the open loop and the closed loop steady state and transient characteristics are reported. The speed controllers considered in the closed loop mode are the proportional and the ...

  9. Radiation effects on the current-voltage and capacitance-voltage characteristics of advanced p-n junction diodes surrounded by shallow trench isolation

    International Nuclear Information System (INIS)

    Poyai, A.; Simoen, E.; Claeys, C.; Hayama, K.; Kobayashi, K.; Ohyama, H.

    2002-01-01

    This paper investigates the impact of 20 MeV proton irradiation on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of different geometry n + -p-well junction diodes surrounded by shallow trench isolation and processed in a 0.18 μm CMOS technology. From I-V characteristics, a higher current damage coefficient was found for the bulk than for the peripheral component. The radiation-induced boron de-activation resulted in a lowering of the p-well doping, which has been derived from high-frequency C-V measurements. This was confirmed by deep level transient spectroscopy (DLTS) analysis, revealing the presence of interstitial boron related radiation defects. As will be demonstrated for the bulk leakage-current damage coefficient, the electric field enhanced generation rate of charge carriers and the radiation-induced boron de-activation should be accounted for properly

  10. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2016-01-01

    This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation of t...

  11. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  12. Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear

    Science.gov (United States)

    Cai, Yuanji; Guan, Yonggang; Liu, Weidong

    2017-06-01

    Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.

  13. Current-voltage characteristics of the semiconductor nanowires under the metal-semiconductor-metal structure

    Science.gov (United States)

    Wen, Jing; Zhang, Xitian; Gao, Hong; Wang, Mingjiao

    2013-12-01

    We present a method to calculate the I-V characteristics of semiconductor nanowires under the metal-semiconductor-metal (MSM) structure. The carrier concentration as an important parameter is introduced into the expression of the current. The subband structure of the nanowire has been considered for associating it with the position of the Fermi level and circumventing the uncertainties of the contact areas in the contacts. The tunneling and thermionic emission currents in the two Schottky barriers at the two metal-semiconductor contacts are discussed. We find that the two barriers have different influences on the I-V characteristics of the MSM structure, one of which under the forward bias plays the role of threshold voltage if its barrier height is large and the applied voltage is small, and the other under the reverse bias controls the shapes of I-V curves. Our calculations show that the shapes of the I-V curves for the MSM structure are mainly determined by the barrier heights of the contacts and the carrier concentration. The nearly identical I-V characteristics can be obtained by using different values of the barrier heights and carrier concentration, which means that the contact type conversion can be ascribed not only to the changes of the barrier heights but also that of the carrier concentration. We also discuss the mechanisms of the ohmic-Schottky conversions and clarify the ambiguity in the literature. The possibility about the variation of the carrier concentration under the applied fields has been confirmed by experimental results.

  14. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  15. Current–voltage characteristics of manganite–titanite perovskite junctions

    Directory of Open Access Journals (Sweden)

    Benedikt Ifland

    2015-07-01

    Full Text Available After a general introduction into the Shockley theory of current voltage (J–V characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1−yNbyO3, y = 0.002 and p-doped Pr1−xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface.

  16. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    Science.gov (United States)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  17. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  18. Branching in current-voltage characteristics of intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  19. YBCO single crystals I-V characteristics nonlinearity and Nelson-Kosterlitz jump

    International Nuclear Information System (INIS)

    Kuzmichev, N.D.; Vasyutin, M.A.; Golovashkin, A.I.

    2007-01-01

    Temperature dependences of I-V characteristics and voltage harmonics V n (T) (n = 2, 3, ...) have been investigated in magnetic fields up to 200 Oe for single crystals YBa 2 Cu 3 O 7-x . It was shown that V n (T) had asymmetric peak form with maximum at T* = 92.0 K. Amplitudes of V n (T) were decreased in magnetic fields. The results were explained on the base of the Berezinskii-Kosterlitz-Thouless (BKT) transition model. It was shown that T* coincided with the BKT transition temperature T BKT . The asymmetric peaks of V n (T) are a consequence of the Nelson-Kosterlitz jump

  20. The frequency characteristics of medium voltage distribution system impedances

    Directory of Open Access Journals (Sweden)

    Liviu Emil Petrean

    2009-10-01

    Full Text Available In this paper we present the frequency characteristics of impedances involved in the electrical equivalent circuit of a large medium voltage distribution system. These impedances influence harmonics distortions propagation occurring due to the nonsinusoidal loads. We analyse the case of a 10 kV large urban distribution system which supplies industrial, commercial and residential customers. The influence of various parameters of the distribution network on the frequency characteristics are presented, in order to assess the interaction of harmonic distortion and distribution system network.

  1. Current-voltage-temperature characteristics of DNA origami

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Zhong Hong; Norton, Michael L [Department of Chemistry, Marshall University, Huntington, WV 25755 (United States); Sinitskii, Alexander [Department of Chemistry, Rice University, Houston, TX 77005 (United States)

    2009-04-29

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of {approx}0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  2. Current-voltage-temperature characteristics of DNA origami

    International Nuclear Information System (INIS)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M; Zhong Hong; Norton, Michael L; Sinitskii, Alexander

    2009-01-01

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of ∼0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  3. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.

    Science.gov (United States)

    Sheets, Michael F; Hanck, Dorothy A

    2005-02-15

    Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.

  4. Current-voltage temperature characteristics of Au/n-Ge (1 0 0) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Midlands State University, Bag 9055 Gweru (Zimbabwe); University of Pretoria, 0002 Pretoria (South Africa); Mtangi, Wilbert; Auret, Francois D; Nel, Jacqueline [University of Pretoria, 0002 Pretoria (South Africa); Nyamhere, Cloud [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Diale, Mmantsae [University of Pretoria, 0002 Pretoria (South Africa)

    2012-05-15

    The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current-voltage (I-V) measurements in the temperature range 140-300 K. The I-V characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) ({Phi}{sub B}) increases with the increasing temperature. The I-V characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal-semiconductor interface. The zero-bias barrier height {Phi}{sub B} vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of {Phi}{sub B}=0.615 eV and standard deviation {sigma}{sub s0}=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm{sup -2} K{sup -2} and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm{sup -2} K{sup -2}. This may be due to greater inhomogeneities at the interface.

  5. Energy Storage Characteristic Analysis of Voltage Sags Compensation for UPQC Based on MMC for Medium Voltage Distribution System

    Directory of Open Access Journals (Sweden)

    Yongchun Yang

    2018-04-01

    Full Text Available The modular multilevel converter (MMC, as a new type of voltage source converter, is increasingly used because it is a distributed storage system. There are many advantages of using the topological structure of the MMC on a unified power quality controller (UPQC, and voltage sag mitigation is an important use of the MMC energy storage system for the power quality compensation process. In this paper, based on the analysis of the topology of the MMC, the essence of energy conversion in a UPQC of voltage sag compensation is analyzed; then, the energy storage characteristics are calculated and analyzed to determine the performance index of voltage sag compensation; in addition, the simulation method is used to verify the voltage sag compensation characteristics of the UPQC; finally, an industrial prototype of the UPQC based on an MMC for 10 kV of medium voltage distribution network has been developed, and the basic functions of UPQC have been tested.

  6. Photonic characterization of capacitance-voltage characteristics in MOS capacitors and current-voltage characteristics in MOSFETs

    International Nuclear Information System (INIS)

    Kim, H. C.; Kim, H. T.; Cho, S. D.; Song, S. J.; Kim, Y. C.; Kim, S. K.; Chi, S. S.; Kim, D. J.; Kim, D. M.

    2002-01-01

    Based on the photonic high-frequency capacitance-voltage (HF-CV) response of MOS capacitors, a new characterization method is reported for the analysis of interface states in MOS systems. An optical source with a photonic energy less than the silicon band-gap energy (hv g ) is employed for the photonic HF-CV characterization of interface states distributed in the photoresponsive energy band (E C - hv t C ). If a uniform distribution of trap levels is assumed, the density of interface states (D it ) in the photoresponsive energy band of MOS capacitors, characterized by the new photonic HF-CV method, was observed to be D it = 1 ∼ 5 x 10 11 eV -1 cm -2 . Photonic current-voltage characteristics (I D - V GS , V DS ) of MOSFETs, which are under control of the photoconductive and the photovoltaic effects, are also investigated under optical illumination

  7. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  8. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  9. On the I-V characteristic in the non-linear tenary mixture model for polycrystalline semiconductors

    International Nuclear Information System (INIS)

    Nguyen Van Lien; Nguyen Hoai Nam

    2000-08-01

    A simple expression for the voltage dependence of grain-boundary potential barrier heights is proposed and the Effective Medium Approximation is extended for calculating the I-V characteristic in tenary mixtures of highly non-linear circuit elements. Numerical calculations are performed for the case of polycrystalline semiconductors, such as ZnO-based varistors, where the thermoionic emission is believed to be the dominant mechanism for the electric conduction across double Schottky barriers at room temperature. (author)

  10. Thermal characteristics during hydrogen fueling process of type IV cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chan [Department of Fire and Disaster Prevention, Kyungil University, 33, Buhori, Hayang, Kyungsan 712-701 (Korea); Lee, Seung Hoon; Yoon, Kee Bong [Department of Mechanical Engineering, Chung Ang University, 221, Huksuk, Dongjak, Seoul 156-756 (Korea)

    2010-07-15

    Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood. In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (author)

  11. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  12. Capacitance-voltage characteristics of quantum well structures

    CERN Document Server

    Moon, C R; Choe, B D

    1999-01-01

    The characteristics of the apparent carrier distribution (ACD) of quantum well (QW) structures are investigated using the self-consistent simulation and the capacitance-voltage (C-V) profiling techniques. The simulation results on the differential carrier distribution show that the change of position expectation value of two-dimensional electrons determines the full width at half maximum of 100 K ACD peaks when conduction band offset is DELTA E sub c = 160 meV and the QW width t sub w is greater than 120 A. The contribution of Debye averaging effects to the ACD peaks becomes important as t sub w and DELTA E sub c values decrease and the temperature is increased. The influence of Debye averaging effects on ACD peaks appears differently according to the location of each well in multiple QWs. These results indicate that the extraction of QW parameters from the C-V profile should be done with caution.

  13. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  14. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  15. Ab initio and empirical studies on the asymmetry of molecular current-voltage characteristics

    International Nuclear Information System (INIS)

    Hoft, R C; Armstrong, N; Ford, M J; Cortie, M B

    2007-01-01

    We perform theoretical calculations of the tunnelling current through various small organic molecules sandwiched between gold electrodes by using both a tunnel barrier model and an ab initio transport code. The height of the tunnelling barrier is taken to be the work function of gold as modified by the adsorbed molecule and calculated from an ab initio electronic structure code. The current-voltage characteristics of these molecules are compared. Asymmetry is introduced into the system in two ways: an asymmetric molecule and a gap between the molecule and the right electrode. The latter is a realistic situation in scanning probe experiments. The asymmetry is also realized in the tunnel barrier model by two distinct work functions on the left and right electrodes. Significant asymmetry is observed in the ab initio i(V) curves. The tunnel barrier i(V) curves show much less pronounced asymmetry. The relative sizes of the currents through the molecules are compared. In addition, the performance of the WKB approximation is compared to the results obtained from the exact Schroedinger solution to the tunnelling barrier problem

  16. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen; Qin, Yong; Li, Cheng; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity

  17. Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height.

    Science.gov (United States)

    Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian

    2011-11-30

    We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.

  18. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  19. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  20. Dynamic voltage-current characteristics for a water jet plasma arc

    International Nuclear Information System (INIS)

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-01-01

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid

  1. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  2. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  3. Current-voltage characteristics of C70 solid near Meyer-Neldel temperature

    Science.gov (United States)

    Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru

    2017-06-01

    The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.

  4. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes.

    Science.gov (United States)

    Osteen, Jeremiah D; Sampson, Kevin; Iyer, Vivek; Julius, David; Bosmans, Frank

    2017-06-27

    The Na v 1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Na v ) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Na v 1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Na v channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Na v 1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Na v 1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Na v 1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Na v 1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Na v channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Na v 1.1 function.

  5. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  6. Determination of the internal parameters of tc from the current-voltage characteristics

    International Nuclear Information System (INIS)

    Kaibyshev, V.Z.

    1986-01-01

    This paper proposes a method for determining the effective work function of a collector, the electron temperature, and the voltage drop in the interelectrode gap from the experimental vurrent-voltage characteristics (IVC). Analysis of the boundary conditions at the collector shows that as the emission from the collector increases the height of the potential jump retarding plasma electrons decrease

  7. Output pressure and harmonic characteristics of a CMUT as function of bias and excitation voltage

    DEFF Research Database (Denmark)

    Lei, Anders; Diederichsen, Søren Elmin; Hansen, Sebastian Molbech

    2015-01-01

    of the transmitted signal. The generation of intrinsic harmonics by the CMUT can be minimized by decreasing the excitation signal. This, however, leads to lower fundamental pressure which limits the desired generation of harmonics in the medium. This work examines the output pressure and harmonic characteristics...... of a CMUT as function of bias and excitation voltage. The harmonic to fundamental ratio of the surface pressures declines for decreasing excitation voltage and increasing bias voltage. The ratio, however, becomes unchanged for bias levels close to the pull-in voltage. The harmonic limitations of the CMUT...

  8. Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jiang Xue-Dong; Xu He; Wang Xin

    2014-01-01

    The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. (physics of gases, plasmas, and electric discharges)

  9. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen

    2009-01-01

    Owing to the anisotropic property and small output signals of the piezoelectric nanogenerators (NGs) and the influence of the measurement system and environment, identification of the true signal generated by the NG is critical. We have developed three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity, and random signals, which might change signs but cannot consistently add up or cancel out under designed connection configurations. This study establishes the standards for designing and scale up of integrated nanogenerators. © 2009 American Institute of Physics.

  10. The Effect of Image Potential on the Current-Voltage Characteristics of a Ferritin-layer

    Directory of Open Access Journals (Sweden)

    Eunjung Bang

    2010-11-01

    Full Text Available Considering for the concept of power storage systems, such as those used to supply power to microelectronic devices, ferritins have aroused a lot of interests for applications in bioelectrochemical devices. And electron transfer rates from the proteins to electrode surface are key determinants of overall performance and efficiency of the ferritin-based devices. Here we have investigated the electron transport mechanism of ferritin layer which was immobilized on an Au electrode. The current-voltage (I-V curves are obtained by a conductive atomic force microscope (c-AFM as a function of contact area between AFM tip and the ferritin layer. In the low voltage region, I-V curves are affected by both Fowler-Nordheim tunneling and image force. On the other hand, the experimental results are consistent with a Simmons model in a high voltage region, indicating that, as the voltage increases, the image potential has a dominant effect on the electron transport mechanism. These results are attributed to the film-like character of the ferritin layer, which generates an image potential to lower the barrier height in proportion to the voltage increment.

  11. The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation.

    Science.gov (United States)

    Xiao, Yucheng; Blumenthal, Kenneth; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2010-12-01

    The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNa(v)1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNa(v)1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC(50) for block of hNa(v)1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNa(v)1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC(50) for impairment of fast inactivation by ~6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC(50) for impairment of fast inactivation by ~4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.

  12. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  13. Analysis of the current-voltage characteristics lineshapes of resonant tunneling diodes

    International Nuclear Information System (INIS)

    Rivera, P.H.; Schulz, P.A.

    1996-01-01

    It is discussed the influence of a two dimensional electron gas at the emitter-barrier interface on the current-voltage characteristics of a Ga As-Al Ga As double-barrier quantum well resonant tunneling diode. This effect is characterized by the modification of the space charge distribution along the structure. Within the framework of a self-consistent calculation we analyse the current-voltage characteristics of the tunneling diodes. This analysis permits us to infer different tunneling ways, related to the formation of confined states in the emitter region, and their signatures in the current-voltage characteristics. We show that varying the spacer layer, together with barrier heights, changes drastically the current density-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics reported in the literature. The general trend of experimental lineshapes can be reproduced and interpreted with our model. The possibility of tunneling paths is predicted for a range that has not yet been explored experimentally. (author). 12 refs., 4 figs

  14. A general modeling method for I-V characteristics of geometrically and electrically configured photovoltaic arrays

    International Nuclear Information System (INIS)

    Liu Guangyu; Nguang, Sing Kiong; Partridge, Ashton

    2011-01-01

    Highlights: → A novel and general method is proposed for modeling PV arrays or modules. → A robust algorithm is used for the first time to improve the convergence to solution. → Auxiliary functions in other general methods are not compulsory in our method. → It is novel that geometric configuration is also incorporated. → A case study is performed to show the approach's advantages and unique features. - Abstract: A general method for modeling typical photovoltaic (PV) arrays and modules is proposed to find the exact current and voltage relationship of PV arrays or modules of geometrically and electrically different configurations. Nonlinear characteristic equations of electrical devices in solar array or module systems are numerically constructed without adding any virtual electrical components. Then, a robust damped Newton method is used to find exact I-V relationship of these general nonlinear equations, where the convergence is guaranteed. The model can deal with different mismatch effects such as different configurations of bypass diodes, and partial shading. Geometry coordinates of PV components are also considered to facilitate the modeling of the actual physical configuration. Simulation of a PV array with 48 modules, partially shaded by a concrete structure, is performed to verify the effectiveness and advantages of the proposed method.

  15. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  16. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  17. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  18. Angular-dependent I-V characteristics in borocarbide superconductor YNi2B2C

    International Nuclear Information System (INIS)

    Chu, R M; Chen, Q Y; Chu, W K

    2006-01-01

    We present angular-dependent current-voltage (I-V) measurements in borocarbide YNi 2 B 2 C single crystals near the vortex-glass irreversible line. External magnetic fields are applied along the angle θ with respect to the c-axis. The nonlinear I-V curves reveal scaling behaviour near the transition. Using the scaling analysis, the relevant critical exponents and vortex transition temperatures are determined for all orientations. The data agrees well with the vortex-glass (VG) model. No evidence was found that supports the existence of a Bose-glass (BG) type of transition

  19. Comment on 'Temperature dependence of the current-voltage characteristics of Sn/PANI/p-Si/Al heterojunctions'

    Energy Technology Data Exchange (ETDEWEB)

    Pipinys, P; Rimeika, A [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)], E-mail: ftfdekanas@vpu.lt

    2008-02-27

    Current-voltage characteristics of Sn/PANI/p-Si/Al heterojunctions, measured in the temperature range 140-280 K by Kaya et al (2007 J. Phys.: Condens. Matter 19 406205), are reinterpreted in the framework of phonon-assisted tunnelling theory, as a free-charge-carrier generation mechanism in the strong electrical field. It is shown that phonon-assisted tunnelling more adequately describes the peculiarities of the variation of I-V data with temperature in PANI polymers. (comment)

  20. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    obtained by digital computer analysis. The results show that closed loop operation, with appropriate control ... Using digital computer analysis, the driver characteristics of a test motor is investigated. In the closed loop ... system circuit failure especially with respect to the semiconductor devices that may be used in varying ...

  1. Study on the construction and its operating characteristics of Marx high voltage pulse generator

    International Nuclear Information System (INIS)

    Chung, W.K.; Yook, C.C.

    1984-01-01

    This study is to investigate the operating characteristics of a Marx high voltage pulse generator, which is designed and fabricated for the purpose of constructing a linear theta-pinch plasma generating facility. The Marx generator consists of a 2 kJ capacitor bank of maximum output voltage of 200kV, a set of main spark switch, a triggring system, and high voltage charging power supply. The experimental results show that the operating characteristics of the generator can be controlled through varying nitrogen pressure as a filling gas. The output pulse of the generator is achieved close to the estimated voltage with the rise time of 3*m seconds. The stability of the generator is also very satisfactory within operating range of main spark switch. (Author)

  2. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles

    International Nuclear Information System (INIS)

    Jia Shenli; Song Xiaochuan; Huo Xintao; Shi Zongqian; Wang Lijun

    2010-01-01

    Characteristics of the arc voltage under different profiles of axial magnetic field were investigated experimentally in a detachable vacuum chamber with five pairs of specially designed electrodes generating both bell-shaped and saddle-shaped magnetic field profile. The arc column and cathode spot images were photographed by a high speed digital camera. The dependence of the arc voltage on arcing evolution is analyzed. It is indicated that the axial magnetic field profile could affect the arc behaviors significantly, and the arc voltage is closely related to the arc light intensity.

  4. Calculation of DC Arc Plasma Torch Voltage- Current Characteristics Based on Steebeck Model

    International Nuclear Information System (INIS)

    Gnedenko, V.G.; Ivanov, A.A.; Pereslavtsev, A.V.; Tresviatsky, S.S.

    2006-01-01

    The work is devoted to the problem of the determination of plasma torches parameters and power sources parameters (working voltage and current of plasma torch) at the predesigning stage. The sequence of calculation of voltage-current characteristics of DC arc plasma torch is proposed. It is shown that the simple Steenbeck model of arc discharge in cylindrical channel makes it possible to carry out this calculation. The results of the calculation are confirmed by the experiments

  5. Current-voltage characteristics of carbon nanostructured field emitters in different power supply modes

    Science.gov (United States)

    Popov, E. O.; Kolosko, A. G.; Filippov, S. V.; Romanov, P. A.; Terukov, E. I.; Shchegolkov, A. V.; Tkachev, A. G.

    2017-12-01

    We received and compared the current-voltage characteristics of large-area field emitters based on nanocomposites with graphene and nanotubes. The characteristics were measured in two high voltage scanning modes: the "slow" and the "fast". Correlation between two types of hysteresis observed in these regimes was determined. Conditions for transition from "reverse" hysteresis to the "direct" one were experimentally defined. Analysis of the eight-shaped hysteresis was provided with calculation of the effective emission parameters. The phenomenological model of adsorption-desorption processes in the field emission system was proposed.

  6. Impact of exchange-correlation effects on the IV characteristics of a molecular junction

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer

    2008-01-01

    The role of exchange-correlation effects in nonequilibrium quantum transport through molecular junctions is assessed by analyzing the IV curve of a generic two-level model using self-consistent many-body perturbation theory (second Born and GW approximations) on the Keldysh contour. It is demonst...... of dynamic correlations introduces quasiparticle (QP) scattering which in turn broadens the molecular resonances. The broadening increases strongly with bias and can have a large impact on the calculated IV characteristic....

  7. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  8. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    Science.gov (United States)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  9. Comment on: "Current-voltage characteristics and zero-resistance state in 2DEG"

    OpenAIRE

    Cheremisin, M. V.

    2003-01-01

    We demonstrate that N(S)-shape current-voltage characteristics proposed to explain zero-resistance state in Corbino(Hall bar) geometry 2DEG (cond-mat/0302063, cond-mat/0303530) cannot account essential features of radiation-induced magnetoresistance oscillations experiments.

  10. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  11. On characteristic voltage of the high Tc superconductor. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B V; Uchaikin, S V [Joint Inst. for Nuclear Research, Low Temperature Physics Dept., Dubna (USSR)

    1991-12-01

    The critical currents and normal resistances of the small bridges from yttrium-based high-Tc superconducting ceramics have been measured. The characteristic voltage of these bridges was found to be approximately 20{mu}V. This effect can be explained if between the ceramic grains there are contacts of an order of one crystalline cell in size. (orig.).

  12. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  13. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  14. A Study on Gas Insulation Characteristics for Design Optimization of High Voltage Power Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I S; Kim, M K; Seo, K S; Moon, I W; Choi, C K [Korea Electrotechnology Research Institute (Korea, Republic of)

    1996-12-01

    This study aim of obtaining the basic data for gas insulation in the high voltage apparatus and for investigating the breakdown characteristics in uniform field and non-uniform which the geometric construction in the practical power apparatus. In this study, the research results on the insulation technology published earlier are reviewed and the basic data for an optimum design of a high voltage apparatus are obtained thorough the experiment and computer simulation by using a uniform field. The main result are summarized as follows: (A) Investigation on the insulation technology in a large-capacity power apparatus. (B) Investigation on the breakdown characteristics in particle contaminated condition. (C) Investigation on the design in computer simulation. (D) Investigation on the simulation technology of breakdown characteristics. (E) Investigation on breakdown characteristics in the nonuniform field and experiment. (author). refs., figs., tabs.

  15. I-V Characteristics of PtxCo1−x (x = 0.2, 0.5, and 0.7 Thin Films

    Directory of Open Access Journals (Sweden)

    M. Erkovan

    2013-01-01

    Full Text Available Three different chemical ratios of PtxCo1−x thin films were grown on p-type native oxide Si (100 by Magneto Sputtering System with cosputtering technique at 350°C temperature to investigate electrical prosperities. X-ray photoelectron spectroscopy analysis technique was used to specify chemical ratios of these films. The current-voltage (I-V measurements of metal-semiconductor (MS Schottky diodes were carried out at room temperature. From the I-V analysis of the samples, ideality factor (n, barrier height (ϕ, and contact resistance values were determined by using thermionic emission (TE theory. Some important parameters such as barrier height, ideality factor, and serial resistance were calculated from the I-V characteristics based on thermionic emission mechanism. The ideality factors of the samples were not much greater than unity, and the serial resistances of the samples were also very low.

  16. Special features of the current-voltage characteristics of short superconducting bridges

    International Nuclear Information System (INIS)

    Zhilinskii, S.; Latyshev, Y.; Nad', F.

    1981-01-01

    A study was made of variable-thickness superconducting bridges made of tin and indium. The current-voltage characteristics were determined for these bridges as a function of their length and width. The characteristics exhibited a linear region as well as an inflection. The temperature of the appearance of such an inflection depended on the length of the bridge but was independent of the bridge material

  17. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Science.gov (United States)

    Bhowmik, R. N.; Vijayasri, G.

