WorldWideScience

Sample records for voltage electrostatic field

  1. Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the high-voltage electrostatic theory and numerical analysis, the dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields was studied. The oscillation behavior of the conductive particle between the corona electrode and ground electrode was analyzed and its oscillation amplitude was Sm=(ta+ts)·νm/2. It was found that there was the "lift-off voltage (Ulo)" for the conductive particle between the electrostatic electrode and ground electrode. The concepts of "critical charged rotational speed (n?)", "detaching critical rotational speed of nonconductive particle (n′)" and "ratio of voltage and distance between surface of electrodes (U/D)" were presented and their criteria were established. The trajectories of the conductive particles under the coupling fields of the corona electrode, electrostatic electrode and ground electrode were simulated by the computer. The simulative results were in good agreement with the experimental ones. This research enriches the high-voltage electrostatic theory and provides a theoretic basis for optimization of operating parameters and structure design of high-voltage electrostatic separator.

  2. Effect of High Voltage Electrostatic Fields on Post-Harvest Quality of Strawberry Fruit

    Institute of Scientific and Technical Information of China (English)

    WANG Jie; LI Li-te; YE Qing; WANG Li

    2005-01-01

    The paper studied the effect of high-voltage electrostatic fields on the postharvest quality of strawberries. The results showed that the respiration rate decreased significantly, the content of soluble solids kept at high level, and the activities of polygalacturonase and cx-cellulase decreased, while the fruit firmness declined slowly. On the seventh day of storage,the rotten rate of strawberries treated by HVEF was 5%, the control group was 15%.

  3. Effects of high-voltage electrostatic fields on the quality of tilapia meat during refrigeration.

    Science.gov (United States)

    Hsieh, Chang-Wei; Lai, Cheng-Hung; Lee, Chia-Hsin; Ko, Wen-Ching

    2011-08-01

    Fresh fish is typically brought to market refrigerated at approximately 4 °C, R-storage. A storage method has been devised that combines refrigeration with a high-voltage electrostatic field (100 kV/m; E-storage). It was developed to improve the quality and prolong the shelf life of foods. This study investigated changes in the freshness of tilapia meat under E-storage conditions. The total viable count of tilapia reached 10⁷ CFU/g on the 7th d of refrigeration in R-storage. By the 6th d, K-value had increased from 20% to 61.7% for E-storage and to 94.7% for R-storage. Volatile basic nitrogen had increased from 12.54 mg/100 g to about 24.34 and 25.03 mg/100 g for R- and E-storage (on the 7th and 10th d), respectively. The sensory assessment also indicated that E-storage yielded an improvement in quality over that of R-storage. Practical application of the study model has the potential to prolong the freshness of fish.

  4. High voltage conditioning of the electrostatic deflector of MARA

    Science.gov (United States)

    Partanen, J.; Johansen, U.; Sarén, J.; Tuunanen, J.; Uusitalo, J.

    2016-06-01

    MARA is a new recoil mass separator in the Accelerator Laboratory of University of Jyväskylä (JYFL-ACCLAB) with a mass resolving power of 250 and an ion-optical configuration of QQQDEDM . In this paper the construction, control and conditioning of its electrostatic deflector are described. The deflector was designed for voltages up to 500 kV accross the gap, corresponding to a 3.6 MV/m field, to accomodate fusion reactions with inverse kinematics. Titanium electrodes with a beam dump opening in the anode are used. The conditioning procedure, which has been used repeatedly to take the deflector to 450 kV, is described, along with the safety systems and precautions that are in place.

  5. Levitation in an "almost" electrostatic field

    CERN Document Server

    Miranda, E N

    2012-01-01

    It is well known that a charged particle cannot be in stable equilibrium in a purely electrostatic field. The situation is different in a magnetostatic field; consequently, magnetic levitation is possible while electrostatic levitation is not. In this paper, motivated by an analogy with a mechanical system, we show that the addition of a small oscillating electrical field to an otherwise electrostatic configuration leads to the stabilisation of unstable equilibrium points. Therefore, levitation becomes possible in an "almost electrostatic" field.

  6. Voltage holding optimization of the MITICA electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Bettini, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Specogna, R. [DIEGM, Università di Udine, v. delle Scienze 208, I-33100 Udine (Italy)

    2013-10-15

    Highlights: ► A set of electrostatic analyses of the region surrounding the MITICA electrostatic accelerator has been carried out. ► The distribution of the breakdown probability of the system has been calculated. ► The analyses have allowed identifying the weak point of the system to address the future design optimizations. -- Abstract: Two Heating Neutral Beam Injectors (H-NBI) are planned to be installed in ITER with a total delivered heating power of 33 MW [1]. The main parameters are: 870 kV acceleration voltage with 46 A beam current for hydrogen beam, and 1 MV voltage with 40 A current for deuterium beam. The voltage holding in the 1 MV ITER Neutral Beam Accelerator is recognized to be one of the most critical issues for long pulse (3600 s) beam operation, due to the complex electrostatic structure formed by electrodes polarized at different potentials immersed in vacuum or low-pressure gas. As a matter of fact, the system shall work in a p × d range at the left of the Paschen curve where the classical Townsend breakdown criterion is no longer valid. The voltage holding is governed by the mechanism of the long gap insulation in high vacuum, not yet well consolidated from the physical point of view. This paper is aimed to describe the optimization of the voltage holding capability for MITICA electrostatic accelerator. The results of this analysis will constitute the input for the probabilistic model [3] which is adopted to predict the breakdown probability by means of 2D analyses of the multi electrode – multi voltage system.

  7. 高压静电解冻技术对牛肉品质的影响研究%Effect of High-Voltage Electrostatic Field Thawing Beef on Beef Quality

    Institute of Scientific and Technical Information of China (English)

    孙芳; 李培龙; 孟繁博; 李红宇

    2011-01-01

    【Objective】The objective was to study the beef quality affected by high voltage electrostatic field and then to provide the theory basis for the extension and application of this technology.【Method】The outside ridge beef of the same cattle thawed with high voltage electrostatic field device and ordinary refrigerators were thawed.The thawing time and meat quality were analyzed.【Result】The results showed that the thawing time with HVEF device refrigerator was shorter 16.67% and the losing water rate of thawing reduced 7.0% compared with that of ordinary refrigerator;The appearance of the test specimens wiht HVEF was fresher than that of the control group,the value of meat color showed significantly different,but pH and shear force value,the cooked meat rate had no obvious difference between the two groups.There was no significant difference in the indexes on thawing beef of HVEF compared to before freezing.【Conclusion】This study provided theoretical references for the enterprise of beef processing applying HVEF thawing and refresh beef to substitute frozen beef.%[目的]为了探讨高压静电解冻牛肉对其品质的影响,从而对此技术的推广应用提供理论依据。[方法]采用带有高压静电技术(HVEF)装置的冰箱和普通冰箱解冻同一头牛的外脊部位肉样,通过比较解冻时间和肉质分析结果。[结果]表明,带有高压静电装置的冰箱解冻牛肉比较普通冰箱解冻牛肉时间缩短16.67%,解冻失水率减少7.0%;高压静电技术(HVEF)组试验样品牛肉较对照组外观新鲜,肉色值差异显著;pH值、剪切力值、熟肉率两组之间差异不显著;高压静电解冻的牛肉各项指标与冻结前牛肉差异不显著。[结论]本试验为高压静电技术(HVEF)解冻复鲜牛肉替代冷鲜牛肉销售,提供了理论依据。

  8. Electrostatic fields without singularities: Theory and algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, M. [Instituto di Matematica Computazionale del CNR, Pisa (Italy)

    1996-12-31

    We consider the following problem which arises in the computation of electrostatic fields. We are given two convex disjoint simplicies S{sub 1} and S{sub 2} in 3-space, of volume respectively V{sub 1} and V{sub 2}, with a uniform charge density respectively p{sub 1} and p{sub 2}. We want to compute the electrostatic force F{sub 12} acting on the two simplicies. We describe a Monte Carlo method that computes an approximation F{prime}{sub 12} of F{sub 12} such that, with probability 1 - {delta}, the absolute approximation error is {parallel}F{sub 12} - F{prime}{sub 12}{parallel} {le} {epsilon}p{sub 1} V{sub 1}p{sub 2} V{sub 2}, for any {epsilon} > 0. The approximation is computed in time O({epsilon}{sup -2} log {delta}{sup -1}) in the real-RAM model. We do not make use of any additional assumption, in particular, on the minimum distance between the two objects. The method is very simple, practical, and easy to extend to non-convex polyhedra. This result is obtained using a new interpretation of the electrostatic field, based on integral geometry, which eliminates the singularities present in traditional definitions of the electrostatic force and electrostatic potential. A singularity-free expression of the electrostatic force, beside its elegance, has the beneficial effect of making the derived algorithms more robust against numerical errors.

  9. Electrostatic air filters generated by electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-27

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity.

  10. Dynamics of conductive and nonconductive particles under high-voltase electrostatic coupling fields

    Institute of Scientific and Technical Information of China (English)

    XU ZhenMing; LI Jia; LU HongZhou; WU Jiang

    2009-01-01

    With the high-voltage electrostatic theory and numerical analysis,the dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields was studied.The oscillation behavior of the conductive particle between the corona electrode and ground electrode was analyzed and its oscillation amplitude was Sm=(ta+ts).Vm/2.It was found that there was the "lift-off voltage(UIO)"for the conductive particle between the electrostatic electrode and ground electrode.The concepts of "critical charged rotational speed(n*)","detaching critical rotational speed of nonconductive particle (n*)" and "ratio of voltage and distance between surface of electrodes(U/D)" were presented and their criteria were established.The trajectories of the conductive particles under the coupling fields of the corona electrode,electrostatic electrode and ground electrode were simulated by the computer.The simulative results were in good agreement with the experimental ones.This research enriches the high-voltage electrostatic theory and provides a theoretic basis for optimization of operating parameters and structure design of high-voltage electrostatic separator.

  11. 高压静电场处理对红元帅苹果采后品质的影响%Effect of high voltage electrostatic field on the post-harvest quality of "red delicious" apple

    Institute of Scientific and Technical Information of China (English)

    王颉; 李里特; 叶青; 丹阳

    2003-01-01

    该研究利用自制的高压静电场保鲜实验台产生的-50 kV/m和-100 kV/m高压静电场处理红元帅苹果,贮藏过程中每4d测定1次果实呼吸强度、内源乙烯释放量、果实硬度和可溶性固形物含量变化,并在贮藏结束时,对果实品质进行感官评定.实验结果表明:高压静电场处理使红元帅苹果的乙烯释放高峰推迟4 d,乙烯释放高峰值显著低于对照,并且使果实呼吸跃变推迟8 d.高压静电场处理苹果,在20℃条件下贮藏24 d,果实硬度和可溶性固形物含量显著高于对照,果实新鲜程度、脆性、硬度、粉性、甜味和苹果味等感官指标显著比对照好(p<0.01),表明高压静电场处理对保持红元帅苹果的采后品质具有显著作用.%In this study, "red delicious" apples were treated with -50 kV/m and -100 kV/m of high voltage electrostatic field(HVEF) from the freshness-keeping test stand made by self. During the storage, the respiration rate, endogenous ethylene, flesh firmness and soluble solids content of the samples were determined once every 4 days. At the end of the storage, sensory evaluation was carried. Conclusions were made: by HVEF, the peak of ethylene producing was delayed by 4 days and the value of the peak was smaller than CK significantly. The climacteric of the respiration was delayed by 8 days. After being treated by HVEF and stored in the condition of 20℃ for 24 days, the firmness and soluble solid contents were much higher than CK's. Moreover, the greenness degree, crispness, firmness, mealiness, sweetness, apple flavor and so on were much better than CK(p<0.01). The last conclusion was made that HVEF played an important role in keeping the quality of "red delicious" apples.

  12. Finite Element Analysis of voltage effect in the MechanicalBehavior of Diaphragm of Electrostatic Micro-pumps

    Directory of Open Access Journals (Sweden)

    Hamid masoudi sadaghiani

    2016-06-01

    Full Text Available Micro-pumps are one of the most important devices in the field of micro-fluids which have many applications in biomedical engineering. Electrostatic stimulation is one of the mechanisms of stimulation in the micro-pumps that due to low power consumption and comfortable control have very much application in this field. Various phenomena occurs in micro-pumps, electrostatic induction that influence the efficiency and efficacy of this devices. One of these phenomena have been Pull-in instability which is a static phenomenon and occurs when the applied voltage exceeds a critical level. In this case, the diaphragm of micro pump get absorbed into opposite fixed electrode and instability occurs in the system. Therefore, understanding the relationship between pull-in voltage by external factors (for example, the physical characteristics of the device help designers to customize these factors in order to take their required output from device. To estimate the pull-in voltage, for an electrostatic diaphragm computer simulation of finite elements were used. According to the results obtained from the Software, the voltage in steps of 0.025, V = 313/925 which is best answer to unstable Static voltage.The amount of voltage for dynamic mode is approximately 0.91 of static value that is v = 284.41v obtained by software. Comparing the results it can be observed that in the case of unstable Static voltage there is little difference between results. So with this software Mechanical Behavior of Micro Analytical review pages that is difficult and time-consuming can be studied.And the results are used in the design of MEMS that these elements are used in the micro-plates.

  13. Orientation of KRb molecules in a switched electrostatic field

    Institute of Scientific and Technical Information of China (English)

    Huang Yun-Xia; Xu Shu-Wu; Yang Xiao-Hua

    2013-01-01

    We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schr(o)dinger equation.The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field.Meanwhile,by varying the switching times of the electrostatic field,the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized.Moreover,the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied.The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation,both in the constant-field regime and in the field-free regime,while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation.

  14. Electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, John P., E-mail: jpw@castinganalysis.com [Casting Analysis Corp. PO Box 52, Weyers Cave, VA 24486 (United States); Wallace, Michael J. [Vertex Corp., Phoenix, AZ 85050 (United States)

    2015-12-04

    Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties are charge and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should have its nature described by the fermion’s structure. To produce the particle properties require two spaces that define both their dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected and the differential equations that describe behavior within these two spaces. The main static characteristic of an elementary fermion are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure of the fermion, which must merge into the electric field description of Maxwell. Coulomb’s law is a good approximation for large distances, but it is a poor approximation at dimension on the order of a particle’s Compton wavelength. The relativistic description of the fermion in its own frame of reference contains the information required for producing the electrostatic field over all space without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.

  15. Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays.

    Science.gov (United States)

    Kim, Keon-Woo; Oh, Hwan; Bae, Jae Hyun; Kim, Haekyoung; Moon, Hong Chul; Kim, Se Hyun

    2017-06-07

    In this study, low-voltage, printed, ion gel-based electrochromic devices (ECDs) were successfully fabricated. While conventional dispensing printing provides irregularly printed electrochromic (EC) gels, we improved the adhesion between the printed gel and the substrate by applying an external voltage. This is called electrostatic-force-assisted dispensing printing. As a result, we obtained well-defined, printed, EC gels on substrates such as indium tin oxide-coated glass. We fabricated a gel-based ECD by simply sandwiching the printed EC gel between two transparent electrodes. The resulting ECD, which required a low coloration voltage (∼0.6 V), exhibited a high coloration efficiency (η) of 161 cm(2)/C and a large transmittance contrast (∼82%) between the bleached and colored states at -0.7 V. In addition, electrostatic-force-assisted dispensing printing was utilized to fabricate directly patterned ECDs.

  16. Variation of protein backbone amide resonance by electrostatic field

    CERN Document Server

    Sharley, John N

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and non-polyproline helix such as alpha helix, varying the stability of the secondary structure. The electrostatic properties including permittivity of amino acid residue sidegroups influence the electrostatic field component parallel or antiparallel the C-N bond of each amide. The significance of this factor relative to other factors in protein folding depends on the magnitude of electrostatic field component parallel or antiparallel the C-N bond of each amide, and preliminary protein-scale calculations of the magnitude of these components suggest this factor warrants investigation in ...

  17. The Phase Transition of Syndiotactic Polystrene Induced by Electrostatic Field

    Institute of Scientific and Technical Information of China (English)

    肖学山; 莫志深; 等

    2002-01-01

    The crystal structure and morphology of syndiotactic polystryene(sPS)melt-crystallized in various electrostatic fields have been investigated by using wide angle X-ray diffraction(WAXD),differential scanning calorimeter(DSC) and scanning electron microscope(SEM).WAXD and DSC analyses show that SPS is gradually transformed from a phase to β phase with increase of electrostatic intensity.The SEM observations indicate that the morphology of sPS micro-crystals is strongly dependent on electrostatic intensity applied to the sample during solidification.The variation of the micro-crystals orientation from disordered lamellae to ordered lamellare have been observed with increase of electrostatic intensity.

  18. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  19. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  20. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field.

    Science.gov (United States)

    Sun, Rui-Ning; Gong, Haipeng

    2017-03-02

    Voltage-gated sodium (NaV) channels play vital roles in the signal transduction of excitable cells. Upon activation of a NaV channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na(+) ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic NaV channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of NaV channels may be inaccurately described without considering the electrostatic polarization effect.

  1. 高压静电场处理对香蕉果实成熟生理的影响%Effect of High Voltage Electrostatic Field Treatment on Quality Characteristics of Green-mature Bananas during Postharvest Storage

    Institute of Scientific and Technical Information of China (English)

    赵瑞平; 范三红; 刘福虎; 李里特

    2011-01-01

    以香蕉果实为试验材料,在(20±1)℃试验冷库中贮藏21d,贮藏期间用-100kV/m和-200kV/m的高压静电场连续处理并测定果实的呼吸强度、乙烯释放量、硬度、果皮颜色变化以及果肉淀粉和可溶性糖含量的变化。结果表明:连续高压静电场处理可以使香蕉果实的呼吸跃变和乙烯释放高峰提前,淀粉转化为糖的速度快而且比对照早,果皮叶绿素含量明显低于对照,同时处理后的果肉硬度下降,低于对照;并且-200kV/m处理组的效果要优于-100kV/m处理组。说明高压静电场连续处理促进了香蕉果实的成熟,尤以-200kV/m处理组比对照提前成熟4d。%In this study,green-mature bananas were stored at(20 ± 1) ℃ and 85%-90% humidity for 21 days and at the same time exposed continuously to-100 or-200 kV/m high voltage electrostatic fields(HVEF).Respiration intensity,ethylene production,pericarp color,firmness,and the contents of chlorophyll,soluble sugar and starch of the fruits were investigated during the storage period.The results indicated that the occurrence of respiration peaks and ethylene production in banana fruits were accelerated by negative HVEF treatment;the conversion of starch to sugars was faster and began earlier,chlorophyll content was considerably decreased,and the reduction of fruit firmness was lower when compared with the control.Moreover,-200 kV/m HVEF treatment had more desired effect on quality characteristics of green-mature bananas than-100 kV/m HVEF treatment.This study demonstrates that continuous HVEF treatment can promote the postharvest ripening of green-mature bananas,in particular-200 kV/m HVEF treatment group,which ripened 4 days before the control.

  2. Low pull-in voltage electrostatic MEMS switch using liquid dielectric

    KAUST Repository

    Zidan, Mohammed A.

    2014-08-01

    In this paper, we present an electrostatic MEMS switch with liquids as dielectric to reduce the actuation voltage. The concept is verified by simulating a lateral dual gate switch, where the required pull-in voltage is reduced by more than 8 times after using water as a dielectric, to become as low as 5.36V. The proposed switch is simulated using COMSOL multiphysics using various liquid volumes to study their effect on the switching performance. Finally, we propose the usage of the lateral switch as a single switch XOR logic gate.

  3. Automatic high voltage conditioning of the electrostatic LEP separators without conventional programming

    CERN Document Server

    Balhan, B; Carlier, E; Dieperink, J H; Mertens, V

    1995-01-01

    The TS Tool Kit is a generic, fully data-driven, and user-configurable software system developed at CERN for supervisory, control, and data acquisition applications. It provides a comprehensive framework to solve fairly complex process control problems requiring response times of the order of a second, without any need for conventional programming. The characteristics and benefits of this approach are discussed at the example of the new high voltage conditioning process for the electrostatic LEP separators.

  4. Variation of protein backbone amide resonance by electrostatic field

    OpenAIRE

    Sharley, John N.

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance-Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and alpha helix, varying the stability of the secondary structure....

  5. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  6. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields.

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D; Boxer, Steven G

    2012-06-27

    Electrostatic interactions provide a primary connection between a protein's three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile's IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.

  7. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.

    Science.gov (United States)

    Li, G; Wu, S C; Zhou, Z B; Bai, Y Z; Hu, M; Luo, J

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10(-8) m/s(2)/Hz(1/2) at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  8. Development of Electrostatic Actuator, which enables the Stable Contact Resistance, Driven at Low Voltage

    Science.gov (United States)

    Masuda, Takahiro; Seki, Tomonori; Miyaji, Takaaki; Sato, Fumihiko

    The switches play an important role in making the multifunctional radio communication circuit and therefore, the high-performance microminiaturized high-frequency switches are urgently expected. RF-MEMS switch with mechanical switching structure is hoped to improve both high-frequency signal loss and isolation quality simultaneously and to provide better linearity on the performance and compatibility to silicon-based circuit elements. But considering the applications, such as cellular phone and wireless-LAN, lower driving voltage and smaller switch dimensions are required. In order to solve these requirements, a novel electrostatic actuator with a unique structure of movable electrodes which enables the stable contact resistance is developed for RF-MEMS switches. This actuator has slits between the movable electrodes and the restoring spring. The electrostatic actuator with a movable electrode area of 0.5mm2 was driven at low voltage of 9-11V. And no defect due to restoration shortage is observed during switching test up to 400million cycles. In this paper, the results of mechanical design of the electrostatic actuator, the simulation, the experiments, and the reliability test are described

  9. A New Four States High Deflection Low Actuation Voltage Electrostatic Mems Switch for RF Applications

    CERN Document Server

    Robin, Renaud; Segueni, Karim; Millet, Olivier; Buchaillot, Lionel

    2008-01-01

    This paper presents a new electrostatic MEMS (MicroElectroMechanical System) based on a single high reliability totally free flexible membrane. Using four electrodes, this structure enables four states which allowed large deflections (4$\\mu$m) with low actuation voltage (7,5V). This design presents also a good contact force and improve the restoring force of the structure. As an example of application, a Single Pole Double Throw (SPDT) for 24GHz applications, based on this design, has been simulated.

  10. The Electrostatic Wind Energy Converter: electrical performance of a high voltage prototype

    NARCIS (Netherlands)

    Djairam, D.

    2008-01-01

    Wind energy is converted to electrical energy by letting the wind move charged particles against the direction of an electric field. The advantage of this type of conversion is that no rotational movement, which occurs in conventional wind turbines, is required. An electrostatic wind energy

  11. Pulse voltage determination for electrostatic micro manipulation considering surface conductivity and adhesion of glass particle

    Directory of Open Access Journals (Sweden)

    Ryo Fujiwara

    2015-05-01

    Full Text Available A model with surface conductivity and adhesional force is proposed to investigate the mechanism for electrostatic micro manipulation of a dielectric object using a single probe. The manipulation system consists of three elements: a conductive probe as a manipulator, a conductive plate as a substrate, and a dielectric particle as the target object for manipulation. The particle can be successfully picked up/placed if a rectangular pulse voltage is applied between the probe and the plate. The reliability of the picking up/placing operation is improved by applying a pulse voltage that is determined by a theoretical model considering surface conductivity and adhesion. To verify the theoretical prediction, manipulation experiment is conducted using soda-lime glass particles with radii of 20 μm and 40 μm.

  12. High-Voltage Terminal Test of Test Stand for 1-MV Electrostatic Accelerator

    CERN Document Server

    Park, Sae-Hoon

    2015-01-01

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  13. Aspects of electrostatics in a weak gravitational field

    CERN Document Server

    Padmanabhan, Hamsa

    2009-01-01

    Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (i) We show that the electrostatic potential of a charge at rest in the Rindler frame is expressible as A_0=(q/l) where l is the affine parameter distance along the null geodesic from the charge to the field point. (ii) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. (iii) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance -- which are...

  14. A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester

    Science.gov (United States)

    Bedier, Mohammed; Basset, Philippe; Galayko, Dimitri

    2016-11-01

    This paper presents a new implementation in ams 0.35μm HV technology of a complete energy management system for an electrostatic vibrational energy harvester (e-VEH). It is based on the Bennet's doubler architecture and includes a load voltage regulator (LVR) and a smart Load Interface (LI) that are self-controlled with internal voltages for maximum power point tracking (MMPT). The CMOS implementation makes use of an energy harvester that is capable of producing up to 1.8μW at harmonic excitation, given its internal voltage is kept within its optimum. An intermediate LI stage and its controller makes use of a high side switch with zero static power level shifter, and a low power hysteresis comparator. A full circuit level simulation with a VHDL-AMS model of the e-VEH presented was successfully achieved, indicating that the proposed load interface controller consumes less than 100nW average power. Moreover, a LVR regulates the buffer and discharge the harvested energy into a generic resistive load maintaining the voltage within a nominal value of 2 Volts.

  15. Electrostatic Modes of Dusty Plasmas in a Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    王晓钢; 王春华

    2002-01-01

    Electrostatic dusty plasma waves in a uniform magnetic field are studied. Unless the magnetic field is extremely strong, the dust particles can hardly be magnetized, while however,electrons and ions are easily done so. Electrostatic modes in such dusty plasmas can then be investigated by making use of the "moderately magnetized" assumption of magnetized electrons and ions, and unmagnetized dust particles. In a high frequency range, due to the existence of dust component, both frequencies of Langmuir waves (parallel to the magnetic field) and upper hybrid waves (perpendicular to the field)are reduced. In the frequency range of ion waves, besides the effect on dust-ion-acoustic waves propagating parallel to the magnetic field, the frequency of ion cyclotron waves perpendicular to the magnetic field is also enhanced. In a very low dust frequency range, we find an "ion-cyclotrondust-acoustic" mode propagating across the field line with a frequency even slower than dust acoustic waves.

  16. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  17. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display i

  18. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display

  19. Electrostatic fields in an ionization chamber electret

    Science.gov (United States)

    Fallone, B. G.; Podgorsak, E. B.

    1983-09-01

    The theory of linear systems is used to derive the potential and electric field in distance space in a cylindrical polarization/depolarization electret chamber. General solutions for the near, intermediate, and far regions are given and their domains of convergence discussed. On the axis of the chamber the solutions for the electret surface are equal to those obtained from Gauss's and Kirchoff's laws, and at large distances from the surface to those obtained from the introduction of a dipole layer model.

  20. Improvement of Electrostatic Discharge Protection by Introducing a Spindt-Type Silicon Field Emission Device

    Science.gov (United States)

    Chang, Liann-Be; Ferng, Yi-Cherng; Liao, Jhong-Wei; Lin, Ching-Chi

    2012-04-01

    In this paper, an original Spindt-type silicon field emission device (FED) with electrostatic discharge (ESD) regulation capability is proposed. The fabricated FED characteristics, including process parameters, capacitance-voltage (C-V), current-voltage (I-V), and frequency response, are investigated. To verify its capability of ESD protection, we replace the metal oxide varistor (MOV) in a state-of-the-art protection configuration with the fabricated FED under the application conditions of system-level ESD tests. The measured results show that the proposed ESD protection circuit composed of a prestage gas arrestor, an intermediate resistor, and an introduced FED can suppress an injected ESD pulse voltage of 6000 to 3193 V, a reduction of 46.8%, whereas suppression is to 5606 V, a reduction of 6.57%, when using only a gas arrestor.

  1. Intermediate electrostatic field for the generalized elongation method.

    Science.gov (United States)

    Liu, Kai; Korchowiec, Jacek; Aoki, Yuriko

    2015-05-18

    An intermediate electrostatic field is introduced to improve the accuracy of fragment-based quantum-chemical computational methods by including long-range polarizations of biomolecules. The point charge distribution of the intermediate field is generated by a charge sensitivity analysis that is parameterized for five different population analyses, namely, atoms-in-molecules, Hirshfeld, Mulliken, natural orbital, and Voronoi population analysis. Two model systems are chosen to demonstrate the performance of the generalized elongation method (ELG) combined with the intermediate electrostatic field. The calculations are performed for the STO-3G, 6-31G, and 6-31G(d) basis sets and compared with reference Hartree-Fock calculations. It is shown that the error in the total energy is reduced by one order of magnitude, independently of the population analyses used. This demonstrates the importance of long-range polarization in electronic-structure calculations by fragmentation techniques.

  2. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Science.gov (United States)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  3. Preparation and characterization of mesoporous WO3 powder treated by high voltage electrostatic field%高压静电场诱导下介孔 WO 3粉体的制备及表征

    Institute of Scientific and Technical Information of China (English)

    关玉园; 何志巍

    2014-01-01

    利用溶胶-凝胶与分子模板法相结合,在高压静电场诱导分子模板作用下,成功制备了孔洞分布均匀的介孔 WO 3粉体。利用粉末 X 射线衍射仪、N2吸附-脱附比表面及孔径分析仪、傅立叶变换红外光谱仪(FT-IR)等测试手段,通过对样品的晶态结构、孔洞结构参数、透射光谱特性及化学键态结构的对比,详细研究了外加电场的作用时间对分子模板及 WO 3粉体材料微观结构的影响。实验结果表明,在2 kV/cm 的电场强度下处理2 h 所制得的粉体 WO 3有更发达的比表面积和气体通道。%The preparation of mesoporous tungsten trioxide from tungstic acid precursors with the addition of an organic stabilizer(block copolymer)via a sol-gel method was reported.Electric fields were used to direct the ori-entation of block copolymers nanostructures in solution.The samples have been structurally characterized by powder X-ray diffraction(XRD),N2 adsorption-desorption surface and pore size analyzer,Fourier transform in-frared spectrometer (FT-IR).The powder at suitable time consisted of larger surface volume ratio and small pore size.The optimal processing time was 2 h at electric field strength of 2 kV/cm.

  4. Experimental and numerical investigation of nanoparticle releasing in AFM nanomanipulation using high voltage electrostatic forces

    Science.gov (United States)

    Ghattan Kashani, H.; Shokrolahi, S.; Akbari Moayyer, H.; Shariat Panahi, M.; Shahmoradi Zavareh, A.

    2017-07-01

    Atomic Force Microscopes (AFMs) have been widely used as nanomanipulators due to their versatility to work with a broad range of materials and their controllable interaction force, among other features. While AFMs can effectively grasp, move, and position nanoscale objects in 2D environments through basic pull/push operations, they often lack the high precision required in many 3D pick and place applications, especially in non-vacuum environments. In this study, a novel method to resolve the adhesion problem between nanoscale objects and the AFM tip has been developed and tested. The method is based on the application of a high electrostatic voltage to the tip to produce the repulsive force required for the release of the nanoobject. The method is proposed for conductive nanoparticles and tips used in many nanomanipulation applications, and can be easily implemented on typical AFMs with minimal alterations. The applicability of the proposed method is investigated through a series of combined Molecular Dynamics/Finite Element simulations.

  5. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  6. Physical electrostatics of small field emitter arrays/clusters

    Science.gov (United States)

    Forbes, Richard G.