    2015-06-01

    We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  18. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G. [Department of Physics, Pondicherry University, R.Venkataraman Nagar, Kalapet, Puducherry - 605 014 (India)

    2015-06-15

    We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  19. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  20. The dynamic current-voltage characteristic as a powerful tool to analyze fast phenomena in plasma

    International Nuclear Information System (INIS)

    Ivan, L. M.; Mihai-Plugaru, M.; Amarandei, G.; Aflori, M.; Dimitriu, D. G.

    2006-01-01

    The static current-voltage characteristic of an electrode immersed in plasma is obtained by slowly increasing and subsequently decreasing the potential on the electrode with respect to the plasma potential or the ground. This characteristic can give us important information about the phenomena that take place in front of the electrode. Current jumps can be evidenced which were often associated with an hysteresis effect, regions with S-type or N-type negative differential resistance, etc. The method is always used when we investigate the appearance of complex space charge configurations (CSCC) in front of an electrode immersed in plasma. However, to investigate the dynamics of such structures or other fast phenomena (like instabilities) which take place in plasma devices with frequencies of tenth, hundred kHz or more, complex investigation techniques must be used. One of the most efficient methods to investigate fast phenomena in plasma devices is the dynamic current-voltage characteristic. This is obtained by recording the time series of the current collected by the electrode when the voltage applied on it is very fast modified (most likely increased) by using a signal generator. In this way, very fast oscillations of the current can be recorded and new phenomena can be evidenced. We used this technique to study the phenomena which take place at the onset of electrostatic instabilities in Q-machine plasma, namely the potential relaxation instability (PRI) and the electrostatic ion-cyclotron instability (EICI). The obtained experimental results prove that the negative differential resistance region in the static current-voltage characteristic is the result of a nonlinear dynamics of a CSCC in form of a double layer (DL) which takes place just before the onset of the instabilities. In the case of the PRI we emphasized current jumps related with the DL appearance, which are not present in the static current-voltage characteristic at high plasma density. (authors)

  1. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  2. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2015-10-01

    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  3. Improvements in DC Current-Ioltage (I-V) Characteristics of n-GaN Schottky Diode using Metal Overlap Edge Termination

    International Nuclear Information System (INIS)

    Munir, T.; Aziz, A. A.; Abdullah, M. J.; Ain, M. F.

    2010-01-01

    Practical design of GaN Schottky diodes incorporating a field plate necessitates an understanding of how the addition of such plate affects the diode performance. In this paper, we investigated the effects on DC current-voltage (I-V) characteristics of n-GaN schottky diode by incorporating metal overlap edge termination. The thickness of the oxide film varies from 0.001 to 1 micron. Two-dimensional Atlas/Blaze simulations revealed that severe electric field crowding across the metal semiconductor contact will cause reliability concern and limit device breakdown voltage. DC current-voltage (I-V) measurements indicate that the forward currents are higher for thinner oxide film schottky diodes with metal overlap edge termination than those of unterminated schottky diodes. The forward current increased due to formation of an accumulation layer underneath the oxide layer. Extending the field plate to beyond periphery regions of schottky contact does not result in any significant increase in forward current. The new techniques of ramp oxide metal overlap edge termination have been implemented to increase the forward current of n-GaN schottky diode. In reverse bias, breakdown voltage increased with edge termination oxide up to a certain limit of oxide thickness.

  4. Ab initio I-V characteristics of short C-20 chains

    DEFF Research Database (Denmark)

    Roland, C.; Larade, B.; Taylor, Jeremy Philip

    2002-01-01

    We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...

  5. Singularities of current-voltage characteristics of GaAs films fabricated by pulsed ions ablation

    International Nuclear Information System (INIS)

    Kabyshev, A.V.; Konusov, F.V.; Lozhnikov, S.N.; Remnev, G.E.; Saltymakov, M.S.

    2009-01-01

    A singularities and advantages of the optical, photoelectric and electrical properties of GaAs in comparison with other available materials for electronics, for example, silicon allow to manufacture on it base the devices having an advanced characteristics. The GaAs for electronics, obtained from the dense ablation plasma, possess some preferences as compared to material manufactured by traditional methods of vacuum deposition. The electrical characteristics of GaAs produced by chemical deposition were extensively studied. Purpose of this work is investigation the current-voltage characteristics of thin films of GaAs, deposited on polycrystalline corundum (polycor) from plasma forming the power ions bunch and determination of the thermal vacuum annealing effect on photoelectric and electrical properties of films. Peculiarities of optical, photoelectric and current-voltage characteristics of films obtained by ions ablation are determined by deposition conditions and resistance of initial target GaAs. The transitions between the states with low- and high conduction were revealed directly after deposition in films having the optical properties similar to amorphous materials and/or after annealing in films with properties similar to initial target GaAs. Behavior of current-voltage characteristics at vacuum annealing correlates with Schottky barrier height and photosensitivity and is accompanies of the transport mechanism change. The stable properties of films are formed at its dark conduction 10 -10 -10 -8 s and after annealing at T an =600-700 K. (authors)

  6. Nonlinear current-voltage characteristics of WO3-x nano-/micro-rods

    Science.gov (United States)

    Shen, Zhenguang; Peng, Zhijian; Zhao, Zengying; Fu, Xiuli

    2018-04-01

    A series of crystalline tungsten oxide nano-/micro-rods with different compositions of WO3, WO2.90, W19O55 (WO2.89) and W18O49 (WO2.72) but identical morphology feature were first prepared. Then, various nanoscaled electrical devices were fabricated from them by micro-fabrication through a focused ion beam technique. Interestingly, the devices from the oxygen-deficient WO3-x display significantly nonlinear current-voltage characteristics. The calculated nonlinear coefficients of the WO2.90, WO2.83, and WO2.72 varistors are 2.52, 3.32 and 4.91, respectively. The breakdown voltage of the WO2.90, WO2.83, and WO2.72 varistors are 1.93, 1.28 and 0.93 V, respectively. Such WO3-x nano-varistors might be promising for low-voltage electrical/electronic devices.

  7. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    Science.gov (United States)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  8. I-V characteristic of electronic transport through a quantum dot chain: The role of antiresonance

    International Nuclear Information System (INIS)

    Liu Yu; Zheng Yisong; Gong Weijiang; Lue Tianquan

    2006-01-01

    The I-V spectrum of electronic transport through a quantum dot chain is calculated by means of the nonequilibrium Green function technique. In such a system, two arbitrary quantum dots are connected with two electron reservoirs through leads. When the dot-lead coupling is very weak, a series of discrete resonant peaks in electron transmission function cause staircase-like I-V characteristic. On the contrary, in the relatively strong dot-lead coupling regime, stairs in the I-V spectrum due to resonance vanish. However, when there are some dangling quantum dots in the chain outside two leads, the antiresonance which corresponds to the zero points of electron transmission function brings about novel staircase characteristic in the I-V spectrum. Moreover, two features in the I-V spectrum arising from the antiresonance are pointed out, which are significant for possible device applications. One is the multiple negative differential conductance regions, and another is regarding to create a highly spin-polarized current through the quantum dot chain by the interplay of the resonance and antiresonance. Finally, we focus on the role that the many-body effect plays on the antiresonance. Our result is that the antiresonance remains when the electron interaction is considered to the second order approximation

  9. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  10. Possible influence of the voltage dependence of the Josephson tunneling current I(V,psi) on the corresponding current-voltage characteristic

    International Nuclear Information System (INIS)

    Hahlbohm, H.D.; Luebbig, H.; Luther, H.

    1975-01-01

    Analog computer calculations of the current-voltage characteristic involving the voltage dependence of the amplitudes of the tunneling current equation explicitly, for the case of a current driven tunneling junction at different temperatures are reported on. These studies are based upon the adiabatic representation of the current-phase relation. The influence of retarding effects is not included. Therefore the computational results can lead to practical consequences at best in the range near the transition temperature. (Auth.)

  11. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

    Science.gov (United States)

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R

    2008-10-03

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.

  12. Study of current-voltage characteristics in PbTe(Ga) alloys at low temperatures

    International Nuclear Information System (INIS)

    Akimov, B.A.; Albul, A.V.; Bogdanov, E.V.

    1992-01-01

    Results of determining current-voltage characteristics in PbTe(Ga) monocrystals of n- and p-types of conductivity in strong electric fields E ≤ 2 x 10 3 V/Cm at 4.2-77 K are presented. It was established that at helium and nitrogen temperatures, the current-voltage characteristics of PbTe(Ga) alloys, high-ohmic state of which was realized in helium, differed qualitatively from ones, typical for unalloyed PbTe. The superlinear dependence, observed in the fields, beginning from E ≥ 1 V/cm, is explained in the framework of concepts of strong electric field effect on conductivity of impurity states

  13. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl, E-mail: cekdahl@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-06-15

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  14. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  15. Hysteresis and negative differential resistance of the current-voltage characteristic of a water bridge

    Science.gov (United States)

    Oshurko, V. B.; Fedorov, A. N.; Ropyanoi, A. A.; Fedosov, M. V.

    2014-06-01

    It is found experimentally that the properties of nanoporous ion-exchange membranes (hysteresis of the current-voltage characteristic in the solution and negative differential resistance), which have been discussed in recent years, are not associated with the properties of the membrane. It is shown that these effects are also observed in a floating water bridge and in water-filled tubes and are apparently determined by the geometrical shape of the liquid conductor. The observed effects are explained qualitatively.

  16. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    Science.gov (United States)

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of electric and magnetic fields on current-voltage characteristics of a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Minasyants, M.Kh.; Badalyan, G. G.; Shahinian, A. A.

    1997-01-01

    The effect of electric and magnetic fields on current-voltage characteristics is studied for the lamellar phase in the lyotropic liquid-crystal sodium pentadecylsulfonate (SPDS)-water and lecithin-water systems. It has been found that the current-voltage characteristics of both systems have hysteresis. In the case of ionogenic SPDS, the hysteresis is formed due to ion current caused by the spatial reorientation of domains consisting of parallel lamellar fragments; in the case of lecithin, whose molecules contain dipoles, the hysteresis is formed due to the spatial reorientation of domains caused by the interaction of the resultant dipole moment of the domains with the electric field. It is shown that the introduction into lamellae of cetylpyridine bromide, which has an intrinsic magnetic moment, changes the resultant magnetic moment of domains and, thus, also the hysteresis loop of the current-voltage characteristic. The systems studied show the 'memory' effect with respect to both the electric and magnetic fields. Field-induced processes of domain reorientation were recorded by the method of small-angle x-ray scattering

  18. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  19. Current-voltage characteristics of a tunnel junction with resonant centers

    International Nuclear Information System (INIS)

    Ivanov, T.; Valtchinov, V.

    1994-05-01

    We calculated the I-V characteristics of a tunnel junction containing impurities in the barrier. We consider the indirect resonant tunneling involving the impurities. The Coulomb repulsion energy E c between two electrons with opposite spins simultaneously residing on the impurity is introduced by an Anderson Hamiltonian. At low temperatures T is much less than E c the I-V characteristics is linear in V both for V c and for V>E c and changes slope at V=E c . This behaviour reflects the energy spectrum of the impurity electrons - the finite value of the charging energy E c . At T ∼ E c the junction reveals an ohmic-like behaviour as a result of the smearing out of the charging effects by the thermal fluctuations. (author). 10 refs, 2 figs

  20. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...

  1. Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices

    International Nuclear Information System (INIS)

    Fistul, M.V.; Giuliani, G.F.

    1997-01-01

    We have developed a theory of the current-voltage characteristic of a Josephson junction in the presence of randomly distributed, pinned misaligned Abrikosov vortices oriented perpendicularly to the junction plane. Under these conditions the Josephson phase difference var-phi acquires an interesting stochastic dependence on the position in the plane of the junction. In this situation it is possible to define an average critical current which is determined by the spatial correlations of this function. Due to the inhomogeneity, we find that for finite voltage bias the electromagnetic waves propagating in the junction display a broad spectrum of wavelengths. This is at variance with the situation encountered in homogeneous junctions. The amplitude of these modes is found to decrease as the bias is increased. We predict that the presence of these excitations is directly related to a remarkable feature in the current-voltage characteristic. The dependence of the position and the magnitude of this feature on the vortex concentration has been determined. copyright 1997 The American Physical Society

  2. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

    International Nuclear Information System (INIS)

    Matra, K; Furuta, H; Hatta, A

    2013-01-01

    A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

  3. Effect of driving voltage polarity on dynamic response characteristics of electrowetting liquid lens

    Science.gov (United States)

    Na, Xie; Ning, Zhang; Rong-Qing, Xu

    2018-05-01

    A test device is developed for studying the dynamic process of an electrowetting liquid lens. By analyzing the light signals through the liquid lens, the dynamical properties of the lens are investigated. In our experiment, three types of pulse, i.e., sine, bipolar pulse, and single pulse signals, are employed to drive the liquid lens, and the dynamic characteristics of the lens are subsequently analyzed. The results show that the positive and negative polarities of the driving voltage can cause a significant difference in the response of the liquid lens; meanwhile, the lens’s response to the negative polarity of the driving voltage is clearer. We use the theory of charge restraint to explain this phenomenon, and it is concluded that the negative ions are more easily restrained by a dielectric layer. This work gives direct guidance for practical applications based on an electrowetting liquid lens.

  4. Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO2/Ti Electrode as Catalyst

    Science.gov (United States)

    Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng

    2013-12-01

    Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.

  5. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    Science.gov (United States)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  6. Power series fitting of current-voltage characteristics of Al doped ZnO thin film-Sb doped (Ba{sub 0.8}Sr{sub 0.2})TiO{sub 3} heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sirikulrat, N., E-mail: scphi003@chiangmai.ac.th

    2012-02-29

    The current-voltage (I-V) relationship of aluminum doped zinc oxide thin film-antimony doped barium strontium titanate single heterojunction diodes was investigated. The linear I-V characteristics are similar to those of the PN junction diodes. The linear conduction at a low forward bias voltage as predicted by the space charge limited current theory and the trap free square law at a higher forward voltage are observed. The overall current density-voltage (J-V) characteristics of the diodes are found to be well described by the Power Series Equation J= N-Ary-Summation {sub m}C{sub m}V{sup m} where C{sub m} is the leakage constant at particular power m with the best fit for the power m found to be at the fourth and fifth orders for the forward and reverse bias respectively. - Highlights: Black-Right-Pointing-Pointer The n-n isotype heterojunction diodes of ceramic oxide semiconductors were prepared. Black-Right-Pointing-Pointer The current density-voltage (J-V) curves were analyzed using the Power Series (PS). Black-Right-Pointing-Pointer The J-V characteristics were found to be well described with PS at low order. Black-Right-Pointing-Pointer The thermionic emission and diode leakage currents were comparatively discussed.

  7. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-04-15

    Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  8. Primary Tumor Thickness is a Prognostic Factor in Stage IV Melanoma: A Retrospective Study of Primary Tumor Characteristics.

    Science.gov (United States)

    Luen, Stephen; Wong, Siew Wei; Mar, Victoria; Kelly, John W; McLean, Catriona; McArthur, Grant A; Haydon, Andrew

    2018-01-01

    Stage IV melanoma exhibits a diverse range of tumor biology from indolent to aggressive disease. Many important prognostic factors have already been identified. Despite this, the behavior of metastatic melanoma remains difficult to predict. We sought to determine if any primary tumor characteristics affect survival following the diagnosis of stage IV melanoma. All patients diagnosed with stage IV melanoma between January 2003 and December 2012 were identified from the Victorian Melanoma Service database. Retrospective chart review was performed to collect data on primary tumor characteristics (thickness, ulceration, mitotic rate, melanoma subtype, or occult primary). Known and suspected prognostic factors were additionally collected (time to diagnosis of stage IV disease, age, sex, stage, receipt of chemotherapy, and era of recurrence). The effect of primary tumor characteristics on overall survival from the date of diagnosis of stage IV disease was assessed. A total of 227 patients with a median follow-up of 5 years from diagnosis of stage IV disease were identified. Median overall survival of the cohort was 250 days.Of the primary tumor characteristics assessed, only tumor thickness affected survival from diagnosis of stage IV disease, hazard ratio=1.09 (1.02 to 1.16), P=0.008. This remained significant in multivariate analysis, P=0.007. Other primary tumor characteristics did not significantly influence survival. Primary tumor thickness is a significant prognostic factor in stage IV melanoma. Our data suggest that the biology of the primary melanoma may persist to influence the behavior of metastatic disease.

  9. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

    International Nuclear Information System (INIS)

    Shukrinov, Yu.M.; Mahfouzi, F.

    2006-01-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β 2 1/β c , where β c is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

  10. Analysis of IV characteristics of solar cells made of hydrogenated amorphous, polymorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Hamadeh, H.

    2009-03-01

    The IV characteristics of pin solar cells made of amorphous, polymorphous and microcrystalline silicon were investigated. The temperature dependence was measured in the temperature range between 150 K and 395 K. This range covers the most terrestrial applications condition. Using simplex procedure, the IV parameter of the cells were deduce using line fitting. It has been shown that polymorphous silicon shows electrical properties that are close to properties of microcrystalline silicon but as it is well known, polymorphous silicon shows higher absorption similar to amorphous silicon. The polymorphous silicon solar cells showed higher efficiencies, lower shunting and higher filling factors. In the above mentioned temperature range, polymorphous silicon is the better material for the manufacturing of thin film hydrogenated silicon pin solar cells. More investigations concerning the structural properties are necessary to make stronger conclusions in regards to the stability of the material, what we hope to do in the future. (author)

  11. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.

  12. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics

    Science.gov (United States)

    Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.

    2017-12-01

    We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.

  13. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    International Nuclear Information System (INIS)

    Venkattraman, Ayyaswamy

    2013-01-01

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission

  14. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are

  15. Operational characteristics of a high voltage plasma focus device working with deuterium and heavy gas mixture

    International Nuclear Information System (INIS)

    Zoita, V.; Presura, R.; Gherendi, F.; Dumitrescu-Zoita, C.; Aliaga, R.

    1992-01-01

    The addition of a few neon percents to the deuterium gas filling of a medium energy plasma focus device (PFD) changes dramatically the radiation characteristics of the discharge as well as the pinch configuration. One exceptional result is the generation of high aspect ratio pinches shown clearly and reproducibly on X-ray pinhole camera images and on schlieren pictures. Another remarkable result is that these pinches which show no macroscopic instabilities copiously produce neutrons and hard X-rays. This confirms an experimental fact previously identified on a lower voltage PFD: the macroscopic instabilities do not play the decisive role in the neutronic performance of medium energy PFD's. (Author)

  16. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    International Nuclear Information System (INIS)

    Chen Zuhui; Jie Binbin; Sah Chihtang

    2010-01-01

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO 2 /Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  17. Current diffusion in a superconduting composite with a smeared I-V characteristic

    International Nuclear Information System (INIS)

    Keilin, V.E.; Romanovskii, V.R.

    1992-01-01

    Results are presented from numerical and analytical calculations of current injection into a superconducting composite of circular cross section with homogeneous properties throughout the cross section. A wire with an I-V characteristic approximated by an exponential dependence is examined. In the numerical solution, the joint occurrence of thermal and electromagnetic processes is taken into account. The calculations carried out for different current injection rates, parameters of the I-V characteristics, and heat transfer coefficients revealed: the existence of a characteristic limit current, below which the wire remains in a superconducting state after termination of current injection and above which the wire undergoes a transition to the normal state; this is somewhat below the cut-off current; the existence of a finite current at any small yet finite surface heat transfer coefficient. An analytical solution of the problem, based of the derived stability criterion, has made if possible to write an approximate relation between the limit currents and the initial parameters. Unlike previously reported results, this study takes into account the tolerable overheating of the wire, which depends on the depth of current flow, the specific heat of the wire, and its thermal and electrical conductivities

  18. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    Science.gov (United States)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  19. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  20. Current-voltage characteristics of individual conducting polymer nanotubes and nanowires

    Institute of Scientific and Technical Information of China (English)

    Long Yun-ze; Yin Zhi-Hua; Li Meng-Meng; Gu Chang-Zhi; Duvail Jean-Luc; Jin Ai-zi; Wan Mei-xiang

    2009-01-01

    We report the current-voltage (Ⅰ-Ⅴ) characteristics of individual polypyrrole nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent Ⅰ-Ⅴ curves. It is found that the Ⅰ-Ⅴ data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression)could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition,similar Ⅰ-Ⅴ characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.

  1. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  2. Onset of chaos and dc current-voltage characteristics of rf-driven Josephson junctions in the low-frequency regime

    International Nuclear Information System (INIS)

    Chi, C.C.; Vanneste, C.

    1990-01-01

    A comprehensive picture of the dc current-voltage (I-V) characteristics of rf-driven Josephson junctions in the low-frequency regime is presented. The boundary of the low-frequency regime is roughly defined by the junction characteristic frequency for overdamped junctions, and by the inverse of the junction damping time for underdamped junctions. An adiabatic model valid for the low-frequency regime is used to describe the overall shapes of the I-V curves, which is in good agreement with both the numerical simulations and the experimental results. For underdamped junctions, the Shapiro steps are the prominent features on the I-V curves if the rf frequency is sufficiently below the boundary. As the rf frequency is increased towards the boundary, large negatively-going tails on top of the Shapiro steps are observed both experimentally and numerically. Numerical simulations using the resistively- and capacitively-shunted-junction model (RCSJ model) reveal that the negatively-going tail is a signature of the low-frequency boundary of the junction chaotic regime. With use of the adiabatic model and the existence of plasma oscillations for underdamped junctions, the onset of chaos and its effect on the Shapiro steps can be fully explained. The high-frequency limit of the adiabatic model and the chaotic behavior of the Josephson junctions beyond the low-frequency regime are also briefly discussed

  3. Ion exchange characteristics of cerium (IV) and Tin(IV) antimonates and their use in rad waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elnaggar, I M; Abdel Hamid, M M; Elabsy, M A; Aly, H F [Hot lab. centre, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Cerium (IV) and Tin(IV) antimonates cation exchangers have been synthesized. The products were characterized by powdered X-ray diffraction, thermal analysis and infrared spectrometry. The data of the distribution coefficients showed that the selectivity decreased in the order Eu{sup 3+}>Co{sup 2+}>Sr{sup 2+}>Cs{sup +} for both materials. Besides, the drying temperature of the matrices have a profound effect on their ion exchange capacities. Moreover, the obtained results of the effect of gamma radiation on the ion exchange behaviour of the samples showed that a slight decrease of the capacity and the distribution coefficient values with increasing the absorbed dose. 2 figs., 4 tabs.

  4. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook

    2016-01-01

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

  5. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo

    2016-10-01

    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  6. The Role of Interface States and Series Resistance on the Current Voltage (I-V) Characterises of Au/n-CdTe Solar Cells

    International Nuclear Information System (INIS)

    Fiat, S.

    2008-01-01

    In order to well interpret the experimentally observed nonideal Au/n-CdTe solar cells parameters such as the zero-bias barrier height ( Φ B o), ideality factor (n), interface states (Nss) and series resistance. The energy distribution profile of Nss was obtained from forward bias I-V characteristics by taking in to account the bias dependent of the effective barrier height (Φ e )at room temperature.The values of Rs obtained from Cheung's functions. The higher values of n and Rs were attributed to the existence of a native insulator layer on CdTe surface and to high density of Nss localized at semiconductor/ insulator layer interface. The experimental I-V characteristics confirmed that the the thickness of insulator layer (δ o x) ,magnitude or Rs and Nss and a particular distribution of Nss in the band gap are important parameters that influence the electrical parameters of Au/n-CdTe solar cells

  7. Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics

    Directory of Open Access Journals (Sweden)

    Yuji Isshiki

    2018-02-01

    Full Text Available The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

  8. The experiment of grid characteristics for high-voltage radiography of chest

    International Nuclear Information System (INIS)

    Kim, Jung Min; Ahn, Bong Seon

    1992-01-01

    Grids can improve the diagnostic quality of chest radiography by trapping the greater part of scattered radiation thus providing more detailed chest radiographic images. It is most effective method of reduce the scatter ratio but must increase the expour factor. The benefit of use of grid is improve the contrast and the loss is increase of patient dose. In chest radiography especially hard quality high voltage radiography it will have to be considered to select the optimum grid with view point of benefit and loss. In this experiment, auther got some result of characteristics about 4 different grids with film method. 1. There was no difference the scatter ratio in case of no grid and the scatter ratio was about 60 % 2. 16 : 1 grid was excellent of scatter reduction factor in high voltage chest radiography, next was 10 : 1, CROSS, MICRO FINE grid have low scatter reduction rate compare to 16:1,10:1 grid. 3. The bucky factor of CROSS grid in accordance of kVp was find out the highest in 4 grids, on the contrary 10 : 1 grid was profitable to the. exposure does. 4. With careful consideration in the point of scatter reduction rate and bucky factor, auther suggest the 10 : 1 linear grid on the use of chest radiography in 80∼120 kVp, 16 : 1 grid in 120∼140 kVp

  9. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  10. Current-voltage characteristics of a superconducting slab under a superimposed small AC magnetic field

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Yamafuji, Kaoru; Sakamoto, Nobuyoshi.

    1977-01-01

    In case of applying superconductors to electric machinery or high intensity field magnets for fusion reactors, the superconductors are generally expected to be sensible to small field fluctuation besides DC magnetic field. The behavior of superconductors in DC magnetic field superimposed with small AC magnetic field has been investigated often experimentally, and the result has been obtained that the critical current at which DC flow voltage begins to appear extremely decreased or disappeared. Some theoretical investigations have been carried out on this phenomenon so far, however, their application has been limited to the region where frequency is sufficiently low or which is close to the critical magnetic field. Purpose of this report is to deal with the phenomenon in more unified way by analyzing the behavior of magnetic flux lines in a superconductor under a superimposed small AC field using the criticalstate model including viscous force. In order to solve the fundamental equation in this report, first the solution has been obtained in the quasi-static state neglecting viscous force, then about the cases that current density J is not more than Jc and J is larger than Jc, concerning the deviation from the quasi-static limit by employing successive approximation. Current-voltage characteristics have been determined by utilizing the above results. This method seems to be most promising at present except the case of extremely high frequency. (Wakatsuki, Y.)