    2016-08-01

    This paper aims to improve qualitative understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays/clusters. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. An adequate approximation is to consider only the effects of sphere charges and (for significantly separated emitters) image charges. For the 2-emitter system, formulas are found for charge-transfer ("charge-blunting") effects and neighbor-field effects, for widely spaced and for "sufficiently closely spaced" emitters. Mutual charge-blunting is always the dominant effect, with a related (negative) fractional AFEF-change δtwo. For sufficiently small emitter spacing c, |δtwo| varies approximately as 1/c; for large spacing, |δtwo| decreases as 1/c3. In a 3-emitter equispaced linear array, differential charge-blunting and differential neighbor-field effects occur, but differential charge-blunting effects are dominant, and cause the "exposed" outer emitters to have higher AFEF (γ0) than the central emitter (γ1). Formulas are found for the exposure ratio Ξ = γ0/γ1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM implementations is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which is different from the FSEPP-model formulas. This discrepancy needs to be investigated, using systematic Laplace-based simulations and appropriate results

  7. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.

    Science.gov (United States)

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-11-01

    A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (rotation of the x-ray tube by 30° toward the MR bore increases the

  8. Parameter optimization on killing aphid by using high-voltage electrostatic discharge%高压静电杀灭烟蚜的参数优化试验

    Institute of Scientific and Technical Information of China (English)

    朱琳; 薛少平; 陈军; 闫勤劳

    2013-01-01

      为了避免农药灭虫带来的残留危害,该文提出了用高压静电放电杀灭烤烟植株害虫烟蚜的方法。设置了传统农药灭虫和高压静电放电灭虫的试验对比。试验结果表明,高压静电放电法灭虫率可达70.38%~78.73%,虽低于农药灭虫,但无毒无害,且对天敌瓢虫的影响不大。在试验基础上,进行了高压静电农作物灭虫的参数优化,通过正交优化,确定了优化的灭虫电压50 kV、灭虫时间3 s和灭虫距离15 mm,在优化参数下烟蚜杀灭率平均值可达83%。研究结果为高压静电农作物灭虫器的研制提供技术依据。%To avoid the hazards of pesticide residues, high-voltage electrostatic discharge was recommended to kill tobacco aphid. The pest control effects via the traditional pesticides and high-voltage electrostatic discharge were compared. The test apparatus of high voltage electrostatic disinsection is adjustable from 20 to 60 kV high voltage. The initial test voltage is 40 kV, and the probe scanning distance is 25 mm. The probe terminals were to scan the tobacco leaves from its bottom to top, close to the tobacco leaves surface. Since disturbance of the probe, the front and back of the tobacco leaves were all in the electric field. The scan time is about 1-2 s. For the traditional pesticide pest control, the pesticide “KANGFUDUO”with a concentration of 20%diluting for 4000 times was used. The conventional spraying method was employed, 750 liters per hectare of water consumption. The test plot is 330 m2 and divided into three blocks with an isolation belt of 2 meters in width for each two blocks. Each block of field was with 200 plants with a plant spacing of 0.55 meter and the line spacing of 1.1 meter. One block was subjected to electrostatic pest control, one was to undergo pesticide pest control, and the remaining block was arranged for reference. Listed sampling method was used for the electrostatic pest control

  9. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  10. Exact Partition Function for the Random Walk of an Electrostatic Field

    Directory of Open Access Journals (Sweden)

    Gabriel González

    2017-01-01

    Full Text Available The partition function for the random walk of an electrostatic field produced by several static parallel infinite charged planes in which the charge distribution could be either ±σ is obtained. We find the electrostatic energy of the system and show that it can be analyzed through generalized Dyck paths. The relation between the electrostatic field and generalized Dyck paths allows us to sum overall possible electrostatic field configurations and is used for obtaining the partition function of the system. We illustrate our results with one example.

  11. Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiao-Yin [Department of Physics, Ningbo University, Ningbo 315211 (China); Sahni, Viraht [Brooklyn College and The Graduate School of the City University of New York, 365 Fifth Avenue, New York, New York 10016 (United States)

    2015-11-07

    The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle in terms of these densities is also developed. These theorems are further generalized to electrons with spin by imposing the added constraint of fixed canonical orbital and spin angular momenta. The proofs differ from the original HK proof and explicitly account for the many-to-one relationship between the potentials and the nondegenerate ground state wave function. A Percus-Levy-Lieb constrained-search proof expanding the domain of validity to N-representable functions, and to degenerate states, again for fixed electron number and angular momentum, is also provided.

  12. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler

    DEFF Research Database (Denmark)

    Madsen, A. M.; Sharma, Anoop Kumar

    2008-01-01

    by the electrostatic field sampler and 11.8 mg m(-3) when measured by the GSP inhalable dust sampler. The quantity (amount per mg dust) of total fungi, Aspergillus fumigatus, total bacteria, endotoxin and mesophilic actinomycetes sampled by the electrostatic field samplers and the Gravikon samplers varied within...

  13. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150

  14. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  15. Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Science.gov (United States)

    Morita, T.; Kugland, N. L.; Wan, W.; Crowston, R.; Drake, R. P.; Fiuza, F.; Gregori, G.; Huntington, C.; Ishikawa, T.; Koenig, M.; Kuranz, C.; Levy, M. C.; Martinez, D.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Pelka, A.; Plechaty, C.; Presura, R.; Quirós, N.; Remington, B. A.; Reville, B.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Steele, L.; Takabe, H.; Yamaura, Y.; Woolsey, N.; Park, H.-S.

    2016-03-01

    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

  16. Snap Down Voltage of a Fast-Scanning Micromirror with Vertical Electrostatic Combdrives

    Science.gov (United States)

    Wada, Hiroyuki; Lee, Daesung; Zappe, Stefan; Krishnamoorthy, Uma; Solgaard, Olav

    2004-02-01

    The parallel transition mode of the snap down of a fast-scanning mirror with vertical combdrives was analyzed. The snap down voltage of such a mirror significantly decreased when offsets between the ideal and actual upper movable comb teeth were more than 0.1 μm. When gap between the upper and lower comb teeth was decreased to increase torque, snap down voltage significantly decreased. The largest offset is induced by the lithography step in the fabrication process of the mirror. Self-alignment is required to increase the resonant frequency of the scanning mirror.

  17. Computation of electrostatic fields in anisotropic human tissues using the Finite Integration Technique (FIT)

    Science.gov (United States)

    Motresc, V. C.; van Rienen, U.

    2004-05-01

    The exposure of human body to electromagnetic fields has in the recent years become a matter of great interest for scientists working in the area of biology and biomedicine. Due to the difficulty of performing measurements, accurate models of the human body, in the form of a computer data set, are used for computations of the fields inside the body by employing numerical methods such as the method used for our calculations, namely the Finite Integration Technique (FIT). A fact that has to be taken into account when computing electromagnetic fields in the human body is that some tissue classes, i.e. cardiac and skeletal muscles, have higher electrical conductivity and permittivity along fibers rather than across them. This property leads to diagonal conductivity and permittivity tensors only when expressing them in a local coordinate system while in a global coordinate system they become full tensors. The Finite Integration Technique (FIT) in its classical form can handle diagonally anisotropic materials quite effectively but it needed an extension for handling fully anisotropic materials. New electric voltages were placed on the grid and a new averaging method of conductivity and permittivity on the grid was found. In this paper, we present results from electrostatic computations performed with the extended version of FIT for fully anisotropic materials.

  18. Computation of electrostatic fields in anisotropic human tissues using the Finite Integration Technique (FIT

    Directory of Open Access Journals (Sweden)

    V. C. Motresc

    2004-01-01

    Full Text Available The exposure of human body to electromagnetic fields has in the recent years become a matter of great interest for scientists working in the area of biology and biomedicine. Due to the difficulty of performing measurements, accurate models of the human body, in the form of a computer data set, are used for computations of the fields inside the body by employing numerical methods such as the method used for our calculations, namely the Finite Integration Technique (FIT. A fact that has to be taken into account when computing electromagnetic fields in the human body is that some tissue classes, i.e. cardiac and skeletal muscles, have higher electrical conductivity and permittivity along fibers rather than across them. This property leads to diagonal conductivity and permittivity tensors only when expressing them in a local coordinate system while in a global coordinate system they become full tensors. The Finite Integration Technique (FIT in its classical form can handle diagonally anisotropic materials quite effectively but it needed an extension for handling fully anisotropic materials. New electric voltages were placed on the grid and a new averaging method of conductivity and permittivity on the grid was found. In this paper, we present results from electrostatic computations performed with the extended version of FIT for fully anisotropic materials.

  19. Electrostatic discharge and field effects of electronics systems

    Science.gov (United States)

    Dicks, L. R.; Morin, G.

    1988-04-01

    The effects of static electricity on modern electronics are discussed, as well as a comprehensive approach to electrostatic discharge (ESD) protection measures in all phases of the life cycle of an electronic system. Static electricity has become a potential source of damage to electronic systems used in most applications, including aircraft, ground and shipboard installations.

  20. Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal

    Institute of Scientific and Technical Information of China (English)

    Jian Kuo; Lei Dongji; Fu Xuehai; Zhang Yugui; Li Hengle

    2015-01-01

    The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg-ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal–gas system conductivity in an electrostatic field. The quantity of gas adsorbed and DP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ-ity, and the Joule heating effect. DP peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity, DP, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the DP.

  1. Field Simulations and Mechanical Implementation of Electrostatic Elements for the ELENA Transfer Lines

    CERN Document Server

    Barna, D; Borburgh, J; Carli, C; Vanbavinckhove, G

    2014-01-01

    The Antiproton Decelerator (AD) complex at CERN will be extended by an extra low energy anti-proton ring (ELENA) [1] further decelerating the anti-protons thus improving their trapping. The kinetic energy of 100 keV at ELENA extraction facilitates the use of electrostatic transfer lines to the experiments. The mechanical implementation of the electrostatic devices are presented with focus on their alignment, bakeout compatibility, ultra-high vacuum compatibility and polarity switching. Field optimisations for an electrostatic crossing device of three beam lines are shown.

  2. Reduction of the electrostatic coupling in a large-area internal inductively coupled plasma source using a multicusp magnetic field

    Science.gov (United States)

    Lee, Y. J.; Kim, K. N.; Yeom, G. Y.; Lieberman, M. A.

    2004-09-01

    A large area (1020mm×830mm) inductively coupled plasma (ICP) source has been developed using an internal-type linear antenna with permanent magnets forming a multicusp magnetic field. The large rf antenna voltages, which cause the electrostatic coupling between the antenna and the plasma in a large area internal-type linear-antenna ICP source, were decreased significantly by applying the magnetic field near and parallel to the antenna. Through the application of the magnetic field, an approximately 20% higher plasma density, with a value of close to 1.0×1011cm-3 at a rf power of 2000W, and about three times higher photoresist etch rates were observed, while maintaining the plasma nonuniformity at less than 9%.

  3. Calculation of electrostatic fields in ionic crystals by a Bertaut method

    NARCIS (Netherlands)

    Weenk, J.W.; Harwig, H.A.

    1975-01-01

    A method to calculate the electrostatic field strength in ionic crystals is evaluated according to a model by Bertaut. Formulae for the self potential and the field strength at an ion site are derived. The practical use is demonstrated by calculations of field vectors in TiO2 (rutile, anatase, brook

  4. High holding voltage segmentation stacking silicon-controlled-rectifier structure with field implant as body ties blocking layer

    Science.gov (United States)

    Yen, Shiang-Shiou; Cheng, Chun-Hu; Lan, Yu-Pin; Chiu, Yu-Chien; Fan, Chia-Chi; Hsu, Hsiao-Hsuan; Chang, Shao-Chin; Jiang, Zhe-Wei; Hung, Li-Yue; Tsai, Chi-Chung; Chang, Chun-Yen

    2016-04-01

    High electrostatic discharge (ESD) protection robustness and good transient-induced latchup immunity are two important issues for high voltage integrate circuit application. In this study, we report a high-voltage-n-type-field (HVNF) implantation to act as the body ties blocking layer in segmented topology silicon-controlled-rectifier (SCR) structure in 0.11 µm 32 V high voltage process. This body ties blocking layer eliminate the elevated triggered voltage in segmented technique. Using a large resistance as shunt resistor in resistor assisted triggered SCRs stacking structure, the double snapback phenomenon is eliminate. The series SCR could be decoupled a sufficient voltage drop to turned-on when a very low current flow through the shunt resistor. The holding voltage and the failure current of 22 V and 3.4 A are achieved in the best condition of segmented topology SCR stacking structure, respectively. It improves the latchup immunity at high voltage ICs application. On the other hand, the triggered voltage almost keep the same value which is identical to SCR single cell without using segmented topology.

  5. Electrostatics and confinement in Einstein's unified field theory

    OpenAIRE

    Antoci, S.; Liebscher, D. -E.; Mihich, L.

    2007-01-01

    A way for appending sources at the right-hand sides of the field equations of Einstein's unified field theory is recalled. Two exact solutions endowed with point sources in equilibrium are shown, and their physical meaning is discussed.

  6. Transverse voltage in superconductors at zero applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Luz, M.S. da [Escola de Engenharia de Lorena - USP, P.O. Box 116, Lorena, SP 12602-810 (Brazil)], E-mail: luz@physics.montana.edu; Santos, C.A.M. dos; Shigue, C.Y.; Carvalho, F.J.H. de; Machado, A.J.S. [Escola de Engenharia de Lorena - USP, P.O. Box 116, Lorena, SP 12602-810 (Brazil)

    2009-01-01

    A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance (R{sub XY}) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in R{sub XY}(T) curves which are related to the double superconducting transition in the R{sub XX}(T) component. In the superconducting (R{sub XX} = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by R{sub XY} {approx} dR{sub XX}/dT has been confirmed.

  7. A novel easy-driving and easy-signal-processing electrostatic field sensor based on a piezoresistance and polyethylene terephthalate lever

    Science.gov (United States)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhai, Xiaoshe; Geng, Yingsan

    2017-03-01

    A novel electrostatic field sensor with compact structure and a simple signal processing circuit is proposed in this paper. The sensor is based on a piezoresistive force meter and a lathy polyethylene terephthalate (PET) lever for electrostatic force generation and transformation. The force meter with a rectangular membrane supported by four beams was fabricated and one end of the PET lever was attached to the center of the membrane surface. The other end of the lever was free for electrostatic force generation. Only a low voltage DC source was required for the whole sensor, rather than sophisticated driving circuits. The lever magnified the electrostatic force effecting upon the force meter, and thus the output of the sensor was large enough for a simple processing circuit to be sufficient, rather than requiring complicated instruments. Characteristics of the sensor formation make it appropriate to adopt this sensor in various applications, in particular in high voltage power systems monitoring and meteorology measurements. The experiment results showed agreement with simulation results of the sensor. Sensitivity of the prototype of this sensor was 0.06  √mV (kV · m-1)-1 which can be greatly promoted by design optimization and fabrication improvement.

  8. A multi-channel capacitive probe for electrostatic fluctuation measurement in the Madison Symmetric Torus reversed field pinch

    Science.gov (United States)

    Tan, Mingsheng; Stone, Douglas R.; Triana, Joseph C.; Almagri, Abdulgader F.; Fiksel, Gennady; Ding, Weixing; Sarff, John S.; McCollam, Karsten J.; Li, Hong; Liu, Wandong

    2017-02-01

    A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.

  9. Electrostatic Bender Fields, Optics, Aberrations, with Application to the Proton EDM Ring

    CERN Document Server

    Baartman, R

    2015-01-01

    Electrostatic bender optics are derived up to second order (third order in fields and the Hamiltonian) and applied to the proposed EDM proton ring. The results for linear optics agree with those already presented by V.\\ Lebedev (Nov.\\ 18, 2013). Second order optics is not sensitive to the shape of the fringe fields and formulas are given. It is shown that the proposed electrode shape that linearizes the vertical electric field is no advantage to this order.

  10. Electrostatic fields in hybrid heterojunctions: Field-effect transistor, topological insulator, & thermoelectronic application

    Science.gov (United States)

    Ireland, Robert Matthew

    Organic semiconductors (OSC) are still surging in popularity for sustainable electronic devices, especially since they can perform as well as amorphous and polycrystalline silicon materials. Although OSCs have processing advantages that give rise to novel opportunities compared to inorganic semiconductors (ISCs), devices usually require inorganic materials for highly conductive connections or other functionality. Significantly, OSCs can be used to tune or modify the behavior of inorganic semiconductors (ISCs) by exploiting the junction between two semiconductors (a heterojunction). The possible creation of stable interfaces between ISCs and OSCs provides a practically limitless range of functionalities. Broadly, my goal is to study interfaces between OSCs and ISCs (hybrid heterojunctions) by testing devices of different configurations and altering the internal fields systematically, as well as with the aid of electron- and force-microscopy, and photoelectron spectroscopy. This thesis contains three major sections based around nascent, relevant applications: field-effect transistors, topological insulators, and thermoelectrics. First I study the effects of combining tellurium thin-films with OSC layers in field-effect transistors, where the organic acts both as a substrate modification layer and electrostatic gate. Secondly, I use electron withdrawing OSCs as gating materials for modifying Bi2Se3 in order to realize fundamental topological insulator behavior. Thirdly, I develop polymer-particle composites, including doping of the polymers and stabilization of inorganic particles with an electronic density of states that supports good thermoelectric behavior. We show that OSCs can undeniably be used to significantly modify properties of ISCs, namely tellurium, bismuth selenide, and organometallic compounds. I will first discuss the interfacial fields intrinsic to each heterojunction or device structure. Then I implement an additional electrostatic gate as part of the

  11. Effects of cycle duration of an external electrostatic field on anammox biomass activity

    Science.gov (United States)

    Yin, Xin; Qiao, Sen; Zhou, Jiti

    2016-01-01

    In this study, the effects of different cycle durations of an external electrostatic field on an anammox biomass were investigated. The total application time per day was 12 h at 2 V/cm for different cycle durations (i.e., continuous application-resting time) of 3 h-3 h, 6 h-6 h, and 12 h-12 h. Compared with the control reactor, the nitrogen removal rates (NRRs) increased by 18.7%, 27.4% and 8.50% using an external electrostatic field application with a continuous application time of 3 h, 6 h and 12 h. Moreover, after the reactor was running smoothly for approximately 215 days under the optimal electrostatic field condition (mode 2, continuous application-rest time: 6 h-6 h), the total nitrogen (TN) removal rate reached a peak value of approximately 6468 g-N/m3/d, which was 44.7% higher than the control. The increase in 16S rRNA gene copy numbers, heme c content and enzyme activities were demonstrated to be the main reasons for enhancement of the NRR of the anammox process. Additionally, transmission electron microscope observations proved that a morphological change in the anammox biomass occurred under an electrostatic field application.

  12. Numerical study of droplet evaporation in coupled high-temperature and electrostatic fields

    Directory of Open Access Journals (Sweden)

    Ziwen Zuo

    2015-03-01

    Full Text Available The evaporation of a sessile water droplet under the coupled electrostatic and high-temperature fields is studied numerically. The leaky dielectric model and boiling point evaporation model are used for calculating the electric force and heat mass transfer. The free surface is captured using the volume of fluid method accounting for the variable surface tension and the transition of physical properties across the interface. The flow behaviors and temperature evolutions in different applied fields are predicted. It shows that in the coupled fields, the external electrostatic field restrains the flow inside the droplet and keeps a steady circulation. The flow velocity is reduced due to the interaction between electric body force and the force caused by temperature gradient. The heat transfer from air into the droplet is reduced by the lower flow velocity. The evaporation rate of the droplet in the high-temperature field is decreased.

  13. A Novel Electrostatic Guiding Scheme for Cold Polar Molecules in Weak-Field-Seeking States

    Institute of Scientific and Technical Information of China (English)

    DENG Lian-Zhong; XIA Yong; YIN Jian-Ping

    2005-01-01

    @@ We propose a novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states using a single charged wire half embanked in a ceramic substrate (i.e., a chip) and a homogeneous bias electric field, which is produced by a capacitor composed of two large parallel metal plates. We calculate the spatial distribution of the electrostatic fields generated by the combination of the charged wire and the plate capacitor and the corresponding trapping potentials for CO molecules, and analyse the relationships between the electric field and the parameters of the charged-wire layout. Our study shows that the proposed scheme with a single charged-wire can be used to guide cold polar molecules in the weak-field-seeking states, and has some potential applications in construction of various molecule-optical elements.

  14. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  15. Synthesis of electrostatic fields for transportation of charged particle beams

    Directory of Open Access Journals (Sweden)

    Vladimir V. Pavlov

    2016-06-01

    Full Text Available In this paper, an approach to creating corpuscular-optical devices for transportation and transformation of charged particle beams has been elucidated. These devices are able to optimize and create the most convenient configuration of ionic or electron paths. The approach relies upon the inverse dynamics problem formulated on the basis of the Hamilton-Jacobi equation. The motion in the symmetry plane of a three-dimensional (3D field was considered. The problem was solved by analytical methods. An algorithm for constructing electric fields providing the particle motion on the desired trajectories was described. А key to this algorithm lies with a concept of conformal transformation from the theory of complex-valued function. This procedure was illustrated by examples. Quadratic potential was chosen as a basis. Three functions of conformal transformation were considered, providing the rotation of the focused charged particle beam at a fixed angle, the transformation of divergent flow to parallel one. The calculated two-dimensional potentials were extended into 3D-space by power series expansion on transverse coordinate. Device embodiments were suggested on the basis of the calculated field structures.

  16. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping

    CERN Document Server

    Stockem, A; Fonseca, R A; Silva, L O

    2014-01-01

    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales $ \\tilde \\, 10^4 \\, {\\omega}_{pe}^{-1}$. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

  17. Maximum Langmuir Fields in Planetary Foreshocks Determined from the Electrostatic Decay Threshold

    Science.gov (United States)

    Robinson, P. A.; Cairns, Iver H.

    1995-01-01

    Maximum electric fields of Langmuir waves at planetary foreshocks are estimated from the threshold for electrostatic decay, assuming it saturates beam driven growth, and incorporating heliospheric variation of plasma density and temperature. Comparisons with spacecraft observations yields good quantitative agreement. Observations in type 3 radio sources are also in accord with this interpretation. A single mechanism can thus account for the highest fields of beam driven waves in both contexts.

  18. Electrostatic-field-enhanced photoexfoliation of bilayer benzene: A first-principles study

    Science.gov (United States)

    Uchida, Kazuki; Silaeva, Elena P.; Watanabe, Kazuyuki

    2016-06-01

    Photoexfoliation of bilayer benzene in an external electrostatic (dc) field is studied using time-dependent density functional theory combined with molecular dynamics. We find that the dc-field-induced force on the upper benzene in addition to the repulsive interaction between the positively charged benzene molecules induced by the laser field leads to fast athermal exfoliation. Thus, we conclude that the dc field enhances the photoexfoliation due to dc-field emission in addition to laser-assisted photoemission. The athermal exfoliation process is shown to depend crucially on the charge state of benzene molecules rather than on the excitation energy supplied by the laser.

  19. Solute atom migration in GH4169 superalloy under electrostatic fields

    Institute of Scientific and Technical Information of China (English)

    Yao Wang; Lei Wang; Yang Liu; Xiu Song; Bei-jiang Zhang; Jin-hui Du

    2013-01-01

    Electric field treatment (EFT) was applied on GH4169 alloy during aging at 500-800◦C to investigate the microstructure and property variation of the alloy under the action of EFT. The results demonstrate that the short-distance diff usion of Al, Ti, and Nb atoms can be accelerated by EFT, which results in the coarsening ofγ ? andγ ?? phases. Meanwhile, lattice distortion can be caused by the segregation of Fe and Cr atoms, owing to the vacancy flows migrating toward the charged surfaces of the alloy. Therefore, the alloy is hardened by the application of EFT, even if the strength of the alloy is partly reduced, which is caused by precipitation coarsening.

  20. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory.

    Science.gov (United States)

    Wang, Hao; Yang, Weitao

    2016-06-14

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities.

  1. Design of controllable high-voltage electrostatic supply for spraying%用于农药喷洒的可控高压静电电源设计

    Institute of Scientific and Technical Information of China (English)

    杨方; 韩春雨; 潘淑凤; 任雪; 吴江

    2015-01-01

    为农作物静电喷雾试验设计一种输出可控直流高压静电的装置。装置硬件部分主要采用PWM控制方式改变开关管的导通与关闭时间比率,实现输出电压的可控性。输出电压可控范围0~30 kV,最小调节量为1 kV,误差为±0.5 kV,输出电流在50。检测显示电路依靠分压采样与A/D转换可测量电压并在液晶屏上显示,能够绘制电压的实时变化曲线,以便对负载阻态的变化进行实时观察。用高压电表对该装置的输出端进行测量,结果表明,该装置的输出端为可控高电压小电流“静电”。%A controllable DC high voltage electrostatic device was designed for electrostatic spraying experiment on crop. The hardware of the device changed the ratio of conduction and closing by applying PWM control pattern which could control the output voltage magnitude. Output voltage could be controlled in range of 0-30 kV and minimum adjustment amount was 1 kV with error in ±500 V. The output current was about 50μA. Detection and display circuit could measure and display the value of output voltage and the dynamic curve of output in real time by sampling of divided voltage and A/D converting to achieve the real-time state of load observation. The result measured by high voltage meter showed that the device had generated controllable electrostatic with high voltage and low current.

  2. SELF-HEATING OF CORONA BY ELECTROSTATIC FIELDS DRIVEN BY SHEARED FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, H.; Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Poedts, S. [K. U. Leuven, Centre for Plasma Astrophysics, and Leuven Mathematical Modeling and Computational Science Center (LMCC), Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2012-04-01

    A mechanism for self-heating of the solar corona is discussed. It is shown that the free energy available in the form of sheared flows gives rise to unstable electrostatic perturbations which accelerate and heat particles. The electrostatic perturbations can occur through two processes, viz., by a purely growing sheared flow-driven instability and/or by a sheared flow-driven drift wave. These processes can occur throughout the corona and, hence, this self-heating mechanism could be very important for coronal heating. These instabilities can give rise to local perturbed electrostatic potentials {psi}{sub 1} of up to 100 volts within 3 Multiplication-Sign 10{sup -2} to a few seconds time, if the (dimensionless) initial perturbation is assumed to be about 1%, that is, e{psi}{sub 1}/T{sub e} {approx_equal} 10{sup -2}. The wavelengths in the direction perpendicular to the external magnetic field B{sub 0} vary from about 10 m to 1 m in our model. The purely growing instability creates electrostatic fields by sheared flows even if there is no density gradient, whereas a density gradient is crucial for the occurrence of the drift wave instability. The purely growing instability develops a small real frequency as well in the two-ion coronal plasma. In the solar corona, very low frequency (of the order of 1 Hz) drift dissipative waves can also occur due to electron-ion collisions.

  3. Electrostatic disturbances aboard LISA Pathfinder

    Science.gov (United States)

    Ferroni, Valerio

    Test mass charging and stray electrostatic fields are a potentially important source of force noise for the LISA Pathfinder mission. During the flight we plan to measure the relevant stray electrostatic fields on the surfaces of both the test mass and the electrode housing and compensate them with DC electrode bias voltages. In addition we monitor the charge and reduce it to near zero by UV illumination. We describe the analysis techniques used during the mission and explain the importance of periodic charging/discharging and of long-term charge measurements to limit the force noise at low frequency, which is particularly relevant for the eLISA mission.

  4. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    Science.gov (United States)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  5. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  6. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    Science.gov (United States)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  7. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Science.gov (United States)

    Kristensen, P. K.; Rafaelsen, J.; Pedersen, T. G.; Pedersen, K.

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials.

  8. Improved Electronic Control for Electrostatic Precipitators

    Science.gov (United States)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  9. Sampling Field Heterogeneity at the Heme of c-Type Cytochromes by Spectral Hole Burning Spectroscopy and Electrostatic Calculations

    OpenAIRE

    Laberge, Monique; Köhler, Martin; Vanderkooi, Jane M.; Friedrich, Josef

    1999-01-01

    We report on a comparative investigation of the heme pocket fields of two Zn-substituted c-type cytochromes-namely yeast and horse heart cytochromes c-using a combination of hole burning Stark spectroscopy and electrostatic calculations. The spectral hole burning experiments are consistent with different pocket fields experienced at the hemes of the respective cytochromes. In the case of horse heart Zn-cytochrome c, two distinguishable electronic origins with different electrostatic propertie...

  10. Lie map for the nonlinear transport of continuous intense beams in the axial-symmetric electrostatic fields

    Institute of Scientific and Technical Information of China (English)

    Jianqin Lü; Xiaosong Zhao

    2008-01-01

    Nonlinear transport of intense continuous beam in the axial-symmetric electrostatic fields is analyzed with the Lie algebraic method.The K-V particle distribution is adopted in the analysis. The results obtained can be used in the calculations of the intense continuous beam dynamics in the beam optical systems consisting of drift spaces, electrostatic lenses, and DC electrostatic accelerating tubes. A com-puter code has been designed for practical simulations. To meet the needs of accurate calculation, all the elements are divided into many small segments, the electric fields in each segment are regarded as uniform fields, and the dividing points are treated as thin lenses. Iter-ation procedures are adopted in the code to obtain self-consistent solutions. The code can be used to design low energy dc beam transport systems, electrostatic accelerators, and ion implantation machines.

  11. Electron diffusion in a sheared unperturbed magnetic field and an electrostatic stochastic field

    Energy Technology Data Exchange (ETDEWEB)

    Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A I Cuza Str., 200585 Craiova (Romania); Negrea, M [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A I Cuza Str., 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Brussels (Belgium)

    2007-01-15

    The electron diffusion induced by a two-dimensional electrostatic turbulence, in a sheared slab approximation of the toroidal magnetic geometry, is studied firstly using the decorrelation trajectory method (DCT), secondly by direct numerical simulation. The former semi-analytical method allows us to go beyond the Corrsin approximation, thus allowing for a non-classical analysis of the particle trapping phenomenon. The DCT results are compared to the transport properties of the electrons obtained by numerical simulations assuming an isotropic spectrum of electrostatic drift type turbulence that is Gaussian for small wavevectors and power-law k{sup -3} for large wavevectors. The 'radial' and the 'poloidal' running and asymptotic diffusion coefficients of thermal electrons are obtained for physically relevant parameter values. The existence of enhanced diffusion in the poloidal direction is observed in the presence of magnetic shear. The agreement between the semi-analytical method and the purely numerical method is pointed out.

  12. The Investigation of Field Plate Design in 500 V High Voltage NLDMOS

    Directory of Open Access Journals (Sweden)

    Donghua Liu

    2015-01-01

    Full Text Available This paper presents a 500 V high voltage NLDMOS with breakdown voltage (VBD improved by field plate technology. Effect of metal field plate (MFP and polysilicon field plate (PFP on breakdown voltage improvement of high voltage NLDMOS is studied. The coeffect of MFP and PFP on drain side has also been investigated. A 500 V NLDMOS is demonstrated with a 37 μm drift length and optimized MFP and PFP design. Finally the breakdown voltage 590 V and excellent on-resistance performance (Rsp = 7.88 ohm * mm2 are achieved.

  13. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.