  11. Model Development for Current–Voltage and Transconductance Characteristics of Normally-off AlN/GaN MOSHEMT

    International Nuclear Information System (INIS)

    Swain, R.; Jena, K.; Lenka, T. R.

    2016-01-01

    In this paper, an AlN/GaN-based MOSHEMT is proposed, in accordance to this, a charge control model has been developed analytically and simulated with MATLAB to predict the characteristics of threshold voltage, drain currents and transconductance. The physics based models for 2DEG density, threshold voltage and quantum capacitance in the channel has been put forward. By using these developed models, the drain current for both linear and saturation models is derived. The predicted threshold voltage with the variation of barrier thickness has been plotted. A positive threshold voltage can be obtained by decreasing the barrier thickness which builds up the foundation for enhancement mode MOSHEMT devices. The predicted I_d–V_g_s, I_d–V_d_s and transconductance characteristics show an excellent agreement with the experimental results and hence validate the model.

  12. Development of a Compensation Scheme for a Measurement Voltage Transformer Using the Hysteresis Characteristics of a Core

    Directory of Open Access Journals (Sweden)

    Hyewon Lee

    2015-04-01

    Full Text Available This paper describes the design, evaluation, and implementation of a compensation scheme for a measurement voltage transformer (VT using the hysteresis characteristics of the core. The error of a VT is caused by the primary winding voltage and secondary winding voltage. The latter depends on the secondary current, whereas the former depends on the primary current, which is an aggregate of the exciting and secondary currents. The secondary current is obtained directly from the secondary voltage and is used to obtain the voltage across the secondary winding. For the primary current, the exciting current is decomposed into two components: core-loss and magnetizing currents. The magnetizing current is obtained by the flux-magnetizing current curve instead of the hysteresis loop to minimize the required loops for compensation. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. Finally, the estimated voltages across the primary and secondary windings are added to the measured secondary voltage for compensation. The scheme can significantly improve the accuracy of a VT. The results of the performance of compensator are shown in the experimental test. The accuracy of the measurement VT improves from 1.0C class to 0.1C class. The scheme can help to significantly reduce the required core cross section of a measurement VT in an electrical energy system.

  13. Calculation of current-voltage characteristics of electron-capture detectors

    International Nuclear Information System (INIS)

    Hinneburg, D.; Grosse, H.J.; Leonhardt, J.; Popp, P.

    1983-01-01

    Starting from the law of conservation of charge a stationary one-dimensional non-linear differential equation system is derived, which is applied to the direct-current mode of an electron-capture detector with parallel electrode plates. The theory takes into account space-charge, recombination, and inhomogeneous ionization and it deals with three kinds of charge carriers with different mobilities (positive and negative ions, electrons). Terms due to diffusion and gas-flow losses are excluded. The equations so constructed were programmed to get a means of calculating the charge and field distributions and the current-voltage characteristics as functions of various parameters of the detectors, the attaching gas and the ionization. For two cases the results are given. (author)

  14. Autowaves in an active two-wire line with exponential current-voltage characteristics

    International Nuclear Information System (INIS)

    Zhuravlev, V. M.

    2006-01-01

    Nonlinear wave processes in two-wire lines containing an active element with an exponential current-voltage characteristic (CVC) similar to that of a p-n junction are investigated. These lines are models of systems that are encountered in various physical and biological applications, such as biological membranes and semiconductor devices. It is shown that such systems may operate in different modes each of which has different dispersion and dissipation properties and, as a consequence, is described by autowave processes of different types. The behavior of a system in all basic modes is analyzed. For each mode, exact solutions to relevant equations are found and their differential conservation laws and intrinsic symmetries are investigated. One of common properties of such equations is the presence of a special superposition principle that describes the discrete structure of excitations in a line that consist of individual elementary excitations. It is shown that autopulses may be generated in such systems

  15. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  16. Investigation of capacitance voltage characteristics of strained Si/SiGe n-channel MODFET varactor

    Science.gov (United States)

    Elogail, Y.; Kasper, E.; Gunzer, F.; Shaker, A.; Schulze, J.

    2016-06-01

    This work is concerned with the investigation of Capacitance-Voltage (CV) behavior of n-channel Si/SiGe MODFET varactors. This investigation provides a valuable insight into the high frequency response of the device under test and its dependence on design parameters; especially regarding the modulation layer doping concentration. The heterostructure under consideration is much more complicated than conventional MOS varactor with respect to non-uniform doping, energy band offsets and the pn-junction in series. Subsequently, CV characterization has never been applied to such MODFET varactor structure. Experimental CV measurements have shown a non-monotonic behavior with a transition point minimum and higher saturation levels on both sides, in contradiction to the conventional high frequency MOS characteristics. This behavior was confirmed qualitatively using simulations. Moreover, we explain some fundamental capacitance properties of the structure, which provide already very interesting perceptions of the MODFET varactor operation, modeling and possible applications using the obtained stimulating results.

  17. Nonlinear I-V characteristics of doped SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dhage, S.R.; Choube, Vandana; Ravi, V

    2004-07-15

    When tin oxide is doped with Sb{sub 2}O{sub 3} and CoO, it shows highly nonlinear current (I)-voltage (V) characteristics. Addition of CoO leads to creation of oxygen vacancies and helps in sintering of SnO{sub 2}. Antimony oxide acts as a donor and increases the conductivity. The results are nearly same when antimony oxide is replaced by tantalum oxide. The grain size of these sintered ceramics varies from 5 to 7 {mu}m and the grain boundary barrier height (PHI{sub B}) is in the range of 0.5 eV. The observed nonlinear coefficient ({alpha}) is 25 and 27 for antimony and tantalum oxide, respectively and the breakdown field is in the range of 1250 V cm{sup -1}.

  18. Epidemiology, Clinical Characteristics, and Associations for Rome IV Functional Nausea and Vomiting Disorders in Adults.

    Science.gov (United States)

    Aziz, Imran; Palsson, Olafur S; Whitehead, William E; Sperber, Ami D; Simrén, Magnus; Törnblom, Hans

    2018-05-29

    Functional nausea and vomiting disorders (FNVDs) are classified as chronic nausea and vomiting syndrome (CNVS) or cyclic vomiting syndrome (CVS) - CVS includes cannabinoid hyperemesis syndrome. We investigated the population prevalence of FNVDs, their characteristics, and associated factors. In the year 2015, an Internet cross-sectional health survey was completed by 5931 adults in the general populations of 3 English-speaking countries; 2100 participants were in the United States, Canada, or the United Kingdom. Quota-based sampling was used to generate demographically balanced and population-representative samples. The survey collected data on demographics, healthcare visits, medications, somatic symptom severity, quality of life, and symptom-based diagnostic criteria for Rome IV FNVDs as well as for irritable bowel syndrome and functional dyspepsia. Subsequent comparisons were made between Rome IV FNVD subjects and individuals without FNVDs (controls). Overall, 2.2% of the population (n=131) fulfilled symptom-based diagnostic criteria for Rome IV FNVDs - the United States (3%) had a greater prevalence than Canada (1.9%) or the United Kingdom (1.8%) (P=.02). The prevalence of CNVS was similar among the countries, ranging from 0.8% to 1.2%. However, the prevalence of CVS was higher in the United States (2%) than in Canada (0.7%) or the United Kingdom (1%) (P=.03). The proportion of subjects with CVS taking cannabis did not differ significantly among countries (P=.31), although the 7 cases of cannabinoid hyperemesis syndrome were in the United States. A significantly higher proportion of subjects with CVS reported a compulsive need for hot water bathing to alleviate emetic symptoms than subjects with CNVS (44% vs. 19%, P=.03); this behaviour was independent of cannabis but augmented by its use. Subjects with FNVDs had significantly greater health impairment and health care utilization than controls. On multivariate analysis, independent factors associated with FNVDs

  19. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  20. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  1. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    International Nuclear Information System (INIS)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.; Katoh, Y.; Masuda, S.

    2017-01-01

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  2. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K. [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Katoh, Y. [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Masuda, S., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [Institute for Space—Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2017-06-10

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  3. Design and construction of constant voltage and current regulated source with proper characteristics to be used in electronics laboratory designs

    International Nuclear Information System (INIS)

    Peon A, R.

    1978-01-01

    A regulated direct current feeding source was designed for the Nuclear Energy National Institute Electronics Labortory, with the following characteristics: a) voltage input 105-130V a.c. 50-60 Hz; b) voltage output 0.40 V d.c.; c) output current 0-2 Amp d.c.; d) load regulation 0.001%; e) line regulation 0.001%; f) ripple and noise 200 μ Vpp; g) temperature interval 3-60 0 C; h) stability 0.5%; i) output impedance as voltage source 0.01 ohms; j) transient response 50 μ seg. Besides of operating normally, that is as voltage source or current-source through the front controls, the source can be used and interconnected with one or other compatible sources (autoseries, autoparallel and programmed reference). The source will cost 70,000 pesos approximately. (author)

  4. Capacitance–voltage and current–voltage characteristics for the study of high background doping and conduction mechanisms in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Highlights: ► The cause of high background doping was confirmed and characterized. ► The current–voltage characteristics deviate from the thermionic emission. ► The recombination current is attributed to a hole trap (E V + 0.52 eV). ► The hole trap (E V + 0.52 eV) was confirmed by DLTS measurements. -- Abstract: The temperature dependence of capacitance–voltage (C–V) and current voltage (I–V) characteristics were used to study the cause of high background doping and the underlying current transport mechanisms in GaAsN Schottky diode grown by chemical beam epitaxy (CBE). In one hand, a nitrogen-related sigmoid increase of junction capacitance and ionized acceptor concentration was observed in the temperature range 70–100 K and was attributed to the thermal ionization of a nitrogen–hydrogen-related deep acceptor-state, with thermal activation energy of approximately 0.11 eV above the valence band maximum (VBM) of GaAsN. This acceptor state is mainly responsible for the high background doping in unintentionally doped GaAsN grown by CBE. On the other hand, the I–V characteristics at different temperatures were found to deviate from the well known pure thermionic-emission mechanism. Based on their fitting at each temperature, the recombination current in the space charge region of GaAsN Schottky diode was mainly attributed to a hole trap, localized at 0.51 eV above the VBM. Given the accuracy of measurements, this result was confirmed by deep level transient spectroscopy measurements. Nevertheless, considering the Shockley–Read–Hall model of generation-recombination, the recombination activity of this defect was quantified and qualified to be weak compared with the markedly degradation of minority carrier lifetime in GaAsN material

  5. Current-Voltage and Floating-Potential characteristics of cylindrical emissive probes from a full-kinetic model based on the orbital motion theory

    Science.gov (United States)

    Chen, Xin; Sánchez-Arriaga, Gonzalo

    2018-02-01

    To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.

  6. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  7. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  8. Effect of Transportation and Low Voltage Electrical Stimulation on Meat Quality Characteristics of Omani Sheep

    Directory of Open Access Journals (Sweden)

    Isam T. Kadim

    2010-01-01

    Full Text Available The aim of this study was to determine the effects of road transportation during the hot season (36 oC and low voltage electrical stimulation on meat quality characteristics of Omani sheep. Twenty intact male sheep (1-year old were divided into two equal groups: 3 hrs transported or non-transported. The transported group was transferred to the slaughterhouse the day of slaughter in an open truck covering a distance of approximately 300 km. The non-transported group was kept in a lairage of a commercial slaughterhouse with ad libitum feed and water for 3 days prior to slaughter. Blood samples were collected from the animals before loading and prior to slaughter in order to assess their physiological response to stress in terms of hormonal levels. Fifty percent of the carcasses from each group were randomly assigned to low voltage (90 V at 20 min postmortem. Muscle ultimate pH, expressed juice, cooking loss percentage, WB-shear force value, sarcomere length, myofibrillar fragmentation index and colour L*, a*, b* were measured on samples from Longissimus dorsi muscles collected 24 hrs postmortem at 2-4 oC. The transported sheep had significantly (P<0.05 higher cortisol adrenaline, nor-adrenaline, and dopamine levels than the non-transported group. Muscles from electrically-stimulated carcasses had significantly (P<0.05 lower pH values, longer sarcomere length, lower shear force value, higher expressed juice, myofibrillar fragmentation index and L* values than those from non-stimulated ones. Transportation significantly influenced meat quality characteristics of the Longissimus dorsi muscle. Muscle ultimate pH and shear force values were significantly higher, while CIE L*, a*, b*, expressed juice and cooking loss were lower in transported than non-transported sheep. This study indicated that pre-slaughter transportation at high ambient temperatures can cause noticeable changes in muscle physiology in sheep. Nevertheless, meat quality of transported

  9. How the Change in IBS Criteria From Rome III to Rome IV Impacts on Clinical Characteristics and Key Pathophysiological Factors.

    Science.gov (United States)

    Aziz, Imran; Törnblom, Hans; Palsson, Olafur S; Whitehead, William E; Simrén, Magnus

    2018-06-08

    The diagnostic criteria for irritable bowel syndrome (IBS) have recently been updated from Rome III to Rome IV. Whereas in Rome III a diagnosis of IBS entailed chronic abdominal pain or discomfort at least 3 days per month, in Rome IV the term discomfort has been removed and the frequency of abdominal pain increased to at least 1 day per week. We examined how this change in IBS criteria impacts on clinical characteristics and pathophysiological factors. A total of 542 Swedish subjects with Rome III IBS completed a baseline questionnaire enquiring for the number of abdominal pain days in the last 10 days; this was subsequently used as a surrogate marker to identify Rome IV IBS, in that (a) those with 0 or 1 day of pain were classed as Rome IV-negative, and (b) those with ≥2 days of pain were classed as Rome IV-positive. Comparisons were made between Rome IV-positive and -negative IBS groups for demographics, IBS subtype, gastrointestinal and psychological symptoms, somatisation, fatigue, disease-specific quality of life, rectal sensitivity, and oro-anal transit time. Overall, 85% of Rome III IBS patients fulfilled the Rome IV criteria for IBS, but 15% did not. Rome IV-positive subjects were significantly more likely to be female, have poorer quality of life, greater pain severity, bloating, somatisation, fatigue, and rectal sensitivity than Rome IV-negative subjects. There were no differences in severity of anxiety or depression, IBS subtypes, bowel habit dissatisfaction, or oro-anal transit time. Finally, increasing number of pain days correlated positively with symptoms and visceral hypersensitivity. Most Rome III-positive IBS patients seeking healthcare fulfil the Rome IV IBS criteria. They constitute a more severe group than those who lose their IBS diagnosis.

  10. Modeling of planar carbon nanotube field effect transistor and three dimensional simulation of current-voltage characteristics

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Nguyen Thi Luong; Thi Tran Anh Tuan; Dinh Viet Nga

    2009-01-01

    We provide a CNTFET model with planar geometry. Planar CNTFETs constitute the majority of devices fabricated to date, mostly due to their relative simplicity and moderate compatibility with existing manufacturing technologies. We explore the possibilities of using non-equilibrium Green function method to get I-V characteristics for CNTFETs. This simulator also includes a graphic user interface (GUI) of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods. In this paper, we review the capabilities of simulator, and give examples of typical CNTFET 3D simulations. The I-V characteristics of CNTFET are also presented.

  11. Peculiarities on voltage - current characteristics of HTS tapes at overloading conditions cooled by liquid nitrogen

    International Nuclear Information System (INIS)

    Vysotsky, V S; Fetisov, S S; Sytnikov, V E

    2008-01-01

    Electro - technical devices are considered as the most prospective use for high temperature superconductors. For such devices the overload currents due to faults in grids are the operational reality. In these cases the fault currents may forcibly go to superconductors being sometimes dozens times more than the critical currents of HTS. Overloads are the working modes for fault current limiters also. To understand the behavior of HTS devices at overloads it is important to study voltage-current characteristics (VCC) of basic HTS tapes in real cooling conditions. The knowledge of VCC permits to model and to simulate properly HTS devices behavior at overloads. We performed the study of VCC of several HTS tapes at currents several times more than their critical ones. Both, 1-G and 2-G tapes were tested. There were found peculiarities or 'spikes' on VCC at rising currents that vanished at decaying currents. It was shown that such peculiarities are determined by the change of cooling conditions from the convective heat exchange to the nucleate boiling. Nucleate boiling activation and development times were determined. Their dependencies on heat release were measured. The data obtained can be used in simulation of heating of real superconducting devices at overload conditions

  12. Statistical Analysis of Partial Discharge Characteristics in Transformer Oil at the “Point-Plane” Electrode at Alternating Voltage

    Directory of Open Access Journals (Sweden)

    Korobeynikov S.M.

    2017-08-01

    Full Text Available In this paper, we consider the problems related to measuring and analyzing the characteristics of partial discharges which are the main instrument for oil-filled high-voltage electrical equipment diagnosing. The experiments on recording of partial discharges in transformer oil have been carried out in the “point-plane” electrode system at alternating current. The instantaneous voltage and the apparent charge have been measured depending on the root-mean-square voltage and the phase angle of partial discharges. This paper aimes at carrying out a statistical analysis of the obtained experimental results, in particular, the construction of a parametric probabilistic model of the dependence of the partial discharge inception voltage distribution on the value of the root-mean-square voltage. It differs from usual discharges which occur in liquid dielectric materials in case of sharp inhomogeneous electrode system. It has been suggested that discharges of a different type are the discharges in gas bubbles that occur when partial discharges in a liquid emerge. This assumption is confirmed by the fact that the number of such discharges increases with increasing the root-mean-square voltage value. It is the main novelty of this paper. This corresponds to the nature of the occurrence of such discharges. After rejecting the observations corresponding to discharges in gas bubbles, a parametric probabilistic model has been constructed. The model obtained makes it possible to determine the probability of partial discharge occurrence in a liquid at a given value of the instantaneous voltage depending on the root-mean-square voltage.

  13. Current—voltage characteristics of lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composites

    International Nuclear Information System (INIS)

    De-An, Pan; Shen-Gen, Zhang; Jian-Jun, Tian; Li-Jie, Qiao; Jun-Sai, Sun; Volinsky, Alex A.

    2010-01-01

    Current–voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current–voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1 kHz and resonance (60.1 kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current–voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Current-Voltage Characteristics of Bi-dithiolbenzene in Parallel Arrangement

    International Nuclear Information System (INIS)

    Boudjella, Aissa

    2011-01-01

    The low voltage conductance of interacting two 1,4-dithiolbenzene (DTB) molecules is investigated. The simulation results show that the electron transport can be controlled either by changing the Fermi level position E f or modifying its inter-molecular spacing d. Molecular assembly system with close interaction between DTB units, affects significantly the conductance. In addition, the position of the Fermi plays an important role in determining the current flow. Moreover, it is important to note that E f affects not only the threshold voltage V th , but also the saturation voltage V sat . When E f approaches the LUMO energy level, V th decreases, while V sat increases. To conclude, the threshold voltage and the saturation voltage depend on the Fermi level position and the inter-molecular spacing.

  15. Annealing effect on I-V characteristic of n-ZnO-p-InSe heterojunction

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2015-12-01

    Full Text Available The article is devoted to studying of influence of vacuum low-temperature annealing on the electrical and photoelectric characteristics of n-ZnO-p-InSe heterostructure. Indium monoselenide (InSe is a semiconductor of the A3B6 group of layered compounds. The basic unit consists of two planes of metal atoms sandwiched between two planes of chalcogen atoms (Se-In-In-Se. The absence of dangling bonds on InSe cleaved surface makes it possible to use this semiconductor as a substrate for fabrication of heterostructures based on semiconductor materials with different symmetries and lattice spacings. Zinc oxide (ZnO is the most suitable material for window materials and solar cells buffer layers application due to its marvelous transparency in the range of visible region. InSe single crystals were grown by the Bridgman technique from a nonstoichiometric melt and characterized by a pronounced layered structure along the whole length of a sample. ZnO thin oxide film was formed on freshly cleaved van der Waals surface of InSe layered crystal. n-ZnO-p-InSe heterostructure was prepared by the method of high-frequency magnetron sputtering. Sensitivity spectral areas were identified by MDR-3 monochromator with a resolution of 2.6 nm/mm. The current-voltage characteristics of the n-ZnO-p-InSe heterostructures showed a clearly pronounced diode character. In the forward bias of the initial samples, the diode factor had the value 3.7 at room temperature. It is shown that vacuum low-temperature annealing reduces shunt currents of the heterojunction, which is reflected in the decrease in the values of n from 3.7 to 2.7.

  16. Statistically Modeling I-V Characteristics of CNT-FET with LASSO

    Science.gov (United States)

    Ma, Dongsheng; Ye, Zuochang; Wang, Yan

    2017-08-01

    With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.

  17. Transition times between the extremum points of the current–voltage characteristic of a resonant tunneling diode with hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F. [National Research Nuclear University “MEPhI” (Russian Federation)

    2016-08-15

    A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the application of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.

  18. Analysis of the current-voltage characteristics of polymer-based organic light-emitting diodes (OLEDs deposited by spin coating

    Directory of Open Access Journals (Sweden)

    Ricardo Vera

    2010-04-01

    Full Text Available Polymer-based organic light-emitting diodes (OLEDs with the structure ITO / PEDOT:PSS / MDMO-PPV / Metal were prepared by spincoating. It is known that electroluminescence of these devices is strongly dependent on the material used as cathode and on the depositionparameters of the polymer electroluminescent layer MDMO-PPV. Objective. In this work the effect of i the frequency of the spin coater(1000-8000 rpm, ii the concentration of the MDMO-PPV: Toluene solution, and iii the material used as cathode (Aluminium or Silveron the electrical response of the devices, was evaluated through current-voltage (I-V measurements. Materials and methods. PEDOT:PPSand MDMO-PPV organic layers were deposited by spin coating on ITO substrates, and the OLED structure was completed with cathodesof aluminium and silver. The electric response of the devices was evaluated based on the I-V characteristics. Results. Diodes prepared withthinner organic films allow higher currents at lower voltages; this can be achieved either by increasing the frequency of the spin coater orby using concentrations of MDMO-PPV: Toluene lower than 2% weight. A fit of the experimental data showed that the diodes have twocontributions to the current. The first one is attributed to parasitic currents between anode and cathode, and the other one is a parallel currentthrough the organic layer, in which the carrier injection mechanism is mediated by thermionic emission. Conclusions. The results of thefitting and the energy level alignment through the whole structure show that PPV-based OLEDs are unipolar devices, with current mainlyattributed to hole transport.

  19. Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates

    Science.gov (United States)

    Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.

    2014-06-01

    We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.

  20. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  1. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.; Poukey, J.W.; Savage, M.E.

    1994-01-01

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, and beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( ∼ 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models

  2. The anchoring effect on the spin transport properties and I-V characteristics of pentacene molecular devices suspended between nickel electrodes.

    Science.gov (United States)

    Caliskan, S; Laref, A

    2014-07-14

    Spin-polarized transport properties are determined for pentacene sandwiched between Ni surface electrodes with various anchoring ligands. These calculations are carried out using spin density functional theory in tandem with a non-equilibrium Green's function technique. The presence of a Se atom at the edge of the pentacene molecule significantly modifies the transport properties of the device because Se has a different electronegativity than S. Our theoretical results clearly show a larger current for spin-up electrons than for spin-down electrons in the molecular junction that is attached asymmetrically across the Se linker at one side of the Ni electrodes (in an APL magnetic orientation). Moreover, this molecular junction exhibits pronounced NDR as the bias voltage is increased from 0.8 to 1.0 V. However, this novel NDR behavior is only detected in this promising pentacene molecular device. The NDR in the current-voltage (I-V) curve results from the narrowness of the density of states for the molecular states. The feasibility of controlling the TMR is also predicted in these molecular device nanostructures. Spin-dependent transmission calculations show that the sign and strength of the current-bias voltage characteristics and the TMR could be tailored for the organic molecule devices. These molecular junctions are joined symmetrically and asymmetrically between Ni metallic probes across the S and Se atoms (at the ends of the edges of the pentacene molecule). Our theoretical findings show that spin-valve phenomena can occur in these prototypical molecular junctions. The TMR and NDR results show that nanoscale junctions with spin valves could play a vital role in the production of novel functional molecular devices.

  3. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Özerli, Halil; Karteri, İbrahim [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Karataş, Şükrü, E-mail: skaratas@ksu.edu.tr [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Department of Physics, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Altindal, Şemsettin [Department of Physics, Gazi University, 06100 Ankara (Turkey)

    2014-05-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I{sub 0}/T{sup 2}) versus (kT){sup −1} and ln(I{sub 0}/T{sup 2}) versus (nkT){sup −1} plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ{sub b0} versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ{sup ¯}{sub b0} = 1.071 eV and σ{sub 0} = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot.

  4. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    International Nuclear Information System (INIS)

    Özerli, Halil; Karteri, İbrahim; Karataş, Şükrü; Altindal, Şemsettin

    2014-01-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I 0 /T 2 ) versus (kT) −1 and ln(I 0 /T 2 ) versus (nkT) −1 plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ b0 versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ ¯ b0 = 1.071 eV and σ 0 = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot

  5. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  6. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    Science.gov (United States)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  7. Capacitance-voltage characteristics of MOS capacitors with Ge nanocrystals embedded in ZrO2 gate material

    International Nuclear Information System (INIS)

    Lee, Hye-Ryoung; Choi, Samjong; Cho, Kyoungah; Kim, Sangsig

    2007-01-01

    Capacitance versus voltage (C-V) curves of Ge-nanocrystals (NCs)-embedded metal-oxide-semiconductor (MOS) capacitors are characterized in this work. Ge NCs were formed in 20-nm thick ZrO 2 gate layers by ion implantation and subsequent annealing procedures. The formation of the Ge NCs in the ZrO 2 gate layers was confirmed by high-resolution transmission electron microscopy and energy dispersive spectroscopy. The C-V curves obtained from a representative MOS capacitor embedded with the Ge NCs exhibit a 3 V memory window as bias voltage varied from 9 to - 9 V and then back to the initial positive voltage, whereas MOS capacitors without Ge NCs show negligible memory windows at the same voltage range. This indicates the presence of charge storages in the Ge NCs. The counterclockwise hysteresis observed from the C-V curves implies that electrons are trapped in Ge NCs presented inside the ZrO 2 gate layer. And our experimental results obtained from capacitance versus time measurements show good retention characteristics of Ge-NCs-embedded MOS capacitors with ZrO 2 gate material for the application of NFGM

  8. Effect of applied voltage parameters on the electric characteristics of a DBD in coaxial electrode configuration

    NARCIS (Netherlands)

    Petrovic, D.; Martens, T.; De Bie, C.; Brok, W.J.M.; Bogaerts, A.; Schmidt, J.; Simek, M.; Pekarek, S.

    2009-01-01

    A numerical parameter study has been performed for a cylindrical atmospheric pressure dielectric barrier discharge (DBD) in helium with nitrogen impurities using a two-dimensional time dependent fluid model. The calculated electric currents and gap voltages as a function of time for a given applied

  9. Lowering effect of radioactive irradiation on breakdown voltage and electron avalanche pulse characteristics

    International Nuclear Information System (INIS)

    Kawahashi, Akira; Nakano, Toru; Hosokawa, Tatsuzo; Miyoshi, Yosinori.

    1976-01-01

    In the time resolving measurement of the growing process and breakdown of electron avalanche in a gap of uniform electric field, the phenomenon that DC breakdown voltage slightly lowered was observed when β ray was irradiated as the initial electron source, as compared with unirradiated condition. Beta source used is 90 Sr- 90 Y of 2 mCi in radiative equilibrium. The experimental results and the examination are described in detail. In brief, the remarkable superposition of succeeding avalanche pulse over the preceeding avalanche pulse waveform was observed under the gap condition in which the breakdown voltage decreased in β-ray irradiation. Thus this superposition of avalanche pulses is considered as one of the causes of the breakdown voltage reduction. When β source is used as the initial electron source, the number of supplied initial electrons is very large as compared with unity, and at the same time, a great number of initial electrons can be supplied within the diffusion radius r of avalanche. Then the effect of initial electron number n 0 was considered by employing a diagram for breakdown scheme. The transition from Townsend type breakdown to streamer type breakdown occurs owing to increasing n 0 , and in that condition, the breakdown voltage lowers slightly. (Wakatsuki, Y)

  10. Fuzzy Load-Shedding Strategy Considering Photovoltaic Output Fluctuation Characteristics and Static Voltage Stability

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2018-03-01

    Full Text Available Based on the equilibrium point equations of a classic three-node system integrated with a large-scale photovoltaic cell (PV power plant, the impact of PV output fluctuation on the saddle-node bifurcation (SNB was derived and analyzed. When PV runs in a unity power factor and the PV output active power Ppv is not too large (several hundred MW and below, the PV output fluctuation has little effect on the SNB point position and load margin index, so that the load margin index can be calculated online using the SNB point at Ppv = 0 pu. On the other hand, the local reactive power compensation in the load center can effectively raise the load bus voltage and make the voltage stability problem become more concealed; the traditional under-voltage load-shedding (UVLS strategy only carries out load shedding when the bus voltage amplitude is below the specified value and cannot effectively maintain the system static voltage stability in some occasions. In this paper, a fuzzy load-shedding strategy considering the impact of PV output fluctuations for the large-scale PV grid-connected system was designed, taking the load bus voltage amplitude and load margin index as fuzzy input variables, and the load-shedding command as a fuzzy output variable. Nine fuzzy IF-THEN rules were extracted for the fuzzy controller and the corresponding practical calculation method of load-shedding quantity was put forward. The simulation results of the classic three-node system and IEEE 14-bus system, both with a 100 MW PV power plant, verified the effectiveness of the fuzzy load-shedding controller whose input variable load margin index was calculated using the SNB point when the PV active power output was 0. The designed fuzzy load-shedding strategy can compensate for the defect—that the traditional UVLS strategy cannot effectively guarantee the system static voltage stability—and it can be widely used in power grids integrated with PV power plants whose scales are at a

  11. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  12. Preparation, spectrometric analysis and determination of the electrochemical transport characteristics of uranium (IV) in aqueous systems

    International Nuclear Information System (INIS)

    Schwarzer, W.G.

    1985-01-01

    A process for the quantitative development of uranium-(IV) solutions in nitric and perchloric acid media was developed. After appropriate concentration setting of the solutions, the conductivity of the uranium (IV) in the dependence on concentration were analysed. The conversion of the measuring results on the standard system water was done by means of a conductivity theory; this allows a comparison with the conductivity data of other ions. The conductivity calculated, at an ion strength I tending to zero, provided the suitable data for the ion mobility and the transference number. (orig./PW) [de

  13. Substrate-bias effect on the breakdown characteristic in a new silicon high-voltage device structure

    International Nuclear Information System (INIS)

    Li Qi; Wang Weidong; Zhao Qiuming; Wei Xueming

    2012-01-01

    A novel silicon double-RESURF LDMOS structure with an improved breakdown characteristic by substrate bias technology (SB) is reported. The P-type epitaxial layer is embedded between an N-type drift region and an N-type substrate to block the conduction path in the off-state and change the distributions of the bulk electric field. The substrate bias strengthens the charge share effect of the drift region near the source, and the vertical electric field peak under the drain is decreased, which is especially helpful in improving the vertical breakdown voltage in a lateral power device with a thin drift region. The numerical results by MEDICI indicate that the breakdown voltage of the proposed device is increased by 97% compared with a conventional LDMOS, while maintaining a lowon-resistance. (semiconductor devices)

  14. Influence of semiconductor barrier tunneling on the current-voltage characteristics of tunnel metal-oxide-semiconductor diodes

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1983-01-01

    of multistep tunneling recombination current and injected minority carrier diffusion current. This can explain the observed values of the diode quality factor n. The results also show that the voltage drop across the oxide Vox is increased with increased NA, with the result that the lowering of the minority...... carrier diode current Jmin is greater than in the usual theory. The conclusion drawn is that the increase in Vox and lowering of Jmin is due to multistep tunneling of majority carriers through the semiconductor barrier. Journal of Applied Physics is copyrighted by The American Institute of Physics.......Current–voltage characteristics have been examined for Al–SiO2–pSi diodes with an interfacial oxide thickness of delta[approximately-equal-to]20 Å. The diodes were fabricated on and oriented substrates with an impurity concentration in the range of NA=1014–1016 cm−3. The results show that for low...

  15. Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique

    Science.gov (United States)

    Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.

    2018-04-01

    In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.

  16. Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies

    Directory of Open Access Journals (Sweden)

    Nermin Suljanović

    2017-11-01

    Full Text Available This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.

  17. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    Science.gov (United States)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  18. Mathematical model of voltage-current characteristics of Bi(2223)/Ag magnets under an external magnetic field

    CERN Document Server

    Pitel, J; Lehtonen, J; Kovács, P

    2002-01-01

    We have developed a mathematical model, which enables us to predict the voltage-current V(I) characteristics of a solenoidal high-temperature superconductor (HTS) magnet subjected to an external magnetic field parallel to the magnet axis. The model takes into account the anisotropy in the critical current-magnetic field (I sub c (B)) characteristic and the n-value of Bi(2223)Ag multifilamentary tape at 20 K. From the power law between the electric field and the ratio of the operating and critical currents, the voltage on the magnet terminals is calculated by integrating the contributions of individual turns. The critical current of each turn, at given values of operating current and external magnetic field, is obtained by simple linear interpolation between the two suitable points of the I sub c (B) characteristic, which corresponds to the angle alpha between the vector of the resulting magnetic flux density and the broad tape face. In fact, the model is valid for any value and orientation of external magneti...

  19. MOS Capacitance—Voltage Characteristics III. Trapping Capacitance from 2-Charge-State Impurities

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency capacitance—voltage curves of Metal—Oxide—Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier, or one-energy-level impurity species. Models described include a donor electron trap and an acceptor hole trap, both donors, both acceptors, both shallow energy levels, both deep, one shallow and one deep, and the identical donor and acceptor. Device and material parameters are selected to simulate chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications. (invited papers)

  20. Experimental and modeling study of the capacitance-voltage characteristics of metal-insulator-semiconductor capacitor based on pentacene/parylene

    KAUST Repository

    Wondmagegn, Wudyalew T.; Satyala, Nikhil T.; Mejia, Israel I.; Mao, Duo; Gowrisanker, Srinivas; Alshareef, Husam N.; Stiegler, Harvey J.; Quevedo-Ló pez, Manuel Angel Quevedo; Pieper, Ron J.; Gnade, Bruce E.

    2011-01-01

    The capacitance-voltage (C-V) characteristics of metal-insulator- semiconductor (MIS) capacitors consisting of pentacene as an organic semiconductor and parylene as the dielectric have been investigated by experimental, analytical, and numerical

  1. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    International Nuclear Information System (INIS)

    Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida

    2014-01-01

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I excess  = I r0  + K 1 exp (K 2 V), where I r0 , K 1 , and K 2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers

  2. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  3. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed

  4. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V. [North Caucasian Federal University, Institute of Service, Tourism and Design (Branch) (Russian Federation); Bilalov, B. A. [Dagestan State Technical University (Russian Federation); Sigov, A. S. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  5. Revisiting the role of trap-assisted-tunneling process on current-voltage characteristics in tunnel field-effect transistors

    Science.gov (United States)

    Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit

    2018-04-01

    This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.

  6. DC characteristics and parameters of silicon carbide high-voltage power BJTs

    International Nuclear Information System (INIS)

    Patrzyk, Joanna; Zarębski, Janusz; Bisewski, Damian

    2016-01-01

    The paper shows the static characteristics and operating parameters of the bipolar power transistors made of silicon carbide and for comparison their equivalents made of classical silicon technology. The characteristics and values of selected operating parameters with special emphasis on the effect of temperature and operating point of considered devices are discussed. Quantitative as well as qualitative differences between the characteristics of the transistor made of silicon and silicon carbide are indicated as well

  7. MOS Capacitance—Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)

  8. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics

    International Nuclear Information System (INIS)

    Abdallah, Salah

    2004-01-01

    An experimental study was performed to investigate the effect of using different types of sun tracking systems on the voltage-current characteristics and electrical power generation at the output of flat plate photovoltaics (FPPV). Four electromechanical sun tracking systems, two axes, one axis vertical, one axis east-west and one axis north-south, were designed and constructed for the purpose of investigating the effect of tracking on the electrical values, current, voltage and power, according to the different loads (variable resistance). The above mentioned variables were measured at the output of the FPPV and compared with those on a fixed surface. The results indicated that the volt-ampere characteristics on the tracking surfaces were significantly greater than that on a fixed surface. There were increases of electrical power gain up to 43.87%, 37.53%, 34.43% and 15.69% for the two axes, east-west, vertical and north-south tracking, respectively, as compared with the fixed surface inclined 32 deg. to the south in Amman, Jordan

  9. Calibration technique and study on metrological characteristics of a high-voltage inverse square-law function generator

    International Nuclear Information System (INIS)

    Popov, V.P.; Semenov, A.L.

    1987-01-01

    The calibration technique is described, and the metrological characteristics of a high-voltage generator of the inverse-quadratic function (HGF), being a functional unit of the diagnostic system of an electrodynamic analyser of a ionic component of a laser plasma, is analysed. The results of HGF testing in the range of time constants of the τ=(5-25)μs function are given. Analysis of metrologic and experimental characteristics shows, that HGF with automatic calibration has quite high accurate parameters. The high accuracy of function generation is provided with the possibility of calibration and adjustment conduction under experimental working conditions. Increase of the generated pulse amplitude to several tens of kilovelts is possible. Besides, the possibility of timely function adjustment to the necessary parameter (τ) increases essentially the HGF functional possibilities

  10. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  11. Development of methods for measuring materials nuclear characteristics, Phases, I, II, II and IV

    International Nuclear Information System (INIS)

    Maglic, R.

    1963-04-01

    This report contains the following phases of the project 'measurement of nuclear characteristics of reactor materials': nuclear performances of the neutron chopper; method for measuring total effective cross sections by transmission method on the chopper; review of methods for measuring activation cross sections; measurement of neutron spectra of the RA reactor and measurement of total effective cross section of gold by using the chopper

  12. Novel Step-Up DC/DC Converter with No Right Half Plane Zero and Reduced Switched Voltage Stress Characteristics

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen

    2014-01-01

    and the voltage transfer gain is obtained. It is also demonstrated that the voltage stress on all semiconductor devices is restricted to input voltage which allows the utilization of a power switch with lower drain source resistance. In order to further increase the voltage gain another switched capacitor voltage......Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state...

  13. Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Djiokap, S.R. Tankio, E-mail: stive.tankiodjiokap@nmmu.ac.za; Urgessa, Z.N.; Mbulanga, C.M.; Venter, A.; Botha, J.R.

    2016-01-01

    Zinc oxide (ZnO) nanorods have been synthesized by a two-step chemical bath deposition process on silicon substrates having different dopant densities and orientations. Scanning electron microscopy and X-ray diffraction analysis reveal that the orientation of the Si substrate does not affect the orientation, distribution or crystallinity of the nanostructures. The electrical properties of the ZnO/Si heterojunction are also investigated by current–voltage (I–V) measurements. The ideality factor is found to be 2.6 at 295 K, indicating that complex current transport mechanisms are at play. Temperature dependent I–V characteristics have been used to determine the dominant transport mechanism. The experimental results suggest that in the low bias region the current is dominated by a trap assisted multi-step tunneling process.

  14. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  15. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects.

    Science.gov (United States)

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2017-12-20

    Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.

  16. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  17. Current–voltage characteristics of high-voltage 4H-SiC p{sup +}–n{sub 0}–n{sup +} diodes in the avalanche breakdown mode

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.; Grekhov, I. V. [Ioffe Physical–Technical Institute (Russian Federation)

    2017-03-15

    p{sup +}–n{sub 0}–n{sup +} 4H-SiC diodes with homogeneous avalanche breakdown at 1860 V are fabricated. The pulse current–voltage characteristics are measured in the avalanche-breakdown mode up to a current density of 4000 A/cm{sup 2}. It is shown that the avalanche-breakdown voltage increases with increasing temperature. The following diode parameters are determined: the avalanche resistance (8.6 × 10{sup –2} Ω cm{sup 2}), the electron drift velocity in the n{sub 0} base at electric fields higher than 10{sup 6} V/cm (7.8 × 10{sup 6} cm/s), and the relative temperature coefficient of the breakdown voltage (2.1 × 10{sup –4} K{sup –1}).

  18. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  19. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    Science.gov (United States)

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  20. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  1. Illumination and Voltage Dependence of Electrical Characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements

    International Nuclear Information System (INIS)

    Sahar, Alialy; Şlemsettin, Altındal; Ahmet, Kaya; İ, Uslu

    2015-01-01

    Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and at 1 MHz. Some of the main electrical parameters such as concentration of doping atoms (N D ), barrier height (ϕ B (C - V)), depletion layer width (W D ) and series resistance (R s ) show fairly large illumination dispersion. The voltage-dependent profile of surface states (N ss ) and resistance of the structure (R i ) are also obtained by using the dark-illumination capacitance (C dark -C ill ) and Nicollian-Brews methods, respectively. For a clear observation of changes in electrical parameters with illumination, the values of N D , W D , ϕ B (C - V) and R s are drawn as a function of illumination intensity. The values of N D and W D change almost linearly with illumination intensity. On the other hand, R s decreases almost exponentially with increasing illumination intensity whereas ϕ B (C - V) increases. The experimental results suggest that the use of a high dielectric interlayer (0.03 graphene-doped PVA) considerably passivates or reduces the magnitude of the surface states. The large change or dispersion in main electrical parameters can be attributed to generation of electron-hole pairs in the junction under illumination and to a good light absorption. All of these experimental results confirm that the fabricated Au/0.03 graphene-doped PVA/n-Si structure can be used as a photodiode or a capacitor in optoelectronic applications. (paper)

  2. Characteristics of MAO coating obtained on ZK60 Mg alloy under two and three steps voltage-increasing modes in dual electrolyte

    Science.gov (United States)

    Yang, Jun; Wang, Ze-Xin; Lu, Sheng; Lv, Wei-gang; Jiang, Xi-zhi; Sun, Lei

    2017-03-01

    The micro-arc oxidation process was conducted on ZK60 Mg alloy under two and three steps voltage-increasing modes by DC pulse electrical source. The effect of each mode on current-time responses during MAO process and the coating characteristic were analysed and discussed systematically. The microstructure, thickness and corrosion resistance of MAO coatings were evaluated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), microscope with super-depth of field and electrochemical impedance spectroscopy (EIS). The results indicate that two and three steps voltage-increasing modes can improve weak spark discharges with insufficient breakdown strength in later period during the MAO process. Due to higher value of voltage and voltage increment, the coating with maximum thickness of about 20.20μm formed under two steps voltage-increasing mode shows the best corrosion resistance. In addition, the coating fabricated under three steps voltage-increasing mode shows a smoother coating with better corrosion resistance due to the lower amplitude of voltage-increasing.

  3. High voltage electric field effects on structure and biological characteristics of barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, J. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Agrotechnology, Univ. College of Abouraihan; Aliabadi, E. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Crop Production Horticulture, Univ. College of Aburaihan; Shayegani, A.A. [Tehran Univ., Tehran (Iran, Islamic Republic of). Univ. College of Engineering

    2010-07-01

    Electric biostimulation of seeds is a pre-sowing treatment in which an electric field is applied to seeds to increase germination of non standard seeds. This paper reported on a study that examined the effects of AC electric field and exposure time on the structure and biological characteristics of barley seeds. The objective was to determine the potential to accelerate seed germination, plant growth and root development by the electric field strength and exposure time. Makooei cultivar barley seeds were used in this study. The effect of electric field strength (at 2, 4, 9, and 14 kV/m) and exposure time (at 15, 45, 80, and 150 min) on seed germination was studied along with height of seedling, length or root, height of stem, length of leaves, earliness, dry weight and wet weight of seedling. The treated seeds were stored for a month in a refrigerator at 5 degrees C prior to the germination experiments. The initial germination percent of the seed was 81 per cent. The treatment of barley seeds in an AC electric field had a positive effect on all investigated parameters. The germination percent of the treated seed increased to 94.5 per cent . The seeds exposed for long periods of time (45 to 150 min) showed better germination than the seeds exposed to lower exposure times. Dry and wet weights of seedling increased 143.4 per cent and 45.7 per cent, respectively.

  4. Effect of negative bias voltage on CrN films deposited by arc ion plating. I. Macroparticles filtration and film-growth characteristics

    International Nuclear Information System (INIS)

    Wang Qimin; Kim, Kwang Ho

    2008-01-01

    Chromium nitride (CrN) films were deposited on Si wafers by arc ion plating (AIP) at various negative bias voltages and several groups of N 2 /Ar gas flux ratios and chamber gas pressures. The authors systematically investigated the influence of negative bias voltage on the synthesis, composition, microstructure, and properties of the AIP CrN films. In this part (Part I), the investigations were mainly focused on the macroparticle distributions and film-growth characteristics. The results showed that macroparticle densities on the film surfaces decreased greatly by applying negative bias voltage, which can be affected by partial pressure of N 2 and Ar gases. From the statistical analysis of the experimental results, they proposed a new hybrid mechanism of ion bombardment and electrical repulsion. Also, the growth of the AIP CrN films was greatly altered by applying negative bias voltage. By increasing the bias voltage, the film surfaces became much smoother and the films evolved from apparent columnar microstructures to an equiaxed microstructure. The impinging high-energy Cr ions accelerated by negative bias voltages were deemed the inherent reason for the evolution of growth characteristics

  5. Characteristics of Partial Discharge and Ozone Generation for Twisted-pair of Enameled Wires under High-repetitive Impulse Voltage Application

    Science.gov (United States)

    Kanazawa, Seiji; Enokizono, Masato; Shibakita, Toshihide; Umehara, Eiji; Toshimitsu, Jun; Ninomiya, Shinji; Taniguchi, Hideki; Abe, Yukari

    In recent years, inverter drive machines such as a hybrid vehicle and an electric vehicle are operated under high voltage pulse with high repetition rate. In this case, inverter surge is generated and affected the machine operation. Especially, the enameled wire of a motor is deteriorated due to the partial discharge (PD) and finally breakdown of the wire will occur. In order to investigate a PD on a resistant enameled wire, characteristics of PD in the twisted pair sample under bipolar repetitive impulse voltages are investigated experimentally. The relationship between the applied voltage and discharge current was measured at PD inception and extinction, and we estimated the repetitive PD inception and extinction voltages experimentally. The corresponding optical emission of the discharge was also observed by using an ICCD camera. Furthermore, ozone concentration due to the discharge was measured during the life-time test of the resistant enameled wires from a working environmental point of view.

  6. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  7. In-vivo characteristics of high and low specific activity radioiodinated (+)-2-[4-(4-iodophenyl) piperidino] cyclohexanol [(+)-pIV] for imaging sigma-1 receptor in brain

    International Nuclear Information System (INIS)

    Akhter, Nasima; Kinuya, Seigo; Nakajima, Kenichi; Shiba, Kazuhiro; Ogawa, Kazuma; Mori, Hirofumi

    2007-01-01

    Full text: In this study, (+)-enantiomer of radioiodinated 2-[4-(4- iodophenyl)piperidino]cyclohexanol ((+)-[ 125 I]-p- iodovesamicol) [(+)-[ 125 I]pIV], which is reported to bind with high affinity to the sigma-1 receptor both in vitro and in vivo, was tested to compare the in vivo characteristics between high and low specific activity (+)-[ 125 I]pIV to image sigma-1 receptor in the central nervous system. In the biodistribution study, no significant difference was observed between two methods. Accumulation of (+)- [ 125 I]pIV in rat brain was significant (approximately 3% of the injected dose) and its retention was prolonged. In the blocking study, the accumulation of (+)-[ 125 I] pIV in the rat brain was significantly reduced by the co-administration of sigma ligands such as pentazocine, haloperidol or SA4503 in both methods. But the blocking effect was relatively stronger in the study using high specific activity radioiodinated (+)pIV. Though, the distribution of high and low specific activity (+)-[ 125 I] pIV was more or less similar to bind to sigma-1 receptor in the central nervous system in vivo, high specific activity radioiodinated (+) pIV might have a better specificity to bind sigma-1 receptor in brain. (author)

  8. Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis

    NARCIS (Netherlands)

    Ecker, Bernhard; Egelhaaf, Hans-Joachim; Steim, Roland; Parisi, Juergen; von Hauff', Elizabeth

    2012-01-01

    In this study we propose an equivalent circuit model to describe S-shaped current–voltage (I–V) characteristics in inverted solar cells with a TiOx interlayer between the cathode and the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester active layer. Initially the solar cells

  9. Effect of quantum noise and tunneling on the fluctuational voltage-current characteristics and the lifetime of the zero-voltage state in Josephson junctions

    International Nuclear Information System (INIS)

    Mel'nikov, V.I.; Suetoe, A.

    1986-01-01

    The minima of the potential energy for the dynamical variable phi of a Josephson junction are separated by barriers of height hI/sub c//e, where I/sub c/ is the critical current. At low temperatures, T hΩ/2π (Ω is the Josephson plasma frequency). We consider this problem for high-quality junctions (RCΩ>>1, R and C are the resistance and the capacitance of the junction), accounting for the effect of a Johnson-Nyquist noise and quantum tunneling at the barrier top. With a simplifying assumption, we derive a pair of integral equations containing an energy variable for the steady-state distribution of phi and phi-dot, and solve it by a modification of the Wiener-Hopf method. The result is a formula for the current dependence of the fluctuational voltage, valid for currents I 2 <<1

  10. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    Science.gov (United States)

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  11. Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

    Directory of Open Access Journals (Sweden)

    Bernd M. Briechle

    2012-11-01

    Full Text Available We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current–voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  12. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Chen Chong

    2011-01-01

    Full Text Available Abstract The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency.