    Science.gov (United States)

    Sanchez, Jaime A; Mengüç, M Pinar

    2008-02-20

    In this paper we present an analysis to simulate heating within an isolated carbon nanotube (CNT) attached to an etched tungsten tip during field emission of an electron beam. The length, radius, wall thickness and shape of the tip (closed with a hemispherical shape or open and flat) of the CNT and its separation distance from the flat surface are considered as variables. Using a finite element method, we predict the field enhancement, emission current and temperature of the CNT as a function of these parameters. The electrostatic and transient thermal analyses are integrated with the field-emission models based on the Fowler-Nordheim approximation and heating/cooling due to emitting energetic electrons (the Nottingham effect). These simulations suggest that the main mechanism responsible for heating of the CNT is Joule heating, which is significantly larger than the Nottingham effect. Results also indicate that the electrostatic characteristics of CNTs are very sensitive to the considered parameters whereas the transient thermal response is only a function of the CNT radius and wall thickness. Further, the thermal response of the CNT is independent of its geometry, meaning that, as long as a given set of geometrical conditions are present that result in a given emission current, the maximum temperature a CNT attains will be the same.

  14. Optimization of the electrostatic and magnetic field configuration in the MITICA accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G., E-mail: giuseppe.chitarin@igi.cnr.it [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Univ. di Padova, Department of Engineering and Management, strad. S. Nicola 3, 36100 Vicenza (Italy); Agostinetti, P. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Esch, H.P.L. de [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marcuzzi, D.; Marconato, N.; Sartori, E.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy)

    2013-10-15

    MITICA (Megavolt ITER Injector Concept Advancement) is a test facility for the development of a full-size heating and current drive neutral beam injectors for the ITER Tokamak reactor. The optimized electrostatic and magnetic configuration has been defined by means of an iterative optimization involving all the physics and the engineering aspects. The acceleration grids have been designed considering optical performances and mechanical constraints related to embedded magnets, to cooling channels, to the grid stiffness and manufacturability. A combination of “local” vertical field and horizontal “long range” field has been found to be the most effective set-up for ion extraction, beam focusing and minimization and equalization of thermo-mechanical loads and minimal number of electrons exiting the accelerator.

  15. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  16. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    Science.gov (United States)

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-05-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment.

  17. Improved mapping of planetary gravitational field with an electrostatic accelerometer/gradiometer

    Science.gov (United States)

    Foulon, Bernard; Huynh, Phuong-Anh; Liorzou, Francoise; Christophe, Bruno; Hardy, Emilie; Boulanger, Damien; Lebat, Vincent; Perrot, Eddy

    2015-04-01

    ONERA has a proven record spanning several years in developing the most accurate accelerometers for geodesy missions. They are still operational in the GRACE mission and their successors for the GRACE-FO mission will fly in 2017. Finally, the GOCE mission has shown the benefit of using a gradiometer for the direct measurement of the gravity field. Now, ONERA proposes a new accelerometer design, MicroSTAR, for interplanetary missions. This design based on the same technology as for the GRACE and GOCE space missions, with the notable addition of a bias rejection system, has a reduced mass and consumption. The accelerometer is embarked on Uranus Pathfinder (mission proposal for Cosmic M4) as up-scope instrument to achieve two scientific objectives: 1) to determine the gravity fields of Uranus and the satellites, allowing for a better understanding of the planet interior composition, 2) to test gravity at the largest possible length scales to search for deviations from General Relativity. The success of using accelerometer for geodesy mission could be imported in the planetary science field. The poster details the accuracy which can be achieved on the gravity potential field according to different accelerometer configurations. It describes the instrument and its integration inside an interplanetary probe. Finally, it explains the benefit of using this electrostatic accelerometer complementary to radio science technology for improved planetary gravitational field measurements.

  18. Stochastic ion heating by an electrostatic wave in a sheared magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1980-08-01

    Effects of the shear of the magnetic field on the stochastic acceleration of ions due to an electrostatic wave with a frequency in the lower-hybrid range are considered. An appropriate Hamiltonian formalism is used to analyze the equations of motion numerically and theoretically. The surface of section method is used to visualize the solutions and to compare these with the theoretical predictions. From this analysis it appears that there exists an upper adiabatic barrier for the stochastic region which seems to be responsible for the formation of a hot tail in the ion velocity distribution. In addition to lowering the threshold for the onset of stochasticity, the effect of shear is to shift the tail structure to lower values of the velocities. Consequently, these results might help to improve the efficiency of heating by external radiation in the lower-hybrid frequency range.

  19. Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field

    Directory of Open Access Journals (Sweden)

    Pei-Kun Yang

    2013-07-01

    Full Text Available To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes.

  20. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    OpenAIRE

    Ye Peng; Tao Liu; Haifeng Gong; Xianming Zhang

    2016-01-01

    The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric...

  1. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  2. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.K.; Rafaelsen, J.; Pedersen, T.G.; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Pontoppidanstraede 103, 9220 Aalborg East (Denmark)

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    Science.gov (United States)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  4. Meet me on the other side: trans-bilayer modulation of a model voltage-gated ion channel activity by membrane electrostatics asymmetry.

    Directory of Open Access Journals (Sweden)

    Loredana Mereuta

    Full Text Available While it is accepted that biomembrane asymmetry is generated by proteins and phospholipids distribution, little is known about how electric changes manifested in a monolayer influence functional properties of proteins localized on the opposite leaflet. Herein we used single-molecule electrophysiology and investigated how asymmetric changes in the electrostatics of an artificial lipid membrane monolayer, generated oppositely from where alamethicin--a model voltage-gated ion channel--was added, altered peptide activity. We found that phlorizin, a membrane dipole potential lowering amphiphile, augmented alamethicin activity and transport features, whereas the opposite occurred with RH-421, which enhances the monolayer dipole potential. Further, the monolayer surface potential was decreased via adsorption of sodium dodecyl sulfate, and demonstrated that vectorial modification of it also affected the alamethicin activity in a predictive manner. A new paradigm is suggested according to which asymmetric changes in the monolayer dipole and surface potential extend their effects spatially by altering the intramembrane potential, whose gradient is sensed by distantly located peptides.

  5. On the state selection of linear triatomic molecules by electrostatic hexapole fields

    Science.gov (United States)

    Tsai, Po-Yu

    2016-09-01

    Electrostatic hexapole state-selector is a versatile tool in experimental stereodynamics. The requirement of appropriate models to correctly predict the behavior of molecules in the hexapole motivated us to realize a treatment that predicts the Stark effect of linear triatomic molecules with rotational doublet states. Various perturbative approximations are conventionally adopted to obtain analytic Stark energy derivatives of a truncated Hamiltonian matrix, without utilizing numerical diagonalization of the full Hamiltonian matrix. By including both the low and high field effects, which were alternatively ignored in the analytical formulae of such approximate approaches, herein we demonstrate that the performance of hexapole state selector to linear triatomic molecules can be appropriately predicted via Van Vleck transformation. This method can provide analytic Stark energy derivatives that are acceptably in consistent with the ones obtained via numerical diagonalization of the full Hamiltonian matrix. Particularly, this work is suitable for v2 = 1 level of linear triatomic molecules, due to the following reasons: (1) the Stark energy derivative and the molecular orientation as a function of the electric field are expressed in analytical formulae, hence it is suitable for implementation without involving numerical diagonalization of the full Hamiltonian matrix; (2) a better prediction of the focusing curves with respect to conventional analytical treatments is provided, allowing a reliable determination of the selected state compositions and molecular orientation.

  6. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Debugging on High-voltage Power Supply,Focusing Power Supply and Magnetic Field Power Supply

    Institute of Scientific and Technical Information of China (English)

    TU; Rui

    2015-01-01

    High-voltage power supply,focusing power supply and magnetic field power supply are the main parts of the power supply system of the EMIS(Electro-Magnetic Isotope Separator)supplying the ion source.In 2015,a high-voltage power supply,power supply for focusing and

  8. Calculation of Spark Breakdown or Corona Starting Voltages in Nonuniform Fields

    DEFF Research Database (Denmark)

    Pedersen, A.

    1967-01-01

    The processes leading to a spark breakdown or corona discharge are discussed very briefly. A quantitative breakdown criterion for use in high-voltage design is derived by which spark breakdown or corona starting voltages in nonuniform fields can be calculated. The criterion is applied to the sphere...

  9. Switchable voltage control of the magnetic coercive field via magnetoelectric effect

    Science.gov (United States)

    Wang, Jing; Ma, Jing; Li, Zheng; Shen, Yang; Lin, Yuanhua; Nan, C. W.

    2011-08-01

    Switchable voltage modulation of the magnetic properties is reported in different multiferroic bilayers with magnetic films grown on pre-poled ferroelectric substrates, based on the magneto-optical Kerr effect observations. The dynamic voltage control of the magnetic coercive field (Hc) is dependent not only on the materials properties of each ferroic layer, but also on the bias voltage history. The Hc versus electric field behaviors essentially track the dependence of the piezostrains of the substrates on the bias voltage. The observations demonstrate that Hc in such multiferroic bilayers can be controlled by voltage via strain-mediated magnetoelectric coupling and that the Hc change is not an artifact due to a heating effect.

  10. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasaryan, D.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Hayrapetyan, D.B., E-mail: dhayrap82@gmail.com [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Harutyunyan, V.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia)

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received. - Highlights: • The electron energy analytical dependencies on the electric field value have been achieved. • The selection rules for transitions between levels with different quantum numbers are revealed. • The interband and intraband absorption coefficients have been studied.

  11. Multipolar electrostatics.

    Science.gov (United States)

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  12. Second harmonic generation in carbon nanotubes induced by transversal electrostatic field.

    Science.gov (United States)

    Trolle, Mads Lund; Pedersen, Thomas Garm

    2013-08-14

    Carbon nanotubes (CNTs) of armchair and zigzag type contain an inversion centre, and are thus intrinsically unable to generate dipole even-order nonlinearities, such as second harmonic generation (SHG). Breaking the inversion symmetry by application of an external voltage transversal to the CNT axis will, however, induce a second harmonic response. Similarly, additional non-vanishing second harmonic tensor elements will be induced in chiral tubes already displaying an intrinsic response. Many geometries realizing such a setup can be envisaged, e.g., an experimental gate setup or deposition of CNTs on, or integration in, strongly polarized host media, perhaps facilitating a tunable second harmonic response. In this work, we calculate the SHG signal from CNTs under transversally applied electric fields based on a tight-binding model.

  13. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Science.gov (United States)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Harutyunyan, V. A.

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received.

  14. Electrodynamics the field-free approach : electrostatics, magnetism, induction, relativity and field theory

    CERN Document Server

    Prytz, Kjell

    2015-01-01

    This book is intended as an undergraduate textbook in electrodynamics at basic or advanced level. The objective is to attain a general understanding of the electrodynamic theory and its basic experiments and phenomena in order to form a foundation for further studies in the engineering sciences as well as in modern quantum physics. The outline of the book is obtained from the following principles: •         Base the theory on the concept of force and mutual interaction •         Connect the theory to experiments and observations accessible to the student •         Treat the electric, magnetic and inductive phenomena cohesively with respect to force, energy, dipoles and material •         Present electrodynamics using the same principles as in the preceding mechanics course •         Aim at explaining that theory of relativity is based on the magnetic effect •         Introduce field theory after the basic phenomena have been explored in terms of forc...

  15. Electromagnetic Field Evaluation of a 500kV High Voltage Overhead Line

    Directory of Open Access Journals (Sweden)

    Chen Chun

    2013-02-01

    Full Text Available Many scientific articles have been written about electromagnetic field distributions under high voltage overhead transmission lines. However, some readers are still left wondering just how exactly the distribution curves formed by the fields are related to the mathematical models used. This paper presents case study results of a 500 kV alternating current overhead transmission line, and explicitly shows how the fields vary under high voltage lines by employing easily understood mathematical models. The numerical simulations, done using MATLAB, can help anyone willing to evaluate the amount of electromagnetic fields available under any other high voltage overhead transmission line. The magnitudes of the fields obtained are compared with the standard values set by the International Radiation Protection Agency so as to assess the integrity of external insulation of the line. Thus, the technical staff can easily attend to complaints that may arise about the electromagnetic field effects from the line.

  16. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  17. The Thawing Characteristic of Frozen Tofu under High-Voltage Alternating Electric Field

    Directory of Open Access Journals (Sweden)

    Shilong Deng

    2017-01-01

    Full Text Available To systematically and comprehensively investigate the high voltage alternating electric field (HVAEF thawing processing, we investigated the high-voltage electric field thawing characteristic of the frozen tofu at different voltages for alternating current (AC. The thawing time, thawing loss of frozen tofu, and specific energy consumption (SEC of HVEF system were measured. Seven different mathematical models were then compared to simulate thawing time curves based on root mean square error, reduced mean square of deviation, and modeling efficiency. The results showed that the thawing rate of frozen tofu was notably greater in the high-voltage electric field system when compared to control. Both Linear and Quadratic models were the best mathematical models. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the HVAEF thawing properties of frozen tofu.

  18. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    Science.gov (United States)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  19. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  20. A threshold voltage model for high-κgate-dielectric MOSFETs considering fringing-field effect

    Institute of Scientific and Technical Information of China (English)

    Ji Feng; Xu Jing-Ping; Lai Pui-To

    2007-01-01

    In this paper, a threshold voltage model for high-κgate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived through a conformal mapping transformation method to consider the fringing-field effects including the influences of high-κgate-dielectric and sidewall spacer. Comparing with similar models, the proposed model can be applied to general situations where the gate dielectric and sidewall spacer can have different dielectric constants. The influences of sidewall spacer and high-κgate dielectric on fringing field distribution of the gate dielectric and thus threshold voltage behaviours of a MOSFET are discussed in detail.

  1. Effects of High-voltage Pulse Electric Field Treatment on the Structure Stability of Konjac Glucomannan

    Institute of Scientific and Technical Information of China (English)

    YAO Min-Na; FAN Lin-Lin; LIU Ya-Nan; CHEN Qing-Ai; ZENG Yuan; JIAN Wen-Jie; PANG Jie

    2011-01-01

    Structures of KGM treated in two high-voltage pulse electric fields were characterized by infrared spectroscopy,Raman spectroscopy,X-ray diffraction and so on.The results showed that intermolecular hydrogen bonding interactions of KGM were reduced after being treated with high-voltage pulse electric field,but there was no significant effect on its fiber chain form and thermal characteristics.Results of the study can provide a useful reference for further study on the structure and property of KGM,and especially can provide theoretical basis for the effect of physical field on the foodstuff deep processing related to KGM.

  2. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    Energy Technology Data Exchange (ETDEWEB)

    Mordik, S.N. E-mail: iapuas@gluk.apc.org; Ponomarev, A.G

    2002-03-21

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  3. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    CERN Document Server

    Mordik, S N

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  4. Mechanically stable nanostructures with desirable characteristic field enhancement factors: a response from scale invariance in electrostatics

    Science.gov (United States)

    de Assis, Thiago A.; Dall'Agnol, Fernando F.

    2016-11-01

    This work presents an accurate numerical study of the electrostatics of a system formed by individual nanostructures mounted on support substrate tips, which provides a theoretical prototype for applications in field electron emission or for the construction of tips in probe microscopy that requires high resolution. The aim is to describe the conditions to produce structures mechanically robust with desirable field enhancement factor (FEF). We modeled a substrate tip with a height h 1, radius r 1 and characteristic FEF {γ }1, and a top nanostructure with a height h 2, radius {r}2\\lt {r}1 and FEF {γ }2, for both hemispheres on post-like structures. The nanostructure mounted on the support substrate tip then has a characteristic FEF, {γ }{{C}}. Defining the relative difference {η }{{R}}=({γ }{{C}}-{γ }1)/({γ }3-{γ }1), where {γ }3 corresponds to the reference FEF for a hemisphere of the post structure with a radius {r}3={r}2 and height {h}3={h}1+{h}2, our results show, from a numerical solution of Laplace’s equation using a finite element scheme, a scaling {η }{{R}}=f(u\\equiv λ {θ }-1), where λ \\equiv {h}2/{h}1 and θ ={r}1/{r}2. Given a characteristic variable u c, for u\\ll {u}{{c}}, we found a power law {η }{{R}}˜ {u}κ , with κ ≈ 0.55. For u\\gg {u}{{c}}, {η }{{R}}\\to 1, which led to conditions where {γ }{{C}}\\to {γ }3. As a consequence of scale invariance, it is possible to derive a simple expression for {γ }{{C}} and to predict the conditions needed to produce related systems with a desirable FEF that are robust owing to the presence of the substrate tip. Finally, we discuss the validity of Schottky’s conjecture (SC) for these systems, showing that, while to obey SC is indicative of scale invariance, the opposite is not necessarily true. This result suggests that a careful analysis must be performed before attributing SC as an origin of giant FEF in experiments.

  5. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.

    Science.gov (United States)

    Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng

    2012-01-12

    IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.

  6. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  7. A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions

    Science.gov (United States)

    Michalowsky, Julian; Schäfer, Lars V.; Holm, Christian; Smiatek, Jens

    2017-02-01

    We present a refined version of the polarizable Martini water model - coined refPOL - designed specifically for the use with long-range electrostatics. The refPOL model improves the agreement with the experimentally measured dielectric constant and the mass density of water at room temperature compared to the original polarizable Martini water force field when particle mesh Ewald electrostatics are employed. Our study reveals that the model remains applicable with various commonly used settings for the non-bonded interactions, including reaction field electrostatics. The oil/water partitioning behavior of uncharged Martini bead types is thoroughly investigated: Lennard-Jones interactions between the refPOL model and the remaining Martini beads are adjusted to reproduce the hydration free energies obtained with the original polarizable water model, while free energies of solvation in apolar media remain unchanged. The cross-interactions with charged bead types are parameterized to agree with the experimentally observed area per lipid of a fully solvated dipalmitoylphosphatidylcholine bilayer. We additionally verify the model by analyzing the potentials of mean force between different sample pairs in refPOL water and comparing the results to reference data obtained using the original polarizable Martini water model as well as fully atomistic simulations. Based on the results, we suggest to replace the original polarizable Martini water model with the new refPOL model for future applications.

  8. Electret electrostatic cloak

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu; Zhao, Yanyan; Zhao, Zhigang; Li, Hua, E-mail: 12.66@163.com

    2015-04-01

    We report that a bi-layer electret cylinder can cloak electrostatic field. We fabricated two hollow electret cylinders, the two hollow electret cylinders nested a bi-layer hollow electret cylinder. The direction of the polarization intensity is parallel to one of the diameters. Experimental results show that the bi-layer hollow electret cylinder can cloak electrostatic field.

  9. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  10. Electrostatic Insect Sweeper for Eliminating Whiteflies Colonizing Host Plants: A Complementary Pest Control Device in An Electric Field Screen-Guarded Greenhouse.

    Science.gov (United States)

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kusakari, Shin-Ichi; Okada, Kiyotsugu; Kimbara, Junji; Osamura, Kazumi; Toyoda, Hideyoshi

    2015-05-12

    Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs) were arranged at constant intervals along a polyvinylchloride (PVC) pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries) inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse.

  11. Electrostatic Insect Sweeper for Eliminating Whiteflies Colonizing Host Plants: A Complementary Pest Control Device in An Electric Field Screen-Guarded Greenhouse

    Directory of Open Access Journals (Sweden)

    Yoshihiro Takikawa

    2015-05-01

    Full Text Available Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs were arranged at constant intervals along a polyvinylchloride (PVC pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse.

  12. Removal of phenol by activated alumina bed in pulsed high-voltage electric field

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-nan; MA Jun; YANG Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1 % when air aeration flow rate was 1200 ml/min, and 88.2 % when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  13. Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa); Pillay, S. R. [School of Physics, University of Kwazulu-Natal, Durban (South Africa)

    2011-12-15

    Electrostatic solitary waves (ESWs) have been observed by satellites in the auroral region of the Earth's magnetosphere. These ESWs are found to be having both positive and negative electrostatic potentials. Using the Sagdeeev psuedo-potential technique, arbitrary amplitude electron-acoustic solitary waves/double layers are studied in an unmagnetized plasma consisting of non-thermally distributed hot electrons, fluid cold electrons, a warm electron beam, and ions. The inertia of the warm electrons, and not the beam speed, is essential for the existence of positive potential solitary structures. Existence domains for positive as well as negative potential electrostatic solitons/double layers are obtained. For the typical auroral region parameters, the electric field amplitude of the negative potential solitons is found to be in the range {approx}(3-30) mV/m and {approx}(5-80) mV/m for the positive potential solitons. For the negative potential solitons/double layers, the amplitudes are higher when their widths are smaller. On the other hand, the amplitude of the positive potential structures increase with their widths.

  14. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  15. Electrostatic field generated by a charge polynomial distribution in an elliptic beam; Champ electrostatique genere par une distribution de charge polynomiale dans un faisceau de section elliptique

    Energy Technology Data Exchange (ETDEWEB)

    Coacolo, J.L

    1999-07-01

    In this work, the electrostatic field generated from a polynomial charge distribution with an elliptic outline, has been calculated. One of the interests of this calculation is the introduction of the field analytical expression, in a space charge routine of a beam dynamic simulation particle code. The field analytical expression calculated here is exact only for a continuous field. (A.L.B.)

  16. Polymer nanofibers prepared by low-voltage near-field electrospinning

    Institute of Scientific and Technical Information of China (English)

    Zheng Jie; Long Yun-Ze; Sun Bin; Zhang Zhi-Hua; Shao Feng; Zhang Hong-Di; Zhang Zhi-Ming; Huang Jia-Yin

    2012-01-01

    Electrospinning is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV-30 kV and spinning distance of 10 cm-20 cm.In this paper,polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm-900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm.Besides the uniform fibers,beaded-fibers were also fabricated and the formation mechanism was discussed.Particularly,a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers,including concentration,humidity,collecting position,and spinning distance.

  17. Effect of High-Frequency Electric Field on Propagation of Electrostatic Wave in a Non-Uniform Relativistic Plasma Waveguide

    Institute of Scientific and Technical Information of China (English)

    Kh. H. EL-SHORBAGY

    2008-01-01

    The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electro-static wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of rel-ativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.

  18. Analysis of electric field control methods for foil coils in high-voltage linear actuators

    Directory of Open Access Journals (Sweden)

    Beek T.A. van

    2015-12-01

    Full Text Available This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.

  19. 110 kV复合材料杆塔静电场仿真研究%Electrostatic Field Simulation of 110 kV Composite Tower

    Institute of Scientific and Technical Information of China (English)

    王灿灿; 岳平; 郑泞康; 姜文东; 夏之罡; 初金良; 杨健伟; 蓝磊

    2015-01-01

    依据110 kV复合材料杆塔的结构特点建立了复合材料单相塔头的三维静电场有限元模型,计算了该模型的电位和电场分布,对比分析了采用各种均压措施后其电位和电场强度分布的变化情况。结果表明:在金属螺栓上加圆头螺帽或采用复合材料螺栓均能有效改善螺栓表面的电场分布,其中使用复合材料螺栓的改善效果更为明显;与悬挂玻璃绝缘子串时相比,导线横担悬挂复合材料绝缘子时塔身的电位和电场强度均降低。%A three-dimensional electrostatic field simulation model of single-phase tower head was estab-lished according to the structural characteristic of 110 kV composite tower, and its space potential and electric field distribution was calculated, and then the changes of potential and electric field intensity dis-tribution after using various voltage equalizing measures were analyzed. The results show that the electric field distribution of bolt surface is improved by using a metal bolt with a round nut or using a compos-ite bolt, and using a composite bolt has a better improvement effect. Compared with hanging glass insula-tors, the potential and electric field intensity of the tower reduce when hanging composite insulators.

  20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  1. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  2. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    Science.gov (United States)

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory. Copyright © 2014. Published by Elsevier B.V.

  3. Complementary circuits based on solution processed low-voltage organic field-effect transistors

    NARCIS (Netherlands)

    Ball, James M.; Wöbkenberg, Paul H.; Kooistra, Floris B.; Hummelen, Jan C.; Leeuw, Dago M. de; Bradley, Donal D.C.; Anthopoulos, Thomas D.

    2009-01-01

    The field of organic electronics is advancing quickly towards ultra low-cost, low-end applications and is expected to provide the necessary technology required for flexible/printed electronics. Here we address the need for solution processed low-voltage complementary logic in order to reduce power c

  4. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors

    NARCIS (Netherlands)

    Mathijssen, Simon G. J.; Colle, Michael; Gomes, Henrique; Smits, Edsger C. P.; de Boer, Bert; McCulloch, Iain; Bobbert, Peter A.; de Leeuw, Dago M.; Cölle, Michael

    2007-01-01

    The electrical instability of organic field-effect transistors is investigated. We observe that the threshold-voltage shift (see figure) shows a stretched-exponential time dependence under an applied gate bias. The activation energy of 0.6 eV is common for our and all other organic transistors repor

  5. Biological effects of the electrostatic field: red blood cell-related alterations of oxidative processes in blood

    Science.gov (United States)

    Harutyunyan, Hayk A.; Sahakyan, Gohar V.

    2016-01-01

    The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.

  6. Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

    CERN Document Server

    Zhao, L; Houard, J; Blum, I; Delaroche, F; Vurpillot, F

    2016-01-01

    We have recently proposed an atom probe design based on a femtosecond time-resolved pump-probe setup. This setup unlocks the limitation of voltage pulsed mode atom probe thanks to the occurrence of local photoconductive switching effect . In this paper, we have used a numerical model to simulate the field evaporation process triggered by the synchronous two pulses. The model takes into account the local photoconductive effect and the temperature rise caused by the laser application and the voltage pulse distortion due to the RC effect.

  7. Radio-frequency sheath voltages and slow wave electric field spatial structure

    Energy Technology Data Exchange (ETDEWEB)

    Colas, Laurent, E-mail: laurent.colas@cea.fr; Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Křivská, Alena [LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquot, Jonathan [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  8. Direct coupling of thin-layer chromatography-bioautography with electrostatic field induced spray ionization-mass spectrometry for separation and identification of lipase inhibitors in lotus leaves.

    Science.gov (United States)

    Zhang, Lei; Shi, Jiyao; Tang, Jihe; Cheng, Zhihong; Lu, Xiaohui; Kong, Yao; Wu, Tao

    2017-05-15

    In situ profiling compounds in complex matrices is important technology to develop in analytic chemistry. The aim of this study is to develop a direct coupling method of thin layer chromatography (TLC) to mass spectrometry (MS) via electrostatic field induced spray ionization (EFISI). We proposed a surface treatment method of normal-phase thin layer chromatography (TLC) plates with dimethyl silicone oil coating which successfully allowed TLC to couple to MS via EFISI. Different parameters affecting the ionization efficiency were investigated and optimized, including silicone oil concentrations, air-drying times, applied voltages, and TLC plate types. This optimized TLC-EFISI-MS method was successfully applied to examine lipase inhibitory components present in lotus leaves. Six active alkaloids including three aporphines and three benzylisoquinolines were profiled with their MS(n) (n = 4) data, or with a comparison with reference substances. This is the first report on the coupling EFISI-MS to TLC or TLC bioautography for in situ identification of active natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Local electrostatic field induced by the carotenoid bound to the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides.

    Science.gov (United States)

    Yanagi, Kazuhiro; Shimizu, Madoka; Hashimoto, Hideki; Gardiner, Alastair T; Roszak, Aleksander W; Cogdell, Richard J

    2005-01-20

    Electroabsorption (EA) spectra were recorded in the region of the reaction center (RC) Qy absorption bands of bacteriochlorophyll (Bchl) and bacteriopheophytin, to investigate the effect of carotenoid (Car) on the electrostatic environment of the RCs of the purple bacterium Rhodobacter (Rb.) sphaeroides. Two different RCs were prepared from Rb. sphaeroides strain R26.1 (R26.1-RC); R26.1 RC lacking Car and a reconstituted RC (R26.1-RC+ Car) prepared by incorporating a synthetic Car (3,4-dihydrospheroidene). Although there were no detectable differences between these two RCs in their near infrared (NIR) absorption spectra at 79 and 293 K, or in their EA spectra at 79 K, significant differences were detected in their EA spectra at 293 K. Three nonlinear optical parameters of each RC were determined in order to evaluate quantitatively these differences; transition dipole-moment polarizability and hyperpolarizability (D factor), the change in polarizability upon photoexcitation (Deltaalpha), and the change in dipole-moment upon photoexcitation (Deltamu). The value of D or Deltaalpha determined for each absorption band of the two RC samples showed similar values at 77 or 293 K. However, the Deltamu values of the special pair Bchls (P) and the monomer Bchls absorption bands showed significant differences between the two RCs at 293 K. X-ray crystallography of the two RCs has revealed that a single molecule of the solubilizing detergent LDAO occupies part of the carotenoid binding site in the absence of a carotenoid. The difference in the value of Deltamu therefore represents the differential effect of the detergent LDAO and the carotenoid on P. The change of electrostatic field around P induced by the presence of Car was determined to be 1.7 x 10(5) [V/cm], corresponding to a approximately 10% change in the electrostatic field around P.

  10. Influence of spinning voltage on piezoelectric properties of electrostatic spinning PVDF fiber membranes%纺丝电压对静电纺PVDF纤维膜压电效应的影响

    Institute of Scientific and Technical Information of China (English)

    潘恒祥; 朱胤达; 胡吉永; 杨旭东; 丁辛

    2016-01-01

    纺丝电压是影响静电纺聚偏氟乙烯( PVDF)纤维膜β相生成和压电效应的重要因素之一。目前不同文献中对电压影响的研究结果存在不同观点。采用静电纺丝方法,在不同电压(14.0~24.0 kV)条件下制备了PVDF纤维膜,测试了不同电压下PVDF纤维膜的压电响应,利用 FTIR和 XRD方法表征了不同电压下PVDF纤维膜的β相含量。结果表明,在给定的纺丝电压范围内,PVDF纤维膜的压电响应输出和β相含量均存在最大值。通过对比分析其他研究结果,对影响试验结果的因素展开了讨论。%Spinning voltage is one of important factors which influence on beta phase content and piezoelectric effect of electrostatic spinning poly ( vinylidene fluoride ) nanofiber membranes. At present, there is a big debate about the relationship between spinning voltage and piezoelectric effect. A series of PVDF nanometer fiber membranes were made by electrostatic spinning method under different voltages (14. 0~24. 0 kV), and piezoelectric response of nanofiber membranes were tested through a homemade test platform. Then, the beta phase content of PVDF fiber membranes was characterized by FTIR and XRD methods. The results showed that both piezoelectric output signals and beta phase content of PVDF fiber membranes had a maximum value in given range of spinning voltages. The effect factors on experimental results were discussed through comparison and analysis to other research results.

  11. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T

    1998-01-01

    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  12. Forbidden Transition Induced by the Electrostatic Field%静电场诱发禁戒的跃迁

    Institute of Scientific and Technical Information of China (English)

    杨宁选; 杨坤; 范婷

    2016-01-01

    Base on the 《Theoretical study on sym metry of the Stark effect of Hydrogen atom》work , We discusses the hydrogen atomic electrostatic field induced forbidden transition 2s → 1s transition probability .Due to the superposition of States , the forbidden transitions are realization ,which cannot be achieved in the general approximation ,in under the action of electrostatic field .In this case ,the forbidden transition 2s → 1s the transition probability and 2p → 1s the transition probability is proportional to .%在文献[1]工作的基础上,讨论了氢原子静电场诱发的禁戒跃迁2s →1s 的跃迁几率,发现在静电场的作用下,由于态的叠加,实现了在一般近似下不可能实现的禁戒跃迁,且在这种情况下,禁戒跃迁2s →1s 的跃迁几率与2p →1s 的跃迁几率成正比。

  13. Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels. : Electrostatic interactions between segments IIS2, IIS3 and IIS4 of Na+ channel.