  13. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics

    International Nuclear Information System (INIS)

    Chen, Zhicong; Wu, Lijun; Cheng, Shuying; Lin, Peijie; Wu, Yue; Lin, Wencheng

    2017-01-01

    Highlights: •An improved Simulink based modeling method is proposed for PV modules and arrays. •Key points of I-V curves and PV model parameters are used as the feature variables. •Kernel extreme learning machine (KELM) is explored for PV arrays fault diagnosis. •The parameters of KELM algorithm are optimized by the Nelder-Mead simplex method. •The optimized KELM fault diagnosis model achieves high accuracy and reliability. -- Abstract: Fault diagnosis of photovoltaic (PV) arrays is important for improving the reliability, efficiency and safety of PV power stations, because the PV arrays usually operate in harsh outdoor environment and tend to suffer various faults. Due to the nonlinear output characteristics and varying operating environment of PV arrays, many machine learning based fault diagnosis methods have been proposed. However, there still exist some issues: fault diagnosis performance is still limited due to insufficient monitored information; fault diagnosis models are not efficient to be trained and updated; labeled fault data samples are hard to obtain by field experiments. To address these issues, this paper makes contribution in the following three aspects: (1) based on the key points and model parameters extracted from monitored I-V characteristic curves and environment condition, an effective and efficient feature vector of seven dimensions is proposed as the input of the fault diagnosis model; (2) the emerging kernel based extreme learning machine (KELM), which features extremely fast learning speed and good generalization performance, is utilized to automatically establish the fault diagnosis model. Moreover, the Nelder-Mead Simplex (NMS) optimization method is employed to optimize the KELM parameters which affect the classification performance; (3) an improved accurate Simulink based PV modeling approach is proposed for a laboratory PV array to facilitate the fault simulation and data sample acquisition. Intensive fault experiments are

  14. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  15. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  16. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  17. Voltage stability analysis considering the load dynamic characteristics and the voltage control devices; Analisis de estabilidad de voltaje considerando las caracteristicas dinamicas de la carga y dispositivos de control de voltaje

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Alvarez, Enrique

    2001-09-15

    The research work presented in this thesis, is centered in the voltage stability analysis of medium term considering the effect of the load characteristics and its interaction with the voltage control device models in the transmission network. More concretely, a type of load model is defined and studied with desirable characteristics for the study of the voltage stability, the generic load models derived from field tests and from the application of identification techniques and it is analyzed the influence of the application of control systems to improve the system stability margins. Also, alternatives to the power system modeling for the voltage stability study in complex systems are reviewed. In the first place a fundamental analysis of the voltage characteristics and stability in a simplified power system is presented and the method of adopted analysis is introduced. It is shown that the instability phenomenon is manifested as a singular type bifurcation induced from the critical way of voltage when the system is operated under stress conditions. Next, the contribution of the action of the control devices to the stability margin is analyzed and criteria of the stability analyses are deducted based on the study of such mode. Following a linear model of the power system with desirable characteristics for the study of the voltage stability of medium term is proposed and the characteristics of stability in the context of the study of complex systems are interpreted. The proposed analysis tool is based on the physical notion that the behavior of the voltage control systems in the generators is very rapid with regard to the behavior of the load and has its main application in the preliminary study of the voltage stability of medium and long term. From this model, an analytical tool based on the application of techniques of linear analysis is proposed to approach the problem of determination of critical voltage areas and the contribution of control devices to the

  18. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  19. Characteristics of voltage regulators with serial NPN transistor in the fields of medium and high energy photons

    International Nuclear Information System (INIS)

    Vukic, V.; Osmokrovic, P.

    2007-01-01

    Variation of collector - emitter dropout voltage on serial transistors of voltage regulators LM2990T-5 and LT1086CT5 were used as the parameter for detection of examined devices' radiation hardness in X and ? radiation fields. Biased voltage regulators with serial super-β transistor in the medium dose rate X radiation field had significantly different response from devices with conventional serial NPN transistor. Although unbiased components suffered greater damage in most cases, complete device failure happened only among the biased components with serial super-β transistor in Bremsstrahlung field. Mechanisms of transistors degradation in ionizing radiation fields were analysed [sr

  20. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  1. The TDDB Characteristics of Ultra-Thin Gate Oxide MOS Capacitors under Constant Voltage Stress and Substrate Hot-Carrier Injection

    Directory of Open Access Journals (Sweden)

    Jingyu Shen

    2018-01-01

    Full Text Available The breakdown characteristics of ultra-thin gate oxide MOS capacitors fabricated in 65 nm CMOS technology under constant voltage stress and substrate hot-carrier injection are investigated. Compared to normal thick gate oxide, the degradation mechanism of time-dependent dielectric breakdown (TDDB of ultra-thin gate oxide is found to be different. It is found that the gate current (Ig of ultra-thin gate oxide MOS capacitor is more likely to be induced not only by Fowler-Nordheim (F-N tunneling electrons, but also by electrons surmounting barrier and penetrating electrons in the condition of constant voltage stress. Moreover it is shown that the time to breakdown (tbd under substrate hot-carrier injection is far less than that under constant voltage stress when the failure criterion is defined as a hard breakdown according to the experimental results. The TDDB mechanism of ultra-thin gate oxide will be detailed. The differences in TDDB characteristics of MOS capacitors induced by constant voltage stress and substrate hot-carrier injection will be also discussed.

  2. Investigation of diode parameters using I-V and C-V characteristics of In/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, O.F. [Department of Physics, Faculty of Arts and Science, Selcuk University, Kampus, Konya 42075 (Turkey)], E-mail: fyuksel@selcuk.edu.tr; Selcuk, A.B.; Ocak, S.B. [PK, 14 Etlik, Ankara (Turkey)

    2008-08-01

    A study on interface states density distribution and characteristic parameters of the In/SiO{sub 2}/p-Si (MIS) capacitor has been made. The thickness of the SiO{sub 2} film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 A. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 {omega} and 0.592 eV, respectively. The energy distribution of the interface state density D{sub it} was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44x10{sup 13} eV{sup -1} cm{sup -2} in 0.329-E{sub v} eV to 1.11x10{sup 13} eV{sup -1} cm{sup -2} in 0.527-E{sub v} eV at room temperature. Furthermore, the values of interface state density D{sub it} obtained by the Hill-Coleman method from the C-V characteristics range from 52.9x10{sup 13} to 1.11x10{sup 13} eV{sup -1} cm{sup -2} at a frequency range of 30kHz-1 MHz. These values of D{sub it} and R{sub s} were responsible for the non-ideal behaviour of I-V and C-V characteristics.

  3. Fluctuation characteristics of arc voltage and jet flow in a non-transferred dc plasma generated at reduced pressure

    International Nuclear Information System (INIS)

    Pan, W X; Guo, Z Y; Meng, X; Huang, H J; Wu, C K

    2009-01-01

    A torch with a set of inter-electrode inserts between the cathode and the anode/nozzle with a wide nozzle exit was designed to generate plasma jets at chamber pressures of 500-10 000 Pa. The variation of the arc voltage was examined with the change in working parameters such as gas flow rate and chamber pressure. The fluctuation in the arc voltage was recorded with an oscilloscope, and the plasma jet fluctuation near the torch exit was observed with a high-speed video camera and detected with a double-electrostatic probe. Results show that the 300 Hz wave originated from the tri-phase rectified power supply was always detected under all generating conditions. Helmholtz oscillations over 3000 Hz was detected superposed on the 300 Hz wave at gas flow rates higher than 8.8 slm with a peak to valley amplitude lower than 5% of the average voltage value. No appreciable voltage fluctuation caused by the irregular arc root movement is detected, and mechanisms for the arc voltage and jet flow fluctuations are discussed.

  4. Influence of the parameters of supplying pulses and polarization voltage on the signal and shape of current characteristics of the electron capture detector

    International Nuclear Information System (INIS)

    Lasa, J.; Sliwka, I.; Drozdowicz, B.

    1989-01-01

    The paper contains results of measurements of current characteristics and of the signal for the constant concentration of freon F-11 of the ECD supplied with pulse voltage of changeable time of pulse duration t p , amplitude U 1 and the time of pulse repetition t r . In the course of measurements the detector worked at temperature 573 K with the additional constant polarization voltage. The polarization voltage has been observed to cause the effect of hypercoulometry. The presented mathematical analysis helps to determine the values of the coefficient of efficiency of electron capture p, the coefficient of electron loss k D , the coefficient of collecting of electric charges by the anode k' 3 and the coefficient of collecting of electric charges by the detector cathode k u . The coefficients are determined on the basis of experimental measurements. An attempt of physical interpretation of calculated values of these coefficients and their dependence on the parameters of the pulses supplying the detector has been presented. This interpretation requires the assumption that in some pulse periods t r the concentration of positive ions in the detector considerably exceeds concentration n 0 + = √a xα e /V, where a is an efficiency of the carrier gas ionization, α e is the coefficient of the electron-ion recombination and V is the detector volume. This statement helping to describe the effects observed in the electron capture polarized by voltage U a contradicts the recognized concept that the concentration of positive ions in the detector does not exceed the concentration n 0 + . The paper shows that the detector of the cylindrical construction, supplied with a pulse voltage can be used for coulometric measurements and the voltage polarizing the cathode can cause an effect of hypercoulometry. 33 figs., 9 refs. (author)

  5. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing.

    Science.gov (United States)

    Los, Agata; Ziuzina, Dana; Akkermans, Simen; Boehm, Daniela; Cullen, Patrick J; Van Impe, Jan; Bourke, Paula

    2018-04-01

    Contamination of cereal grains as a key global food resource with insects or microorganisms is a persistent concern for the grain industry due to irreversible damage to quality and safety characteristics and economic losses. Atmospheric cold plasma presents an alternative to conventional grain decontamination methods owing to the high antimicrobial potential of reactive species generated during the treatment, but effects against product specific microflora are required to understand how to optimally develop this approach for grains. This work investigated the influence of ACP processing parameters for both cereal grain decontamination and grain quality as important criteria for grain or seed use. A high voltage (HV) (80 kV) dielectric barrier discharge (DBD) closed system was used to assess the potential for control of native microflora and pathogenic bacterial and fungal challenge microorganisms, in tandem with effects on grain functional properties. Response surface modelling of experimental data probed the key factors in relation to microbial control and seed germination promotion. The maximal reductions of barley background microbiota were 2.4 and 2.1 log 10  CFU/g and of wheat - 1.5 and 2.5 log 10  CFU/g for bacteria and fungi, respectively, which required direct treatment for 20 min followed by a 24 h sealed post-treatment retention time. In the case of challenge organisms inoculated on barley grains, the highest resistance was observed for Bacillus atrophaeus endospores, which, regardless of retention time, were maximally reduced by 2.4 log 10  CFU/g after 20 min of direct treatment. The efficacy of the plasma treatment against selected microorganisms decreased in the following order: E. coli > P. verrucosum (spores) > B. atrophaeus (vegetative cells) > B. atrophaeus (endospores). The challenge microorganisms were more susceptible to ACP treatment than naturally present background microbiota. No major effect of short term

  6. Experimental and modeling study of the capacitance-voltage characteristics of metal-insulator-semiconductor capacitor based on pentacene/parylene

    KAUST Repository

    Wondmagegn, Wudyalew T.

    2011-04-01

    The capacitance-voltage (C-V) characteristics of metal-insulator- semiconductor (MIS) capacitors consisting of pentacene as an organic semiconductor and parylene as the dielectric have been investigated by experimental, analytical, and numerical analysis. The device simulation was performed using two-dimensional drift-diffusion methods taking into account the Poole-Frenkel field-dependent mobility. Pentacene bulk defect states and fixed charge density at the semiconductor/insulator interface were incorporated into the simulation. The analysis examined pentacene/parylene interface characteristics for various parylene thicknesses. For each thickness, the corresponding flat band voltage extracted from the C-V plot of the MIS structure was more negative than - 2.4 V. From the flat band voltage the existence of a significant mismatch between the work functions of the gate electrode and pentacene active material has been identified. Experimental and simulation results suggest the existence of interface charge density on the order of 3 × 1011 q/cm2 at the insulator/semiconductor interface. The frequency dispersion characteristics of the device are also presented and discussed. © 2011 Elsevier B.V.

  7. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  8. Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction

    DEFF Research Database (Denmark)

    Pankratov, A.L.; Sobolev, A.S.; Koshelets, V.P.

    2007-01-01

    We have numerically investigated the dynamics of a long linear Josephson tunnel junction with overlap geometry. Biased by a direct current (dc) and an applied dc magnetic field, the junction has important applications as tunable high frequency oscillator [flux-flow oscillator (FFO......) placed at both ends of the FFO. In our model, the damping parameter depends both on the spatial coordinate and on the amplitude of the ac voltage. In order to find the dc current-voltage curves, the damping parameter has to be calculated self-consistently by successive approximations and time integration...

  9. Negative resistance in I-V characteristics and 2D vortex dynamics in a-W/Si multilayer superconductors with periodic antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Y.; Yokoyama, M.; Kuwasawa, Y.; Matsuda, S.; Nojima, T

    2003-05-01

    We have examined the vortex dynamics in W/Si multilayers with the arrays of antidots in the form of square and triangular lattices. In the measurements of I-V characteristics as a function of temperature T and magnetic field H, we find a specific feature that the V(I) curves coincide irrespective of T. Especially the V(I) curves with a negative slope are observed in the multilayer with triangular arrays.

  10. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  11. Characteristics of AlGaN/GaN/AlGaN double heterojunction HEMTs with an improved breakdown voltage

    International Nuclear Information System (INIS)

    Ma Juncai; Zhang Jincheng; Xue Junshuai; Lin Zhiyu; Liu Ziyang; Xue Xiaoyong; Ma Xiaohua; Hao Yue

    2012-01-01

    We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer, which leads to a higher potential barrier at the backside of the two-dimensional electron gas channel and better carrier confinement. This, remarkably, reduces the drain leakage current and improves the device breakdown voltage. The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (∼100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs (∼50 V) for the device with gate dimensions of 0.5 × 100 μm and a gate—drain distance of 1 μm. The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm, a maximum power-added efficiency of 62.3% and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz. (semiconductor devices)

  12. Definition of Static Voltage Characteristics of the Motor Load for the Purpose of Increase in Energy Efficiency of Coal Mines of Kuzbass

    Science.gov (United States)

    Nepsha, Fedor; Efremenko, Vladimir

    2017-11-01

    The task of determining the static load characteristics is one of the most important tasks, the solution of which is necessary for the correct development of measures to increase the energy efficiency of the Kuzbass coal mines. At present, the influence of electric receivers on the level of consumption of active and reactive power is not taken into account, therefore, the proposed measures to increase the energy efficiency are not optimal. The article analyzes the L-shaped and T-shaped circuit for the replacement of an asynchronous motor (AM), according to the results of which it is determined that the T-shaped replacement scheme is the most accurate for determination of static load characteristics. The authors proposed and implemented in the MATLAB Simulink environment an algorithm for determining the static voltage characteristics of the motor load.

  13. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    Science.gov (United States)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  14. Manifestation of vortex depinning transition in nonlinear current-voltage characteristics of polycrystalline superconductor Y1-xPrxBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Rivera, V.A.G.; Stari, C.; Sergeenkov, S.; Marega, E.; Araujo-Moreira, F.M.

    2008-01-01

    We present our recent results on the temperature dependence of current-voltage characteristics for polycrystalline Y 1-x Pr x Ba 2 Cu 3 O 7-δ superconductors with x=0.0, 0.1 and 0.3. The experimental results are found to be reasonably well fitted for all samples by a power like law of the form V=R(I-I c ) a(T) . Here, we assume that a(T)=1+Φ 0 I C (T)/2πk B T and I C (T)=I C (0)(1-T/T C ) 3/2 for the temperature dependences of the power exponent and critical current, respectively. According to the theoretical interpretation of the obtained results, nonlinear deviation of our current-voltage characteristics curves from Ohmic behavior (with a(T C )=1) below T C is attributed to the manifestation of dissipation processes. They have a characteristic temperature T p defined via the power exponent as a(T p )=2 and are related to the current induced depinning of Abrikosov vortices. Both T C (x) and T p (x) are found to decrease with an increase of Pr concentration x reflecting deterioration of the superconducting properties of the doped samples

  15. The nonideality coefficient of current-voltage characteristics for p-n junctions in a high ultrahigh-frequency (microwave) field

    International Nuclear Information System (INIS)

    Shamirzaev, S. H.; Gulyamov, G.; Dadamirzaev, M. G.; Gulyamov, A. G.

    2009-01-01

    The effect of heating of electrons and holes on the nonideality coefficient of the current-voltage characteristic for a p-n junction in a high microwave field is studied. It is established that the nonideality coefficient for a diode depends on the type of charge carriers that make the major contribution to the current in the p-n junction. It is shown that, in some cases in silicon samples, the nonideality coefficient for the diode is governed by the temperature for holes in spite of the fact that the temperature for electrons is higher than the temperature for holes.

  16. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-01-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region

  17. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  18. Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage

    Science.gov (United States)

    Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG

    2018-04-01

    As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.

  19. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2012-01-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  20. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2013-02-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  1. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Advanced approach for determination of earthing characteristics of high voltage substations in terms of their optimal protection from lightning strike

    International Nuclear Information System (INIS)

    Talevski, Vladimir

    2012-01-01

    At the beginning of this PhD thesis, retrospective history is given concerning the evolution of the methods for lightning protection. The conventional methods are presented concerning lighting protection, with a comparation with the newest achievement on this field. The process of thundercloud formation is presented. The foundation of the conventional method for lightning protection is given, using data from standard IEC 62305, made according Berger research documents [10], [47], [53].The basic of the 'charge transfer system' is presented, developed by Carpenter, and in addition to this theory is the recently published theory of Rizk and his conditions of not initiating an upward leader for an object that is protected by lightning strike. Also it is high-voltage substation according to [52] and [54]. In this PhD thesis, a method for computation of additional positive charge is established for protection against direct lightning strike by the charge transfer system, which is generated over spherical electrode (ionizator) in order to get 'ultra-corona' mode, condition in which the corona current over the ionizator is not generating an upward leader. The ionizator in this computation is concerned with constant radius of curvature. The influence of the voltage increase in a very small time interval is computed and this influence is concerned in the computation of the additional space charge on the object to be protected, according to Rizk [1]. The model of the electrical thundercloud is concerned with all the electrical charge in it with its corresponding heights above ground. At the end , the condition of having minimal electrostatic field at earth is used to get the result for the additional positive charge. The computation is established by special function in Matlab, which are programmed in order to simulate a large number of values for: the electrical model of the thundercloud (positive and negative charges in thundercloud and their respective height above ground

  3. Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics.

    Science.gov (United States)

    Isshiki, Yuji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2018-03-14

    Structural and electronic detail at the metal-molecule interface has a significant impact on the charge transport across the molecular junctions, but its precise understanding and control still remain elusive. On the single-molecule scale, the metal-molecule interface structures and relevant charge transport properties are subject to fluctuation, which contain the fundamental science of single-molecule transport and implication for manipulability of the transport properties in electronic devices. Here, we present a comprehensive approach to investigate the fluctuation in the metal-molecule interface in single-molecule junctions, based on current-voltage ( I- V) measurements in combination with first-principles simulation. Contrary to conventional molecular conductance studies, this I- V approach provides a correlated statistical description of both the degree of electronic coupling across the metal-molecule interface and the molecular orbital energy level. This statistical approach was employed to study fluctuation in single-molecule junctions of 1,4-butanediamine (DAB), pyrazine (PY), 4,4'-bipyridine (BPY), and fullerene (C 60 ). We demonstrate that molecular-dependent fluctuation of σ-, π-, and π-plane-type interfaces can be captured by analyzing the molecular orbital (MO) energy level under mechanical perturbation. While the MO level of DAB with the σ-type interface shows weak distance dependence and fluctuation, the MO level of PY, BPY, and C 60 features unique distance dependence and molecular-dependent fluctuation against the mechanical perturbation. The MO level of PY and BPY with the σ+π-type interface increases with the increase in the stretch distance. In contrast, the MO level of C 60 with the π-plane-type interface decreases with the increase in the stretching perturbation. This study provides an approach to resolve the structural and electronic fluctuation in the single-molecule junctions and insight into the molecular-dependent fluctuation in

  4. Global characteristics of atomic spectra and their use for the analysis of spectra. IV. Configuration interaction effects

    International Nuclear Information System (INIS)

    Kucas, S.; Jonauskas, V.; Karazija, R.

    1997-01-01

    For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)

  5. The changes of capacitance-loss and current-voltage characteristics of LaMnO3+δ/SrTiO3:Nb heterojunctions exposed to ambient air

    International Nuclear Information System (INIS)

    Cui Yimin; Wang Rongming

    2010-01-01

    Effects of moisture absorption on capacitance-loss and current-voltage characteristics of LaMnO 3+δ /SrTiO 3 :Nb heterojunction had been investigated after the heterojunctions were exposed to ambient air. The moisture-absorption-induced increases in loss tangent and breakdown voltage were observed, whereas no changes were found on capacitance and diffusion voltage. These results were discussed by the decrease of oxygen ions in LaMnO 3+δ and the generation of hydroxide ions at grain boundaries. This work will favor both electronic transport analysis and future device applications.

  6. Effect of temperature on current voltage characteristics in ZnO/CdS/CuGaSe2 single crystal solar cells

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.

    2005-03-01

    Current voltage characteristics of Zn O/CdS/CuGaSe 2 single crystal solar cells, which have gone through repetitive annealing treatment and have been measured at different values of temperature and illumination intensity, were analyzed using the two-diode equation. The analysis revealed that current transport in these cells is governed by two competing transport mechanisms relating strongly to interface states and that both mechanisms are thermally and light activated. These two mechanisms are interface recombination and tunneling enhanced interface recombination. The activation energy values of the saturation current density in both mechanisms were calculated from the temperature dependence of the parameters describing each of them. It was found that these values depend on temperature and illumination intensity. Furthermore, the behavior of the photovoltaic parameters could be explained relying on the results of the analysis. (Authors)

  7. Capacitance-voltage characteristics of (Al/Ti)/Al{sub 2}O{sub 3}/n-GaN MIS structures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Nikolaev, A. E.; Lundin, V. V.; Sakharov, A. V.; Tsatsulnikov, A. F. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Afanas’ev, A. V.; Romanov, A. A.; Osachev, E. V. [St. Petersburg Electrotechnical University LETI (Russian Federation)

    2015-08-15

    The capacitance-voltage characteristics of (Al/Ti)/Al{sub 2}O{sub 3}/n-GaN metal—insulator-semiconductor (MIS) structures are measured and analyzed. n-Type GaN films are grown on sapphire (0001) substrates by the metal-organic chemical vapor deposition method. An aluminum-oxide layer with a thickness of 60 nm is deposited onto the surface of GaN by the method of atomic-layer deposition from the gas phase. Metallic contacts are deposited by the electron-beam evaporation of titanium and aluminum in vacuum. According to the measurement results, the breakdown-field strength of the oxide, its dielectric constant, and the integrated electron density of states at the oxide-semiconductor interface are 5 × 10{sup 6} V/cm, 7.5, and 3 × 10{sup 12} cm{sup −2}, respectively.

  8. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  9. Manifestation of π-contacts in magnetic field dependence of I-V characteristics for proximity-type 2D Josephson junction array

    International Nuclear Information System (INIS)

    Rivera, V.A.G.; Sergeenkov, S.; Marega, E.; Araujo-Moreira, F.M.

    2009-01-01

    Results on the temperature and magnetic field dependence of current-voltage characteristics (CVC) are presented for SNS-type 2D ordered array of Nb-Cu 0.95 Al 0.05 -Nb junctions. The critical current I C (T,H) and the power exponent a(T,H)=1+Φ 0 I C (T,H)/2k B T of the nonlinear CVC law V=R[I-I C (T,H)] a(T,H) are found to have a maximum at non-zero value of applied magnetic field H p =225 Oe, which is attributed to manifestation of π-type Josephson contacts in our sample.

  10. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ{sub b} vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ{sub b,mean} assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact.

  11. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    International Nuclear Information System (INIS)

    Venter, A.; Murape, D.M.; Botha, J.R.; Auret, F.D.

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ b vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ b,mean assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact

  12. Simulation of current-voltage characteristics of a MOS structure considering the tunnel transport of carriers in semiconductor

    International Nuclear Information System (INIS)

    Vexler, M I

    2006-01-01

    The effect of a tunnel charge transport in the near-surface region of silicon on the electrical characteristics of MOS structures with a 2-3 nm insulator layer is studied theoretically. An equilibrium condition for the substrate is assumed. The cases of an Al and polySi gate are considered. The possibility of a 'double' (in Si and through SiO 2 ) tunnelling expands the energy range of transported particles, which increases one of the components of the total tunnel current. The proposed model allows for the improved simulation of gate current in MOSFETs, which is especially important for highly-doped substrates

  13. The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current–voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Department of Physics, Abdul Wali Khan University Mardan, 23200 (Pakistan); Sayyad, Muhammad Hassan; Wahab, Fazal; Khan, Dil Nawaz [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Aziz, Fakhra, E-mail: fakhra69@yahoo.com [Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120 (Pakistan)

    2013-04-15

    The Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode has been fabricated by adding a layer of organic compound 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on top of the p-Si for which the junction characteristics have been investigated. The electronic properties of the device have been studied by the conventional I–V and the Norde's methods. For conventional I–V measurements the rectifying behavior has been observed with a rectification ratio of 236. The barrier height and ideality factor values of 0.81 eV and 3.5, respectively, for the structure have been obtained from the forward bias I–V characteristics. Various electrical parameters such as reverse saturation current, series resistance and shunt resistance have been calculated from the analysis of experimental I–V results and discussed in detail. The barrier height and the series resistance determined by the Norde's function are found in good agreement with the values calculated from conventional I–V measurements. The charge conduction mechanism has also been discussed.

  14. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  15. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  16. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  17. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  18. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Eslami, E.; Barjasteh, A.; Morshedian, N.

    2015-01-01

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap

  19. A change of in vivo characteristics depending on specific activity of radioiodinated (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-pIV] as a ligand for sigma receptor imaging

    International Nuclear Information System (INIS)

    Akhter, Nasima; Shiba, Kazuhiro; Ogawa, Kazuma; Tsuji, Shiro; Kinuya, Seigo; Nakajima, Kenichi; Mori, Hirofumi

    2008-01-01

    The radioiodinated (+)-p-iodovesamicol [(+)-pIV], which shows a high binding affinity for sigma-1 (σ-1) receptors, is prepared by an exchange reaction. The specific activity (SA) is fairly low and therefore is insufficient for clinical use. In this study, we prepared (+)-[ 125 I]pIV with a high SA from tributylstannyl precursor and compared the in vivo characteristics between high and low SA by imaging σ-1 receptors in the central nervous system. In the biodistribution study, a difference in brain accumulation was observed between the two methods. At 30 min postinjection, the brain accumulation (1.58%ID/g) of low SA [0.6-1.1 TBq/mmol (16-30 Ci/mmol)] (+)-[ 125 I]pIV was higher than that (1.34%ID/g) of high SA [>88.8 TBq/mmol (>2400 Ci/mmol)] (+)-[ 125 I]pIV. In the blocking study, the brain uptake of high SA (+)-[ 125 I]pIV was reduced more significantly by the coadministration of sigma ligands such as pentazocine, haloperidol or SA4503 than that of low SA (+)-[ 125 I]pIV. These results showed that nonspecific binding of high SA (+)-[ 125 I]pIV in the brain was lower than that of low SA (+)-[ 125 I]pIV, and high SA (+)-[ 125 I]pIV bound more specifically to σ-1 receptors in the brain than low SA (+)-[ 125 I]pIV. In contrast, in the blood-binding study, high SA (+)-[ 125 I]pIV (58.4%) bound to blood cells with higher affinity than low SA (+)-[ 125 I]pIV (46.0%). In metabolite studies, blood metabolites of high SA (+)-[ 125 I]pIV (57.3±3.5%) were higher than those of low SA (+)-[ 125 I]pIV (45.5±4.1%) at 30 min postinjection. Higher SA may be apt to bind to blood cells with higher affinity and to be metabolized faster

  20. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  1. Defect States in InP/InGaAs/InP Heterostructures by Current-Voltage Characteristics and Deep Level Transient Spectroscopy.

    Science.gov (United States)

    Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu

    2018-09-01

    We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.

  2. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Science.gov (United States)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  3. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  4. Irreversibility in room temperature current–voltage characteristics of NiFe{sub 2}O{sub 4} nanoparticles: A signature of electrical memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P., E-mail: pujaiitkgp2007@gmail.com [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Debnath, Rajesh; Singh, Swati; Mandal, S.K. [Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India); Roy, J.N. [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe{sub 2}O{sub 4} nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe{sub 2}O{sub 4} nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe{sub 2}O{sub 4} nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe{sub 2}O{sub 4} nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  5. Irreversibility in room temperature current–voltage characteristics of NiFe_2O_4 nanoparticles: A signature of electrical memory effect

    International Nuclear Information System (INIS)

    Dey, P.; Debnath, Rajesh; Singh, Swati; Mandal, S.K.; Roy, J.N.

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe_2O_4 nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe_2O_4 nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe_2O_4 nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe_2O_4 nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  6. IVS Organization

    Science.gov (United States)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  7. Hole-transport limited S-shaped I-V curves in planar heterojunction organic photovoltaic cells

    Science.gov (United States)

    Zhang, Minlu; Wang, Hui; Tang, C. W.

    2011-11-01

    Current-voltage (I-V) characteristics of planar heterojunction organic photovoltaic cells based on N',N'-Di-[(1-naphthyl)-N',N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB) and C60 are investigated. Through variation of the layer thickness and composition, specifically chemical doping NPB with MoOx, we show that the hole-transport limitation in the NPB layer is the determining factor in shaping the I-V characteristics of NPB/C60 cells.

  8. Modelling of current-voltage characteristics of infrared photo-detectors based on type – II InAs/GaSb super-lattice diodes with unipolar blocking layers

    Directory of Open Access Journals (Sweden)

    Vishnu Gopal

    2015-09-01

    Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.

  9. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  10. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  11. Two-phase characteristics of the feeding fluid of Cerro Prieto IV wells (Mexico) obtained by gas equilibrium; Caracteristicas bifasicas del fluido de alimentacion de pozos de Cerro Prieto IV (Mexico), obtenidas por equilibrio gaseoso

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Reyes, Rosa Maria; Arellano-Gomez, Victor Manuel; Portugal-Marin, Enrique [Instituto de Investigaciones Electricas (Mexico); De Leon-Vivar, Jesus [Comision Federal de Electricidad, Residencia General de Cerro Prieto, B.C (Mexico)

    2008-10-15

    The gas composition of fluids produced by CP IV geothermal wells from the Cerro Prieto field was studied in order to identify different types of fluids entering the wells by estimating their temperature and excess steam. A method based on the Fischer Tropsch reaction and H2S equilibrium with pyrite-pyrrhotite as mineral buffer (FTHSH3) was used. The results for the reservoir natural state indicated the presence of fluids with heterogeneous reservoir temperature (between 275 and 310 degrees Celsius) and excess steam values, which were found from negative (boiled liquid that has lost steam when flowing to the well) to one (steam phase with zero liquid saturation). The study for individual wells in which boiling processes were identified, showed that through time, the feeding fluids consist of a two-phase mixture with different liquid/steam proportions. Also, the results suggested that a steam phase could occur at CP IV which is added to the feeding fluid, depending on the operation conditions of the wells. The origin of this steam could be the boiling of the deeper liquid due to a pressure drop. [Spanish] Se estudio la composicion gaseosa de los fluidos producidos por pozos geotermicos del sector CP IV del campo de Cerro Prieto para tratar de distinguir aportes de fluidos diferentes mediante la estimacion de su temperatura de yacimiento y del exceso de vapor. Se utilizo un metodo de equilibrio gaseoso basado en la reaccion de Fischer Tropsch y el equilibrio combinado pirita-pirrotita (FT-HSH3). Los resultados obtenidos indican que en el estado inicial del yacimiento existen fluidos que muestran heterogeneidad en los valores de temperatura de yacimiento (entre 275 y 310 grados Celsius), asi como en el exceso de vapor con valores desde negativos (liquido que despues de ebullir ha perdido vapor en su trayecto hacia el pozo) hasta uno (vapor con cero saturacion de liquido). El estudio individual de los pozos con fenomenos de ebullicion muestra que a traves del tiempo

  12. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    Science.gov (United States)

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented.

  13. A transient simulation approach to obtaining capacitance-voltage characteristics of GaN MOS capacitors with deep-level traps

    Science.gov (United States)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu

    2018-04-01

    In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.

  14. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  15. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  16. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  17. Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2015-01-01

    Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring...... functions are not implemented in the inverter control software. In this paper, we aim to show how such a functionality can be useful for PV system monitoring purposes, to detect the presence and cause of power-loss in the PV strings, be it due to shading, degradation of the PV modules or balance......-of-system components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...

  18. Macroeconomic Assessment of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Sinan Küfeoğlu

    2016-12-01

    Full Text Available The electric power sector has changed dramatically since the 1980s. Electricity customers are now demanding uninterrupted and high quality service from both utilities and authorities. By becoming more and more dependent on the voltage sensitive electronic equipment, the industry sector is the one which is affected the most by voltage disturbances. Voltage sags are one of the most crucial problems for these customers. The utilities, on the other hand, conduct cost-benefit analyses before going through new investment projects. At this point, understanding the costs of voltage sags become imperative for planning purposes. The characteristics of electric power consumption and hence the susceptibility against voltage sags differ considerably among different industry subsectors. Therefore, a model that will address the estimation of worth of electric power reliability for a large number of customer groups is necessary. This paper introduces a macroeconomic model to calculate Customer Voltage Sag Costs (CVSCs for the industry sector customers. The proposed model makes use of analytical data such as value added, annual energy consumption, working hours, and average outage durations and provides a straightforward, credible, and easy to follow methodology for the estimation of CVSCs.

  19. Current-voltage curves of gold quantum point contacts revisited

    DEFF Research Database (Denmark)

    Hansen, K.; Nielsen, S K.; Brandbyge, Mads

    2000-01-01

    We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...

  20. Design of shielded voltage divider for impulse voltage measurement

    International Nuclear Information System (INIS)

    Kato, Shohei; Kouno, Teruya; Maruyama, Yoshio; Kikuchi, Koji.

    1976-01-01

    The dividers used for the study of the insulation and electric discharge phenomena in high voltage equipments have the problems of the change of response characteristics owing to adjacent bodies and of induced noise. To improve the characteristics, the enclosed type divider shielded with metal has been investigated, and the divider of excellent response has been obtained by adopting the frequency-separating divider system, which is divided into two parts, resistance divider (lower frequency region) and capacitance divider (higher frequency region), for avoiding to degrade the response. Theoretical analysis was carried out in the cases that residual inductance can be neglected or can not be neglected in the small capacitance divider, and that the connecting wires are added. Next, the structure of the divider and the design of the electric field for the divider manufactured on the basis of the theory are described. The response characteristics were measured. The results show that 1 MV impulse voltage can be measured within the response time of 10 ns. Though this divider aims at the impulse voltage, the duration time of which is about that of standard lightning impulse, in view of the heat capacity because of the input resistance of 10.5 kΩ, it is expected that the divider can be applied to the voltage of longer duration time by increasing the input resistance in future. (Wakatsuki, Y.)

  1. Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study.

    Science.gov (United States)

    Aziz, Imran; Palsson, Olafur S; Törnblom, Hans; Sperber, Ami D; Whitehead, William E; Simrén, Magnus

    2018-04-01

    The population prevalence, clinical characteristics, and associations for Rome IV functional dyspepsia are not known. Following the publication of the Rome IV criteria for functional gastrointestinal disorders, we aimed to assess the prevalence, characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults across the USA, Canada, and the UK. We sent an internet-based cross-sectional health survey to adults in the general population of three English-speaking countries: the USA, Canada, and the UK. We used quota-based sampling to generate demographically balanced and population-representative samples. Individuals were invited to complete an online questionnaire on general health, without mention that the purpose of this survey was to examine gastrointestinal symptoms. We excluded participants who failed two attention-test questions or were excessively inconsistent on the three gastrointestinal questions that were presented twice in the survey for this particular purpose. The survey enquired about demographics, health-care visits, medications, somatisation, quality of life, and symptom-based criteria for Rome IV functional dyspepsia as well as for irritable bowel syndrome (IBS) and functional heartburn. We made subsequent comparisons between participants with Rome IV functional dyspepsia and controls without dyspepsia. The primary objective was to identify participants who fulfilled symptom-based criteria for Rome IV functional dyspepsia and categorise them into postprandial distress syndrome, epigastric pain syndrome, or overlapping subtypes. 6300 general population adults completed the health survey; 2100 each from the USA, Canada, and the UK. 369 responses were deemed inconsistent, leaving data for 5931 adults. Rome IV functional dyspepsia was significantly more prevalent in the USA (232 [12%] of 1949) than in Canada (167 [8%] of 1988) and the UK (152 [8%] of 1994; p<0·0001). The subtype distribution was 61% postprandial distress

  2. Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

    International Nuclear Information System (INIS)

    Zhang Yong; Yang Jianhong; Cai Xueyuan; Wang Zaixing

    2010-01-01

    The exponential dependence of the potential barrier height φ c on the biased voltages of the inorganic/organic static induction transistor (SIT/OSIT) through a normalized approach in the low-current regime is presented. It shows a more accurate description than the linear expression of the potential barrier height. Through the verification of the numerical calculated and experimental results, the exponential dependence of φ c on the applied biases can be used to derive the I-V characteristics. For both SIT and OSIT, the calculated results, using the presented relationship, are agreeable with the experimental results. Compared to the previous linear relationship, the exponential description of φ c can contribute effectively to reduce the error between the theoretical and experimental results of the I-V characteristics. (semiconductor devices)

  3. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation

    Science.gov (United States)

    Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu

    2016-01-01

    Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895

  4. Steered molecular dynamics simulations of a bacterial type IV pilus reveal characteristics of an experimentally-observed, force-induced conformational transition

    Science.gov (United States)

    Baker, Joseph; Biais, Nicolas; Tama, Florence

    2011-10-01

    Type IV pili (T4P) are long, filamentous structures that emanate from the cellular surface of many infectious bacteria. They are built from a 158 amino acid long subunit called pilin. T4P can grow to many micrometers in length, and can withstand large tension forces. During the infection process, pili attach themselves to host cells, and therefore naturally find themselves under tension. We investigated the response of a T4 pilus to a pulling force using the method of steered molecular dynamics (SMD) simulation. Our simulations expose to the external environment an amino acid sequence initially hidden in the native filament, in agreement with experimental data. Therefore, our simulations might be probing the initial stage of the transition to a force-induced conformation of the T4 pilus. Additional exposed amino acid sequences that might be useful targets for drugs designed to mitigate bacterial infection were also predicted.

  5. Change of I-V characteristics of SiC diodes upon reactor irradiation; Modification des caracteristiques I-V de jonctions p-n au SiC du fait d'une irradiation dans un reacteur; Izmeneniya kharakteristik I-V vyrashchennogo v SiC perekhoda tipa p-n posle oblucheniya ego v reaktore; Modificaciones que sufren por irradiacion en un reactor las caracteristicas I-V de uniones p-n en SiC

    Energy Technology Data Exchange (ETDEWEB)

    Heerschap, M; De Coninck, R [Solid State Physics Dept., SCK-CEN, Mol (Belgium)

    1962-04-15

    In search for semiconductors, which can be used in high-flux reactors in order to measure flux distributions, we irradiated SiC p-n junctions in the Belgium BR-1 reactor. Two types of SiC-diodes of different origin have been irradiated. These junctions are grown in the Lely-furnace. The change in forward and reverse characteristics have been measured during and after irradiation up to temperatures of 150{sup o}C, while measurements up to a temperature of 500{sup o}C are in progress. It has been found that one type resists BR-1 neutrons up to an integrated flux of 10{sup 15} n/cm{sup 2}, while the other resists irradiation up to a flux of 10{sup 17} n/cm{sup 2}. The changes in characteristics are given as well as the result of some annealing experiments. (author) [French] En recherchant des semi-conducteurs pouvant servir a mesurer les distributions de flux dans les reacteurs a haut flux de neutrons, les auteurs ont irradie des jonctions p-n au SiC dans le reacteur belge BR-1. Deux types de diodes a SiC d'origines differentes ont ete ainsi irradies. Les jonctions en question sont preparees par etirage dans le four Lely. Les auteurs ont mesure les modifications subies par les caracteristiques I-V apres et pendant l'irradiation a des temperatures allant jusqu'a 150{sup o}C; ils poursuivent leurs mesures dans la gamme des temperatures allant de 150{sup o}C a 500{sup o}C. Us ont constate que l'un des types de diode a SiC resiste aux neutrons du reacteur BR-1 jusqu'a 10{sup 15} n/cm{sup 2}, tandis que l'autre type resiste a l'irradiation jusqu'a 10{sup 17} n/cm{sup 2}. Les auteurs indiquent les modifications subies par les caracteristiques, ainsi que le resultat de certaines experiences de recuit. (author) [Spanish] Los autores estan tratando de encontrar semiconductores con los que sea posible medir distribuciones de flujo en reactores de flujo elevado, y con este fin irradiaron uniones p-n del SiC en el reactor BR-1 de Belgica. Irradiaron dos tipos de diodos de SiC de

  6. Study on the characteristics of hysteresis loop and resistance of glow discharge plasma using argon gas

    Science.gov (United States)

    Mathew, Prijil; Sajith Mathews, T.; Kurian, P. J.; Chattopadyay, P. K.

    2018-05-01

    Hysteresis in discharge current is produced in a low-pressure, magnetic field free, Glow discharge plasma by varying discharge voltage. The variation in area of the hysteresis loops with pressure, electrode distance and load resistor studied. To understand, the nonlinear behaviour of the I-V characteristics, the changes in gas resistance with electrode voltage, pressure and load resistor were studied. After many trials we propose the best suitable empirical equation for the exponential decrease of the gas resistance with electrode voltage as; R = Rmin + Ae-0.008V, which is a novel one and matches well with our experimental results.

  7. Experimental and theoretical studies of a high temperature cesium-barium tacitron, with application to low voltage-high current inversion

    International Nuclear Information System (INIS)

    Murray, C.S.; El-Genk, M.S.

    1994-02-01

    A low voltage/high current switch refer-red as ''Cs-Ba tacitron'' is studied for use as a dc to ac inverter in high temperature and/or ionizing radiation environments. The operational characteristics of the Cs-Ba tacitron as a switch were investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. Operation parameters measured include switching frequencies up to 20 kHz, hold-off voltages up to 200 V, current densities in excess of 15 A/CM 2 , switch power density of 1 kW/cm 2 , and a switching efficiency in excess of 90 % at collector voltages greater than 30 V. Also, if the discharge current is circuit limited to a value below the maximum thermal emission current density, the voltage drop is constant and below 3 V

  8. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  9. Voltage regulator for generator

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K

    1989-01-17

    It is an object of this invention to provide a voltage regulator for a generator charging a battery, wherein even if the ambient temperature at the voltage regulator rises abnormally high, possible thermal breakage of the semiconductor elements constituting the voltage regulator can be avoided. A feature of this invention is that the semiconductor elements can be protected from thermal breakage, even at an abnormal ambient temperature rise at the voltage regulator for the battery charging generator, by controlling a maximum conduction ratio of a power transistor in the voltage regulator in accordance with the temperature at the voltage regulator. This is achieved through a switching device connected in series to the field coil of the generator and adapted to be controlled in accordance with an output voltage of the generator and the ambient temperature at the voltage regulator. 6 figs.

  10. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  11. Maximum Power Point tracking algorithm based on I-V characteristic of PV array under uniform and non-uniform conditions

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Iman-Eini, H.; Asaei, B.

    2012-01-01

    This paper presents a new algorithm based on characteristic equation of solar cells to determine the Maximum Power Point (MPP) of PV modules under partially shaded conditions (PSC). To achieve this goal, an analytic condition is introduced to determine uniform or non-uniform atmospheric condition...

  12. Development of methods for measuring materials nuclear characteristics, Phases, I, II, II and IV; Razvijanje metoda merenja nuklearnih karakteristika materijala, I, II, II i VI faza

    Energy Technology Data Exchange (ETDEWEB)

    Maglic, R [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    This report contains the following phases of the project 'measurement of nuclear characteristics of reactor materials': nuclear performances of the neutron chopper; method for measuring total effective cross sections by transmission method on the chopper; review of methods for measuring activation cross sections; measurement of neutron spectra of the RA reactor and measurement of total effective cross section of gold by using the chopper.

  13. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-01-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core

  14. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  15. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    Science.gov (United States)

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  16. Modelling of dc characteristics for granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  17. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  18. IV treatment at home

    Science.gov (United States)

    ... Other IV treatments you may receive after you leave the hospital include: Treatment for hormone deficiencies Medicines for severe nausea that cancer chemotherapy or pregnancy may cause Patient-controlled analgesia (PCA) for pain (this is IV ...

  19. On the profile of frequency and voltage dependent interface states and series resistance in MIS structures

    Energy Technology Data Exchange (ETDEWEB)

    Doekme, Ilbilge [Science Education Department, Faculty of Kirsehir Education, Gazi University, Kirsehir (Turkey)]. E-mail: ilbilgedokme@gazi.edu.tr; Altindal, Semsettin [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500, Teknikokullar, Ankara (Turkey)

    2007-04-30

    The variation in the capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) characteristics of Au/SiO{sub 2}/n-Si metal-insulator-semiconductor (MIS) structure have been systematically investigated as a function of frequencies in the frequency range 0.5 kHz-10 MHz at room temperature. In addition, the forward and reverse bias current-voltage (I-V) characteristics of this structure were measured at room temperature. The high value of ideality factor was attributed to the high density of interface states localized at Si/SiO{sub 2} interface and interfacial oxide layer. The density of interface states (N{sub ss}) and the series resistance (R{sub ss}) were calculated from I-V and C-V measurements using different methods and the effect of them on C-V and G/{omega}-V characteristics were deeply researched. At the same energy position near the top of valance band, the calculated N{sub ss} values, obtained without taking into account the series resistance of the devices almost one order of magnitude larger than N{sub ss} values obtained by taking into account R{sub ss} values. It is found that the C-V and G/{omega}-V curves exhibit a peak at low frequencies and the peak values of C and G/{omega} decrease with increasing frequency. Also, the plots of R {sub s} as a function of bias give two peaks in the certain voltage range at low frequencies. These observations indicate that at low frequencies, the charges at interface states can easily follow an AC signal and the number of them increases with decreasing frequency. The I-V, C-V and G/{omega}-V characteristics of the MIS structure are affected not only with R {sub s} but also N {sub ss}. Experimental results show that both the R{sub s} and C{sub o} values should be taken into account in determining frequency-dependent electrical characteristics.

  20. Effect of current distribution on the voltage-temperature characteristics: study of the NbTi PF-FSJS sample for ITER

    International Nuclear Information System (INIS)

    Zani, L.; Ciazynski, D.; Gislon, P.; Stepanov, B.; Huber, S.

    2004-01-01

    Various tests, either on full-size joint samples or on model coils confirmed that current distribution may play a crucial role in the electrical behaviour of CICC in operating conditions. In order to evaluate its influence, CEA developed a code (ENSIC) the main feature of which is a CICC electrical model including a discrete resistive network associated with superconducting lengths. Longitudinal and transverse resistances are also modeled, representing either joint or conductor. In our paper we will present the comparison of experimental results with ENSIC calculations for one International Thermonuclear Experimental Reactor (ITER) sample prototype relevant to poloidal field (PF) coils: the PF-full-size joint sample (PF-FSJS). In this purpose, the current distribution has been measured thanks to a segmented Rogowski coils system. Current distribution effects on the basic characteristics (T CS , n-value etc) of the cable compared to single strand will be discussed. This study aims at putting light on the global strand state in a conductor and is also useful to evaluate some intrinsic parameters hardly measurable (effective interpetal transverse contact resistance for example) allowing further application in coils

  1. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  2. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  3. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  4. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  5. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  6. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  7. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  8. Advanced Control of the Dynamic Voltage Restorer for Mitigating Voltage Sags in Power Systems

    Directory of Open Access Journals (Sweden)

    Dung Vo Tien

    2018-01-01

    Full Text Available The paper presents a vector control with two cascaded loops to improve the properties of Dynamic Voltage Restorer (DVR to minimize Voltage Sags on the grid. Thereby, a vector controlled structure was built on the rotating dq-coordinate system with the combination of voltage control and the current control. The proposed DVR control method is modelled using MATLAB-Simulink. It is tested using balanced/unbalanced voltage sags as well as fluctuant and distorted voltages. As a result, by using this controlling method, the dynamic characteristics of the system have been improved significantly. The system performed with higher accuracy, faster response and lower distortion in the voltage sags compensation. The paper presents real time experimental results to verify the performance of the proposed method in real environments.

  9. Influence of Ce(III/Ce(IV - supplements on the Characteristics of Humidity Sensors with TiO2 Films Prepared via a Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Kozhukharov, S.

    2013-04-01

    Full Text Available Humidity sensors have been prepared via a sol-gel method to deposit TiO2 films with additions of Ce-compounds on alumina substrates, with interdigitated silver palladium electrodes. Observations by scanning electron microscopy (SEM were performed in order to determine the surface morphology of the respective layers. Structural and compositional characterization was done by X-ray diffraction analysis (XRD, and energy dispersive X-ray spectroscopy (EDX for investigation of the relation between the film structures and the parameters of the respective sensors. The influence of Ce-compounds on the electrical characteristics of the samples as humidity sensing elements has been evaluated by an impedance analyzer.Los sensores de humedad han sido desarrollados mediante el método sol-gel para depositar películas superficiales basadas en TiO2 con adiciones de compuestos de cerio sobre sustratos de corindón y electrodos de aleación de plata y paladio. Se han realizado observaciones mediante el Microscopio Electrónico de Barrido (MEB para determinar la morfología superficial de las capas respectivas. Las caracterizaciones de la estructura y composición han sido realizadas mediante Difracción de Rayos X (DRX y espectroscopía de dispersión energética de rayos X (EDERX, con el fin de investigar la relación entre la estructura de las capas y los parámetros de los sensores respectivos. La influencia de los compuestos de cerio sobre las características eléctricas de los sensores de humedad obtenidos se ha evaluado mediante el análisis de impedancia eléctrica.

  10. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Science.gov (United States)

    Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping

    2013-01-01

    Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  11. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  12. Design philosophy and use of high voltage power systems for multi-megawatt ion beam accelerators

    International Nuclear Information System (INIS)

    Barber, G.C.; Broverman, A.Y.; Hill, R.E.; Loring, C.M.; Ponte, N.S.

    1977-01-01

    The requirements for a neutral beam high voltage power system are derived from the characteristics of the ion source. High voltage system component characteristic requirements and choices are described

  13. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2017-01-01

    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  14. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  15. Generation IV national program

    International Nuclear Information System (INIS)

    Preville, M.; Sadhankar, R.; Brady, D.

    2007-01-01

    This paper outlines the Generation IV National Program. This program involves evolutionary and innovative design with significantly higher efficiencies (∼50% compared to present ∼30%) - sustainable, economical, safe, reliable and proliferation resistant - for future energy security. The Generation IV Forum (GIF) effectively leverages the resources of the participants to meet these goals. Ten countries signed the GIF Charter in 2001

  16. The pulse-driven AC Josephson voltage normal

    International Nuclear Information System (INIS)

    Kieler, Oliver

    2016-01-01

    In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.