    OpenAIRE

    Mantegazza, Massimo; Cestèle, Sandrine

    2005-01-01

    International audience; Beta-scorpion toxins specifically modulate the voltage dependence of sodium channel activation by acting through a voltage-sensor trapping model. We used mutagenesis, functional analysis and the action of beta-toxin as tools to investigate the existence and role in channel activation of molecular interactions between the charged residues of the S2, S3 and S4 segments in domain II of sodium channels. Mutating to arginine the acidic residues of the S2 and S3 transmembran...

  14. An Analysis of Magnetic Field Environment Near High-Voltage Power Lines and Contact Wires of Electric Railways

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed

  15. Voltage spike observation in superconducting cable-in-conduit conductor under ramped magnetic fields. Pt. 1: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sangkwon Jeong; Schultz, J.H.; Takayasu, Makoto; Vysotsky, Vitaly; Michael, P.C. [Massachusetts Inst. of Technology, Plasma Fusion Center, Cambridge, MA (United States); Warnes, William [Oregan State Univ., Corvallis, OR (United States); Shen, Stewart [Lawrence Livermore National Lab., Livermore, CA (United States)

    1997-06-01

    A 27-strand hybrid superconducting cable-in-conduit conductor (CICC) was fabricated and tested under quickly-ramped high magnetic fields. When the field increased linearly on the CICC, the voltage signal showed several intermittent spikes before it quenched. This paper describes an observation of peculiar voltage spikes during these ramp-rate limitation experiments. The voltage spikes are interpreted as quench precursors and understood as current redistribution events within the local cable inside the conduit. A quantitative correlation is obtained for the magnetic field at which the first voltage spike occurs during ramping fields. The non-uniform current distribution among the strands and the induced loop current in the cable, which is generated by ramped fields, are found to be responsible for the voltage spikes. (author)

  16. Increase in the scattering of electric field lines in a new high voltage SOI MESFET

    Science.gov (United States)

    Anvarifard, Mohammad K.

    2016-09-01

    This paper illustrates a new efficient technique to enhance the critical features of a silicon-on-insulator metal-semiconductor field-effect transistor (SOI MESFET) applied in high voltage applications. The structure we proposed utilizes a new method to scatter the electric field lines along the channel region. Realization of two trenches with different materials, which a trench is created in the channel region and the other one is created in the buried oxide, helps the proposed structure to improve the breakdown voltage, driving current, drain-source conductance, minimum noise figure, unilateral power gain and output power density. Exploring the obtained results, the proposed structure has superior electrical performance in comparison to the conventional structure.

  17. Electrostatic Potential of a Point Charge in a Brans-Dicke Reissner-Nordstr\\"{o}m Field

    CERN Document Server

    Watanabe, Maya

    2013-01-01

    We consider the Brans-Dicke Reissner-Nordstr\\"{o}m spacetime in isotropic coordinates and the electrostatic field of an electric point charge placed outside its surface of inversion. We treat the static electric point charge as a linear perturbation on the Brans-Dicke Reissner-Nordstr\\"{o}m background. We develop a method based upon the Copson method to convert the governing Maxwell equation on the electrostatic potential generated by the static electric point charge into a solvable linear second order ordinary differential equation. We obtain a closed form fundamental solution of the curved space Laplace equation arising from the background metric, which is shown to be regular everywhere except at the point charge and its image point inside the surface of inversion. We also develop a method that demonstrates that the solution does not contain any other charge that may creep into the region that lies beyond the surface of inversion and which is not covered by the isotropic coordinates. The Brans-Dicke Reissne...

  18. Space charge accumulation in polymeric high voltage DC cable systems

    NARCIS (Netherlands)

    Bodega, R.

    2006-01-01

    One of the intrinsic properties of the polymeric high voltage (HV) direct current (DC) cable insulation is the accumulation of electrostatic charges. Accumulated charges distort the initial Laplacian distribution of the electric field, leading to a local field enhancement that may cause insulation d

  19. An investigation of flow-limited field-injection electrostatic spraying (FFESS) and its applications to thin film deposition

    Science.gov (United States)

    Singh, Ravindra Pratap

    Electrostatic spraying is the process of controlled disruption of a liquid surface due to excess surface charge density. The technique has found applications in a wide range of fields from agricultural sprays to fuel injectors to colloidal thrusters for space vehicle propulsion. Over the past 20 years, the technique has been intensely studied in material processing for synthesis of ceramic and metal powders, nanoparticles and thin films. The importance of the technique lies in its simple setup, high deposition efficiency, and ambient atmosphere operation. In conventional electrostatic spraying (CESS), one uses a conducting nozzle to charge the liquid, mostly by induction charging. CESS is therefore restricted to the single jet mode of spraying which occurs at low spray currents. It lacks stability and reproducibility in the high current, multiple jet regime, which can generate much finer sprays. In flow-limited field-injection electrostatic spraying (FFESS), one uses a field-injection electrode to stably and controllably inject higher currents into the liquid, a la Fowler-Nordheim, using an otherwise insulating nozzle. This way, it is possible to stably electrospray in the multiple jet mode. In addition to producing much finer sprays, the multi-jet mode atomizes liquids at higher rates, and spreads the spray over a wider region and more uniformly than single jet sprays, thus paving way for large-area uniform thin film deposition. A simple yet comprehensive theory is formulated to describe the multi jet formation. The theory, which is based on the energy minimization principle, takes into account, for the first time, the interactions between charged jets which leads to saturation in the number of jets at high spray currents. The possibility of using an array of nozzles to obtain uniform large-area high-throughput thin film deposition is also investigated. A large number of FFESS nozzles with alternating positive and negative polarities arranged in a periodic 2

  20. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors

    Science.gov (United States)

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ•μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  1. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    Science.gov (United States)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  2. Effects of diffuse layer electrostatic correlations on electrokinetic phenomena

    CERN Document Server

    Storey, Brian D

    2012-01-01

    Classical theory of the electric double layer is based on the fundamental assumption of a dilute solution of point ions. There are a number of situations such as high applied voltages, high concentration of electrolytes, systems with multivalent ions, or solvent-free ionic liquids where the classical theory is often applied but the fundamental assumptions cannot be justified. Perhaps the most basic assumption underlying continuum models in electrokinetics is the mean-field approximation, that the electric field acting on each discrete ion is self-consistently determined by the local mean charge density. This paper considers situations where the mean-field approximation breaks down and electrostatic correlations become important. A fourth-order modified Poisson equation is developed that accounts for electrostatic correlations and captures the essential features in a simple continuum framework. The theory is derived variationally as a gradient approximation for non-local electrostatics, in which the dielectric...

  3. Numerical Simulation of Voltage Electric Field in Complex Geometries for Different Electrode Arrangements using Meshless Local MQ-DQ Method

    DEFF Research Database (Denmark)

    Jalaal, M.; Soleimani, Soheil; Domairry, G.

    2011-01-01

    In this paper the meshless Local Multi Quadrics-based Differential Quadrature (MQ-DQ) method is applied to obtain the electric field distribution for different applicable irregular geometries. This method is the combination of Differential Quadrature approximation of derivatives and function...... with FEM and this fact that MQ-DQ method is an accurate and flexible method in solution of electrostatic equations....

  4. Field and material stresses predict observable surface forces in optical and electrostatic manipulation

    Science.gov (United States)

    Kemp, Brandon A.; Sheppard, Cheyenne J.

    2016-09-01

    The momentum of light in media has been one of the most debated topics in physics over the past one hundred years. Originally a theoretical debate over the electrodynamics of moving media, practical applications have emerged over the past few decades due to interest in optical manipulation and nanotechnology. Resolution of the debate identifies a kinetic momentum as the momentum of the fields responsible for center of mass translations and a canonical momentum related to the coupled field and material system. The optical momentum resolution has been considered incomplete because it did not uniquely identify the full stress-energy-momentum (SEM) tensor of the field-kinetic subsystem. A consequence of this partial resolution is that the field-kinetic momentum could be described by three of the leading formulations found in the literature. The Abraham, Einstein-Laub, and Chu SEM tensors share the field-kinetic momentum, but their SEM tensors differ resulting in competing force densities. We can show now that the Abraham and Einstein-Laub formulations are invalid since their SEM tensors are not frame invariant, whereas the Chu SEM tensor satisfies relativistic principles as the field-kinetic formulation. However, a number of reports indicate that the force distribution in matter may not accurately represent experimental observations. In this correspondence, we show that the field-kinetic SEM tensor can be used along with the corresponding material subsystem to accurately predict experimental force and stress distributions. We model experimental examples from optical and static manipulation of particles and fluids.

  5. Assessment of Electromagnetic Fields around High Voltage Power Supply in Hamadan Hospital Wards

    Directory of Open Access Journals (Sweden)

    Nima Rostampour

    2012-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Biological effects of non-ionizing radiation on the body of living organisms have been studied by researchers in recent years. High Voltage medical equipments are one of the sources generating electromagnetic fields. The electromagnetic field intensity of the medical equipment installed at Hamadan hospitals and the potential hazards were investigated. The main purpose of this study was to determine the intensity of the electromagnetic field around high voltage power supplies in radiology ward of the Hamadan hospitals. Materials and Methods: This was a cross-sectional study and we investigated the electromagnetic fields intensity around high voltage power supplies at Hamadan hospital wards. All measurements were performed using a calibrated Tesla-meter (HI-3603. The measurements were conducted at a range of distances varying from 25 cm to 3 m around the supporting high voltage power supply. Results: We found that the maximum intensity of the magnetic and electric fields at a distance of less than 1 m around the high voltage power supply was 29.625±5.738 mGauss and 25.17±0.92 V/m respectively, which is less than the safe amounts recommended by the ICNIRP for occupational exposure (5000 mG and 10000 V/m and even for public exposure (1000 mG and and 5000 V/m. The minimum intensity of EM fields for a less than 3 m distance was found to be 0.1±0.005 mGauss, which relates to a CT-scanner system installed at Farshchian hospital. Among the whole equipments evaluated in the current survey, the most intense magnetic and electric field was found to be for imaging technician office, which was 3.050±0.004 mGauss and 128.88±0.05 V/m respectively; it is lower than the tolerances recommended by the ICNIRP. Conclusion: According to our results, it seems that the EM field occupational exposure for radiation workers working at Hamadan hospitals does not exceed

  6. Breakdown voltage of discrete capacitors under single-pulse conditions

    Science.gov (United States)

    Domingos, H.; Scaturro, J.; Hayes, L.

    1981-01-01

    For electrostatic capacitors the breakdown voltage is inherently related to the properties of the dielectric, with the important parameters being the dielectric field strength which is related to the dielectric constant and the dielectric thickness. These are not necessarily related to the capacitance value and the rated voltage, but generally the larger values of capacitance have lower breakdown voltages. Foil and wet slug electrolytics can withstand conduction currents pulses without apparent damage (in either direction for foil types). For solid tantalums, damage occurs whenever the capacitor charges to the forming voltage.

  7. Electrostatics of Silicon Nano Transistor

    Directory of Open Access Journals (Sweden)

    Lalit Singh

    2011-01-01

    Full Text Available Nano Transistor represents a unique system for exploring physical phenomena pertaining to charge transport at the nano scale and is expected to play a critical role in future evolution of electronic and optoelectronic devices. This paper summarizes some of the essential electrostatics of nano Metal Oxide Semiconductor Field effect Transistor (MOSFET and their electrical properties. Though the general focus of this work is on surface potential yet the first part presents a brief discussion of the independence of charge at the top of the barrier in the channel of MOS Transistor on Drain voltage. The quantum capacitance is discussed at length. The superposition theorem is used, thereafter, to obtain an expression for self consistent potential in the channel. Finally the I-V characteristics of the device are explored using Landauer formalism. The simulated results for a device are observed to represent the realistic behaviour of the device.

  8. Voltage control of the magnetic coercive field: Multiferroic coupling or artifact?

    Science.gov (United States)

    Vopsaroiu, M.; Cain, M. G.; Woolliams, P. D.; Weaver, P. M.; Stewart, M.; Wright, C. D.; Tran, Y.

    2011-03-01

    The ability to dynamically tune the coercive field of magnetic thin films is a powerful tool for applications, including in magnetic recording disk technologies. Recently, a number of papers have reported the electrical voltage control of the coercive field of various magnetic thin films in multiferroic composites. Theoretically, this is possible in magneto-electric (ME) multiferroics due to the piezoferroelectric component that can be electrically activated to dynamically modify the properties of the magnetic component of the composite via a direct or strain mediated ME coupling. In this paper we fabricated and examined such structures and we determined that the magnetic coercive field reduction is most likely due to a heating effect. We concluded that this effect is probably an artifact that cannot be attributed to a multiferroic coupling.

  9. Electrostatic particle collection in vacuum

    Science.gov (United States)

    Afshar-Mohajer, Nima; Damit, Brian; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta

    2011-09-01

    Lunar grains accumulate charges due to solar-based ionizing radiations, and the repelling action of like-charged particles causes the levitation of lunar dust. The lunar dust deposit on sensitive and costly surfaces of investigative equipment is a serious concern in lunar explorations. Inspired by electrostatic precipitators (ESPs), the Electrostatic Lunar Dust Collector (ELDC) was proposed for collecting already charged lunar dust particles to prevent the lunar dust threat. As the conditions for terrestrial counterparts are not valid in the lunar environment, equations developed for terrestrial devices yield incorrect predictions in lunar application. Hence, a mathematical model was developed for the ELDC operating in vacuum to determine its collection efficiency. The ratios of electrical energy over potential energy, kinetic energy over potential energy and the ratio of ELDC dimensions were identified to be the key dimensionless parameters. Sensitivity analyses of the relevant parameters showed that depending on ELDC orientation, smaller particles would be collected more easily at vertical orientation, whereas larger particles were easier to collect in a horizontal ELDC configuration. In the worst case scenario, the electrostatic field needed to be 10 times stronger in the vertical mode in order to adequately collect larger particles. The collection efficiency was very sensitive to surface potential of lunar dust and it reached the maximum when surface potential was between 30 and 120 V. Except for regions of the lunar day side with surface potential close to zero, providing 1 kV ( E = 20 kV m -1) with the ELDC was more than enough for collecting all the particles in the most critical orientation. The needed field strength was about 4000 times less than that for repelling 1-μm size particles already settled on the surfaces. The analysis shows that the ELDC offers a viable solution for lunar dust control due to its effectiveness, ease of cleaning and low voltage

  10. High current, low voltage carbon nanotube enabled vertical organic field effect transistors.

    Science.gov (United States)

    McCarthy, Mitchell A; Liu, Bo; Rinzler, Andrew G

    2010-09-08

    State-of-the-art performance is demonstrated from a carbon nanotube enabled vertical field effect transistor using an organic channel material. The device exhibits an on/off current ratio >10(5) for a gate voltage range of 4 V with a current density output exceeding 50 mA/cm(2). The architecture enables submicrometer channel lengths while avoiding high-resolution patterning. The ability to drive high currents and inexpensive fabrication may provide the solution for the so-called OLED backplane problem.

  11. The effect of pulsating electrostatic field application on the development of delayed onset of muscle soreness (DOMS) symptoms after eccentric exercise.

    Science.gov (United States)

    Gatterer, Hannes; Peters, Philippe; Philippe, Marc; Burtscher, Martin

    2015-10-01

    [Purpose] The aim of the study was to establish whether pulsating electrostatic field application, shown to increase blood flow and metabolic activity and to function as an ion pump, is able to reduce muscle pain after exercise-induced muscle damage. [Subjects and Methods] Seven participants (4 males, 3 females) performed two sessions of downhill running separated by at least 4 weeks. After the running sessions, participants were either treated for 45 min with a pulsating electrostatic field (field intensity, 9000 V; current, <9 mA; frequency, 50 Hz) or a sham treatment. The order of the intervention was random, and the condition was blinded for the participants. Muscle soreness score, creatine kinase, and jump ability were assessed before and up to 48 hours after running. [Results] Twenty-four and 48 hours after the downhill running, the muscle soreness score tended to be less increased after pulsating electrostatic field administration when compared with the sham setting (changes in muscle soreness score: 3.7±1.6 vs. 5.7±2.2 after 24 h and 3.1±2.0 vs. 5.4±3.2 after 48 h, respectively). No further differences were detected. [Conclusion] The outcomes show that a pulsating electrostatic field might be a promising treatment to reduce muscle soreness after exercise-induced muscle damage. However, further studies are needed to confirm the present outcomes and to establish the mechanism by which a pulsating electrostatic field may reduce muscle pain.

  12. Improvement of charged particles transport across a transverse magnetic filter field by electrostatic trapping of magnetized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Das, B. K., E-mail: bdyt.ds@rediffmail.com; Hazarika, P.; Chakraborty, M. [Centre of Plasma Physics-Institute for Plasma Research, Tepesia-782402, Kamrup, Assam (India); Bandyopadhyay, M., E-mail: mainak@iter-india.org [ITER-India, Institute for Plasma Research, Gandhinagar-382025, Gujarat (India)

    2014-07-15

    A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.

  13. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study tha...

  14. EFFECTS OF ELECTROMAGNETIC FIELDS ON HEMATOPOISIS SYSTEM: STUDY ON WORKERS AT HIGH- VOLTAGE SUBSTATIONS

    Directory of Open Access Journals (Sweden)

    H.A YOUSEFI

    2001-06-01

    Full Text Available Introduction: The goal of this study was to evaluate the relationship between occupational exposure to extremely low frequency (ELF electromagnetic fields and risk of Hematological changes among workers at High- voltage substations. This is a case - control study. In the present study 79 worker exposed to electromagetic fields (EMFs were compared to 50 control subjects who were not occupationaly exposed to EMFs. Methods: To measurement the levels of exposure to Lf electric and magnetic fields the strength of electric and magnetic field was determined by Dosimetric method. Worker"s blood samples were collected and analyzed for identification of leukemia and other abnormalities. Questionnaire and physical examination were used to study the effects of ELF fields on worker"s health. Measurements showed a high strength of ELF fields at the work places i.e. Results: Mean value of RBC and Hematocrit decreased significantly among exposed workers compared to controls (P < 0.05, but MCV, MCH and MCHC increased. The value of Neutrophiles increased but Lymphocytes decreased significantly among workers considering their workhistory (P < 0.05. Discussion: Moreover, tow leukemics (ALL, AML and ten hypocromic anemias were found. In conclusion study groups are similar in personal characteristics, the difference in RBC, MCV, MCH has to attributed to ELF fields.

  15. Application of the Electrostatic Field Theory in Printing Industry%静电场理论在印刷行业的实际应用

    Institute of Scientific and Technical Information of China (English)

    韩春柏; 高海燕; 翟俊梅; 党玉敬; 尹国盛

    2012-01-01

    Taking electrostatic field as an example, this paper focuses on applications of physics in printing. It illustrates the physical principle of ink jet printer, electrostatic flocking printing and piezoelectric ink jetting, calculates the surface charge density of drum surface of electrostatic copier, and gives methods of measuring the amount of ink and thickness of paper through capacitance, etc.%以静电场为例,紧扣物理在印刷上的应用,阐述了喷墨打印机、静电植绒印刷和压电喷墨的物理原理,计算了静电复印机硒鼓表面的电荷面密度,给出了电容测油墨量、电容测纸张厚度的方法等.

  16. Improvement of the Planetary Gravitational Potentiel Field Knwoledge with Accurate Electrostatic Accelerometer / Gradiometer

    Science.gov (United States)

    Christophe, B.; Lebat, V.; Foulon, B.; Liorzou, F.; Perrot, E.; Boulanger, D.; Hardy, E.

    2014-12-01

    ONERA has developed since several years the most accurate accelerometers for the geodesy mission. The accelerometers are still operational in the GRACE mission. Their successors for the GRACE-FO mission are under manufacturing and will fly in 2017. Finally, the GOCE mission has proved the interest of gradiometer for a direct measurement of the gravity field.Now, ONERA proposes a new design of accelerometer, MicroSTAR, for interplanetary mission. It inherits of the same technology but with reduced mass and consumption. It has been proposed in several missions towards outer planets in order to test the deviation to the relativity general over large distance to the sun (with the addition of a bias rejection system). But the same instrument could be interesting to improve our knowledge of the planetary gravitational potential field, allowing a better understanding of the planet interior composition. The success of using accelerometer for geodesy mission could be imported in the planetary science.The paper will present the accuracy achievable on the gravity potential field according to different accelerometer configurations (one accelerometer, one gradiometer arm or a complete 3-axis gradiometer). Then, the instrument will be described and the integration of the instrument inside an interplanetary probe will be evoked.

  17. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  18. Voltage-ampere characteristics of YBCO coated conductor under inhomogeneous oscillating magnetic field

    Science.gov (United States)

    Geng, J.; Shen, B.; Li, C.; Zhang, H.; Matsuda, K.; Li, J.; Zhang, X.; Coombs, T. A.

    2016-06-01

    Direct current carrying type II superconductors present a dynamic resistance when subjected to an oscillating magnetic field perpendicular to the current direction. If a superconductor is under a homogeneous field with high magnitude, the dynamic resistance value is nearly independent of transport current. Hoffmann and coworkers [Hoffmann et al., IEEE Trans. Appl. Supercond. 21, 1628 (2011)] discovered, however, flux pumping effect when a superconducting tape is under an inhomogeneous field orthogonal to the tape surface generated by rotating magnets. Following their work, we report the whole Voltage-Ampere (V-I) curves of an YBCO coated conductor under permanent magnets rotating with different frequencies and directions. We discovered that the two curves under opposite rotating directions differ from each other constantly when the transport current is less than the critical current, whereas the difference gradually reduces after the transport current exceeds the critical value. We also find that for different field frequencies, the difference between the two curves decreases faster with lower field frequency. The result indicates that the transport loss is dependent on the relative direction of the transport current and field travelling, which is distinct from traditional dynamic resistance model. The work may be instructive for the design of superconducting motors.

  19. Breakdown voltage model and structure realization of a thin silicon layer with linear variable doping on a silicon on insulator high voltage device with multiple step field plates

    Institute of Scientific and Technical Information of China (English)

    Qiao Ming; Zhuang Xiang; Wu Li-Juan; Zhang Wen-Tong; Wen Heng-Juan; Zhang Bo; Li Zhao-Ji

    2012-01-01

    Based on the theoretical and experimental investigation of a thin silicon layer (TSL) with linear variable doping (LVD) and further research on the TSL LVD with a multiple step field plate (MSFP),a breakdown voltage (BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator (SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field (ENDIF),from which the reduced surface field (RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect but the problem of the high voltage interconnection (HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET (nLDMOS) with MSFP is realized.The experimental breakdown voltage (BV) and specific on-resistance (Ron,sp) of the TSL LVD SOI device are 694 V and 21.3 Ω.mm2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.

  20. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics.

    Science.gov (United States)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-03-14

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call "Hamiltonian dielectric solvent" (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  1. Electrostatic particle-in-cell simulation of heat flux mitigation using magnetic fields

    Science.gov (United States)

    Lüskow, Karl Felix; Kemnitz, S.; Bandelow, G.; Duras, J.; Kahnfeld, D.; Matthias, P.; Schneider, R.; Konigorski, D.

    2016-10-01

    The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.

  2. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  3. Effect of electrostatic field on seed germination and seedling growth of Sorbus pohuashanesis

    Institute of Scientific and Technical Information of China (English)

    YANG Ling; SHEN Hai-long

    2011-01-01

    A study was conducted to determine the effects of electro static field (ESF) treatment on seed germination and seedling growth of Sorbus pohuashanesis. The experiments were arranged by uniform design computed by the Data Processing System (DPS), including three levels of seeds soaking time, four levels of ESF intensity and four levels of ESF treatment time, with 12 treatments. Ten seeds were used in each treatment with three replicates. Seed vigor, seed germinating ability,emergence rate of seedling, survival rate of seedling, and seedling height and diameter, as well as the change in activities of superoxide dismutase (SOD), soluble protein contents, total chlorophyll contents, soluble total sugar contents in leaves of S. pohuashanensis seedlings were measured after ESF treatments. The experiment results show that ESF treatment could improve the water absorption ability of dry seeds of S. pohuashanensis, resulting in fast germination at room temperature under light conditions. Combined treatment of ESF with cold stratification could increase seed germination percentage significantly (to 42.20%),promote seedling height growth, affect leaf SOD activity, and could raise contents of total chlorophyll, soluble protein, and total soluble sugar in leaves. Seed soaking time had a significant effect on seed relative electroconductivity, seed germination under light, SOD activity, soluble protein content and total soluble sugar content of seedling leaves. ESF intensity exerted a moderate effect on these indexes. ESF treatment time only had significant effect on total chlorophyll contents, no evident effect on other indexes.

  4. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Nalwa, Kanwar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  5. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    OpenAIRE

    Tourab, Wafa; Babouri, Abdesselam

    2015-01-01

    Background This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods Experimental Measurements for the Multi-lines power...

  6. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 4. Destruction of Weeds by High Voltage Discharge

    Science.gov (United States)

    Mizuno, Akira

    In an attempt to replace chemicals for weed control, high voltage spark discharge has been applied. With the application of high voltage, discharge takes place, and current flows through the stem and root. Microscopic observation indicates that cells are damaged. The electrical resistance of the damage plant’s stems and roots decreased significantly. Several different types of apparatus were constructed, and field test results show the effectiveness of electrical discharge for weed control.

  7. Numerical Electric Field Analysis of Power Status Sensor Observing Power Distribution System Taking into Account Voltage Divider Measurement Circuit

    Science.gov (United States)

    Kubo, Takuro; Furukawa, Tatsuya; Itoh, Hideaki; Fukumoto, Hisao; Wakuya, Hiroshi; Ohchi, Masashi

    We have proposed and preproducted the voltage-current waveform sensor of resin molded type for measuring the power factor and harmonics in power distribution systems. We have executed numerical electromagnetic analyses using the finite element method to estimate the characteristics and behaviours of the sensor. Although the magnetic field analyses for the current sensor have involved the measurement circuit, the electric field analyses have not included the measurement circuit for measuring voltage waveforms of power lines. In this paper, we describe the electric field analyses with the measurement circuit and prove the insulating strength of the proposed sensor permissible to the use in 22kV power distribution systems.

  8. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes.

    Science.gov (United States)

    Meng, Xing

    2017-02-01

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages.

  9. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes.

    Science.gov (United States)

    Sridhar, Srividya; Tiwary, Chandrasekhar; Vinod, Soumya; Taha-Tijerina, Jose Jaime; Sridhar, Srividvatha; Kalaga, Kaushik; Sirota, Benjamin; Hart, Amelia H C; Ozden, Sehmus; Sinha, Ravindra Kumar; Harsh; Vajtai, Robert; Choi, Wongbong; Kordás, Krisztián; Ajayan, Pulickel M

    2014-08-26

    A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ∼ 0.1 V/μm) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.

  10. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  11. Low-temperature adsorption/storage of hydrogen on FAU, MFI, and MOR zeolites with various Si/Al ratios: effect of electrostatic fields and pore structures.

    Science.gov (United States)

    Jhung, Sung Hwa; Yoon, Ji Woong; Lee, Ji Sun; Chang, Jong-San

    2007-01-01

    Several zeolites, such as faujasite, mordenite, and ZSM-5, with various aluminum contents have been used to analyze the effect of aluminum or cation concentration (strength of electrostatic field) on hydrogen adsorption at low temperature. Irrespective of the zeolite structure, the adsorption capacity, isosteric heat of adsorption (-DeltaHads), surface coverage, and micropore occupancy increase with increasing aluminum content of a zeolite. Zeolites with a higher amount of aluminum favorably adsorb hydrogen at relatively low pressures. For zeolites with similar aluminum contents, the adsorption capacity, isosteric heat of adsorption, surface coverage, and micropore occupancy are in the order of mordenite>ZSM-5>faujasite, probably due to differing pore sizes and the presence or absence of pore intersections. This work demonstrates that zeolites with strong electrostatic fields and narrow pores without intersections are beneficial for high hydrogen uptake.

  12. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    Science.gov (United States)

    Rychetsky, Monir; Koslow, Ingrid; Avinc, Baran; Rass, Jens; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca; Hoffmann, Veit; Weyers, Markus; Wild, Johannes; Zweck, Josef; Witzigmann, Bernd; Kneissl, Michael

    2016-03-01

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (-0.50 ± 0.07) MV/cm for In0.08Ga0.92N/GaN, (0.90 ± 0.13) MV/cm for Al0.18Ga0.82N/GaN, and (2.0 ± 0.3) MV/cm for Al0.31Ga0.69N/GaN heterostructures.

  13. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rychetsky, Monir, E-mail: monir.rychetsky@physik.tu-berlin.de; Avinc, Baran; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Koslow, Ingrid; Rass, Jens; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Hoffmann, Veit; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Wild, Johannes; Zweck, Josef [Fakultät für Physik, University of Regensburg, Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel (Germany)

    2016-03-07

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In{sub 0.08}Ga{sub 0.92}N/GaN, (0.90 ± 0.13) MV/cm for Al{sub 0.18}Ga{sub 0.82}N/GaN, and (2.0 ± 0.3) MV/cm for Al{sub 0.31}Ga{sub 0.69}N/GaN heterostructures.

  14. Field tests of wind turbines submitted to real voltage dips under the new Spanish grid code requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, E. [Renewable Energy Research Institute, Department of Electrical, Electronic, and Control Engineering, EPSA, Universidad de Castilla-La Mancha, 02071 Albacete, (Spain); Fuentes, J. A.; Molina-Garcia, A.; Ruz, F. [Department of Electrical Engineering, Universidad Politecnica de Cartagena, 30202 Cartagena, (Spain); Jimenez, F. [Engineering Department, Gamesa Eolica S.A., Poligono Agustinos, calle A, E-31013 Pamplona, (Spain)

    2007-06-27

    This paper adds the new Spanish grid code to the previously published works about the comparison of international regulations for connection of wind turbines to the network. All the electrical magnitudes - currents and active and reactive power - regulated in the Spanish grid code are studied when the wind turbines are submitted to real voltage dips. Because grid codes and, specifically, the Spanish grid code do not fix the reactive power definition to be applied, four definitions commonly used have also been studied. Taking advantage of the voltage dips field tests carried out to the Gamesa G80 wind turbines, the results obtained for two representative voltage dip tests are presented: a three-phase and a phase-to-phase voltage dip. (Author).

  15. Electrostatic Climber for Space Elevator and Launcher

    CERN Document Server

    Bolonkin, A

    2007-01-01

    Author details research on the new, very prospective, electrostatic Space Elevator climber based on a new electrostatic linear engine previously offered at the 42nd Joint Propulsion Conference (AIAA-2006-5229) and published in AEAT, Vol.78, No.6, 2006, pp. 502-508. The electrostatic climber discussed can have any speed (and braking), the energy for climber movement is delivered by a lightweight high-voltage line into a Space Elevator-holding cable from Earth electric generator. This electric line also can be used for delivery electric energy to a Geosynchronous Space Station. At present, the best solution of the climber problem (announced by NASA as one important awarding problem of Space Elevator) is problematic. Author also shows the linear electrostatic engine may be used as realistic power space launcher at the present time. Two projects illustrate these new devices. Key words: Space elevator, Electrostatic climber for space elevator, Electrostatic space launcher, Electrostatic accelerator. This work is p...

  16. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  17. Field testing, modelling and analysis of ferroresonance in a high-voltage power system

    Science.gov (United States)

    Jacobson, David Allan Nils

    2000-11-01

    Catastrophic equipment failures continue to occur today due to ferroresonance even though this phenomenon has been extensively studied over the past ninety years. This thesis is concerned with the tasks of defining where ferroresonance problems can exist in a high voltage power system, of determining methods for displaying safety margins between nonferroresonant and ferroresonant operating regions and improving upon existing ferroresonance simulation techniques. Several different ferroresonant circuits have been modelled and compared with field measurements taken on the Manitoba Hydro 230-kV power system or compared with laboratory measurements including: a de-energized transformer connected to the grading capacitance of an open circuit breaker, a transformer-terminated doublecircuit transmission line and a coupling capacitor voltage transformer. In a high voltage power system, the most prevalent ferroresonance circuit occurs between a de-energized transformer and the grading capacitor of an open circuit breaker. Experimental work has shown that losses in a practical transformer are much larger during ferroresonance oscillation modes than predicted by conventional modelling techniques. A simple switched eddy-current loss resistor is found able to model the losses during subharmonic and fundamental frequency ferroresonance in a laboratory transformer. A major contribution of this work is a new method of visualizing the margin between nonferroresonant and ferroresonant states in a transformer/grading capacitor circuit has been developed. A general set of averaged equations is derived that permit the analysis of an nth order polynomial approximation of the magnetization curve. The location of the saddle points and slope of the stable manifold through the saddle points can be determined for a particular transformer under study. The Limacon of Pascal is found to be a good approximation to the geometric shape of the basin of attraction of the period-1 ferroresonant

  18. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations.

    Science.gov (United States)

    Barsam, Tayebeh; Monazzam, Mohammad Reza; Haghdoost, Ali Akbar; Ghotbi, Mohammad Reza; Dehghan, Somayeh Farhang

    2012-11-30

    This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV) in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24-57 and the controls were 110 persons the age ranged 24-50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI). Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615). Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415) ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min) was significantly higher than for controls (28.89 ± 20.18 min) (P-value=0.002). Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours). Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  19. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations

    Directory of Open Access Journals (Sweden)

    Barsam Tayebeh

    2012-11-01

    Full Text Available Abstract This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24–57 and the controls were 110 persons the age ranged 24–50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI. Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615. Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415 ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min was significantly higher than for controls (28.89 ± 20.18 min (P-value=0.002. Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours. Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  20. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  1. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Areas, electrostatic septa in long straight sections 2 an 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, provide a vertical electric field to remove the ions created by the circulating beam in the residual gas. Here we see one of the electrostatic septa being assembled by Faustin Emery (left) and Jacques Soubeyran (right), in the clean room of building 867. See also 7501199, 7501201, 7801286 and further explanations there.

  2. Crystal Electrostatic Energy

    CERN Document Server

    Ivanchin, Alexander

    2010-01-01

    It has been shown that to calculate the parameters of the electrostatic field of the ion crystal lattice it sufficient to take into account ions located at a distance of 1-2 lattice spacings. More distant ions make insignificant contribution. As a result, the electrostatic energy of the ion lattice in the alkaline halide crystal produced by both positive and negative ions is in good agreement with experiment when the melting temperature and the shear modulus are calculated. For fcc and bcc metals the ion lattice electrostatic energy is not sufficient to obtain the observed values of these parameters. It is possible to resolve the contradiction if one assumes that the electron density is strongly localized and has a crystal structure described by the lattice delta - function. As a result, positive charges alternate with negative ones as in the alkaline halide crystal. Such delta-like localization of the electron density is known as a model of nearly free electrons.

  3. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance

    Science.gov (United States)

    Chandrasekhar, P. S.; Kumar, Neetesh; Swami, Sanjay Kumar; Dutta, V.; Komarala, Vamsi K.

    2016-03-01

    An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to those fabricated without an electric field, which is due to improved atomization from the Coulomb fission process. The optimized applied voltage of 1.5 kV during spraying led to completion of the reaction between CH3NH3I and PbI2 on a hot substrate for pure phase CH3NH3PbI3 thin film formation with improved grain growth and surface coverage. The cells fabricated using perovskite films showed clear applied voltage dependence in the energy conversion process and alleviation in J-V hysteresis; with 1.5 kV applied voltage the average cell efficiency of 8.9% was obtained compared to films fabricated without applying voltage providing only 6.5%. The best efficiencies are 10.9% and 7.37% for applied voltages of 1.5 kV and 0 kV, respectively. The enhancement in efficiency with applied voltage is due to the formation of more uniform and dense films with large perovskite crystals, which resulted in efficient electron transportation (enhanced photocurrent and modified series and shunt resistances) by minimizing the charge carrier recombination at grain boundaries (resulting in enhanced open circuit voltage). With further optimization of the perovskite film thickness by adjusting the CH3NH3I spray volume, the average cell efficiency of ~11.0% was obtained.An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to

  4. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  5. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wafa Tourab

    2016-06-01

    Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

  6. LOW-VOLTAGE FIELD-EMISSION SCANNING ELECTRON-MICROSCOPY OF NON-COATED GUINEA-PIG HAIR CELL STEREOCILIA

    NARCIS (Netherlands)

    DUNNEBIER, EA; SEGENHOUT, JM; KALICHARAN, D; JONGEBLOED, WL; WIT, HP; ALBERS, FWJ

    1995-01-01

    The stereociliar structures of the guinea-pig cochlear organ of Corti were studied at low-voltage (1-5 kV) with field-emission scanning electron microscope (SEM) using various pre- and post-fixation methods, such as OTOTO (OsO4/thiocarbohydrazide/OsO4/thiocarbohydrazide/OsO4) and TAO (tannic acid/ar

  7. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Institute of Scientific and Technical Information of China (English)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  8. Electrostatic MEMS devices with high reliability

    Science.gov (United States)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  9. The effect of electrostatic microencapsulation process on biological properties of tumour cells.

    Science.gov (United States)

    Li, Nan; Xu, Xiao-Xi; Sun, Guang-Wei; Guo, Xin; Liu, Yang; Wang, Shu-Jun; Zhang, Ying; Yu, Wei-Ting; Wang, Wei; Ma, Xiao-Jun

    2013-01-01

    Microencapsulation is one of the promising strategies to develop a three-dimensional in vivo tumour-mimic model in cancer research. Although previous studies have shown that tumour cells grow well during the microencapsulated culture, it is still not clear whether the electrostatic encapsulation process has an important effect on cellular characteristics. In this study, we investigated cellular response against non-physiological stress factors existing in the electrostatic microencapsulation process, such as the high-voltage electrostatic field, suspension and nutrition-free status. Our results showed that these non-physiological stress factors did not significantly induce cellular apoptosis, and did not affect cellular adhesion and viability. Furthermore, no change was found about invasion and drug resistance of the tumour cells. The normal endoplasmic reticulum function might play a role in maintaining biological properties during the electrostatic microencapsulation process.

  10. Assessment of Human Exposure to Magnetic Field from Overhead High Voltage Transmission Lines in a City in South Western Nigeria

    OpenAIRE

    Ponnle Akinlolu; Adedeji Kazeem

    2015-01-01

    The increase in electricity consumption, population, and land use has now forced high voltage transmission lines (HVTLs) either to pass or be installed around or through urban cities. This increases the level of human exposure to electromagnetic field radiation as this field produced around the HVTLs extends outwards covering some distance. This may cause a number of health hazards. It is even dangerous to a human who touch any metallic object in proximity of the HVTL, as it may have an appre...

  11. SIZE-DEPENDENT PULL-IN VOLTAGE OF ELECTROSTATICALLY ACTUATED MEMS%静电激励MEMS微结构吸合电压尺寸效应研究

    Institute of Scientific and Technical Information of China (English)

    王炳雷; 周慎杰; 赵俊峰; 陈曦

    2011-01-01

    基于应变梯度弹性理论,研究了静电激励MEMS微结构吸合电压的尺寸效应.利用最小势能原理分别推导出含尺寸效应的一维梁模型和二维板模型的高阶控制方程.采用广义微分求积法和拟弧长算法对控制方程进行了数值求解.结果表明,随着结构尺寸的降低,新模型所预测的归一化的吸合电压呈非线性增长,表现出尺寸效应(特别是当结构尺寸与内禀常数在同一数量级时尺寸效应更加强烈);而相应的经典理论模型并不能预测此尺寸效应.两种新模型可视为相应经典理论的推广.论文有助于研究MEMS微结构的特性并对微结构的设计有潜在的应用价值.%The size-dependent pull-in voltage of electrostatically actuated MEMS is studied using strain gradient elasticity. The microbeam model and microplate model are derived respectively via the principle of minimum potential energy. The generalized differential quadrature method and pseudo arclength algorithm are used to solve the high-order PDEs. It is shown that the normalized pull-in voltage predicted by the new models increases nonlinearly with the decrease of the structure thickness, exhibiting size effect(and the size effect is particularly strong when the structural thickness is on the same order of the characteristic material length scale parameter) ; while the corresponding classical models do not exhibit such a size effect. The two new models may be regarded as extensions of the corresponding classical ones. This study may be helpful to characterize the mechanical properties of small sized MEMS,or guide the design of microstruc-tures for a wide range of potential applications.

  12. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  13. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  14. Dynamic Stability Improvement of Grid Connected DFIG Using Enhanced Field Oriented Control Technique for High Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    V. N. Ananth Duggirala

    2015-01-01

    Full Text Available Doubly fed induction generator (DFIG is a better alternative to increased power demand. Modern grid regulations force DFIG to operate without losing synchronism during overvoltages called high voltage ride through (HVRT during grid faults. Enhanced field oriented control technique (EFOC was proposed in Rotor Side Control of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. Further electromagnetic oscillations are damped, improved voltage mitigation and limit surge currents for sustained operation of DFIG during voltage swells. The proposed strategy has advantages such as improved reactive power control, better damping of electromagnetic torque oscillations, and improved continuity of voltage and current from stator and rotor to grid during disturbance. In EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process, DC-Offset component of stator flux is controlled so that decomposition during overvoltage faults can be minimized. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it is aimed to be quick damping. The system performance with overvoltage of 1.3 times, 1.62 times, and 2 times the rated voltage occurring is analyzed by using simulation studies.

  15. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  16. Electrostatic Discharge Properties of Fused Silica Coatings

    Science.gov (United States)

    Andersen, Allen; Sim, Charles; Dennison, J. R.

    2012-10-01

    The electric field value at which electrostatic discharge (ESD) occurs was studied for thin coatings of fused silica (highly disordered SiO2/SiOx) on conductive substrates, such as those encountered as optical coatings and in Si microfabrication. The electrostatic breakdown field was determined using an increasing voltage, while monitoring the leakage current. A simple parallel-plate capacitor geometry was used, under medium vacuum and at temperatures down to ˜150 K using a liquid N2 reservoir. The breakdown field, pre-breakdown arcing and I-V curves for fused silica samples are compared for ˜60 nm and ˜80 μm thick, room and low temperature, and untreated and irradiated samples. Unlike typical I-V results for polymeric insulators, the thin film silica samples did not exhibit pre-breakdown arcing, displayed transitional resistivity after initial breakdown, and in many cases showed evidence of a second discontinuity in the I-V curves. This diversity of observed discharge phenomena is discussed in terms of breakdown modes and defect generation on a microscopic scale.

  17. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    Science.gov (United States)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  18. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Vemulkar, Tarun R; Kagan, Cherie R

    2011-12-27

    We report low-hysteresis, ambipolar bottom gold contact, colloidal PbSe nanowire (NW) field-effect transistors (FETs) by chemically modifying the silicon dioxide (SiO(2)) gate dielectric surface to overcome carrier trapping at the NW-gate dielectric interface. While water bound to silanol groups at the SiO(2) surface are believed to give rise to hysteresis in FETs of a wide range of nanoscale materials, we show that dehydration and silanization are insufficient in reducing PbSe NW FET hysteresis. Encapsulating PbSe NW FETs in cured poly(methyl) methacrylate (PMMA), dehydrates and uniquely passivates the SiO(2) surface, to form low-hysteresis FETs. Annealing predominantly p-type ambipolar PbSe NW FETs switches the FET behavior to predominantly n-type ambipolar, both with and without PMMA passivation. Heating the PbSe NW devices desorbs surface bound oxygen, even present in the atmosphere of an inert glovebox. Upon cooling, overtime oxygen readsorption switches the FET polarity to predominantly p-type ambipolar behavior, but PMMA encapsulation maintains low hysteresis. Unfortunately PMMA is sensitive to most solvents and heat treatments and therefore its application for nanostructured material deposition and doping is limited. Seeking a robust, general platform for low-hysteresis FETs we explored a variety of hydroxyl-free substrate surfaces, including silicon nitride, polyimide, and parylene, which show reduced electron trapping, but still large hysteresis. We identified a robust dielectric stack by assembling octadecylphosphonic acid (ODPA) on aluminum oxide (Al(2)O(3)) to form low-hysteresis FETs. We further integrated the ODPA/Al(2)O(3) gate dielectric stack on flexible substrates to demonstrate low-hysteresis, low-voltage FETs, and the promise of these nanostructured materials in flexible, electronic circuitry.

  19. Electrostatic extrusion as a dispersion technique for encapsulation of cells and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2012-01-01

    Full Text Available Significant development of cells and bioactive compound encapsulation technologies is taking place due to an exceptional possibility of their application in various scientific disciplines, including biomedicine, pharmacy, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment. Despite the broad application of microencapsulation, the literature reviews on dispersion techniques for microcapsule/microbead production, their advantages, restrictions and drawbacks are scarce. The purpose of this paper is to assess the possibilities of electrostatic extrusion for encapsulation of biological material, including living cells in hydrogel microbeads. The paper presents an overview of the mechanisms of droplet formation and controlling experimental parameters for producing microbeads by means of electrostatic extrusion. Electrostatic droplet formation utilizes a special type of physical process taking advantage of electrostatic effects occurring in flowing conductive liquids after introduction of an electric field.When an electrostatic field is applied to the metal needle and an electric charge is induced in the liquid flowing out of the needle, the size of droplet detaching from the needle tip decreases as a funcion of applied electrostatic field. It has been shown that few parameters affect microbead size: applied voltage, electrode geometry, needle size, polarity arrangement and polymer concentration. The electrostatic droplet formation is one of the most precise methods, which enables one to produce spherical and uniform particles ranging from 100 μm up to 1000 μm. Most of the authors report that the encapsulated compounds (drugs, enzymes and living cells remain unaltered after electrostatic extrusion. This technique seems to be particularly promising in biotechnology, pharmaceutical and cosmetics industries, where a low-temperature process, preserving heat-sensitive material is a prerequisite. Future efforts in

  20. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    Science.gov (United States)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  1. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  2. Electrostatic septum, SPS

    CERN Multimedia

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight section 2 and 6 precede the magnetic septa. The 2 electrode plates, visible at the entrance to the septum, establish a vertical electrical field to remove the ions created by the circulating beam in the residual gas. See 7801286 for such a septum in its tank, and 7501201 for a detailed view of the wire suspension. See also 7501120X.

  3. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  4. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  5. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    Science.gov (United States)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  6. Urban exposure to ELF magnetic field due to high-, medium- and low-voltage electricity supply networks.

    Science.gov (United States)

    Bottura, V; Cappio Borlino, M; Carta, N; Cerise, L; Imperial, E

    2009-12-01

    The regional environment protection agency (ARPA) of the Aosta Valley region in north Italy performed a survey of magnetic field triggered by the power supply network in high, medium and low voltages on the entire area of Aosta town. The electrical distribution system for houses was not however taken into account. The aim of the survey was to evaluate the global population exposure and not simply the assessment of the legal exposure limit compliance.

  7. Field emission current-voltage curves as a diagnostic for scanning tunneling microscope tips

    Science.gov (United States)

    Meyer, J. A.; Stranick, S. J.; Wang, J. B.; Weiss, P. S.

    1991-12-01

    The current-voltage (I-V) characteristics of a low temperature ultrahigh vacuum scanning tunneling microscope (STM) tip positioned greater than 100 A from a planar surface have been recorded. We find curvature in the Fowler-Nordheim plots (log 10 I/V(sup 2) vs. I/V) due to the tip-plane geometry as has been predicted theoretically. Additionally, oscillations and sharp breaks in these I-V curves are observed over a wide voltage range, 50-1000 V. These I-V curves are used to characterize the STM tips prior to tunneling.

  8. An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems

    Science.gov (United States)

    Basu, Anirban; Velásquez-García, Luis F.

    2016-12-01

    We report a field emission-based, magnetic-less ion pump architecture for helping maintain a high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. A nanostructured silicon field emitter array, with each nano-sharp tip surrounded by a self-aligned proximal gate electrode, is used to generate a surplus of electrons that cause impact ionization of gas molecules. A two-stage cylindrical electron collector, made of titanium, is used to increase the travel distance of the electrons, augmenting the ionization probability; gas ionization is subsequently followed by gettering of the ions by a negatively charged, annular-shaped titanium electrode. A proof-of-concept pump prototype was characterized using a 25 cm3 stainless steel vacuum chamber backed up by an external turbomolecular pump, a diaphragm pump, and a standard ion pump. Pumping action was observed with the electrostatic pump operating alone after an initial rapid rise of the chamber pressure due to electron/ion scrubbing. In addition, running the electrostatic pump in combination with the standard ion pump results in a lower vacuum level compared to the vacuum level produced by the standard ion pump acting alone. A proposed reduced-order model accurately predicts the functional dependence of the pressure versus time data and provides a good estimate of the characteristic pumping time constant inferred from the experiments.

  9. Assessment of Human Exposure to Magnetic Field from Overhead High Voltage Transmission Lines in a City in South Western Nigeria

    Directory of Open Access Journals (Sweden)

    Ponnle Akinlolu

    2015-05-01

    Full Text Available The increase in electricity consumption, population, and land use has now forced high voltage transmission lines (HVTLs either to pass or be installed around or through urban cities. This increases the level of human exposure to electromagnetic field radiation as this field produced around the HVTLs extends outwards covering some distance. This may cause a number of health hazards. It is even dangerous to a human who touch any metallic object in proximity of the HVTL, as it may have an appreciable voltage induced on it due to inductive, capacitive or resistive interference from the line. This paper evaluates the magnetic field produced at mid-span by a 132kV, and a 330kV, 50Hz adjacent HVTLs with horizontal and vertical configuration in Akure, a city in South Western Nigeria using analytical method from electromagnetic field theory. This is then compared to the recommended standard limit of public exposure to magnetic field. The results of the computation showed that currently, the general public exposure to the magnetic field along the HVTLs is safe. However, right of way (ROW along the power lines is being violated as buildings and work places exist within the ROW.

  10. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  11. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  12. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.

    Science.gov (United States)

    Darré, Leonardo; Machado, Matías Rodrigo; Brandner, Astrid Febe; González, Humberto Carlos; Ferreira, Sebastián; Pantano, Sergio

    2015-02-10

    Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.

  13. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  14. Experimental Investigation of the Electric Field and the Electrohydrodynamic (EHD) Flow in Electrostatic Separator%静电分离器中电场和电流体特性试验研究

    Institute of Scientific and Technical Information of China (English)

    孔祥领; 朱宏武; GOHARZADEH Afshin; ALSHEHHI Mohamed; 刘云姗

    2011-01-01

    The electric field and electrohydrodynamic(EHD) flow field of a small scale wire-plate electrostatic separator, which is used for the separation oil droplets with an average diameter of 2 urn from air flow, is experimentally studied under positive polarity. The current-voltage characteristics(CVC) curves are tested under different primary gas flows and different oil droplets concentrations. The EHD flow field is visualized under different operating conditions by high speed camera. The tested gas velocities are 0.2 m/s, 0.3 m/s and 0.4 m/s respectively, and the applied voltage is from 0~ 16 kV. The EHD flow map is obtained under different gas velocities and applied voltage. Experimental results show that the influence of gas velocity on the electric field is negligible. However, the oil droplets concentration has great impacts on the electric field. The current density decreased with the increase of oil concentration. The EHD flow patterns change significantly during corona discharge, depending on the gas velocity and applied voltage. Five typical EHD flow patterns are captured under different Reynolds number and EHD number, which represents the relationship between inertial forces and electrical forces.%利用静电分离技术从空气中分离平均直径为2μm的油滴,对小尺度的线-板式静电分离器的电晕放电特性和流型特征进行试验研究,放电电极接高压电源正极.测试在不同的气体流速、油滴浓度条件下分离器的伏安特性曲线.利用高速摄像机对其中的电流体流型特征进行可视化研究,试验测定进口流速为0.2 m/s、0.3 m/s、0.4 m/s,施加电压从0~16 kV条件下电流体流型的变化,得到在不同的施加电压和气体流速下的流型分布图.试验表明,进口流速对分离器的电场影响并不明显,而油滴浓度对电场有很大的影响,在相同的施加电压下电流密度随着油滴浓度的增大而降低.电流体流型的变化取决于进口流速和

  15. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  16. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  17. Structure modulated electrostatic deformable mirror for focus and geometry control.

    Science.gov (United States)

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  18. Analysis of a three-part 230 kV optical voltage transducer with multiple electric field sensors

    Energy Technology Data Exchange (ETDEWEB)

    Namedanian, M.; Mozafari, M.; Razavi, S. [Niroo Research Inst., Tehran (Iran, Islamic Republic of). Dept. of Electronics, Control and Instrumentation

    2008-07-01

    A 3-part optical voltage transducer (OVT) was used as a replacement for conventional inductive and capacitive transformers. A quadrature method was used to position the sensors. The OVT was designed using a finite element simulation program with a particle swarm optimization (PSO) algorithm. Each section of the 3-part insulator consisted of a fiberglass tube with silicon rubber shedding. A corona ring was positioned around the top of the insulator. The simulations were conducted to demonstrate various perturbation scenarios and examine the potential distorted behaviour of the electric field. Ratio errors and voltage differences occurring from the various perturbations were calculated in order to determine the optimal positions and weights of the OVT. Results of the study indicated that the OVT will meet all standard requirements and be cheaper and easier to implement than conventional capacitive or inductive transformers. 8 refs., 3 tabs., 5 figs.

  19. Electrostatic potential map modelling with COSY Infinity

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, J.A., E-mail: maloneyja@triumf.ca; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  20. Electrostatic potential map modelling with COSY Infinity

    Science.gov (United States)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  1. Role of schorl’s electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2

    Institute of Scientific and Technical Information of China (English)

    Murari; PRASAD

    2010-01-01

    Dyeing wastewater containing methyl orange (MO) could be effectively discolored by schorl-catalyzed Fenton-like system. Experimental results indicated that the MO discoloration ratios could be increased by increasing schorl dosage, temperature, initial H2O2 concentration, and by decreasing solution pH. When the raw schorl and the schorl samples sintered at 750°C, 850°C, 950°C and 1050°C were used as catalyst in Fenton-like system, the MO discoloration ratios obtained were 82%, 31%, 30%, 31% and 7%, respectively. XRD results showed that samples sintered at 750°C, 850°C and 950°C had no change in structure and still held the crystal structure of schorl and quartz, but, the content of schorl crystal decreased. Whereas, schorl crystal completely disappeared in the sample sintered at 1050°C and two new crystal phases of hematite and spinel were formed, which resulted in disappearance of the spontaneous ‘electrostatic poles’. Hence, it was inferred that the electrostatic field of schorl crystal could enhance the MO discoloration by schorl-catalyzed Fenton-like reaction.

  2. Experimental validation of prototype high voltage bushing

    Science.gov (United States)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  3. Degradation of Photovoltaic Modules Under High Voltage Stress in the Field: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Rummel, S. R.

    2010-08-01

    The degradation in performance for eight photovoltaic (PV) modules stressed at high voltage (HV) is presented. Four types of modules--tandem-junction and triple-junction amorphous thin-film silicon, plus crystalline and polycrystalline silicon modules--were tested, with a pair of each biased at opposite polarities. They were deployed outdoors between 2001 and 2009 with their respective HV leakage currents through the module encapsulation continuously monitored with a data acquisition system, along with air temperature and relative humidity. For the first 5 years, all modules were biased continuously at fixed 600 VDC, day and night. In the last 2 years, the modules were step-bias stressed cyclically up and down in voltage between 10 and 600 VDC, in steps of tens to hundreds of volts. This allowed characterization of leakage current versus voltage under a large range of temperature and moisture conditions, facilitating determination of leakage paths. An analysis of the degradation is presented, along with integrated leakage charge. In HV operation: the bulk silicon modules degraded either insignificantly or at rates of 0.1%/yr higher than modules not biased at HV; for the thin-film silicon modules, the added loss rates are insignificant for one type, or 0.2%/yr-0.6%/yr larger for the other type.

  4. 高真空强静电场下聚合物薄膜微晶生长形态转变研究%STUDIES ON THE MORPHOLOGY TRANSITION OF MICRO-CRYSTAL GROWTH IN POLYMER FILMS IN HIGH VACUUM AND STRONG ELECTROSTATIC FIELD

    Institute of Scientific and Technical Information of China (English)

    肖学山; 徐晖; 董远达; 乔秀颖; 莫志深; 王献红; 王庆

    2001-01-01

    The morphology of films of isotactic polypropylene poly(3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields has been investigated by using scanning electron microscope. The experiment results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic fields. It was found that the effect of the electrostatic field led to the formation of dendrite crystals aligned in the field direction,and some branches of P3DDT ruptured. However,the micro-crystals in these films grew into spherulites without electrostatic field,and have no crystal orientation.

  5. 对比法在静电场理论教学中的应用%Applications of comparative approach in teaching and learning of electrostatic field theory

    Institute of Scientific and Technical Information of China (English)

    刘广东

    2015-01-01

    Generally,electrostatic field theory is in leading position within a course of electromagnetic field theory, therefore,its effect of teaching and learning is directly related to that of the course.A typical case with respect to boundary value problem for electrostatic field theory is designed.In order to overcome difficulties,such as abstract concepts,complex derivation process,a comparative approach of teaching and learning is chosen.Thus,its effect is enhanced.The comparisons include solving methods(analytical method versus numerical method),teaching and learning methods(lecture method versus demonstration method),and teaching and learning means(traditional means versus modern means).This case will attempt to provide a reference for teaching and learning of the course.%静电场理论一般处于电磁场理论的开篇位置,其教学效果直接关系到整科电磁场理论的教学成败.设计了一个静电场边值问题的典型案例.为克服概念抽象、过程复杂等困难,教学中应用求解方法(解析法与数值法)的对比,教学方法(讲授法与演示法)的对比和教学手段(传统手段与现代手段)的对比等方法,提高了教学效果,为电磁理论的教学提供参考.

  6. 高压电场对钠钙硅酸盐玻璃风化性能的影响%Influences of the Imposed High Voltage Electric Field on the Weathering Properties of Soda-lime Silicate Glass

    Institute of Scientific and Technical Information of China (English)

    王洪成; 刘启明

    2009-01-01

    The soda-lime silicate float gIass is imposed to high voltage electrostatic field at the annealing temperature range of the ghss.The in fluences of the leakage current intensity,processing temperature and time on the ehnical stabilityofgLassan.der high-voltage electrostatic field are researched.The use of chemical titration analysis tested alkali of glass surface to research the hydrolytic resistance of glass.The glass samples accelerated weathering tests are carried out using constant temperature and humidity chamber,and the glass microscope morphology after weathering is observed by metallographic microscope XJZ-6.The experimental results show that when leakage current strength is lower than l50μA/cm~2,with increase of the high voltage elec trostatic field,the chemical stability(hydrolytic resistance)of the glass surface near the cahode surface(air side)increases,and litde change is found in that of the side(tin permeability surface).%在玻璃退火温度范围内,对钠钙硅酸盐平板玻璃施加高压电场.研究了高压电场下处理温度、时间、电场强度及泄露电流对玻璃化学稳定性的影响.利用化学滴定法测试了玻璃表面析碱量,研究了玻璃的耐水性.利用恒温恒湿箱进行了加速风化实验,采用XJZ-6型金相显微镜观察玻璃样品风化后的形貌.实验表明,泄露电流强度不大于150 μA/cm~2,高压电场提高正极附近玻璃表面(空气面)的化学稳定性,同时负极附近玻璃表面(渗锡面)的化学稳定性变化不大.

  7. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    Science.gov (United States)

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  8. Electrostatic risk to reticles in the nanolithography era

    Science.gov (United States)

    Rider, Gavin C.

    2016-04-01

    Reticles can be damaged by electric field as well as by the conductive transfer of charge. As device feature sizes have moved from the micro- into the nano-regime, reticle sensitivity to electric field has been increasing owing to the physics of field induction. Hence, the predominant risk to production reticles today is from exposure to electric field. Measurements of electric field that illustrate the extreme risk faced by today's production reticles are presented. It is shown that some of the standard methods used for prevention of electrostatic discharge in semiconductor manufacturing, being based on controlling static charge and voltage, do not offer reticles adequate protection against electric field. In some cases, they actually increase the risk of reticle damage. Methodology developed specifically to protect reticles against electric field is required, which is described in SEMI Standard E163. Measurements are also presented showing that static dissipative plastic is not an ideal material to use for the construction of reticle pods as it both generates and transmits transient electric field. An appropriate combination of insulating material and metallic shielding is shown to provide the best electrostatic protection for reticles, with fail-safe protection only being possible if the reticle is fully shielded within a metal Faraday cage.

  9. An AlGaN/GaN HEMT with a reduced surface electric field and an improved breakdown voltage

    Institute of Scientific and Technical Information of China (English)

    Xie Gang; Edward Xu; Niloufar Hashemi; Zhang Bo; Fred Y. Fu; Wai Tung Ng

    2012-01-01

    A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer.The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions.Compared with the HEMTs with conventional sourceconnected field plates and double field plates,the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge.By optimizing both the length of Mg-doped layer,Lm,and the doping concentration,a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure,respectively.In a device with VGS =-5 V,Lm =1.5 μm,a peak Mg doping concentration of 8×1017 cm-3 and a drift region length of 10 μm,the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.