  17. The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    Science.gov (United States)

    Hortigon-Vinagre, M P; Zamora, V; Burton, F L; Green, J; Gintant, G A; Smith, G L

    2016-12-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and higher throughput platforms have emerged as potential tools to advance cardiac drug safety screening. This study evaluated the use of high bandwidth photometry applied to voltage-sensitive fluorescent dyes (VSDs) to assess drug-induced changes in action potential characteristics of spontaneously active hiPSC-CM. Human iPSC-CM from 2 commercial sources (Cor.4U and iCell Cardiomyocytes) were stained with the VSD di-4-ANEPPS and placed in a specialized photometry system that simultaneously monitors 2 wavebands of emitted fluorescence, allowing ratiometric measurement of membrane voltage. Signals were acquired at 10 kHz and analyzed using custom software. Action potential duration (APD) values were normally distributed in cardiomyocytes (CMC) from both sources though the mean and variance differed significantly (APD 90 : 229 ± 15 ms vs 427 ± 49 ms [mean ± SD, P < 0.01]; average spontaneous cycle length: 0.99 ± 0.02 s vs 1.47 ± 0.35 s [mean ± SD, P < 0.01], Cor.4U vs iCell CMC, respectively). The 10-90% rise time of the AP (T rise ) was ∼6 ms and was normally distributed when expressed as 1/[Formula: see text] in both cell preparations. Both cell types showed a rate dependence analogous to that of adult human cardiac cells. Furthermore, nifedipine, ranolazine, and E4031 had similar effects on cardiomyocyte electrophysiology in both cell types. However, ranolazine and E4031 induced early after depolarization-like events and high intrinsic firing rates at lower concentrations in iCell CMC. These data show that VSDs provide a minimally invasive, quantitative, and accurate method to assess hiPSC-CM electrophysiology and detect subtle drug-induced effects for drug safety screening while highlighting a need to standardize experimental protocols across preparations. © The Author 2016. Published by Oxford University Press on behalf of the Society of

  18. based dynamic voltage restorer

    African Journals Online (AJOL)

    HOD

    operation due to presence of increased use of nonlinear loads (computers, microcontrollers ... simulations of a dynamic voltage restorer (DVR) was achieved using MATLAB/Simulink. ..... using Discrete PWM generator, then the IGBT inverter.

  19. Influence of X and gamma radiation and bias conditions on dropout voltage of voltage regulators serial transistors

    International Nuclear Information System (INIS)

    Vukic, V.; Osmokrovic, P.; Stankovic, S.; Kovacevic, M.

    2005-01-01

    Research topic presented in this paper is degradation of characteristics of low-dropout voltage regulator's serial transistor during exposure of device to the ionizing radiation. Voltage regulators were exposed to X and γ radiation in two modes: without bias conditions, and with bias conditions and load. Tested circuits are representatives of the first and the second generation of low-dropout voltage regulators, with lateral and vertical PNP serial transistor: LM2940 and L4940. Experimental results of output voltage and serial dropout voltage change in function of total ionizing dose, during the medium-dose-rate exposure, were presented. (author) [sr

  20. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  1. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  2. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Directory of Open Access Journals (Sweden)

    Ana Laura Sanchez-Sandoval

    Full Text Available Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA and low-voltage (LVA activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  3. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  4. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  5. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  6. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  7. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  8. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  9. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  10. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  11. SAGE IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the SAGE IV concept will meet or exceed the quality of previous SAGE measurements at a small...

  12. Crystalline cerium(IV) phosphates

    International Nuclear Information System (INIS)

    Herman, R.G.; Clearfield, A.

    1976-01-01

    The ion exchange behaviour of seven crystalline cerium(IV) phosphates towards some of the alkali metal cations is described. Only two of the compounds (A and C) possess ion exchange properties in acidic solutions. Four others show some ion exchange characteristics in basic media with some of the alkali cations. Compound G does not behave as an ion exchanger in solutions of pH + , but show very little Na + uptake. Compound E undergoes ion exchange with Na + and Cs + , but not with Li+. Both Li + and Na + are sorbed by compounds A and C. The results are indicative of structures which show steric exclusion phenomena. (author)

  13. Random instabilities of current-voltage curves of BSCCO-2223/Ag multifilamentary tapes in LN2 at 77 K

    CERN Document Server

    Usak, P

    2003-01-01

    The measurement of the current-voltage (I-V) characteristics of BSCCO-2223/Ag multifilamentary tapes in a silver matrix has been performed on short samples (of several centimetres) as well as on long tape (1 m), wound in the form of a helical one-layer coil. Measurements at 77 K and in zero external magnetic field have revealed good reproducibility of the I-V hysteresis in most runs. Nevertheless, strange irregularities have sometimes been observed in the I-V curve behaviour during current ramping up and down. Quasi-reproducible drops from the ascending hysteretic branch in the direction of the descending one have been measured at higher voltage levels (approx 1 mV cm sup - sup 1) on the curve measured on the helical coil. These have recently been explained by a sudden change in the heat transfer coefficient [1]. Rarely and non-reproducibly we have also observed these drops on short samples at E approx 1 x 10 sup - sup 2 V m sup - sup 1 , (and even under 1 x 10 sup - sup 3 V m sup - sup 1). The accidental dro...

  14. High voltage capacitor design and the determination of solid dielectric voltage breakdown

    International Nuclear Information System (INIS)

    Hutapea, S.

    1976-01-01

    The value of the external field intensity serves as an electrical insulating material and is a physical characteristic of the substance. Capacitor discharge in the dielectric medium are experimentally investigated. The high voltage power supply and other instrument needed are briefly discussed. Capacitors with working voltage of 30.000 volt and the plastic being used for dielectrics in the capacitors are also discussed. (author)

  15. Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction

    International Nuclear Information System (INIS)

    Li Songlin; Gang Jianlei; Li Jie; Chu Haifeng; Zheng Dongning

    2008-01-01

    Current-voltage (I-V) characteristics are investigated in a low-initial-resistance Ag/Pr 0.7 Ca 0.3 MnO 3 /Pt sandwich structure. It is found that the junction can show stable low and high resistance states in ±0.3 V voltage sweeping cycles. The set and reset voltage values are, respectively, +0.1 V and -0.2 V, which are very low as compared with those reported previously. Furthermore, the I-V curves in both resistance states exhibit rather linear behaviour, without any signature of metal/insulator interface effects. This implies that the Schottky interface mechanism might not be an indispensable factor for the colossal electroresistance effect. The origin of low switching voltages is attributed to the reduced effective distance for electric field action due to the sufficient oxygen content of the PCMO layer. The underlying physics is discussed in terms of the filament network model together with the field-induced oxygen vacancy motion model

  16. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  17. Automatic generation and analysis of solar cell IV curves

    Science.gov (United States)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  18. Digital voltage discriminator

    International Nuclear Information System (INIS)

    Zhou Zhicheng

    1992-01-01

    A digital voltage discriminator is described, which is synthesized by digital comparator and ADC. The threshold is program controllable with high stability. Digital region of confusion is approximately equal to 1.5 LSB. This discriminator has a single channel analyzer function model with channel width of 1.5 LSB

  19. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  20. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  1. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  2. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  3. Harmonic current interaction at a low voltage customer's installations

    NARCIS (Netherlands)

    Bhattacharyya, S.; Myrzik, J.M.A.; Kling, W.L.; Cobben, J.F.G.; Casteren, van J.

    2009-01-01

    The increased uses of power electronics and switching devices in the electricity network have changed the operational environment of the power system. These devices have nonlinear voltage-current characteristics and produce harmonic currents, and consequently distort the voltage waveform. A low

  4. Inductive voltage compensation in superconducting magnet systems

    International Nuclear Information System (INIS)

    Yeh, H.T.; Goddard, J.S.; Shen, S.S.

    1979-01-01

    This paper details several techniques of inductive voltage compensation developed for quench detection in superconducting magnet systems with multiple coils and power supplies, with particular application for the Large Coil Test Facility (LCTF). Sources of noise, their magnitudes, and the sensitivity required for normal zone detection to avoid damage to the magnets are discussed. Two passive compensation schemes (second difference and central difference) are introduced and illustrated by parameters of LCTF; these take advantage of coil symmetries and other system characteristics. An active compensation scheme based on current rate input fom pickup coils and utilizing theory on ac loss voltage for calibration was tested, and the experimental setup and test results are discussed

  5. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    Science.gov (United States)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  6. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  7. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  8. Optimal condition of memristance enhancement circuit using external voltage source

    Directory of Open Access Journals (Sweden)

    Hiroya Tanaka

    2014-05-01

    Full Text Available Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

  9. IV access in dental practice.

    LENUS (Irish Health Repository)

    Fitzpatrick, J J

    2009-04-01

    Intravenous (IV) access is a valuable skill for dental practitioners in emergency situations and in IV sedation. However, many people feel some apprehension about performing this procedure. This article explains the basic principles behind IV access, and the relevant anatomy and physiology, as well as giving a step-by-step guide to placing an IV cannula.

  10. Gate Control Coefficient Effect on CNFET Characteristic

    International Nuclear Information System (INIS)

    Sanudin, Rahmat; Ma'Radzi, Ahmad Alabqari; Nayan, Nafarizal

    2009-01-01

    The development of carbon nanotube field-effect transistor (CNFET) as alternative to existing transistor technology has long been published and discussed. The emergence of this device offers new material and structure in building a transistor. This paper intends to do an analysis of gate control coefficient effect on CNFET performance. The analysis is based on simulation study of current-voltage (I-V) characteristic of ballistic CNFET. The simulation study used the MOSFET-like CNFET mathematical model to establish the device output characteristic. Based on the analysis of simulation result, it is found that the gate control coefficient contributes to a significant effect on the performance of CNFET. The result also shown the parameter could help to improve the device performance in terms of its output and response as well. Nevertheless, the characteristic of the carbon nanotube that acts as the channel is totally important in determining the performance of the transistor as a whole.

  11. Internet Economics IV

    Science.gov (United States)

    2004-08-01

    edts.): Internet Economics IV Technical Report No. 2004-04, August 2004 Information Systems Laboratory IIS, Departement of Computer Science University of...level agreements (SLA), Information technology (IT), Internet address, Internet service provider 16. PRICE CODE 17. SECURITY CLASSIFICATION 18... technology and its economic impacts in the Internet world today. The second talk addresses the area of AAA protocol, summarizing authentication

  12. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  13. PLATO IV Accountancy Index.

    Science.gov (United States)

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  14. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  15. Coplanar strips for Josephson voltage standard circuits

    International Nuclear Information System (INIS)

    Schubert, M.; May, T.; Wende, G.; Fritzsch, L.; Meyer, H.-G.

    2001-01-01

    We present a microwave circuit for Josephson voltage standards. Here, the Josephson junctions are integrated in a microwave transmission line designed as coplanar strips (CPS). The new layout offers the possibility of achieving a higher scale of integration and to considerably simplify the fabrication technology. The characteristic impedance of the CPS is about 50 Ω, and this should be of interest for programmable Josephson voltage standard circuits with SNS or SINIS junctions. To demonstrate the function of the microwave circuit design, conventional 10 V Josephson voltage standard circuits with 17000 Nb/AlO x /Nb junctions were prepared and tested. Stable Shapiro steps at the 10 V level were generated. Furthermore, arrays of 1400 SINIS junctions in this microwave layout exhibited first-order Shapiro steps. Copyright 2001 American Institute of Physics

  16. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  17. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  18. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  19. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  20. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  1. Effect of current compliance and voltage sweep rate on the resistive switching of HfO2/ITO/Invar structure as measured by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Wu, You-Lin; Liao, Chun-Wei; Ling, Jing-Jenn

    2014-01-01

    The electrical characterization of HfO 2 /ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO 2 surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO 2 /ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  2. Dispersion of breakdown voltage of liquid helium

    International Nuclear Information System (INIS)

    Ishii, Itaru; Noguchi, Takuya

    1978-01-01

    As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)

  3. Enhanced Design Alternative IV

    International Nuclear Information System (INIS)

    Kramer, N.E.

    1999-01-01

    This report evaluates Enhanced Design Alternative (EDA) IV as part of the second phase of the License Application Design Selection (LADS) effort. The EDA IV concept was compared to the VA reference design using criteria from the Design Input Request for LADS Phase II EDA Evaluations (CRWMS M and O 1999b) and (CRWMS M and O 1999f). Briefly, the EDA IV concept arranges the waste packages close together in an emplacement configuration known as line load. Continuous pre-closure ventilation keeps the waste packages from exceeding their 350 C cladding and 200 C (4.3.6) drift wall temperature limits. This EDA concept keeps relatively high, uniform emplacement drift temperatures (post-closure) to drive water away from the repository and thus dry out the pillars between emplacement drifts. The waste package is shielded to permit human access to emplacement drifts and includes an integral filler inside the package to reduce the amount of water that can contact the waste form. Closure of the repository is desired 50 years after first waste is emplaced. Both backfill and drip shields will be emplaced at closure to improve post-closure performance. The EDA IV concept includes more defense-in-depth layers than the VA reference design because of its backfill, drip shield, waste package shielding, and integral filler features. These features contribute to the low dose-rate to the public achieved during the first 10,000 years of repository life as shown in Figure 3. Investigation of the EDA IV concept has led to the following general conclusions: (1) The total life cycle cost for EDA IV is about $21.7 billion which equates to a $11.3 billion net present value (both figures rounded up). (2) The incidence of design basis events for EDA IV is similar to the VA reference design. (3) The emplacement of the waste packages in drifts will be similar to the VA reference design. However, heavier equipment may be required because the shielded waste package will be heavier. (4) The heavier

  4. Effect of 3.0 MeV helium implantation on electrical characteristics of 4H-SiC BJTs

    International Nuclear Information System (INIS)

    Usman, Muhammad; Hallen, Anders; Ghandi, Reza; Domeij, Martin

    2010-01-01

    Degradation of 4H-SiC power bipolar junction transistors (BJTs) under the influence of a high-energy helium ion beam was studied. Epitaxially grown npn BJTs were implanted with 3.0 MeV helium in the fluence range of 10 10 -10 11 cm -2 . The devices were characterized by their current-voltage (I-V) behaviour before and after the implantation, and the results showed a clear degradation of the output characteristics of the devices. Annealing these implanted devices increased the interface traps between passivation oxide and the semiconductor, resulting in an increase of base current in the low-voltage operation range.

  5. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  6. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2017-12-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  7. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2018-06-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  8. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...

  9. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  10. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  11. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  12. Film thickness degradation of Au/GaN Schottky contact characteristics

    International Nuclear Information System (INIS)

    Wang, K.; Wang, R.X.; Fung, S.; Beling, C.D.; Chen, X.D.; Huang, Y.; Li, S.; Xu, S.J.; Gong, M.

    2005-01-01

    Electrical characteristics of Au/n-GaN Schottky contacts with different Au film thicknesses up to 1300 A, have been investigated using current-voltage (I-V) and capacitance-voltage (C-V) techniques. Results show a steady decrease in the quality of the Schottky diodes for increasing Au film thickness. I-V measurements indicate that thin ( 500 A). Depth profiling Auger electron spectroscopy (AES) shows that the width of the Au/GaN junction interface increases with increasing Au thickness, suggesting considerable inter-mixing of Au, Ga and N. The results have been interpreted in terms of Ga out-diffusion from the GaN giving rise to gallium vacancies that in turn act as sites for electron-hole pair generation within the depletion region. The study supports the recent suggestion that gallium vacancies associated with threaded dislocations are playing an important role in junction breakdown

  13. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  14. A sputnik IV saga

    Science.gov (United States)

    Lundquist, Charles A.

    2009-12-01

    The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a 'space cabin' failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel-iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the

  15. Radiation effects on residual voltage of polyethylene films

    International Nuclear Information System (INIS)

    Kyokane, Jun; Park, Dae-Hee; Yoshino, Katsumi.

    1986-01-01

    It has recently been pointed out that diagnosis of deterioration in insulating materials for electric cables used in nuclear power plants and outer space (communications satellite in particular) can be effectively performed based on measurements of residual voltage. In the present study, polyethylene films are irradiated with γ-rays or electron beam to examine the changes in residual voltage characteristics. Irradiation of electron beam and γ-rays are carried out to a dose of 0 - 90 Mrad and 0 - 100 Mrad, respectively. Measurements are made of the dependence of residual voltage on applied voltage, electron beam and γ-ray irradiation, annealing temperature and annealing time. Results show that carriers, which are once trapped after being released from the electrode, move within the material after the opening of the circuit to produce resiual voltage. The residual voltage increases with increasing dose of electron beam or γ-ray and levels off at high dose. Residual voltage is increased about several times by either electron beam or γ-rays, but electron beam tends to cause greater residual voltage than γ-ray. Polyethylene films irradiated with electron beam can recover upon annealing. It is concluded from observations made that residual voltage has close relations with defects in molecular structures caused by radiations, particularly the breaking of backbone chains and alteration in superstructures. (Nogami, K.)

  16. Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure

    International Nuclear Information System (INIS)

    Akkal, B.; Benamara, Z.; Bouiadjra, N. Bachir; Tizi, S.; Gruzza, B.

    2006-01-01

    The effects of surface preparation and illumination on electric parameters of Au/InSb/InP(100) Schottky diode were investigated, in the later diode InSb forms a fine restructuration layer allowing to block In atoms migration to surface. In order to study the electric characteristics under illumination, we make use of an He-Ne laser of 1 mW power and 632.8 nm wavelength. The current-voltage I(V G ), the capacitance-voltage C(V G ) measurements were plotted and analysed. The saturation current I s , the serial resistance R s and the mean ideality factor n are, respectively, equal to 2.03 x 10 -5 A, 85 Ω, 1.7 under dark and to 3.97 x 10 -5 A, 67 Ω, 1.59 under illumination. The analysis of I(V G ) and C(V G ) characteristics allows us to determine the mean interfacial state density N ss and the transmission coefficient θ n equal, respectively, to 4.33 x 10 12 eV -1 cm -2 , 4.08 x 10 -3 under dark and 3.79 x 10 12 eV -1 cm -2 and 5.65 x 10 -3 under illumination. The deep discrete donor levels presence in the semiconductor bulk under dark and under illumination are responsible for the non-linearity of the C -2 (V G ) characteristic

  17. High-output microwave detector using voltage-induced ferromagnetic resonance

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-01-01

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque

  18. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    Science.gov (United States)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  19. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong, E-mail: xdwang@semi.ac.cn; Ji, An; Yang, Fuhua [Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China)

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  20. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Yangyang Qi

    2014-02-01

    Full Text Available The electron transport characteristics of silicon nanowires (SiNWs fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  1. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Science.gov (United States)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua

    2014-03-01

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  2. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  3. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  4. High voltage isolation transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  5. Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films

    Science.gov (United States)

    Aleshin, A. N.; Shcherbakov, I. P.; Trapeznikova, I. N.; Petrov, V. N.

    2017-12-01

    Field-effect transistor (FET) structures based on soluble organometallic perovskites, CH3NH3PbBr3, were obtained and their electrical properties were studied. FETs made of CH3NH3PbBr3 films possess current- voltage characteristics (IVs) typical for ambipolar FETs with saturation regime. The transfer characteristics of FETs based on CH3NH3PbBr3 have an insignificant hysteresis and slightly depend on voltage at the source-drain. Mobilities of charge carriers (holes) calculated from IVs of FETs based on CH3NH3PbBr3 at 300 K in saturation and weak field regimes were 5 and 2 cm2/V s, respectively, whereas electron mobility is 3 cm2/V s, which exceeds the mobility value 1 cm2/V s obtained earlier for FETs based on CH3NH3PbI3.

  6. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  7. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  8. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  9. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  10. Hepatic imaging in stage IV-S neuroblastoma

    International Nuclear Information System (INIS)

    Franken, E.A. Jr.; Smith, W.L.; Iowa Univ., Iowa City; Cohen, M.D.; Kisker, C.T.; Platz, C.E.

    1986-01-01

    Stage IV-S neuroblastoma describes a group of infants with tumor spread limited to liver, skin, or bone marrow. Such patients, who constitute about 25% of affected infants with neuroblastoma, may expect spontaneous tumor remission. We report 18 infants with Stage IV-S neuroblastoma, 83% of whom had liver involvement. Imaging investigations included Technetium 99m sulfur colloid scan, ultrasound, and CT. Two patterns of liver metastasis were noted: ill-defined nodules or diffuse tumor throughout the liver. Distinction of normal and abnormal liver with diffuse type metastasis could be quite difficult, particularly with liver scans. We conclude that patients with Stage IV-S neuroblastoma have ultrasound or CT examination as an initial workup, with nuclear medicine scans reserved for followup studies. (orig.)

  11. Diaquatetrabromidotin(IV trihydrate

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2012-09-01

    Full Text Available The title compound, [SnBr4(H2O2]·3H2O, forms large colourless crystals in originally sealed samples of tin tetrabromide. It constitutes the first structurally characterized hydrate of SnBr4 and is isostructural with the corresponding hydrate of SnCl4. It is composed of SnIV atoms octahedrally coordinated by four Br atoms and two cis-related water molecules. The octahedra exhibit site symmetry 2. They are arranged into columns along [001] via medium–strong O—H...O hydrogen bonds involving the two lattice water molecules (one situated on a twofold rotation axis while the chains are interconnected via longer O—H...Br hydrogen bonds, forming a three-dimensional network.

  12. Cyclopentadienyluranium(IV) acetylacetonates

    International Nuclear Information System (INIS)

    Bagnall, K.W.; Edwards, J.; Rickard, C.E.F.; Tempest, A.C.

    1979-01-01

    Cyclopentadienyluranium(IV) acetylacetonate complexes, (eta 5 C 5 H 5 )UClsub(3-x)(acac)sub(x), where x = 1 or 2, and the corresponding bis triphenylphosphine oxide (tppo) complexes have been prepared. The bis cyclopentadienyl complexes, (eta 5 C 5 H 5 ) 2 U(acac) 2 and (eta 5 C 5 H 5 ) 2 UCl(acac)(tppo) 2 have also been prepared and are stable with respect to disproportionation, whereas (eta 5 C 5 H 5 ) 2 UCl(acac) is not. The IR and UV/visible spectra of the complexes are reported, together with some additional information on the UCl 2 (acac) 2 thf and -tppo systems. (author)

  13. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    Science.gov (United States)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  14. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  15. Thermal voltage noise in layered superconductors

    International Nuclear Information System (INIS)

    Ashkenazy, V.D.; Jung, G.; Shapiro, B.Y.

    1995-01-01

    Thermal voltage noise in the mixed state of type-II superconductors has been calculated taking into account fluctuation modes of nonrigid vortices. It has been shown that bending of vortices leads to new effects in thermal-voltage-noise spectra at high frequencies. The power spectrum reflecting fluctuations of rigid vortices is suppressed at very low frequencies and saturates into a white spectrum at a characteristic frequency depending on the strip width. At high frequencies tilt modes of flexible vortices start to contribute to the fluctuating voltages and the power spectrum undergoes three subsequent magnitude increases, following ω 1/2 -, ω 2 -, and again ω 1/2 -like behavior before becoming white again. It has been shown that for layered superconductors of a moderate anisotropy the second ω 1/2 -like increase disappears at magnetic fields exceeding a certain threshold field corresponding to the crossover field between two-dimensional and three-dimensional vortex-lattice melting. Field dependencies of characteristic frequencies separating different regimes of spectral behavior have been evaluated and shown to be qualitatively different for low and high magnetic fields

  16. CMOS voltage references an analytical and practical perspective

    CERN Document Server

    Kok, Chi-Wah

    2013-01-01

    A practical overview of CMOS circuit design, this book covers the technology, analysis, and design techniques of voltage reference circuits.  The design requirements covered follow modern CMOS processes, with an emphasis on low power, low voltage, and low temperature coefficient voltage reference design. Dedicating a chapter to each stage of the design process, the authors have organized the content to give readers the tools they need to implement the technologies themselves. Readers will gain an understanding of device characteristics, the practical considerations behind circuit topology,

  17. I-V Curves from Photovoltaic Modules Deployed in Tucson

    Science.gov (United States)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  18. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  19. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  20. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  1. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate various...

  2. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir

    2014-10-01

    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  3. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  4. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  5. Formulation and Analysis of an Approximate Expression for Voltage Sensitivity in Radial DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    Ho-Yong Jeong

    2015-08-01

    Full Text Available Voltage is an important variable that reflects system conditions in DC distribution systems and affects many characteristics of a system. In a DC distribution system, there is a close relationship between the real power and the voltage magnitude, and this is one of major differences from the characteristics of AC distribution systems. One such relationship is expressed as the voltage sensitivity, and an understanding of voltage sensitivity is very useful to describe DC distribution systems. In this paper, a formulation for a novel approximate expression for the voltage sensitivity in a radial DC distribution system is presented. The approximate expression is derived from the power flow equation with some additional assumptions. The results of approximate expression is compared with an exact calculation, and relations between the voltage sensitivity and electrical quantities are analyzed analytically using both the exact form and the approximate voltage sensitivity equation.

  6. Congenital bilateral neuroblastoma (stage IV-S): case report

    International Nuclear Information System (INIS)

    Lee, Jeong Hee; Lee, Hee Jung; Woo, Seong Ku; Lee, Sang Rak; Kim, Heung Sik

    2002-01-01

    Congenital neonatal neuroblastoma is not uncommon but bilateral adrenal neuroblastoma is rare, accounting for about ten percent of neuroblastomas in children. We report the US the MR findings of a stage IV-S congenital bilateral neuroblastoma occurring in a one-day-old neonate

  7. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress

    International Nuclear Information System (INIS)

    Yang Jie; Jia Kunpeng; Su Yajuan; Zhao Chao; Chen Yang

    2014-01-01

    The current transport characteristic is studied systematically based on a back-gate graphene field effect transistor, under repeated test and gate voltage stress. The interface trapped charges caused by the gate voltage sweep process screens the gate electric field, and results in the neutral point voltage shift between the forth and back sweep direction. In the repeated test process, the neutral point voltage keeps increasing with test times in both forth and back sweeps, which indicates the existence of interface trapped electrons residual and accumulation. In gate voltage stress experiment, the relative neutral point voltage significantly decreases with the reducing of stress voltage, especially in −40 V, which illustrates the driven-out phenomenon of trapped electrons under negative voltage stress. (semiconductor devices)

  8. Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR

    Science.gov (United States)

    Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang

    2018-04-01

    This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.