  10. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  11. 计算机操作中人体静电放电辐射瞬态电场与磁场的研究%POSSIBLE EFFECTS OF ELECTROMAGNETIC FIELDS GENERATED BY ELECTROSTATIC DISCHARGE FROM THE CHARGED HUMAN BODY ON COMPUTER OPERATION

    Institute of Scientific and Technical Information of China (English)

    黄久生

    2000-01-01

    分析了静电放电(ESD)辐射场的偶极子模型.用高采样速率数字示波器和定做的宽带电磁与磁场探头测量了计算机操作中人体静电放电产生的瞬态电场与磁场.用FFT分析了静电放电辐射场的频谱.研究了静电放电辐射场对某电路高频信号的影响.研究结果表明,即使是很低电压(2kV)的静电放电,其辐射近场的电场达几百V/m,磁场可达几十A/m.静电放电辐射场的频谱极宽,从数兆赫到数千兆赫.静电放电对高频电路的试验结果表明,若不采取有效的防护措施,人体静电放电辐射电磁场会对电路造成一定的影响,如对集成电路与元器件造成“潜在效应”的损害,对电路造成电磁干扰,甚至损坏电子器件.%The electromagnetic fields radiated by electrostatic discharge is analyzed using the bipolar model. The transient electric and magnetic fields generated by electrostatic discharge from the charged human body during the operation of computers are measured by a very high sampling rate oscilloscope and custom-made wide band electric field and magnetic field antennas. The spectrum of the fields is analyzed by FFT. The influence of the fields on high frequency signals is studied. The results show that the electric fields can be several hundred V/m and the magnetic fields can be several A/m even if the discharge voltage is very low(2kV).The spectrum of the fields is very wide ranging from several MHz to several GHz.The effects of the fields on high frequency circuits show that some influences such as “latent effects” on integrated circuits or devices, electromagnetic interference and even damage to the circuits can be caused by the electromagnetic fields generated by electrostatic discharge from the charged human body.

  12. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  13. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  14. Fabrication and Characterization of III-V Tunnel Field-Effect Transistors for Low Voltage Logic Applications

    Science.gov (United States)

    Romanczyk, Brian R.

    With voltage scaling to reduce power consumption in scaled transistors the subthreshold swing is becoming a critical factor influencing the minimum voltage margin between the transistor on and off-states. Conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) are fundamentally limited to a 60 mV/dec swing due to the thermionic emission current transport mechanism at room temperature. Tunnel field-effect transistors (TFETs) utilize band-to-band tunneling as the current transport mechanism resulting in the potential for sub-60 mV/dec subthreshold swings and have been identified as a possible replacement to the MOSFET for low-voltage logic applications. The TFET operates as a gated p-i-n diode under reverse bias where the gate electrode is placed over the intrinsic channel allowing for modulation of the tunnel barrier thickness. When the barrier is sufficiently thin the tunneling probability increases enough to allow for significant number of electrons to tunnel from the source into the channel. To date, experimental TFET reports using III-V semiconductors have failed to produce devices that combine a steep subthreshold swing with a large enough drive current to compete with scaled CMOS. This study developed the foundations for TFET fabrication by improving an established Esaki tunnel diode process flow and extending it to include the addition of a gate electrode to form a TFET. The gating process was developed using an In0.53Ga 0.57As TFET which demonstrated a minimum subthreshold slope of 100 mV/dec. To address the issue of TFET drive current an InAs/GaSb heterojunction TFET structure was investigated taking advantage of the smaller tunnel barrier height.

  15. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  16. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...

  17. Electrostatic Discharge Properties of Irradiated Nanocomposites

    Science.gov (United States)

    2009-03-01

    xiii ESD Electrostatic Discharge Ext External Configuration with 200 gsm Ni, of Composite Group Two GA Genetic Algorithm GEO Geosynchronous...materials similar to those tested in this experiment are exposed throughout a life-cycle was simulated using the High Voltage Engineering, Europa

  18. Development and Field Test of Voltage VAR Optimization in the Korean Smart Distribution Management System

    Directory of Open Access Journals (Sweden)

    Sang-Yun Yun

    2014-02-01

    Full Text Available This paper is a summary of the development and demonstration of an optimization program, voltage VAR optimization (VVO, in the Korean Smart Distribution Management System (KSDMS. KSDMS was developed to address the lack of receptivity of distributed generators (DGs, standardization and compatibility, and manual failure recovery in the existing Korean automated distribution system. Focusing on the lack of receptivity of DGs, we developed a real-time system analysis and control program. The KSDMS VVO enhances manual system operation of the existing distribution system and provides a solution with all control equipment operated at a system level. The developed VVO is an optimal power flow (OPF method that resolves violations, minimizes switching costs, and minimizes loss, and its function can vary depending on the operator’s command. The sequential mixed integer linear programming (SMILP method was adopted to find the solution of the OPF. We tested the precision of the proposed VVO on selected simulated systems and its applicability to actual systems at two substations on the Jeju Island. Running the KSDMS VVO on a regular basis improved system stability, and it also raised no issues regarding its applicability to actual systems.

  19. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    Science.gov (United States)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  20. Control of ion gyroscale fluctuations via electrostatic biasing and sheared E×B flow in the C-2 field reversed configuration

    Science.gov (United States)

    Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.

    2016-03-01

    Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.

  1. Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study.

    Science.gov (United States)

    Lu, Anh Khoa Augustin; Houssa, Michel; Radu, Iuliana P; Pourtois, Geoffrey

    2017-03-01

    Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D-based nanoelectronic devices.

  2. Electrostatic modification of novel materials

    NARCIS (Netherlands)

    Ahn, C.H.; Bhattacharya, A.; Di Ventra, M.; Eckstein, J.N.; Frisbie, C.D.; Gershenson, M.E.; Goldman, A.M.; Inoue, I.H.; Mannhart, J.; Millis, A.J.; Morpurgo, A.F.; Natelson, D.; Triscone, J.M.

    2006-01-01

    Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of t

  3. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander

    2017-02-01

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  4. An analytical approach for scanning probe microscope-tip electrostatic field distribution accounting for dead layer and domain wall.

    Science.gov (United States)

    Starkov, Alexander S; Starkov, Ivan A

    2013-12-01

    We have proposed a new theoretical approach for the determination of the electric field distribution in the ferroelectric/dielectric system with the presence of the SPM tip. The initial statement of the model has only a numerical solution. To find an analytical solution of the problem, some assumptions are introduced: the domain wall thickness can be considered to be much smaller than the domain size, and we use a high ferroelectric dielectric permittivity. The developed approach allows us to obtain explicit formulas for the polarization and electric field intensity. We have calculated and then analyzed the tip capacitance as a function of the distance from the ferroelectric interface. Additionally, different forms of the SPM tip are considered. It is demonstrated that in the presence of charges at the domain, the results differ from those obtained with the widely used dielectric model by 30%.

  5. Characteristics of Rainfall in Wind Field of a Downburst and Its Effects on Motion of High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-01-01

    Full Text Available Despite most weather-related failures of high-voltage transmission lines (HVTLs being attributed to the downbursts accompanied by heavy rainfall, research works mainly focused on the behaviors of the high-voltage transmission tower-line structures under dry downburst winds. This paper thus presents a preliminary study to discuss the characteristics of rainfall in the downbursts and their effects on responses of HVTLs. Based on Vicroy model, the velocities of raindrops and their loads and pressure ratios of downburst wind-driven rain and only downburst wind on the surface of HVTLs per unit length are obtained. A downburst wind-rain induced vibration model is established to calculate the effects of the rainfall intensity and wind velocities on the motions of HVTLs. To verify the feasibility and accuracy of the model, the model is applied to evaluate responses of HVTLs with measured aerodynamic coefficients. The responses of HVTLs from the evaluated (the model and the field observation results are compared. The results indicated that the model is feasible and can capture main features of the rainfall acting on HVTLs in the downbursts. Furthermore, the effects of rainfall cannot be neglected, and more attention should be paid to the wet downbursts and their effects on aerodynamic property of HVTLs.

  6. Polarizable multipolar electrostatics for cholesterol

    Science.gov (United States)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  7. New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications

    Institute of Scientific and Technical Information of China (English)

    Ph.ROBIN-JOUAN; M.YOUSFI

    2007-01-01

    The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure,namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respectively.Based on solving a multi-term electron Boltzmann equation the calculations use improved electron-gas collision cross sections for twelve SF6 dissociation products with a particular emphasis on the electron-vibrating molecule interactions.The ion kinetics is also considered and its role on the critical field becomes non negligible as the temperature is above 2000 K.These critical fields are then used in hydrodynamics simulations which correctly predict the circuit breaker behaviours observed in the case of breaking tests.

  8. Childhood cancer and magnetic fields from high-voltage power lines in England and Wales: a case–control study

    Science.gov (United States)

    Kroll, M E; Swanson, J; Vincent, T J; Draper, G J

    2010-01-01

    Background: Epidemiological evidence suggests that chronic low-intensity extremely-low-frequency magnetic-field exposure is associated with increased risk of childhood leukaemia; it is not certain the association is causal. Methods: We report a national case–control study relating childhood cancer risk to the average magnetic field from high-voltage overhead power lines at the child's home address at birth during the year of birth, estimated using National Grid records. From the National Registry of Childhood Tumours, we obtained records of 28 968 children born in England and Wales during 1962–1995 and diagnosed in Britain under age 15. We selected controls from birth registers, matching individually by sex, period of birth, and birth registration district. No participation by cases or controls was required. Results: The estimated relative risk for each 0.2 μT increase in magnetic field was 1.14 (95% confidence interval 0.57 to 2.32) for leukaemia, 0.80 (0.43–1.51) for CNS/brain tumours, and 1.34 (0.84–2.15) for other cancers. Conclusion: Although not statistically significant, the estimate for childhood leukaemia resembles results of comparable studies. Assuming causality, the estimated attributable risk is below one case per year. Magnetic-field exposure during the year of birth is unlikely to be the whole cause of the association with distance from overhead power lines that we previously reported. PMID:20877338

  9. Reduction of low voltage power cables electromagnetic field emission in MV/LV substations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran San Segundo, Hector [Dpt. Industrial Systems Engineering and Design, Campus del Riu Sec, Universitat Jaume I, 12071 Castello (Spain); Fuster Roig, Vicente [Instituto de Tecnologia Electrica, Avda. Juan de la Cierva 24, Parc Tecnologic de Valencia, 46980 Paterna (Spain)

    2008-06-15

    In this paper a solution to reduce magnetic field emission levels generated by MV/LV substation power cables is proposed. The reduction is obtained by the arrangement of the phases in a proper way and by shielding the cables with magnetic or conductive materials. The effects introduced by these two options have been analyzed by means of simulations, using finite elements method calculation software, and by experimental measurements. The introduced results allow selecting an optimal arrangement and the best screening material in order to reduce the magnetic fields in those directions required to protect. (author)

  10. High-voltage Pulsed Electric Field in.Food Industry%食品高压脉冲电场杀菌技术

    Institute of Scientific and Technical Information of China (English)

    袁丽佳; 何博; 姜彬; 尤涛

    2011-01-01

    High-voltage pulsed electric field is one of the most popular methods in food process. The mechanism of high-voltage pulsed electric field, the device of high-vo]tage pulsed electric field , and the application of it are introduced.%高压脉冲电场(high-voltage pulsed electric field,HPEF)杀菌技术是目前国际上最热门的食品加工技术之一,本文介绍了高压脉冲电场杀菌技术的基本机理,杀菌装置,以及对该技术在食品加工中应用的介绍。

  11. Experimental and numerical analyses of high voltage 4H-SiC junction barrier Schottky rectifiers with linearly graded field limiting ring

    Science.gov (United States)

    Wang, Xiang-Dong; Deng, Xiao-Chuan; Wang, Yong-Wei; Wang, Yong; Wen, Yi; Zhang, Bo

    2014-05-01

    This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termination, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.

  12. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  13. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients...

  14. Biological effects from electric fields associated with high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  15. Electrostatic Surface Trap for Cold Polar Molecules with a Charged Circular Wire

    Institute of Scientific and Technical Information of China (English)

    MA Hui; ZHOU Bei; LIAO Bin; YIN Jian-Ping

    2007-01-01

    We propose a novel scheme to trap cold polar molecules on the surface of an insulating substrate (i.e. a chip) by using an inhomogeneous electrostatic field, which is generated by the combination of a circular charged wire (a ring electrode) and a grounded metal plate. The spatial distributions of the electrostatic field from the above charged wire layout and its Stark potentials for CO molecules are calculated. Our study shows that when the voltage applied to the wire is U = 15 kV, a ring radius is R = 5 mm, the thickness of the insulating substrate is b = 5 mm, and a wire radius is r = 1 mm, the maximum efficient trapping potential (i.e., as equivalent temperature) for CO molecules is greater than 141.7mK, which is high enough to trap cold polar molecules with a temperature of 50 mK in the low-field-seeking states.

  16. PREFACE: Electrostatics 2015

    Science.gov (United States)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  17. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  18. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    Science.gov (United States)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  19. A numerical study on liquid charging inside electrostatic atomizers

    Science.gov (United States)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  20. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-06-01

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  1. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field

    Science.gov (United States)

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    2016-08-01

    Using micromagnetic simulations we demonstrate core reversal of a fixed magnetic skyrmion by modulating the perpendicular magnetic anisotropy of a nanomagnet with an electric field. We can switch reversibly between two skyrmion states and two ferromagnetic states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and decrease of the perpendicular magnetic anisotropy. The switching between these states is explained by the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This could lead to the possibility of energy efficient nanomagnetic memory and logic devices implemented with fixed skyrmions without using a magnetic field and without moving skyrmions with a current.

  2. Electrostatic deflection of a molecular beam of massive neutral particles: Fully field-oriented polar molecules within superfluid nanodroplets

    CERN Document Server

    Merthe, Daniel J

    2016-01-01

    Electric deflection measurements on liquid helium nanodroplets doped with individual polar molecules demonstrate that the cold superfluid matrix enables full orientation of the molecular dipole along the external field. This translates into a deflection force which is increased enormously by comparison with typical deflection experiments, and it becomes possible to measurably deflect neutral doped droplets with masses of tens to hundreds of thousands of Daltons. This approach permits preparation and study of continuous fluxes of fully oriented polar molecules and is broadly and generally applicable, including to complex and biological molecules. It is shown that the dipole moments of internally cryogenically cold molecules can be directly determined from a deflection measurement on the doped nanodroplet beam.

  3. A top-gate GaN nanowire metal-semiconductor field effect transistor with improved channel electrostatic control

    Science.gov (United States)

    Gačević, Ž.; López-Romero, D.; Juan Mangas, T.; Calleja, E.

    2016-01-01

    A uniformly n-type doped GaN:Si nanowire (NW), with a diameter of d = 90 nm and a length of 1.2 μm, is processed into a metal-semiconductor field effect transistor (MESFET) with a semi-cylindrical top Ti/Au Schottky gate. The FET is in a normally-ON mode, with the threshold at -0.7 V and transconductance of gm ˜ 2 μS (the transconductance normalized with NW diameter gm/d > 22 mS/mm). It enters the saturation mode at VDS ˜ 4.5 V, with the maximum measured drain current IDS = 5.0 μA and the current density exceeding JDS > 78 kA/cm2.

  4. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  5. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2015-12-01

    Full Text Available A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  6. A Coupled MHD and Thermal Model Including Electrostatic Sheath for Magnetoplasmadynamic Thruster Simulation

    Science.gov (United States)

    Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro

    2016-09-01

    Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.

  7. Dynamic Characteristics of Electrostatically Actuated Shape Optimized Variable Geometry Microbeam

    Directory of Open Access Journals (Sweden)

    Sha Zhang

    2015-01-01

    Full Text Available We mainly analyze the dynamic characteristics of electrostatically actuated shape optimized variable geometry microbeam. A nonlinear dynamic model considering midplane stretching, electrostatic force, and electrical field fringing effects is developed. Firstly, we study the static responses of the optimized microbeams under DC polarization voltage. The generalized differential quadrature method (GDQM is used. Secondly, the dynamic responses of the shape optimized microbeams driven by DC and AC voltages are investigated using GDQM in conjunction with Levenberg-Marquardt optimization method. The results show that the more gradual change in width, the larger the resonant frequency and the maximum amplitude at resonance. Then we further discuss in detail how do the maximum width, midsection width, and curvature of the width function affect the frequency response of the microbeams. We find that the amplitude and resonant frequency of the dynamic response are not monotonically increasing as the curvature of the width function increases and there exists a critical curvature. This analysis will be helpful in the optimal design of MEMS actuators. Finally, for more consideration, different residual stress, squeeze-film damping, and fringing effect models are introduced into the governing equation of motion and we compare the corresponding dynamic response.

  8. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion

    Science.gov (United States)

    Li, Shi-You; Zhang, Shi-Feng; Deng, Xiao-Hua; Cai, Hong

    2013-01-01

    More than 300 electrostatic solitary waves (ESWs) with a large perpendicular component which is a bi-polar waveform structure are observed in the boundary layer within the magnetic reconnection diffusion region in the near-Earth magnetotail. Such ESWs are called two-dimensional ESWs. A Singe-reconnection-based-statistical study of two-dimensional ESWs shows that: (1) ESWs can be continuously observed in the plasma sheet boundary layer (PSBL) associated with the magnetic reconnection diffusion region, and their amplitude ranges are mainly from several tens to hundreds of μV/m (2) both one-dimension-like ESWs (very small magnitude on E⊥) and two-dimension-like ESWs (large magnitude on E⊥, which are even comparable to that in the E‖) are observed within a small time interval; (3) within the observation time spans, more than 61% of ESWs are regarded as two-dimensional ESWs for the I2D > 20%. We discuss the bi-polar structure in E⊥. The observation of ESWs with a large bi-polar structure in the perpendicular electric field gives evidence that the unique waveform differs from previous understanding from observations and simulations which suggests that it should be a uni-polar waveform structure in the E⊥ of ESWs.

  9. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    Science.gov (United States)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  10. 对静电场知识网络图的思考与改进%Reflections and Adjustment on the Knowledge Network Diagram of Electrostatic Field

    Institute of Scientific and Technical Information of China (English)

    包祥龙

    2014-01-01

    There are a lot of abstract definitions in the chapter of electrostatic field in senior high school physics, making it difficult for students' learning. But the construction of the knowledge net-work diagram can help students straighten out the relationship a-mong various physical quantities in this chapter, and find prob-lem-solving approaches by using the knowledge network dia-gram, and at the same time, this article also puts forward im-provement measures for the original knowledge network diagram.%高中物理静电场这一章概念多且抽象,学生学习难度大。而构建知识网络图可以帮助学生理顺本章各个物理量间的关系,并且可以利用知识网络图寻找解题途径,同时本文还对原有的知识网络图提出改进措施。

  11. Electrostatic generator/motor configurations

    Science.gov (United States)

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  12. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  13. Design and Experiments of the High Voltage Pulsed Electric Fields Sterilization System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihai; FANG Junlong; SHEN Weizheng

    2008-01-01

    This experiment designed the pulsed electric fields (PEF) of high intensity of 100 kV. cml sterilization system. Fluorescent pseudomonas as target cell was operated 180 s in the PEF. By observing the difference of the bacteria before and after the disposal by TEM, it is found that the cell wails of the treated bacteria were broken. Irreversible perforations were formed on the cell membrane. The cell inclusions and cell fragments were leaked. The cell died as a result. The results showed that the PEF sterilization system designed can be used for liquid food sterilization experiments.

  14. A health examination of railway high-voltage substation workers exposed to ELF electromagnetic fields.

    Science.gov (United States)

    Baroncelli, P; Battisti, S; Checcucci, A; Comba, P; Grandolfo, M; Serio, A; Vecchia, P

    1986-01-01

    This is a cross-sectional survey on the health conditions of railways workers active in 258 interconnection and conversion substations all over Italy. Measurements performed in both kinds of substations operating at 220 kV have shown that maximum levels of the electric field strength and of the magnetic flux density at 50 Hz are of the order of 5 kV/m and 15 microT, respectively. Three subject groups, differently exposed (1, 10, 20 h/week), and an unexposed control group, for a total number of 627 workers, constitute the population at study. All subjects underwent a general medical examination, laboratory investigations, and a series of selected examinations relative to three systems (nervous, cardiovascular, and haematopoietic) considered at higher risk. No differences have been found between the exposed and the control groups. It is concluded that workers exposed to ELF electromagnetic fields of moderate strength do not show the presence of clear effects on their state of health.

  15. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    BACKGROUND: Approximately 30% of patients with depression are resistant to antidepressant drugs. Repetitive transcranial magnetic stimulation (rTMS) has been found effective in combination with antidepressants in this patient group. The aim of this study was to evaluate the antidepressant effect...... of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients......-resistant depression. Few side effects were observed. Mechanism of the antidepressant action, in light of the known effects of PEMF stimulation to the brain, is discussed....

  16. Impact of field limiting ring technique on breakdown voltage of irradiated Si sensors

    CERN Document Server

    Bhardwaj, Ashutosh; Jha Manoj, Kr; Kumar, Ashish; Ranjan, Kirti; Shivpuri, RK; Srivastava-Ajay, K

    2003-01-01

    The very intense radiation environment of high luminosity future colliding beam experiments (like LHC) makes radiation hardness the most important issue for Si detectors. One of the central issues concerning all LHC experiments is the breakdown performance of these detectors. The major macroscopic effect of radiation damage in determining the viability of long-term operation of Si sensors is the change in effective charge carrier concentration (N //e//f//f), leading to type-inversion. Floating field limiting guard rings have been established as means of improving the breakdown performance of Si detectors. In this work the usefulness of the guard rings in improving the breakdown performance of detectors after type-inversion has been studied. Simulations are carried out to study the effect of change in N//e//f//f on the breakdown performance of optimized guard ring structure using two dimensional device simulation program, TMA- MEDICI. Detailed calculations using Hamburg Model have allowed the parameterization ...

  17. Impact of field limiting ring technique on breakdown voltage of irradiated Si sensors

    CERN Document Server

    Bhardwaj, A; Namrata, S; Chatterji, S; Srivastava-Ajay, K; Kumar, A; Jha, Manoj Kumar; Shivpuri, R K

    2004-01-01

    The very intense radiation environment of high luminosity future colliding beam experiments (like LHC) makes radiation hardness the most important issue for Si detectors. One of the central issues concerning all LHC experiments is the breakdown performance of these detectors. The major macroscopic effect of radiation damage in determining the viability of long-term operation of Si sensors is the change in effective charge carrier concentration (N/sub eff/), leading to type-inversion. Floating field limiting guard rings have been established as means of improving the breakdown performance of Si detectors. In this work the usefulness of the guard rings in improving the breakdown performance of detectors after type-inversion has been studied. Simulations are carried out to study the effect of change in N/sub eff/ on the breakdown performance of optimized guard ring structure using two dimensional device simulation program, TMA- MEDICI. Detailed calculations using Hamburg Model have allowed the parameterization o...

  18. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Energy Technology Data Exchange (ETDEWEB)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  20. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  1. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    Science.gov (United States)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  2. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects.

    Science.gov (United States)

    Pall, Martin L

    2013-08-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca(2+) /calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca(2+) -mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca(2+) /calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects.

  3. Linear electrostatic micromotors for nano- and micro-positioning

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, Edvard G.

    2004-05-01

    The functioning of the linear step electrostatic film micromotors with the short controlling pulse (less then 100-200 ´s) is studied to create nano- and micro-positioners. The theoretical study of the step movement of the given mass in this time frame is carried out. The results of the experimental studies of the multipetal reciprocal micromotors created on the basis of La modified Ba0.5Sr0.5Nb2O6 ferroelectric films with 1-3 μm thickness are shown. The petals were made of beryllium bronze. It is shown that the electrostatic rolling can last less than 50 μs, and the process of separating two surfaces (the metal and the ferroelectric) can last less than 1 μs. These parameters allow one to operate the micromotor at 1-10 kHz frequency, and the propulsion force in the beginning (the first 20-100 μs) of the electrostatic rolling can be as high as 1-10 N per 1 mm2 of the rolling surface with the voltage pulse amplitude of 40-50 V. The possibility of obtaining moving plate (MP) step in the nanometer range is studied, as well as the precision of these steps during the continuous MP movement with the different clock frequencies and durations of the voltage pulses. The recommendations are given to improve the accuracy and the speed of the positioning in the nano- and micro-movement range. Possible fields of micromotor application are micromechanics, including precision micromechanics, microelectronics, microrobots, microoptics, microscanners, micropumps (e.g. in the jet printers), micro flying vehicles etc.

  4. Electrostatic levitation under the single-axis feedback control condition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.

  5. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  6. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale.

    Science.gov (United States)

    Newns, Dennis M; Elmegreen, Bruce G; Liu, Xiao-Hu; Martyna, Glenn J

    2012-07-17

    Field effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).

  7. Magnetometry of micro-magnets with electrostatically defined Hall bars

    Energy Technology Data Exchange (ETDEWEB)

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent; Sarra-Bournet, Christian [Département de Physique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec (Canada); Pioro-Ladrière, Michel, E-mail: michel.pioro-ladriere@usherbrooke.ca [Département de Physique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec (Canada); CIFAR Program in Quantum Information Science, Canadian Institute for Advanced Research (CIFAR), M5G 1Z8 Toronto, Ontario (Canada)

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large current density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.

  8. Experimental Study on Electrostatic Guiding of Supersonic D2O Molecular Beam with Two Charged Wires

    Institute of Scientific and Technical Information of China (English)

    YIN Ya-Ling; XIA Yong; Chen Hai-Bo; YIN Jian-Ping

    2007-01-01

    We demonstrate the guiding of a supersonic heavy-water(D2O)molecular beam using a hollow electrostatic field generated by the combination of two parallel charged-wires and two grounded metal-plates,and report some new and preliminary experimental results.In the experiment,we detect the guiding signals by using the method of time-of-flight mass spectrum and study the dependence of the relative transmission of the beam guide on the guiding voltage.Our study shows that the relative transmission of the beam guide is increased linearly with increasing guiding voltage Vguid,and the number of the guided D2O molecules is at least increased by 89.4%when the guiding voltage is +20.0kV.Finally,some potential applications of our guiding scheme in the molecule optics are briefly discussed.

  9. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...

  10. 高压交变电磁场对脑卒中康复的临床观察%The clinic study of high-voltage alternative electromagnetic field on the rehabilitation of stroke

    Institute of Scientific and Technical Information of China (English)

    姚红华; 陈银海

    2002-01-01

    Objective In order to discuss the effects of high voltage alternative electromagnetic field on stroke. Method 126 cases of stroke patients were treated by high voltage alternative electromagnetic field, combined with kinesiotherapy and occupational combine therapy. Result 66 cases showed significant effect, 52 cases were improved and 8 cases showed no improvement. The score of Barthel and FIM assessment after treatment was increased significantly(P< 0.001).Conclusion The effect of high voltage alternative electromagnetic field on stroke is significant.

  11. Research on electrostatic precipitation and applied electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, S.

    1988-01-01

    This report contains a collection of papers of which Senichi Masuda was the author, or a co-author, and which were published between January 1983 and March 1987, while he was head of the Masuda Laboratory in the Department of Electrical Engineering at the University of Tokyo. The papers reflect the major research activities of the laboratory during this 4 year period, which focused on: understanding the physical background of electrostatic precipitation, in particular its pulse energization; investigating the factors affecting the effectiveness of pulse energization in a precipitator suffering from back corona induced performance degradation; the application of electrostatic forces for enhancing air cleaning devices for clean rooms and indoor pollution control; ozonizers and integrated ceramic elements; experimental studies on DeNO/sub x/, DeSO/sub x/ and removal of mercury vapour from combustion gases by plasma chemical reactions; electrostatic control of microbial cells for transport, separation and fusion; electrostatic orientation of ceramic fibres in insulating liquids and electrostatic separation of coal from ash using tribo-charging of both components with a cyclone tribo-charger.

  12. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna;

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  13. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  14. Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation

    Directory of Open Access Journals (Sweden)

    Han Yan

    2017-01-01

    Full Text Available In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator.

  15. Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation.

    Science.gov (United States)

    Yan, Han; Zhang, Wen-Ming; Jiang, Hui-Ming; Hu, Kai-Ming

    2017-01-08

    In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator.

  16. Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation

    Science.gov (United States)

    Yan, Han; Zhang, Wen-Ming; Jiang, Hui-Ming; Hu, Kai-Ming

    2017-01-01

    In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator. PMID:28075344

  17. A model for mark size dependence on field emission voltage in heat-assisted magnetic probe recording on CoNi/Pt multilayers

    NARCIS (Netherlands)

    Zhang, Li; Bain, James A.; Zhu, Jian-Gang; Abelmann, Leon; Onoue, Takahiro

    2004-01-01

    A method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. In this work, field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 2-7 V with a duration of 500 ns were applied

  18. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  19. 用边界元法计算静电场第四类非混合边值问题%Computation of the fourth non-mixed boundary-value problems of electrostatic field by boundary element method

    Institute of Scientific and Technical Information of China (English)

    彭兵

    2000-01-01

    A modified boundary element method(BEM) is presented for computation of the fourth non-mixed boundary-value problems,of electrostatic field.The BEM equation is de-rived,and the equation of constraint is presented.By theoretical analyzing and calculating engineering examples,it is proven that the BEM is a more effective approach to computation of the fourth non-mixed boundary-value problems of electrostatic field,it may obtain better calculating results and is applicable to calculating electrostatic field engineering problems of the fourth non-mixed boundary-value problems.%本文提出用边界元法计算介质分区均匀情况下的静电场第四类非混合边值问题,推导出用边界元法计算第四类非混合边值问题的边界元方程组。理论分析和实例计算结果表明:边界元法是计算第四类非混合边值问题的一种有效方法,不仅具有较高的算精度,而且可以很方便地应用于静电场工程问题的设计与计算。

  20. Phase-field modeling of switchable diode-like current-voltage characteristics in ferroelectric BaTiO3

    Science.gov (United States)

    Cao, Y.; Shen, J.; Randall, C. A.; Chen, L. Q.

    2014-05-01

    A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO3/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO3 containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from -1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 102. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.

  1. Electrostatic septa for SPS extraction

    CERN Multimedia

    1975-01-01

    The extraction system for the N-Area is located in LSS2 (another one for the W-Area, now abandoned, was in LSS6). The electrostatic septum consists of 4 parts, each 3 m long. It is made of W-wires, 0.12 mm thick. The nominal electric field is 100 kV/cm. See also Annual Report 1975, p.175.

  2. Effect of Electrostatic Field on Germination of the Southern Four Coniferous Species Seed%静电场对南方4种针叶树种种子萌发的影响

    Institute of Scientific and Technical Information of China (English)

    马静; 陈智裕; 邹显花; Mulualem Tigabu; 桂智彬; 马祥庆

    2015-01-01

    以南方4种针叶树种(杉木、马尾松、湿地松、火炬松)种子为研究对象,采取自主设计的高压静电种子处理装置,设置不同的电场强度(1.5、2.5、3.5、4.5、5.5 kV· cm-1)和处理时间(5、10 min),及不经电场处理的对照组(CK),探讨不同电场处理对杉木、马尾松、湿地松和火炬松干、湿种子萌发规律的影响。结果表明:对4种树种干种子施加不同电场强度处理后,只有马尾松干种子发芽势、发芽率和火炬松干种子发芽势在处理10 min时存在显著影响( P<0.05),其它树种干种子发芽势和发芽率在各处理条件下均无显著影响( P>0.05)。而4种树种湿种子经不同电场强度处理后,除了杉木湿种子发芽势和马尾松湿种子发芽势和发芽率在不同处理时间下有显著影响(P<0.05),其它各树种湿种子在各处理条件下均未达显著水平( P>0.05)。%The research object is the South 4 coniferous species(fir,pine,slash pine,loblolly pine)seeds,apply for high-voltage elec-trostatic seed processing device independent design ,set different electric field strength(1.5,2.5,3.5,4.5,5.5 kV· cm-1)and pro-cessing time(5,10 min),and not by the electric field treated control group (CK),to explore different electric field treatment on fir , pine,slash pine and loblolly pine dry and wet laws affecting seed germination.The results show that After four kinds of different spe-cies of dry seed applied electric field strength ,only Masson pine dry seeds germination rate and loblolly pine dry seed germination potential significant impact on treatment ( P0.05 ) in each treatment condition.The four kinds of tree seeds after wet processing different electric field strength,in addition to the wet fir and Masson pine seed germination energy and germination rates have a significant effect ( P0.05 ).