  9. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  10. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  11. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  12. LOFT voltage insertion calibaration program

    International Nuclear Information System (INIS)

    Tillitt, D.N.; Miyasaki, F.S.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). Part of this facility is the Data Acquisition and Visual Display System (DAVDS) as defined by the LOFT System Design Document SDD 1.4.2C. The DAVDS has a 702 data channel recording capability of which 548 are recorded digitally. The DAVDS also contains a Voltage Insertion Calibration Subsystem used to inject precise and known voltage steps into the recording systems. The computer program that controls the Voltage Insertion Calibration Subsystem is presented. 7 references. (auth)

  13. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  14. Glycogen Storage Disease Type IV

    DEFF Research Database (Denmark)

    Bendroth-Asmussen, Lisa; Aksglaede, Lise; Gernow, Anne B

    2016-01-01

    molecular genetic analyses confirmed glycogen storage disease Type IV with the finding of compound heterozygosity for 2 mutations (c.691+2T>C and c.1570C>T, p.R524X) in the GBE1 gene. We conclude that glycogen storage disease Type IV can cause early miscarriage and that diagnosis can initially be made...

  15. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  16. A 350 KV nanosecond pulse voltage generator with adjustable pulsed-width

    International Nuclear Information System (INIS)

    Wang, X.; Wang, M.; Chen, Y.Q.; Zeng, L.G.; Han, M.

    2002-01-01

    This paper presents a 350 kV nanosecond pulse voltage generator (NPVG). The voltage pulsed-width can be adjusted from 30 to 160 ns. The generator consists of: Marx generator, pulsed forming line (PFL), main switch and matched impedance. The output voltage of Marx generator is over than nU c (n- the stage number of Marx generator, U c -the charging voltage of capacitor). When the pulse forming line is terminated with an impedance that is over than the characteristic impedance of PFL, the higher voltage pulse was provided for the load

  17. The pulse-driven AC Josephson voltage normal; Das pulsgetriebene AC-Josephson-Spannungsnormal

    Energy Technology Data Exchange (ETDEWEB)

    Kieler, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.43 ' ' Josephson-Schaltungen' '

    2016-09-15

    In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.

  18. High-voltage test and training of plastic streamer tubes for the DELPHI hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Cellar, S.; Khomenko, B.A.; Korytov, A.V.; Kulinich, P.A.; Micelmacher, G.V.; Sedykh, Yu.V.; Toledo, R.

    1987-01-01

    The results of high-voltage test and training of plastic streamer tubes of the DELPHI hadron calorimeter are presented. The testing technique is considered in detail. The equipment for high-voltage training consists of a mini-computer, CAMAC-electronics, a controllable high-voltage supply and a digital ampermeter. The experimental results shows that high-voltage training of streamer tubes improves their characteristics. The value of dark current decreased up to 1 μA. The operational voltage range increased by a value more than 300 V

  19. Ehlers-Danlos syndrome type IV

    Directory of Open Access Journals (Sweden)

    Germain Dominique P

    2007-07-01

    Full Text Available Abstract Ehlers-Danlos syndrome type IV, the vascular type of Ehlers-Danlos syndromes (EDS, is an inherited connective tissue disorder defined by characteristic facial features (acrogeria in most patients, translucent skin with highly visible subcutaneous vessels on the trunk and lower back, easy bruising, and severe arterial, digestive and uterine complications, which are rarely, if at all, observed in the other forms of EDS. The estimated prevalence for all EDS varies between 1/10,000 and 1/25,000, EDS type IV representing approximately 5 to 10% of cases. The vascular complications may affect all anatomical areas, with a tendency toward arteries of large and medium diameter. Dissections of the vertebral arteries and the carotids in their extra- and intra-cranial segments (carotid-cavernous fistulae are typical. There is a high risk of recurrent colonic perforations. Pregnancy increases the likelihood of a uterine or vascular rupture. EDS type IV is inherited as an autosomal dominant trait that is caused by mutations in the COL3A1 gene coding for type III procollagen. Diagnosis is based on clinical signs, non-invasive imaging, and the identification of a mutation of the COL3A1 gene. In childhood, coagulation disorders and Silverman's syndrome are the main differential diagnoses; in adulthood, the differential diagnosis includes other Ehlers-Danlos syndromes, Marfan syndrome and Loeys-Dietz syndrome. Prenatal diagnosis can be considered in families where the mutation is known. Choriocentesis or amniocentesis, however, may entail risk for the pregnant woman. In the absence of specific treatment for EDS type IV, medical intervention should be focused on symptomatic treatment and prophylactic measures. Arterial, digestive or uterine complications require immediate hospitalisation, observation in an intensive care unit. Invasive imaging techniques are contraindicated. Conservative approach is usually recommended when caring for a vascular

  20. Ehlers-Danlos syndrome type IV

    Science.gov (United States)

    Germain, Dominique P

    2007-01-01

    Ehlers-Danlos syndrome type IV, the vascular type of Ehlers-Danlos syndromes (EDS), is an inherited connective tissue disorder defined by characteristic facial features (acrogeria) in most patients, translucent skin with highly visible subcutaneous vessels on the trunk and lower back, easy bruising, and severe arterial, digestive and uterine complications, which are rarely, if at all, observed in the other forms of EDS. The estimated prevalence for all EDS varies between 1/10,000 and 1/25,000, EDS type IV representing approximately 5 to 10% of cases. The vascular complications may affect all anatomical areas, with a tendency toward arteries of large and medium diameter. Dissections of the vertebral arteries and the carotids in their extra- and intra-cranial segments (carotid-cavernous fistulae) are typical. There is a high risk of recurrent colonic perforations. Pregnancy increases the likelihood of a uterine or vascular rupture. EDS type IV is inherited as an autosomal dominant trait that is caused by mutations in the COL3A1 gene coding for type III procollagen. Diagnosis is based on clinical signs, non-invasive imaging, and the identification of a mutation of the COL3A1 gene. In childhood, coagulation disorders and Silverman's syndrome are the main differential diagnoses; in adulthood, the differential diagnosis includes other Ehlers-Danlos syndromes, Marfan syndrome and Loeys-Dietz syndrome. Prenatal diagnosis can be considered in families where the mutation is known. Choriocentesis or amniocentesis, however, may entail risk for the pregnant woman. In the absence of specific treatment for EDS type IV, medical intervention should be focused on symptomatic treatment and prophylactic measures. Arterial, digestive or uterine complications require immediate hospitalisation, observation in an intensive care unit. Invasive imaging techniques are contraindicated. Conservative approach is usually recommended when caring for a vascular complication in a patient suffering

  1. About the structure and stability of complex carbonates of thorium (IV), cerium (IV), zirconium (IV), hafnium (IV)

    International Nuclear Information System (INIS)

    Dervin, Jacqueline

    1972-01-01

    This research thesis addressed the study of complex carbonates of cations of metals belonging to the IV A column, i.e. thorium (IV), zirconium (IV), hafnium (IV), and also cerium (IV) and uranium (VI), and more particularly focused on ionic compounds formed in solution, and also on the influence of concentration and nature of cations on stability and nature of the formed solid. The author first presents methods used in this study, discusses their precision and scope of validity. She reports the study of the formation of different complex ions which have been highlighted in solution, and the determination of their formation constants. She reports the preparation and study of the stability domain of solid complexes. The next part reports the use of thermogravimetric analysis, IR spectrometry, and crystallography for the structural study of these compounds

  2. Domain-to-domain coupling in voltage-sensing phosphatase.

    Science.gov (United States)

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  3. Voltage balancing strategies for serial connection of microbial fuel cells

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno; Buret, François

    2015-07-01

    The microbial fuel cell (MFC) converts electrochemically organic matter into electricity by means of metabolisms of bacteria. The MFC power output is limited by low voltage and low current characteristics in the range of microwatts or milliwatts per litre. In order to produce a sufficient voltage level (>1.5 V) and sufficient power to supply real applications such as autonomous sensors, it is necessary to either scale-up one single unit or to connect multiple units together. Many topologies of connection are possible as the serial association to improve the output voltage, or the parallel connection to improve the output current or the series/parallel connection to step-up both voltage and current. The association of MFCs in series is a solution to increase the voltage to an acceptable value and to mutualize the unit's output power. The serial association of a large number of MFCs presents several issues. The first one is the hydraulic coupling among MFCs when they share the same substrate. The second one is the dispersion between generators that lead to a non-optimal stack efficiency because the maximum power point (MPP) operation of all MFCs is not permitted. Voltage balancing is a solution to compensate non-uniformities towards MPP. This paper presents solutions to improve the efficiency of a stack of serially connected MFCs through a voltage-balancing circuit. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  4. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    Science.gov (United States)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  5. The adsorption of 117Snm(IV)-EDTMP on collagen

    International Nuclear Information System (INIS)

    Yang Yuqing; Luo Shunzhong; Pu Manfei; Bing Wenzeng; He Jiaheng; Wang Guanquan

    2002-01-01

    The adsorption and desorption characteristics of 117 Sn m (IV)-EDTMP on collage are studied, and compared with that on HA. The results show that the effects of pH and temperature on adsorption of 117 Sn m (IV)-EDTMP on collagen are similar to those on HA, and that the adsorption equilibrium and adsorption model of 117 Sn m (IV)-EDTMP on collagen are completely different from those on HA; 117 Sm m -EDTMP absorbed on collagen are extremely stable and almost could not be desorbed with normal saline or EDTMP

  6. Effects of ageing on the electrical characteristics of Zn/ZnS/n-GaAs/In structure

    Science.gov (United States)

    Güzeldir, B.; Sağlam, M.

    2016-04-01

    Zn/ZnS/n-GaAs/In structure has been fabricated by the Successive Ionic Layer Adsorption and Reaction (SILAR) method and the influence of the time dependent or ageing on the characteristic parameters are examined. The current-voltage (I-V) of the structure have been measured immediately, 1, 3, 5, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 165 days after fabrication of this structure. The characteristics parameters of this structure such as barrier height, ideality factor, series resistance are calculated from the I-V measurements. It has been seen that the changes of characteristic parameters such as barrier height, ideality factor and series resistance of Zn/ZnS/n-GaAs/In structure have lightly changed with increasing ageing time.

  7. Inductively coupled plasma-induced defects in n-type GaN studied from Schottky diode characteristics

    International Nuclear Information System (INIS)

    Nakamura, W.; Tokuda, Y.; Ueda, H.; Kachi, T.

    2006-01-01

    Inductively coupled plasma-(ICP-)induced defects in n-type GaN have been studied from current-voltage (I-V) characteristics and deep-level transient spectroscopy (DLTS) for Schottky diodes fabricated on etched surfaces. The samples after ICP etching show the ohmic I-V characteristics. Schottky characteristics are obtained after annealing at 600 and 800 deg. C in N 2 , but are not restored to that of the control samples. DLTS shows that the effect of ICP etching is small on the region beyond 80 nm from the surface. These results suggest that there remain ICP-induced damage in the near-surface region after thermal annealing

  8. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  9. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  10. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W; Silverstein, Brian L [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  11. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  12. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    Science.gov (United States)

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  13. The transfer voltage standard for calibration outside of a laboratory

    Directory of Open Access Journals (Sweden)

    Urekar Marjan

    2017-01-01

    Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019

  14. Responsive demand to mitigate slow recovery voltage sags

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; da Silva, Luiz Carlos Pereira; Xu, Zhao

    2012-01-01

    , and reactive power reserve for peak load management through price responsive methods and also as energy providers through embedded generation technologies. This article introduces a new technology, called demand as voltagecontrolled reserve, which can help mitigation of momentary voltage sags. The technology...... faults. This article presents detailed models, discussion, and simulation tests to demonstrate the technical viability and effectiveness of the demand as voltage-controlled reserve technology for mitigating voltage sags....... can be provided by thermostatically controlled loads as well as other types of load. This technology has proven to be effective in distribution systems with a large composition of induction motors, when voltage sags present slow recovery characteristics because of the deceleration of the motors during...

  15. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  16. The pH-sensitive structure of the C-terminal domain of voltage-gated proton channel and the thermodynamic characteristics of Zn{sup 2+} binding to this domain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing; Li, Chuanyong; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2015-01-02

    Highlights: • The α-helical content of the C-terminus is decreased with a pH increase. • The thermostability of the C-terminus is decreased with a pH increase. • Zn{sup 2+} binds to His{sup 244} and His{sup 266} residues within the C-terminal domain. • The binding of Zn{sup 2+} to His{sup 244} residue is an endothermic heat reaction. • The binding of Zn{sup 2+} to His{sup 266} residue is an exothermic heat reaction. - Abstract: The voltage-gated proton channel Hv1 is strongly sensitive to Zn{sup 2+}. The H{sup +} conduction is decreased at a high concentration of Zn{sup 2+} and Hv1 channel closing is slowed by the internal application of Zn{sup 2+}. Although the recent studies demonstrated that Zn{sup 2+} interacts with the intracellular C-terminal domain, the binding sites and details of the interaction remain unknown. Here, we studied the pH-dependent structural stability of the intracellular C-terminal domain of human Hv1 and showed that Zn{sup 2+} binds to His{sup 244} and His{sup 266} residues. The thermodynamics signature of Zn{sup 2+} binding to the two sites was investigated by isothermal titration calorimetry. The binding of Zn{sup 2+} to His{sup 244} (mutant H266A) and His{sup 266} (mutant H244A) were an endothermic heat reaction and an exothermic heat reaction, respectively.

  17. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  18. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S; Anjum, Dalaver H.; Ullah, Shafiq; Ahmed, Bilal; Habib, Amir; Karim, Altaf; Hasanain, Syed Khurshid

    2016-01-01

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  19. A matter of quantum voltages

    Energy Technology Data Exchange (ETDEWEB)

    Sellner, Bernhard; Kathmann, Shawn M., E-mail: Shawn.Kathmann@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  20. A Study on Energy Saving of Single Phase Induction Motor By Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong Moon [Pusan College of Information Technolgy, Pusan (Korea); Kim, Joon Hong [Dong Myong College, Pusan (Korea)

    2001-06-01

    This paper describes a simple effective method for energy saving of AC motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, TRIAC voltage control characteristics. The parameters of simplified voltage-current pattern can be determined approximately and reliably from the rated voltage and current of the motor. Experiments are focused on a single phase capacitor motor, the optimal energy saving are proved by proposed method. (author). 8 refs., 15 figs.

  1. Transport systems of Ventricaria ventricosa: I/V analysis of both membranes in series as a function of [K(+)](o).

    Science.gov (United States)

    Beilby, M J; Bisson, M A

    1999-09-01

    The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K(+)](o), from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K(+)](o). The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between -60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K(+)](o) from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between -150 and -20 mV for [K(+)](o) of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between -150 and +170 mV at [K(+)](o) of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K(+) into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K(+) pump at the tonoplast short-circuited probably by a K(+) channel, state (2) with the K(+) pump "off" or short-circuited at p.d.s more negative than +50 mV, state (3) with the K(+) pump "on, " and state (4) with the pump dominant, but affected by high K(+). A model for the Ventricaria membrane system is proposed.

  2. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  3. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.

  4. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  6. Accelerator System Development at High Voltage Engineering

    International Nuclear Information System (INIS)

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-01-01

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  7. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    International Nuclear Information System (INIS)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong; Choi, Sangsik; Cho, Deokho

    2014-01-01

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  8. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Sangsik; Cho, Deokho [Sigetronics, Inc., Jeonju (Korea, Republic of)

    2014-10-15

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  9. Direct Bandgap Group IV Materials

    Science.gov (United States)

    2016-01-21

    AFRL-AFOSR-JP-TR-2017-0049 Direct Bandgap group IV Materials Hung Hsiang Cheng NATIONAL TAIWAN UNIVERSITY Final Report 01/21/2016 DISTRIBUTION A...NAME(S) AND ADDRESS(ES) NATIONAL TAIWAN UNIVERSITY 1 ROOSEVELT RD. SEC. 4 TAIPEI CITY, 10617 TW 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...14. ABSTRACT Direct bandgap group IV materials have been long sought for in both academia and industry for the implementation of photonic devices

  10. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  11. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  12. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  13. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    OpenAIRE

    Jairo Blanco; Ruben Darío Leal; Jonathan Jacome; Johann F. Petit; Gabriel Ordoñez; Víctor Barrera

    2011-01-01

    This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the...

  14. Enhanced mixing characteristics of GaAs/3,4,9,10-perylenetetracarboxylic dianhydride Schottky diodes

    International Nuclear Information System (INIS)

    Ginev, G; Riedl, T; Parashkov, R; Johannes, H-H; Kowalsky, W

    2003-01-01

    The influences on the mixing properties of GaAs Schottky diodes containing an organic 3,4,9,10-perylenetetracarboxylic dianhydride layer were investigated. The frequency conversion ability of the devices was determined by considering the I-V characteristics and high frequency reflection parameters by using a mixing technique operated in the microwave range. The results show that an organic layer with 20 nm thickness enhances the diode conversion gain for mixing applications by 3 dB and lowers the device operating bias voltage by 0.1 V. This process is related to the specific properties of the organic semiconductor and resulting organic-inorganic interface

  15. Why Batteries Deliver a Fairly Constant Voltage until Dead

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md. Mainul; MacCarthy, Patrick

    2012-01-01

    Two characteristics of batteries, their delivery of nearly constant voltage and their rapid failure, are explained through a visual examination of the Nernst equation. Two Galvanic cells are described in detail: (1) a wet cell involving iron and copper salts and (2) a mercury oxide dry cell. A complete description of the wet cell requires a…

  16. Portable and wireless IV-curve tracer for >5 kV organic photovoltaic modules

    DEFF Research Database (Denmark)

    Garcia Valverde, Rafael; Chaouki-Almagro, Samir; Corazza, Michael

    2016-01-01

    voltage applications, the design is based on low cost components, battery-based isolated supply and wireless communication. A prototype has been implemented and field tested for characterization of different organic photovoltaic modules (OPV) made according to the infinity concept with a large number......The practical design of a wirelessly controlled portable IV-curve tracer based on a capacitive load is described. The design is optimized for the measurement of solar cell modules presenting a high open circuit voltage of up to 6 kV and a low short circuit current below 100 mA. The portable IV......-tracer allows for on-site/in-situ characterization of large modules under real operating conditions and enables fast detection of potential failure of anomalies in electrical behavior. Currently available electronic loads only handle voltages up to around 1 kV. To overcome cost and safety issues related to high...

  17. Unbalanced Voltage Compensation in Low Voltage Residential AC Grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Munk-Nielsen, Stig

    2016-01-01

    This paper describes the design and test of a control algorithm for active front-end rectifiers that draw power from a residential AC grid to feed heat pump loads. The control algorithm is able to control the phase to neutral or phase to phase RMS voltages at the point of common coupling...

  18. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  19. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  20. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  1. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.

    Science.gov (United States)

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-11-17

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.

  2. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  3. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  4. Nonlinear electrokinetics at large voltages

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Martin Z [Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sabri Kilic, Mustafa; Ajdari, Armand [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Storey, Brian D [Franklin W Olin College of Engineering, Needham, MA 02492 (United States)], E-mail: bazant@mit.edu

    2009-07-15

    The classical theory of electrokinetic phenomena assumes a dilute solution of point-like ions in chemical equilibrium with a surface whose double-layer voltage is of order the thermal voltage, k{sub B}T/e=25 mV. In nonlinear 'induced-charge' electrokinetic phenomena, such as ac electro-osmosis, several volts {approx}100k{sub B}T/e are applied to the double layer, and the theory breaks down and cannot explain many observed features. We argue that, under such a large voltage, counterions 'condense' near the surface, even for dilute bulk solutions. Based on simple models, we predict that the double-layer capacitance decreases and the electro-osmotic mobility saturates at large voltages, due to steric repulsion and increased viscosity of the condensed layer, respectively. The former suffices to explain observed high-frequency flow reversal in ac electro-osmosis; the latter leads to a salt concentration dependence of induced-charge flows comparable to experiments, although a complete theory is still lacking.

  5. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  6. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  7. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  8. A novel voltage clamp circuit for the measurement of transistor dynamic on-resistance

    NARCIS (Netherlands)

    Gelagaev, R.; Jacqmaer, P.; Everts, J.; Driesen, Johan

    2012-01-01

    For determining the dynamic on-resistance Rdyn,on of a power transistor, the voltage and current waveforms have to be measured during the switching operation. In measurements of voltage waveforms, using an oscilloscope, the characteristics of an amplifier inside the oscilloscope are distorted when

  9. Voltage linear transformation circuit design

    Science.gov (United States)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  10. Number-to-voltage converter on commutated condensers

    International Nuclear Information System (INIS)

    Grekhov, Yu.N.

    1975-01-01

    A code-voltage converter using precision voltage dividers based on commutated capacitors [1] is described which is distinguished by the absence of precision elements. Each digit includes eight field-effect transistors in two 1KT682 microcircuit assemblies and three microcapacitors with a conventional unstable capacitance 6200 pF +- 50%. The converter has a speed of response that is not inferior to that of converters based on R-2R matrices, while in time stability of the characteristics, low interference level, and low output impedance it is superior to such converters

  11. Voltage Control System of A DC Generator Using PLC

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-06-01

    Full Text Available The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reported in this paper.

  12. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...... and phase constants. A method to estimate this propagation constant, based on high frequency measurements, will be presented and will be applied to different cable types under different conditions. The influence of temperature and test voltage was investigated. The relevance of the results for cable...

  13. Free-format RPG IV

    CERN Document Server

    Martin, Jim

    2013-01-01

    This how-to guide offers a concise and thorough introduction to the increased productivity, better readability, and easier program maintenance that comes with the free-format style of programming in RPG IV. Although free-format information is available in IBM manuals, it is not separated from everything else, thereby requiring hours of tedious research to track down the information needed. This book provides everything one needs to know to write RPG IV in the free-format style, and author Jim Martin not only teaches rules and syntax but also explains how this new style of coding has the pot

  14. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  15. Current voltage perspective of an organic electronic device

    Science.gov (United States)

    Mukherjee, Ayash K.; Kumari, Nikita

    2018-05-01

    Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.

  16. 11. IV avati Draakoni galeriis...

    Index Scriptorium Estoniae

    2005-01-01

    Tanel Saare (sünd. 1979) näitus "Gott und huhn episode IV: seed shower". Eksponeeritakse väljavõtteid aktsioonidest aastatel 2000-2004 Turus, Nürnbergis, Berliinis, Lohusalus ja Soulis. Osa aktsioone toimus koos rühmitusega Non Grata

  17. An impact analysis of the fault impedance on voltage sags

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alessandro Candido Lopes [CELG - Companhia Energetica de Goias, Goiania, GO (Brazil). Generation and Transmission. System' s Operation Center], E-mail: alessandro.clr@celg.com.br; Batista, Adalberto Jose [Federal University of Goias (UFG), Goiania, GO (Brazil)], E-mail: batista@eee.ufg.br; Leborgne, Roberto Chouhy [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)], E-mail: rcl@ece.ufrgs.br; Emiliano, Pedro Henrique Mota, E-mail: ph@phph.com.br

    2009-07-01

    This paper presents an impact analysis of the fault impedance, in terms of its module and angle, on voltage sags caused by faults. Symmetrical and asymmetrical faults are simulated, at transmission and distribution lines, by using a frequency-domain fault simulation software called ANAFAS. Voltage sags are monitored at buses where sensitive end-users are connected. In order to overcome some intrinsic limitations of this software concerning its automatic execution for several cases, a computational tool was developed in Java programming language. This solution allows the automatic simulation of cases including the effect of the fault position, the fault type, and the proper fault impedance. The main conclusion is that the module and angle of the fault impedance can have a significant influence on voltage sag depending on the fault characteristics. (author)

  18. Stability Boundaries for Offshore Wind Park Distributed Voltage Control

    DEFF Research Database (Denmark)

    Gryning, Mikkel P.S.; Wu, Qiuwei; Kocewiak, Lukasz

    2017-01-01

    pilot control. Using data from the actual wind power plant, all stabilizing subsystem voltage proportional-integral controller parameters are first characterized based on their Hurwitz signature. Inner loop current control is then designed using Internal Mode Control principles, and guidelines for feed......In order to identify mechanisms causing slow reactive power oscillations observed in an existing offshore wind power plant, and be able to avoid similar events in the future, voltage control is studied in this paper for a plant with a static synchronous compensator, type-4 wind turbines and a park...... forward filter design are given to obtain required disturbance rejection properties. The paper contributes by providing analytical relations between power plant control, droop, sampling time, electrical parameters and voltage control characteristics, and by assessing frequencies and damping of reactive...

  19. Development of Electromechanical Architectures for AC Voltage Metrology

    Directory of Open Access Journals (Sweden)

    Alexandre BOUNOUH

    2010-12-01

    Full Text Available This paper presents results of work undertaken for exploring MEMS capabilities to fabricate AC voltage references for electrical metrology and high precision instrumentation through the mechanical-electrical coupling in MEMS. From first MEMS test structures previously realized, a second set of devices with improved characteristics has been developed and fabricated with Silicon on Insulator (SOI Surface Micromachining process. These MEMS exhibit pull-in voltages of 5 V and 10 V to match with the best performance of the read-out electronics developed for driving the MEMS. Deep Level Transient Spectroscopy measurements carried out on the new design show resonance frequencies of about only some kHz, and the stability of the MEMS output voltage measured at 100 kHz has been found very promising for the best samples where the relative deviation from the mean value over almost 12 hours showed a standard deviation of about 6.3 ppm.

  20. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.