  3. Modeling the electric field third-order nonlinear responses of an infinite aggregate of hexatriene chains using the electrostatic interaction model.

    Science.gov (United States)

    Guillaume, Maxime; Champagne, Benoît

    2005-09-21

    A classical electrostatic polarization scheme using the additive distribution procedure has been applied to determine the static longitudinal polarizability and second hyperpolarizability of a all-trans hexatriene molecule in an infinite stretched fiber. The parameters have been derived from ab initio coupled-perturbed Hartree-Fock calculations and the electrostatic scheme has been validated via comparison with ab initio results on small clusters. Upon packing, the polarizability of all-trans hexatriene increases by 7% whereas the second hyperpolarizability increases by as much as 61%. These increases result from the balance between the enhancement of the (hyper)polarizability due to collinear packing and the reduction associated with lateral packing.

  4. 静电金属植绒在航空领域中的应用%Application of Electrostatic Metal Flocked Fabric in Aero Field

    Institute of Scientific and Technical Information of China (English)

    李湘; 杨新军

    2015-01-01

    The definition and feature of electrostatic metal flocked fabric were analyzed. Its technology and recheck were presented. The key technical solutions to the electrostatic metal flocked fabric were discussed in future development and would be used for improving the final product quality.%分析了静电金属植绒的概念及特点,论述了静电金属植绒的工艺及复验,讨论了金属植绒今后发展的关键技术问题,对提高产品的质量有着质的改变。

  5. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  6. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture shows such an electrostatic septum in its tank. See 7501120X, 7501199 and 7501201 for more detailed pictures.

  7. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  8. Edutainment Science: Electrostatics

    Science.gov (United States)

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  9. Examination of flatband and threshold voltage tuning of HfO2/TiN field effect transistors by dielectric cap layers

    Science.gov (United States)

    Guha, S.; Paruchuri, V. K.; Copel, M.; Narayanan, V.; Wang, Y. Y.; Batson, P. E.; Bojarczuk, N. A.; Linder, B.; Doris, B.

    2007-02-01

    The authors have examined the role of sub nanometer La2O3 and LaN cap layers interposed in Si /HfO2/TiN high-k gate dielectric stacks in tuning the flatband and threshold voltages of capacitors and transistors. High performance, band edge n metal oxide field effect transistors with channel lengths down to 60nm may be fabricated without significant compromise in mobility, electrical thickness, and threshold voltage. They have carried out a microstructural evaluation of these stacks and correlated these results with the electrical behavior of the devices.

  10. Research on Characteristic of Mercury Distribution in Different Electric Fields in Electrostatic Precipitator%电除尘器不同电场汞分布特性研究

    Institute of Scientific and Technical Information of China (English)

    吴剑波; 滕敏华; 华晓宇

    2014-01-01

    为研究燃煤发电厂汞的排放,通过采集不同容量机组的静电除尘器底灰及烟气中飞灰,分析了各个电场下部底灰中的汞含量。结果表明:相比其他因素,煤中携带的汞含量对底灰中汞分布影响最大,煤在完成燃烧后将大部分汞转移到了电除尘底灰中;在电除尘的各级电场中,飞灰汞浓度呈现逐级上升后再下降的趋势。不同电场汞浓度差异的原因与烟气颗粒物的大小及电除尘内部烟气流速有关。%In order to research mercury emission of coal-fired power plants, the paper analyzes mercury con-tent in bottom ash below electric fields by collecting bottom ash of electrostatic precipitators of units with dif-ferent capacities and fly ash in flue gas. The result shows that the mercury content in the coal influences mer-cury distribution in bottom ash most; most of the mercury in the burnt coal is transferred to bottom ash of electrostatic precipitator; in each electric field level of electrostatic precipitator, the mercury content in the fly ash tends to increase level by level and then decreases. The mercury content differences in different elec-tric fields are related to particles in flue gas and flow rate of flue gas in electrostatic precipitators.

  11. Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance

    Science.gov (United States)

    Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander

    2016-11-01

    Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.

  12. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-12-29

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular agent having a mass above a predefined level. In various embodiments, the beam structure may be different types of resonant structures that is at least partially coated or layered with a selective material.

  13. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    Science.gov (United States)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  14. The relationship between the transition voltage of the I- V curve of the ferroelectrics and the coercive field of the P- V hysteretic curve

    Science.gov (United States)

    Xingjiao, Li; Junbo, Bao; Ningzhang, Wang; Jingping, Xu; Tao, Chen; Xuecheng, Zou; Hanhua, Feng; Shaoping, Li

    2002-07-01

    The relationship between the transition voltage of the I- V curve of the ferroelectrics and the coercive field of the P- V hysteretic curve is calculated. The first mathematical analysis to explain the relation between the transition voltage Vt and the coercive voltage Vc is obtained. The origin of the interrelation between the transition voltage of the I- V curve and the coercive field is that the height of the boundary barrier is inversely proportional to the effective dielectric constant of the near-boundary region, which is dependent on a derivative of polarization on the electric field, ∂P/ ∂E. The term ξ( eVt) plus the term ( enb2δ/ dNdPs)( eVc) equals a constant. Vt is the function of Eg, Ps, Vc, and E. There is a linear relation between Vc and Vt. This relationship will induce the matchable relations between the I- V curve and the E- P loop. As long as the Vc of the V- P loop exists, the correspondent Vt of I- V curve will certainly exist. It will be the foundation of a new ferroelectric memory, which operates by the I- V characteristics. These relations are the conditions that can enable nonvolatile memory and nondestructive readout.

  15. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  16. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  17. Irreversible magnetic-field dependence of ferromagnetic resonance and inverse spin Hall effect voltage in CoFeB/Pt bilayer

    Science.gov (United States)

    Kim, Sang-Il; Seo, Min-Su; Choi, Yeon Suk; Park, Seung-Young

    2017-01-01

    Magnetic field (H) sweeping direction dependences of the mixed voltage Vmix induced by the inverse-spin Hall effect(ISHE) and spin-rectified effect (SRE) in a CoFeB (5 nm)/Pt (10 nm) bilayer structure are investigated using the ferromagnetic resonance in the TE mode cavities and coplanar waveguide methods. Conventionally, the magnitude of ISHE voltage VISH (symmetric) excluding the SRE (antisymmetric component) was unavoidably separated from the fitting curve of Vmix (a sum of a symmetric and an antisymmetric part) for one direction of H-source. By studying the ratio of the two voltage parts with the bi-directional H sweeping, the optimized VISH (no SRE condition) value which also include a well-defined spin Hall angle can be obtained via the linear response relation of ISHE and SRE components.

  18. IMPROVEMENT OF THE CERN SPS ELECTROSTATIC SEPTA ION TRAPS

    CERN Multimedia

    Balhan, Bruno; Barlow, Roger Andrew; Raffaele, Graziano

    2016-01-01

    At CERN, the SPS synchrotron is equipped with a slow extraction channel towards the fixed target beam lines in the North Area This channel includes five consecutive electrostatic septa, where the field free region and the active high field region are separated by an array of tungsten-rhenium wires. The field-free region provides for the circulating beam, while the high field region is used to deflect the extracted beam. Since the residual gas can be ionized by the orbiting beam, low energy ions could cross the wire array and enter the high field region and cause high voltage breakdown when accelerated onto the cathode. To prevent low energy ions from entering this high electric field region, a vertical field is applied to the orbiting beam using so-called ‘ion traps’ for active protection. The vertical field is created by electrodes placed inside the region containing the circulating beam. Due to electromagnetic coupling onto the ion trap electrodes observed with the high frequency LHC beam (25 ns spaced ...

  19. Validation of a Robust Neural Real-Time Voltage Estimator for Active Distribution Grids on Field Data

    DEFF Research Database (Denmark)

    Pertl, Michael; Douglass, Philip James; Heussen, Kai

    2017-01-01

    network approach for voltage estimation in active distribution grids by means of measured data from two feeders of a real low voltage distribution grid. The approach enables a real-time voltage estimation at locations in the distribution grid, where otherwise only non-real-time measurements are available......The installation of measurements in distribution grids enables the development of data driven methods for the power system. However, these methods have to be validated in order to understand the limitations and capabilities for their use. This paper presents a systematic validation of a neural...... retraining intervals is investigated. Furthermore, the performance of the model during periods of high PV generation is evaluated. The validation shows that accurate voltage estimation models for distribution grids with high share of dispersed generation can be established with approximately one month...

  20. Electrostatic analysis of nanoelectromechanical systems

    Science.gov (United States)

    Xu, Yang

    We present a multiscale method, seamlessly combining semiclassical, effective-mass Schrodinger (EMS), and tight-binding (TB) theories proposed for electrostatic analysis of silicon nanoelectromechanical systems (NEMS). By using appropriate criteria, we identify the physical models that are accurate in each local region. If the local physical model is semiclassical, the charge density is directly computed by the semiclassical theory. If the local physical model is quantum-mechanical (EMS or TB model), the charge density is calculated by using the theory of local density of states (LDOS). The LDOS is efficiently calculated from Green's function by using Haydock's recursion method where the Green's function is expressed as a continued fraction based on the local Hamiltonian. Once the charge density is determined, a Poisson equation is solved self-consistently to determine the electronic properties. The accuracy and efficiency of the multiscale method are demonstrated by considering several NEMS examples. The multiscale method can be used to compute the effect of surface and interior defects such as vacancies and broken bonds on the performance of microelectromechanical systems (MEMS). By combining multiscale electrostatic analysis with mechanical analysis, we compute the capacitance-voltage and pull-in/pull-out voltages of MEMS switches in the presence of defects in the dielectric oxide layer. Our results indicate that both surface and interior defects can change the pull-in/pull-out voltages significantly. These voltage offsets can lead to an eventual failure of the MEMS switches. The self-consistent TB method is used to investigate carbon nanotube (CNT)-based sensors. We compute the screening effects of semiconducting and metallic single-wall carbon nanotubes (SWNTs) when water molecules and various ions pass through the nanotubes. The trajectories of ions and water molecules are obtained from molecular dynamics (MD) simulations. It is shown that metallic SWNTs have

  1. Experimental demonstration of a controllable electrostatic molecular beam splitter.

    Science.gov (United States)

    Deng, Lianzhong; Liang, Yan; Gu, Zhenxing; Hou, Shunyong; Li, Shengqiang; Xia, Yong; Yin, Jianping

    2011-04-01

    We experimentally demonstrate a controllable electrostatic beam splitter for guided ND3 molecules with a single Y-shaped charged wire and a homogeneous bias field generated by a charged metallic parallel-plate capacitor. We study the dependences of the splitting ratio R of the guided ND3 beam and its relative guiding efficiency η on the voltage difference between two output arms of the splitter. The influences of the molecular velocity v and the cutting position L on the splitting ratio R are investigated as well, and the guiding and splitting dynamic processes of cold molecules are simulated. Our study shows that the splitting ratio R of our splitter can be conveniently adjusted from 10% to 90% by changing ΔU from -6  kV to +6  kV, and the simulated results are consistent with our experimental ones.

  2. Copper removal from industrial wastewaters by means of electrostatic shielding

    Directory of Open Access Journals (Sweden)

    D. Papadopoulou

    2009-01-01

    Full Text Available Electrostatic shielding zones made of electrode graphite powder were used as a new type of ionic and electronic currentsinks. Because of the local elimination of the applied electric field, voltage and current within the zones, ions are led insidethem and accumulate there. We implemented the current sinks in electrodialysis of a simulated copper plating rinse watercontaining 100 mg L-1 Cu2+ ions and electrodeionization of a 0.001 M CuSO4 solution with simultaneous electrochemicalregeneration of the used ion exchange resin beds and obtained pure water with a Cu2+ ion concentration of less than 0.12 mgL-1 at a flow rate of 1.29x10-4 L s-1 diluate stream and a current density of 2 mA cm-2.

  3. The theory of Langmuir probes in strong electrostatic potential structures

    Science.gov (United States)

    Borovsky, J. E.

    1986-01-01

    The operation of collecting and emitting Langmuir probes and double probes within time-stationary strong electrostatic potential structures is analyzed. The cross sections of spherical and cylindrical probes to charged particles within the structures are presented and used to obtain the current-voltage characteristics of idealized probes. The acquisition of plasma parameters from these characteristics is outlined, and the operation of idealized floating double-probe systems is analyzed. Probe surface effects are added to the idealized theory, and some surface effects pertinent to spacecraft probes are quantified. Magnetic field effects on idealized probes are examined, and the time required for floating probes to change their potentials by collecting charge and by emitting photoelectrons is discussed. Calculations on the space-charge effects of probe-perturbed beams and on the space-charge limiting of electron emission are given in an appendix.

  4. Performance enhancement study of an electrostatic Faraday cup detector

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.D. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Hodges, G.S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Seely, D.G. [Department of Physics, Albion College, Albion, MI 49224 (United States); Moroz, N.A. [Department of Physics, Albion College, Albion, MI 49224 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States)]. E-mail: tkvale@physics.utoledo.edu

    2005-01-01

    Faraday cups (FCs) have long been used to measure charged particle beam currents in experiments that seek to determine cross-sections in energetic particle collisions. The reliable operation of a FC as a detector depends on the ability of the device to recapture the electrons ejected when energetic particles strike its interior metal surfaces. We have conducted comparative performance studies of a traditional cylindrically-symmetric, electrostatic-based FC versus an alternative design in which the cylindrical symmetry is broken. The purpose of the alternative design is to generate a transverse electric field to recapture the ejected (secondary and tertiary) electrons. The alternate FC design is shown to be superior in its ability to recapture these electrons, including those having kinetic energies greater than the potential energy barrier determined by the repeller voltage applied to the FC.

  5. Self-calibration method of the bias of a space electrostatic accelerometer

    Science.gov (United States)

    Qu, Shao-Bo; Xia, Xiao-Mei; Bai, Yan-Zheng; Wu, Shu-Chao; Zhou, Ze-Bing

    2016-11-01

    The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10-4 m/s2, about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

  6. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  7. Innovations in the field of high-voltage direct current transmission (HVDC); Innovationen in der Hochspannungs-Gleichstrom-Uebertragungstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.; Kurze, W.; Schramm, H.H.; Pereira, M.; Storner, C.; Ammon, J.; Plewka, G.; Wild, E. [Siemens AG, Erlangen (Germany). Bereich Energieuebertragung und -verbreitung; Uder, M. [Siemens AG, Erlangen (Germany). Bereich Automatisierungs- und Antriebstechnik; Schaller, G. [Erlangen-Nuernberg Univ. (Germany)

    1998-10-05

    This paper describes some new developments from different fields of HVDC technology: The use of direct light-triggered thyristors instead of the conventional electrically triggered ones; a new hybrid-optical measuring method for direct currents at high voltage potential in place of conventional transducers of zeroflux type; a new type of HVDC SF{sub 6}-circuit-breaker, developed for use as Metallic Return Transfer Breaker (MRTB), combining all advantages of an SF{sub 6}-breaker against an air-blast breaker; active filters using power electronics - as a purposeful supplement to passive filters - to reduce the harmonics to negligible levels; the new pulse-echo monitoring system for electrode lines offering a number of advantages over conventional systems (e.g. impedance measurement). All these new but successfully tested techniques and equipment go to enhance the reliability and economy of HVDC systems and therefore set future trends. (orig.) [Deutsch] An ausgewaehlten Beispielen aus verschiedenen Gebieten der HGUe-Technik berichten die Verfasser ueber einige Neuentwicklungen, z.B.: den Einsatz von direkt lichtzuendbaren Thyristoren anstelle von elektrisch zuendbaren; ein neues hybrid-optisches Gleichstrom-Messsystem im Vergleich mit konventionellen Messmethoden mit Nullflusswandlern; SF{sub 6}-Gleichstromschalter - anstelle von Druckluftschaltern beim Einsatz als Metallic Return Transfer Breaker (MRTB); aktiver Filter mit leistungselektronischen Komponenten - als Ergaenzung zu passiven Filtern zur Daempfung von Oberschwingungen ein neues Puls-Echo-Ueberwachungssystem fuer HGUe-Elektrodenleitungen, das bisherigen Methoden, z.B. Impedanzmessung, deutlich ueberlegen ist. Alle diese neuen aber erfolgreich erprobten Techniken erhoehen die Zuverlaessigkeit und Wirtschaftlichkeit von HGUe-Anlagen und sind daher zukunftsweisend. (orig.)

  8. Effects of humidity on the interaction between a fused silica test mass and an electrostatic drive

    Energy Technology Data Exchange (ETDEWEB)

    Koptsov, D.V., E-mail: kopcov@physics.msu.ru; Prokhorov, L.G.; Mitrofanov, V.P.

    2015-10-23

    Interaction of a fused silica test mass with electric field of an electrostatic drive with interdigitated electrodes and influence of ambient air humidity on this interaction are investigated. The key element of the experimental setup is the fused silica torsional oscillator. Time dependent increase of the torque acting on the oscillator's plate after application of DC voltage to the drive is demonstrated. The torque relaxation is presumably caused by the redistribution of electric charges on the fused silica plate. The numerical model has been developed to compute the time evolution of the plate's surface charge distribution and the corresponding torque. - Highlights: • Interaction between a fused silica plate and an electrostatic drive was investigated. • The interaction force is time and relative humidity dependent. • Numerical model of the interaction was developed. • Charge redistribution is shown to be the cause of the interaction force evolution.

  9. Analysis of the operating parameters of a vortex electrostatic precipitator

    Science.gov (United States)

    Congxiang, Lu; Chengwu, Yi; Rongjie, Yi; Shiwen, Liu

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  10. Analysis of the operating parameters of a vortex electrostatic precipitator

    Science.gov (United States)

    Lu, Congxiang; Yi, Chengwu; Yi, Rongjie; Liu, Shiwen

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  11. Computation of Pacemakers Immunity to 50 Hz Electric Field: Induced Voltages 10 Times Greater in Unipolar Than in Bipolar Detection Mode

    Directory of Open Access Journals (Sweden)

    Cihan Gercek

    2017-03-01

    Full Text Available Thisstudy aims to compute 50 Hz electric field interferences on pacemakers for diverse lead configurations and implantation positions. Induced phenomena in a surface-based virtual human model (standing male grounded with arms closed, 2 mm resolution are computed for vertical exposure using CST EM® 3D software, with and without an implanted pacemaker. Induced interference voltages occurring on the pacemaker during exposure are computed and the results are discussed. The bipolar mode covers 99% of the implanted pacing leads in the USA and Europe, according to statistics. The tip-to-ring distance of a lead may influence up to 46% of the induced voltage. In bipolar sensing mode, right ventricle implantation has a 41% higher induced voltage than right atrium implantation. The induced voltage is in average 10 times greater in unipolar mode than in bipolar mode, when implanted in the right atrium or right ventricle. The electric field threshold of interference for a bipolar sensing mode in the worst case setting is 7.24 kV·m−1, and 10 times higher for nominal settings. These calculations will be completed by an in vitro study.

  12. Simultaneous Measurements of Electrostatic and Magnetic Fluctuations in ASDEX Upgrade Edge Plasma

    DEFF Research Database (Denmark)

    Ionita, Codrina; Vianello, Nicola; Müller, H.W.

    2009-01-01

    in such a way that simultaneously the poloidal and radial electric field components, the ion saturation current and the current-voltage characteristic can be registered. During the AUG discharges of 7 s lengths the probe head is inserted two to three times for 100 ms each by the midplane manipulator......In ASDEX Upgrade (AUG) electrostatic and magnetic fluctuations in the edge plasma region were measured simultaneously during ELMy H-mode (high confinement) plasmas and L-mode (low confinement) plasmas and during a transition between the two modes. A special probe was used containing six Langmuir...

  13. Design and fabrication of electrostatic microcolumn in multiple electron-beam lithography

    Science.gov (United States)

    Du, Zhidong; Wen, Ye; Traverso, Luis; Datta, Anurup; Chen, Chen; Xu, Xianfan; Pan, Liang

    2016-03-01

    Microcolumns are widely used for parallel electron-beam lithography because of their compactness and the ability to achieve high spatial resolution. A design of an electrostatic microcolumn for our recent nanoscale photoemission sources is presented. We proposed a compact column structure (as short as several microns in length) for the ease of microcolumn fabrication and lithography operation. We numerically studied the influence of several design parameters on the optical performance such as microcolumn diameter, electrode thickness, beam current, working voltages, and working distance. We also examined the effect of fringing field between adjacent microcolumns during parallel lithography operations. The microcolumns were also fabricated to show the possibility.

  14. Design and analysis of repulsive electrostatic driven MEMS actuators

    Science.gov (United States)

    Yao, Jun; Hu, Fangrong; Cai, Dongmei; Jiang, Wenhan

    2009-02-01

    For many astronomical systems, Adaptive Optics (AO) plays an important role. Here, we report some preliminary studies on MEMS (Micro-Electro-Mechanical-System) Project for micro actuators in AO applications at the Institute of Optics and Electronics, Chinese Academy of Science. This paper presents a few MEMS actuators based on repulsive electrostatic driven mechanism, which can achieve large out-of-plane strokes through eliminating the electrostatic pull-in effect. Design principles, including the layout and the physical dimension of electrodes, and FEA models are illustrated; it provides helpful guidance for designing electrostatic repulsive actuators for being implemented in Deformable Mirrors (DMs). Some repulsive electrostatic driven micro actuators are given, the analysis focus on the displacement versus applied voltage and resonant frequency. Repulsive electrostatic driven actuators can achieve large strokes and high resonant frequencies, they meet the important requirements for DMs.

  15. Measurement of the Magnetic Fields from High-Voltage (230 kV Substations in Tehran and Assessment of Their Effects

    Directory of Open Access Journals (Sweden)

    Mahdieh Sharifi Fard

    2010-06-01

    Full Text Available Introduction: Recent industrial developments in human societies have caused rapid advancements in technologies of production and distribution of electricity, which in turn result in enhancement of power networks and utilization of high voltages. These networks and the high voltages in transfer lines cause the exposure to electric and magnetic fields. In this study, the situation regarding the magnetic fields from high-voltage (230 kV substations in Tehran was investigated. Material and Methods: In this study, 8 high-voltage (230 kV substations were selected (Shous, Shahid Firouzi, Ozgol, Kan, Tehranpars, Azadegan, Ghorkhane and Besat substations. The premises of each substation was divided into some stations and measurements were done in each one. Measurements were done according to the IEEE std 644-1994 Standard in a way that the device, specifically its probe, was kept at a height of 1 meter above the ground surface. Then, we tried to examine the probable effects of exposure to magnetic fields through the Essex questionnaire, with Cronbach coefficient of 94%, completed by the employees of the substations. These questionnaires were completed by substation operators as an exposed group (36 persons and the employees of the office section of the Tehran regional electric company as a witness group (32 persons. Results: The measured density in none of the stations exceeded the standard limits of the International Commission on Non-Ionizing Radiation Protection. With regard to the questionnaire results about mental and neurological, cardiac and respiratory, and gastrointestinal and auditory disorders, we observed significant differences between witness and exposed groups, however, regarding skin allergies, there was no significant difference. Conclusion: Among all control rooms, the highest measured magnetic field was 6.9 mG in the Ozgol Substation Control Room and the lowest was 2 mG in the post of Shahid Firouzi. The control room of Ozgol

  16. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    Science.gov (United States)

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  17. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  18. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  19. Interpretation and Prediction of Molecular Reactivities and Design of Synthetic Pathways, Using Electrostatic Potentials, Electric Fields and Other Properties Related to Charge Density Distribution

    Science.gov (United States)

    1988-10-07

    J. M. Seminario and P. Politzer, "Z Transition State Calculations of Energy Changes and Electrostatic Potentials in Isoelectronic Atoms and Molecules...Potentials in Isoelectronic Atoms and Molecules" K. D. Sen, J. M. Seminario and P. Politzer, submitted to Journal of Chemical Physics. (16) "Characteristic...M. Elminyawi Dr. Keerthi Jayasuriya Dr. Gary P. Kirschenheuter Mrs. Pat Lane Dr. Jane S. Murray Dr. Jorge M. Seminario Dr. K. D. Sen Mr. Per Sjoberg

  20. Voltage dips ride-through capability. Model validation of a resistance-commutated rotor wind turbine generator from in-field testing results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Guillen, Miguel A.; Paz Comech, M.; Ruiz Guillen, Javier; Giraut Ruso, Elizabeth; Garcia-Gracia, Miguel

    2009-07-01

    The present wind energy penetration into the electrical network has forced system operators to adapt their Grid Codes to this new generation, preventing an unacceptable effect on the system safety and reliability. There are several wind turbine models that can be used to study the effects of voltage dips and the corresponding wind turbine responses but these models need to be validated by comparing their results with the data obtained during field tests. This paper describe the process followed for the validation of a Resistance-Commutated rotor wind turbine generator from in-field testing results according to the Spanish procedure for verification, validation and certification of the requirements of the P.O. 12.3 on the response of wind farms in the event of voltage dips. (orig.)

  1. Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions

    Directory of Open Access Journals (Sweden)

    Wan F.H. Abdullah

    2010-01-01

    Full Text Available Problem statement: The Ion-Sensitive Field-Effect Transistor (ISFET is a metal-oxide field-effect transistor-based sensor that reacts to ionic activity at the electrolye/membrane/gate interface. The ionic sensor faces issue of selectivity from interfering ions that contribute to the sensor electrical response in mixed solutions. Approach: We present the training data collection of ISFET voltage response for the purpose of post-processing stage neural network supervised learning. The role of the neural network is to estimate the main ionic activity from the interfering ion contribution in mixed solutions given time-independent input voltages. In this work, potassium ion (K+ and ammonium ion (NH4+ ISFET response data are collected with readout interface circuit that maintains constant voltage and current bias levels to the ISFET drain-source terminals. Sample solutions are prepared by keeping the main ion concentration fixed while the activity of an interfering ion varied based on the fixed interference method. Results: Sensor demonstrates linear relationship to the ion concentration within detection limit but has low repeatability of 0.52 regression factor and 0.16 mean squared error between similarly repeated measurements. We find that referencing the voltage response to the sensor response in DIW prior to measurement significantly improves the repeatability by 15.5% for correlation and 98.3% for MSE. Demonstration of multilayer perceptron feed-forward neural network estimation of ionic concentration from the data collection shows a recognition of >0.8 regression factor. Conclusion: Time-independent DC voltage response of ISFET of the proposed setup can be used as training data for neural network supervised learning for the estimation of K+ in mixed K+/NH4+ solutions.

  2. Monitoring Mars for Electrostatic Disturbances

    Science.gov (United States)

    Compton, D.

    2011-01-01

    The DSN radio telescope DSS-13 was used to monitor Mars for electrostatic discharges from 17 February to 11 April, 2010, and from 19 April to 4 May, 2011, over a total of 72 sessions. Of these sessions, few showed noteworthy results and no outstanding electrostatic disturbances were observed on Mars from analyzing the kurtosis of radio emission from Mars. Electrostatic discharges on mars were originally detected in June of 2006 by Ruf et al. using DSS-13. he kurtosis (normalized fourth moment of the electrical field strength) is sensitive to non-thermal radiation. Two frequencies bands, either 2.4 and 8.4 GHz or 8.4 and 32 GHz were used. The non-thermal radiation spectrum should have peaks at the lowest three modes of the theoretical Schumann Resonances of Mars. The telescope was pointed away from Mars every 5 minutes for 45 seconds to confirm if Mars was indeed the sources of any events. It was shown that by including a down-link signal in one channel and by observing when the kurtosis changed as the telescope was pointed away from the source that the procedure can monitor Mars without the need of extra equipment monitoring a control source.

  3. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  4. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  5. Low bias stress and reduced operating voltage in SnCl{sub 2}Pc based n-type organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Obaidulla, SK. Md., E-mail: obaidulla20@gmail.com; Goswami, D. K., E-mail: xdipak@gmail.com, E-mail: dipak@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Giri, P. K., E-mail: giri@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2014-05-26

    Vacuum deposited tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) field-effect transistors were fabricated on polymethylmethacrylate/aluminum oxide (PMMA/Al{sub 2}O{sub 3}) bilayer gate dielectric, with reduced operating voltage and low contact resistance. The devices with top contact Ag electrodes exhibit excellent n-channel behavior with electron mobility values of 0.01 cm{sup 2}/Vs, low threshold voltages ∼4 V, current on/off ratio ∼10{sup 4} with an operating voltage of 10 V. Bias stress instability effects are investigated during long term operation using thin film devices under vacuum. We find that the amount of bias stress of SnCl{sub 2}Pc based thin film transistor is extremely small with characteristic relaxation time >10{sup 5} s obtained using stretched exponential model. Stressing the SnCl{sub 2}Pc devices by applying 10 V to the gate for half an hour results in a decrease of the source drain current, I{sub DS} of only ∼10% under low vacuum. These devices show highly stable electrical behavior under multiple scans and low threshold voltage instability under electrical dc bias stress (V{sub DS} = V{sub GS} = 10 V, for 2 h) even after 40 days.

  6. Amorphous Strontium Titanate Film as Gate Dielectric for Higher Performance and Low Voltage Operation of Transparent and Flexible Organic Field Effect Transistor.

    Science.gov (United States)

    Yadav, Sarita; Ghosh, Subhasis

    2016-04-27

    We report that the pervoskite material, strontium titanate (STO) can be used as a gate dielectric layer of flexible and low voltage organic field effect transistor (OFET). The crystallinity, dielectric constant, and surface morphology of STO films can be controlled by the engineering of the growth condition. Under optimized growth condition, amorphous films of STO show a much better gate dielectric compared to other gate dielectrics used to date, with very small leakage current density for flexible and low voltage (transistors with amorphous STO gate dielectric show high mobility of 2 cm(2)/(V s), on/off ratio of 10(6), subthreshold swing of 0.3 V/dec and low interface trap density. Similarly excellent performance has been obtained in copper phthalocyanine (CuPc) based OFETs with on/off ratio ∼10(5) and carrier mobility ∼5.9 × 10(-2) cm(2)/(V s). Moreover, the operating voltage (∼5 V) has been reduced by more than one order of magnitude. It has been demonstrated that the low processing temperature of amorphous STO makes it the most suitable gate dielectric for flexible and transparent organic devices to operate under low voltage.

  7. Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster

    Science.gov (United States)

    Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.

    2017-10-01

    The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.

  8. Study of the electric field and wall voltage in a high pressure ac-PDP cell by laser induced fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhou Yan; K. W. Whang; J. H. Yang; D. C. Jeong; C.H.Ha; Y.W. Choi

    2004-01-01

    The electric field in a surface discharge type ac-PDP cell with He or He/Xe(0.1%) mixture has been measured over a wide range of pressure (5 50kP1 using laser induced fluorescence detection. The wall voltage was estimated from the measured electric field. The Stark manifolds of triplet atomic helium Rydberg state (2s3S) with principal quantum numbers (n=8 and 9) have been used to measure the electric field, as the lifetime of 2s3S is longer than the single atomic helium Rydberg state (2s1S) in high pressure discharge. Comparison of the Stark manifolds between the n=9 and n=8shows that the measurement accuracy of electric field can be increased by 10%. The maximum electric field strength during discharge and the wall voltage at the end of pulse decreases with the increase of pressure. The comparison of He and He/Xe(0.1%) discharge at 13kPa showed that He/Xe gas mixture discharge can accumulate more wall charge on MgO surface and the electric field was somewhat higher than those of pure helium discharge during pulse off period under the same discharge conditions.

  9. On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film

    OpenAIRE

    Masaharu Kobayashi; Toshiro Hiramoto

    2016-01-01

    Internet-of-Things (IoT) technologies require a new energy-efficient transistor which operates at ultralow voltage and ultralow power for sensor node devices employing energy-harvesting techniques as power supply. In this paper, a practical device design guideline for low voltage operation of steep-slope negative-capacitance field-effect-transistors (NCFETs) operating at sub-0.2V supply voltage is investigated regarding operation speed, material requirement and energy efficiency in the case o...

  10. Investigations on the magnetic field coupling of automotive high voltage systems to determine relevant parameters for an EMR-optimized designing

    Science.gov (United States)

    Krause, David; John, Werner; Weigel, Robert

    2016-03-01

    The implementation of electrical drive trains in modern vehicles is a new challenge for EMC development. This contribution depicts a variety of investigations on magnetic field coupling of automotive high-voltage (HV) systems in order to fulfil the requirements of an EMR-optimized designing. The theoretical background is discussed within the scope of current analysis, including the determination of current paths and spectral behaviour. It furthermore presents models of shielded HV cables with particular focus on the magnetic shielding efficiency. Derived findings are validated by experimental measurements of a state-of-the-art demonstrator on system level. Finally EMC design rules are discussed in the context of minimized magnetic fields.

  11. Self-field effects on critical current density and current-voltage characteristics in superconducting YBaCuO thick films

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.D.; Hart, C.; Martinez, C.M.; Ares, O. [Superconductivity Lab, IMRE-University of Havana, Vedado 10400, Havana (Cuba)

    1999-07-01

    The self-field and percolative influences on transport measurements of polycrystalline bridges engraved on YBaCuO thick film have been investigated. A maximum in the dependence of the critical current density on cross-sectional area of the bridge (A = 0.003 mm{sup 2}-0.3 mm{sup 2}) has been found experimentally, in samples with low critical current densities (J{sub c}<50 A cm{sup -2}). The result of the measurements are in agreement with Mulet and coworkers, who have predicted that, under certain conditions, the self-field effects on transport measurements are negligible and the J{sub c} dependence on the sample dimensions is determined by the percolative character of the transport current. Self-field influences have also been observed in current-voltage characteristics, which have been analysed using the Ambegaokar-Halperin phase-slip theory. By allowing the noise parameter ({gamma}) to change with temperature, magnetic field and transport current, adequate agreement between theoretical and experimental current-voltage characteristics has been obtained. The dependence of the noise parameter with the transport current is demonstrated to be related with the self-field. (author)

  12. Effects of substrate voltage on noise characteristics and hole lifetime in SOI metal-oxide-semiconductor field-effect transistor photon detector.

    Science.gov (United States)

    Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi

    2014-09-08

    Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.

  13. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer

    Science.gov (United States)

    Xiang, Lanyi; Wang, Wei; Xie, Wenfa

    2016-11-01

    Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V‑1 s‑1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V.

  14. Simplification Study of FE Model for 1000kV AC Transmission Line Insulator String Voltage and Grading Ring Surface Electric Field Distribution Calculation

    Directory of Open Access Journals (Sweden)

    Guoli Wang

    2013-09-01

    Full Text Available The finite element model of the 1000kV Ultra High Voltage (UHV AC transmission line porcelain insulator string voltage distribution and grading ring surface electric field distribution calculation has the characteristics of large size, complicated structure and various mediums. To insure the accuracy, related influencing factors should be considered to simplify the model reasonably for improving computational efficiency. A whole model and a simplified 3D finite element model of UHV AC transmission line porcelain insulator string were built. The influencing factors including tower, phase conductors, hardware fittings, yoke plate and phase interaction were considered in the analysis. And finally, the rationality of the simplified model was validated. The results comparison show that building a simplified model of three-phase bundled conductors within a certain length, simplifying the tower reasonably, omitting the hardware fittings and yoke plate and containing only single-phase insulator string model is feasible. The simplified model could replace the whole model to analyze the voltage distribution along the porcelain insulator string and the electric field distribution on the grading ring surface, and it can reduce the calculation scale, improve optimization efficiency of insulators string and grading ring parameters.

  15. Design of Electrostatic Septa and Fast Deflector for MedAustron

    CERN Document Server

    Borburgh, J; Kramer, T; Prost, A; Stadlbauer, T

    2011-01-01

    For the MedAustron facility under construction in Wiener Neustadt, three electric field deflectors are developed in collaboration with CERN. A fast deflector is used in the Low Energy Beam Transfer line to chop the beam. The chopped beam is swept onto a Faraday cup for measurement purposes and to stop beam being sent towards the synchrotron. For the multi-turn injection of protons and ions, as well as for the slow extraction from the synchrotron, electrostatic septa are used. A novel design for MedAustron includes an inversed cathode/anode support and high voltage feedthroughs rated for 150 kV. The possibility for a higher voltage will significantly improve the conditioning process of the septa surfaces. This paper describes the requirements of these devices as well as the mechanical design and strategies adopted for their power supplies.

  16. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  17. 高强脉冲电场与臭氧联用降解壳聚糖%Degradation of chitosan by high voltage pulsed electric field and ozone

    Institute of Scientific and Technical Information of China (English)

    罗文波; 唐超; 曾新安; 于淑娟

    2013-01-01

    The vigorous oxidation ability of ozone and the high energy input of pulsed electric field were utilized to degrade the macromolecular chitosan to oligochitosan. The degradation rate was up to 98. 5% after the combined treatment of high voltage pulsed electric field and ozone for 30 minutes in acetic acid homogeneous phase. Three experiment schemes of individual and combined treatments of high voltage pulsed electric field and ozone were designed the results showed that the efficiency of combined treatment was higher than that of single treatments, so the combination of high voltage pulsed electric field and ozone had high synergistic effect. By infrared spectrum analysis, the structure of degraded chitosan was not changed compared to the initial chitosan.%利用臭氧的强氧化性和电场的高能量降解大分子壳聚糖为壳寡糖.在乙酸均相体系中,高强脉冲电场与臭氧联用处理壳聚糖30min时,壳聚糖的降解率达到98.5%.设计了脉冲电场、臭氧单独处理和电场与臭氧联用处理3种实验方案,结果表明:电场与臭氧联用的处理效率要高于分别处理效率,电场与臭氧联用具有协同作用.经红外光谱分析,降解产物与原料壳聚糖结构基本一致.

  18. EFFECT OF ELECTROSTATIC RESISTANCE ON THE SHUTTLE OF MICRORESONATOR

    Institute of Scientific and Technical Information of China (English)

    SHEN Xuejin; HOU Licheng

    2008-01-01

    To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with a large ratio of surface area to their volume. The model of electrostatic tangential force of the shuttle in laterally driven comb microresonator is established based on the rule of energy conservation. The effects of microscale, surface roughness, applied voltage, and micro asperities or dents or holes formed in fabrication are investigated, and the electrostatic resistance between two charged moving plates is analyzed. The analytic results are coincident well with those of ANSYS simulation. It is found that the electrostatic resistance becomes high as the increase of the ratio of the shuttle width to the gap between moving plates and the relative surface roughness or the increment of the applied voltage.

  19. A fast switching electrostatic deflector system for actinide isotopic ratio measurements

    Science.gov (United States)

    Zorko, Benjamin; Child, D. P.; Hotchkis, M. A. C.

    2010-04-01

    We have implemented a fast switching electrostatic system on the actinides beamline on the ANTARES accelerator at ANSTO, to improve the precision of analyses by accelerator mass spectrometry. This high-energy bouncing system is based on a pair of deflector plates, deflecting in the orbit plane, set at the entrance and exit of the analysing magnet. The design of deflector plates is unique, and it was modelled by SIMION in order to minimize field inhomogenity and fringe field effects. The pair of deflector plates are supplied by a high-voltage amplifier driven by an EPICS-enabled control unit, with two 4 W power supplies providing up to ±10 kV modulation. The high-energy bouncing system is synchronized with the existing low-energy bouncing system. To measure the isotopic ratio with the new system, the magnetic fields of the injector and analysing magnets are set to transmit selected isotopes along the beam line with zero voltage applied. The other isotopes of interest are transmitted by keeping the magnetic fields constant and modulating the voltages on the injector magnet chamber and on the high-energy deflector plates.

  20. Electrostatic septum, SPS

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    To minimize losses during slow extraction towards N- and W-Area, electrostatic septa in long straight sections 2 and 6 precede the magnetic septa. This picture is a detail of 7501199, and shows the suspension of the wires. 7801286 shows a septum in its tank. See also 7501120X.

  1. Electrostatics of Rigid Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  2. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  3. An asymmetry in electrostatics

    Science.gov (United States)

    Ganci, Salvatore

    2013-11-01

    This paper outlines a misuse of the electrostatic induction concept. A non-symmetrical behaviour was observed in a charge by the induction of an insulated hollow metallic conductor (the Faraday ice pail experiment). The major consequence of this experiment is a quick demonstration that the Earth must have a net negative charge.

  4. Dissipative electro-elastic network model of protein electrostatics

    CERN Document Server

    Martin, Daniel R; Matyushov, Dmitry V

    2011-01-01

    We propose a dissipative electro-elastic network model (DENM) to describe the dynamics and statistics of electrostatic fluctuations at active sites of proteins. The model combines the harmonic network of residue beads with overdamped dynamics of the normal modes of the network characterized by two friction coefficients. The electrostatic component is introduced to the model through atomic charges of the protein force field. The overall effect of the electrostatic fluctuations of the network is recorded through the frequency-dependent response functions of the electrostatic potential and electric field at the active site. We also consider the dynamics of displacements of individual residues in the network and the dynamics of distances between pairs of residues. The model is tested against loss spectra of residue displacements and the electrostatic potential and electric field at the heme's iron from all-atom molecular dynamics simulations of three hydrated globular proteins.

  5. Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer.

    Science.gov (United States)

    Choi, Seung-Hoon; Jang, Bong-Hoon; Park, Jin-Seong; Demadrille, Renaud; Tuller, Harry L; Kim, Il-Doo

    2014-03-25

    Field effect transistors (FETs), incorporating metal-oxide nanofibers as the active conductive channel, have the potential for driving the widespread application of nanowire or nanofiber FETs-based electronics. Here we report on low voltage FETs with integrated electrospun In2O3-ZnO-ZnGa2O4 composite fiber channel layers and high-K dielectric (MgO)0.3-(Bi1.5Zn1.0Nb1.5O7)0.7 gate insulator and compare their performance against FETs utilizing conductive single phase, polycrystalline ZnO or In2O3 channel layers. The polycrystalline In2O3-ZnO-ZnGa2O4 composite fibers provide superior performance with high field effect mobility (∼7.04 cm2 V(-1) s(-1)), low subthreshold swing (390 mV/dec), and low threshold voltage (1.0 V) combined with excellent saturation, likely resulting from the effective blocking of high current-flow through the In2O3 and ZnO nanocrystallites by the insulating spinel ZnGa2O4 phase. The microstructural evolution of the individual In2O3, ZnO, and ZnGa2O4 phases in composite fibers is clearly observed by high resolution TEM. A systematic examination of channel area coverage, ranging from single fiber to over 90% coverage, demonstrates that low coverage results in relatively low current outputs and reduced reproducibility which we attribute to the difficulty in positioning fibers and fiber length control. On the other hand, those with ∼80% coverage exhibited high field effect mobility, high on/off current ratios (>10(5)), and negligible hysteresis following 15 sweep voltage cycles. A special feature of this work is the application of the FETs to modulate the properties of complex polycrystalline nanocomposite channels.

  6. A Bridge between Two Important Problems in Optics and Electrostatics

    Science.gov (United States)

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  7. A Bridge between Two Important Problems in Optics and Electrostatics

    Science.gov (United States)

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  8. A comparison of magnetic fields inside and outside high-voltage urban 110-kV power substations with the exposure recommendations of the Ukrainian regulatory authorities.

    Science.gov (United States)

    Okun, Oleksandr; Shevchenko, Sergey; Korpinen, Leena

    2013-05-01

    The aim of this study was to carry out theoretical investigations of power frequency magnetic fields (MFs), produced inside and outside the domain of urban 110-kV power substations and to establish a correspondence between the levels of the fields and the specified population limits as defined by Ukrainian regulations. The fields produced by high-voltage substations were studied based on the application of the numerical finite element methodology. The investigations have shown that magnetic flux density values calculated inside and outside the considered 110-kV power substations do not reach the exposure limits specified by the Ukrainian regulations (1750 μT) and by international guidelines (ICNIRP 2010). Inside the domain of the substation, the maximum value of MFs was found under the 10-kV busbars and it equalled 420 μT.

  9. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, S; Pammler, K; Silny, J [Research Center for Bioelectromagnetic Interaction (FEMU), University Hospital, Aachen University (Germany)], E-mail: joosten@femu.rwth-aachen.de

    2009-02-07

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  10. Low Voltage Power Supply Incorporating Ceramic Transformer

    CERN Document Server

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  11. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  12. Directional movement of entomopathogenic nematodes in response to electrical fields: Effects of species, magnitude of voltage, and infective juvenile age

    Science.gov (United States)

    Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a...

  13. Biobriefcase electrostatic aerosol collector

    Science.gov (United States)

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  14. Electrostatic separator for micronized mixtures of metals and plastics originating from waste electric and electronic equipment

    Science.gov (United States)

    Messal, Sara; Corondan, Razvan; Chetan, Ionut; Ouiddir, Rabah; Medles, Karim; Dascalescu, Lucian

    2015-10-01

    In spite of their extensive use for processing mixtures of granules exceeding 1 mm in size, very few industrial electrostatic separators are capable of handling micronized metals and plastics originating from waste electric and electronic equipment. The aim of the present work is to validate the possibility of using a novel belt-type electrostatic separator for the selective sorting of such particulate mixtures, the dimensions of which are in the order of 0.1 mm. In this type of separator, the metal particles get charged by electrostatic induction in contact with the grounded metal belt electrode, while the plastics remain uncharged in the electric field and are collected separately. The experiments are performed with 2-g samples of a mixture composed in equal proportions (50% - 50%) of Aluminium and Acrylonitrile Butadiene Styrene (ABS) particles of average diameter ranging between 125 μm and 250 μm. They enabled the evaluation of the effects and the interaction of two control variables of the process: the angle of inclination of the roll-type electrode and the high voltage applied to it.

  15. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  16. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kreiner, A.J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)], E-mail: kreiner@tandar.cnea.gov.ar; Thatar Vento, V. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Levinas, P. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Di Paolo, H.; Burlon, A.A. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kesque, J.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Valda, A.A.; Debray, M.E.; Somacal, H.R. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Minsky, D.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)] (and others)

    2009-07-15

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.0.

  17. Electrostatic Discharge Training Manual

    Science.gov (United States)

    1980-09-01

    NAVSEA SE 003-AA-TRN-OO LEYE V ELECTROSTATIC DISCHARGE TRAINING MANUAL s DTIC ,T OF I!ELECTE, ,4MA 0W\\R 9 981 E PUBLISHED BY DIRECTION OF COMMANDER...AS: F (QIQ2 . . . ................................................. (1) WHERE: F = FORCE ( NEWTONS ) Q, AND Q2 = MAGNITUDES OF THE CHARGES (COULOMB) R...RATIONALIZED MKS UNITS IN EQUATION (1), WE HAVE: & I 9(5 X 1 - )(lO ř I ’ 32 I I I I. & I = .5 NEWTON

  18. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  19. STATIC STUDY OF CANTILEVER BEAM STICTION UNDER ELECTROSTATIC FORCE INFLUENCE

    Institute of Scientific and Technical Information of China (English)

    ZhangYin; ZhaoYa-pu

    2004-01-01

    The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beam solutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation, So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beam stiction are studied. The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.

  20. Effect of Calcium Soaking Combined with Electrostatic Field Treatment on Postharvest Physiology of Strawberry Fruit%浸钙结合电场处理对草莓采后生理的影响研究

    Institute of Scientific and Technical Information of China (English)

    王愈; 狄建兵; 王宝刚

    2011-01-01

    研究浸钙结合静电场处理对草莓采后生理的影响,为高压电场处理技术应用于果实贮藏提供理论依据.以“长虹2号”草莓果实为试材,研究浸钙( 1% CaCl2,20 min)结合静电场(-200 kV/m,2h/d)处理对冷藏草莓(贮藏温度0℃,相对湿度85%~90%)果肉最大破断应力、呼吸强度、乙烯释放量及细胞膜透性的影响.结果表明:浸钙结合电场处理较对照(单纯浸钙和浸水)明显抑制了草莓果实的乙烯释放,降低了果实的呼吸强度,保持贮藏期间果实最大破断应力,延缓果肉细胞相对电导率的上升,从而有效地抑制采后草莓果实的衰老过程.而单纯浸钙仅显著抑制了果实最大破断应力的上升,对草莓采后生理无显著影响.浸钙结合高压静电场处理草莓,贮藏效果较佳,且节能特点非常突出.%The objective of this study is to investigate effect of calcium soaking combined with electrostatic field treatment on postharvest physiology of strawberry fruit. The effects of calcium soaking (1% CaCl2,20min) combined with electrostatic field (-200 kV/m,2h/d) treatment on the changes of maximum breaking stress, respiration strength, ethylene liberated amount and cell membrane permeability of strawberry fruit ('changhong 2') stored at 0℃, 85%~90% RH were investigated in this paper. The results showed that calcium saoking combined with electrostatic field treatment compared to single calcium or water soaking significantly inhibited the ethylene libration and respiration strength, kept the maximum breaking stress, and delayed the increase of relative conductivity of strawberry fruit, thus effectively inhibited the senile process of postharvest strawberry fruit. Single calcium treatment also could delay the increase of maximum breaking stress but had no significant effect on the postharvest physiology. Calcium soaking combined with electrostatic field treatment could achieve better storage effect and the energy

  1. Electrostatic afocal-zoom lens design using computer optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@gmail.com

    2014-12-15

    Highlights: • We describe the detailed design of a five-element electrostatic afocal-zoom lens. • The simplex optimization is used to optimize lens voltages. • The method can be applied to multi-element electrostatic lenses. - Abstract: Electron optics is the key to the successful operation of electron collision experiments where well designed electrostatic lenses are needed to drive electron beam before and after the collision. In this work, the imaging properties and aberration analysis of an electrostatic afocal-zoom lens design were investigated using a computer optimization technique. We have found a whole new range of voltage combinations that has gone unnoticed until now. A full range of voltage ratios and spherical and chromatic aberration coefficients were systematically analyzed with a range of magnifications between 0.3 and 3.2. The grid-shadow evaluation was also employed to show the effect of spherical aberration. The technique is found to be useful for searching the optimal configuration in a multi-element lens system.

  2. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  3. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    Science.gov (United States)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  4. IMPROVING THE QUALITY OF LIFE THROUGH EFFECTS OF TREATMENT WITH LOW INTENSITY EXTREMELY LOW-FREQUENCY ELECTROSTATIC FIELD WITH DEEP OSCILLATION® IN PATIENTS WITH BREAST CANCER WITH SECONDARY LYMPHEDEMA TO PATIENTS TREATED WITH STANDARD LYMPH EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Atanas Petkov

    2016-08-01

    Full Text Available Objective: To examine the damaged symptoms and functional disorders in women with secondary lymphоedema after breast cancer surgery in which to evaluate the therapeutic benefits of treatment with low intensity and extremely low frequency electrostatic fields reproduced by the - Deep Oscillation® with the program for a manual lymphatic drainage. Methods: Twenty-one patients, divided into two randomized groups. The first group of women consists of 11 women treated with 10 session’s lymphatic drainage with Deep Oscillation. And second control group included 10 women having undergone only standard lymphatic drainage. Subjective assessment includes pain and swelling; range of motion in the shoulder joint; movement of the neck and an analysis of the volume of the chest using a 3D system measuring. Results: At the beginning of therapy, patients had high scores for sensation of pain; swelling of the extremities; restricted movement in the shoulder joint; restriction in the movement of the spine in the neck portion. In the course of treatment the pain reduces its intensity, the volume of movement in the shoulder joint is returns, but in the study group, which is subjected to lymph drainage with low-frequency electrostatic fields of apparatus - Deep Oscillation® indicators are much better. Moreover, significantly pain reduces. Subjective reduce swelling in both groups was confirmed objectively by 3D measuring only in the treatment group. Conclusion: Manual lymph drainage with deep oscillation leads to a significant reduction in pain relief and reduce swelling in patients with lymphoedema average breast compared with standard mechanical lymphatic drainage.

  5. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors.

    Science.gov (United States)

    Pal, Bhola N; Dhar, Bal Mukund; See, Kevin C; Katz, Howard E

    2009-11-01

    Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlO(x) layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol-gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V(-1) s(-1), was from zinc tin oxide (ZTO), with an on/off ratio of 2 x 10(4). ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V(-1) s(-1). We also used silicon wafer and flexible polyimide-aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.

  6. Microencapsulation and Electrostatic Processing Method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  7. Evaluation and measurement of magnetic field exposure at a typical high-voltage substation and its power lines.

    Science.gov (United States)

    Ozen, S

    2008-01-01

    This study presents a survey of magnetic field measurements including those resulting from 380/154 kV power substations, which play a vital role in human body biological studies. The survey was carried out in the main power substation of Antalya, Turkey, located at the suburban region of the city, under actual loads. The paper also presents the actual magnetic field strength measured near the 380/154 kV substation and power transmission lines (380 and 154 kV) connecting to the substation. Since most part of these lines pass through a residential area, they have been included in the study, and the actual magnetic field variation around them has been investigated by comparative analysis of measured data. For the occupants working at substations, occupational exposure has been analysed with actual magnetic fields at operating locations. Induced internal electric fields and current densities in the occupants' body due to exposure to external magnetic fields produced by a conventional 380/154 kV power substation have been investigated.

  8. Electrostatic transfer of epitaxial graphene to glass.

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne; Biedermann, Laura Butler; Beechem Iii, Thomas Edwin; Ross, Anthony Joseph, III

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

  9. ELECTROSTATIC MODE ASSOCIATED WITH PINCH VELOCITY IN RFPS

    Energy Technology Data Exchange (ETDEWEB)

    DELZANNO, GIAN LUCA [Los Alamos National Laboratory; FINN, JOHN M. [Los Alamos National Laboratory; CHACON, LUIS [Los Alamos National Laboratory

    2007-02-08

    The existence of a new electrostatic instability is shown for RFP (reversed field pinch) equilibria. This mode arises due to the non-zero equilibrium radial flow (pinch flow). In RFP simulations with no-stress boundary conditions on the tangential velocity at the radial wall, this electrostatic mode is unstable and dominates the nonlinear dynamics, even in the presence of the MHD modes typically responsible for the reversal of the axial magnetic field at edge. Nonlinearly, this mode leads to two beams moving azimuthally towards each other, which eventually collide. The electrostatic mode can be controlled by using Dirichlet (no-slip) boundary conditions on the azimuthal velocity at the radial wall.

  10. Electrostatic Method to Measure the Size of the Sprayed Droplets

    Directory of Open Access Journals (Sweden)

    Kuna-Broniowski, M.

    2015-11-01

    Full Text Available In the paper is presented the new method the measurement of the main parameters the atomised stream of liquid. This method base on the measurement of the electric charge carried by water drops charged by high voltage. The electrostatic sensor to measure of the droplets size, is associated with precision mechanic system scanning the sprayed surface. The amplified and conditioned signals from electrostatic sensor are send to the computer system equipped in virtual instrument to analyse the size and spatial distribution of droplets. The virtual instrument control also the scanning system.

  11. A simplified electrostatic model for hydrolase catalysis.

    Science.gov (United States)

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  12. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  13. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  14. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT.

    Science.gov (United States)

    Zhou, Changjian; Wang, Xinsheng; Raju, Salahuddin; Lin, Ziyuan; Villaroman, Daniel; Huang, Baoling; Chan, Helen Lai-Wa; Chan, Mansun; Chai, Yang

    2015-05-21

    MoS2 and other atomic-level thick layered materials have been shown to have a high potential for outperforming Si transistors at the scaling limit. In this work, we demonstrate a MoS2 transistor with a low voltage and high ON/OFF ratio. A record small equivalent oxide thickness of ∼1.1 nm has been obtained by using ultra high-k gate dielectric Pb(Zr0.52Ti0.48)O3. The low threshold voltage (swing of 85.9 mV dec(-1), the high ON/OFF ratio of ∼10(8) and the negligible hysteresis ensure a high performance of the MoS2 transistor operating at 1 V. The extracted field-effect mobility of 1-10 cm(2) V(-1) s(-1) suggests a high crystalline quality of the CVD-grown MoS2 flakes. The combination of the two-dimensional layered semiconductor and the ultra high-k dielectric may enable the development of low-power electronic applications.

  15. First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier

    CERN Document Server

    Badertscher, A; Degunda, U; Epprecht, L; Gendotti, A; Horikawa, S; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Nguyen, K; Resnati, F; Rubbia, A; Viant, T

    2012-01-01

    We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 $\\times$ 40 cm$^2$ and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of $\\sim$1 kV$_{\\mathrm{pp}}$, statically charges up to a voltage a factor of $\\sim$30 higher inside the LAr vessel, creating a uniform drift field of $\\sim$0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of $\\sim$1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their go...

  16. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter; Etude preliminaire d`un reseau de terrain pour le systeme de controle des hautes tensions du calorimetre hadronique d`Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-12-31

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors).

  17. NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  18. Physics of electrostatic lens

    Science.gov (United States)

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  19. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  20. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  1. Electrostatic properties of fullerenes under an external electric field: First-principles calculations of energetics for all IPR isomers from C60 to C78

    Science.gov (United States)

    Sorimachi, Jun-ya; Okada, Susumu

    2016-08-01

    Based on first-principles total energy calculations, we analyze the energetics of the fullerene isomers from C60 to C78, all of which satisfy the isolated pentagon rule, under a parallel electric field. Our calculations show that the total energy of the fullerene is proportional to the square of the external electric field. On the other hand, the coefficient of the quadratic energy profile is sensitive to the fullerene species and their orientation. Furthermore, fullerenes possessing lower symmetry exhibit asymmetric quadratic energy profiles with respect to the field, indicating that they possess intrinsic polarization along particular molecular orientations.

  2. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  3. About of the Electrostatic fields excitation theory by a RF wave in a plasma; Acerca de la teoria de excitacion de campos electrostaticos por una onda de rf en un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.R

    1991-01-15

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  4. 基于MATLAB对二维混合边界静电场域的分析%Based on MATLAB for two-dimensional mixed boundary electrostatic field analysis

    Institute of Scientific and Technical Information of China (English)

    李小兵

    2012-01-01

    This paper analyzes the principles and concepts of the finite difference method, the electromagnetic field problem involves three types of boundary conditions using finite difference numerical calculation and analysis of border issues, to analyze the electrostatic field of two-dimensional mixed-type boundary and calculate the differential equations using MATLAB programming.and overrelaxation iterative method is introduced into the calculation of the differential equation and compared with the simple iterative method, using the same calculation accuracy overrelaxation method not only saves storage space, and the speed of convergence. It can be seen by calculating the Matlab in solving practical engineering, and mathematics problem, easier to use, the statement is more powerful, and visually demonstrate the two-dimensional mixed boundary electrostatic field potential maps and field strength three-dimensional maps.%本文分析了有限差分法的原理与概念,讨论了电磁场问题涉及3种类型的边界条件,采用有限差分数值计算分析边界问题,对二维混合型边界静电场进行分析,用MATLAB编程计算差分方程,并将超松弛迭代法引入到差分方程的计算,并与简单迭代方法进行比较,同样的计算精度下采用超松弛法不仅节省存储空间,而且加快了收敛速度。通过计算可以看出MATLAB在解决实际的工程和数学问题中,具有使用更为简便、语句功能更强的特点,能直观地演示二维混合边界静电场的电势分布图和场强立体分布图。

  5. Transverse voltage in zero external magnetic fields, its scaling and violation of the time-reversal symmetry in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vasek, P. [Institute of Physics ASCR, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic)]. E-mail: vasek@fzu.cz; Shimakage, H. [KARC, National Institute of Information and Communication Technology, 588-2 Iwaoka, Kobe, 651-2492 (Japan); Wang, Z. [KARC, National Institute of Information and Communication Technology, 588-2 Iwaoka, Kobe, 651-2492 (Japan)

    2004-09-15

    The longitudinal and transverse voltages (resistances) have been measured for MgB{sub 2} in zero external magnetic fields. Samples were prepared in the form of thin film and patterned into the usual Hall bar shape. In close vicinity of the critical temperature T{sub c} non-zero transverse resistance has been observed. Its dependence on the transport current has been also studied. New scaling between transverse and longitudinal resistivities has been observed in the form {rho}{sub xy} {approx} d{rho}{sub xx}/dT. Several models for explanation of the observed transverse resistances and breaking of reciprocity theorem are discussed. One of the most promising explanation is based on the idea of time-reversal symmetry violation.

  6. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    Science.gov (United States)

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

  7. Electrostatically biased binding of kinesin to microtubules.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2011-11-01

    Full Text Available The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.

  8. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    Science.gov (United States)

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  9. Electrostatic quadrupole DC accelerators for BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  10. Flexible electrostatic nanogenerator using graphene oxide film.

    Science.gov (United States)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-10-07

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.

  11. 基于二维直方图和静电场模型的脑部MRI图像的分割%BrainMRIImageSegmentationBasedon 2-DHistogramandElectrostaticFieldModel

    Institute of Scientific and Technical Information of China (English)

    廖亮

    2013-01-01

      本文提出一种改进的使用主动轮廓模型分割脑部肿瘤图像的方法。采用改进的Greedy法,对轮廓线蛇点的邻域提出了新的搜索方法,并给出判定的准则。同时使用遗传算法处理图像的二维直方图,得到阈值后对图像进行二值化处理,并使用静电场模型对二值图像的梯度场计算外力。对比试验表明了该算法的有效性。%An improved algorithm for brain tutor MRI image segmentation based on modified Active Contour Model is proposed in this paper. A novel adjacent point selection strategy, based on a modified Greedy method, for searching potential snake points in the neighborhood of a target contour point is proposed, as well as its corresponding criteria. The proposed method employs Genetic Algorithm on the 2D histogram of a given images to get the threshold used for binarizing the given image. Then the Electrostatic Field model is used to calculate the extern force of the gradient field of the obtained binary image. Comprison experiments show the effectiveness of the proposed method.

  12. 沿面介质阻挡放电装置静电场影响因素研究%Research on Influencing Factors of Electrostatic Field in Surface Dielectric Barrier Discharging Device

    Institute of Scientific and Technical Information of China (English)

    李猛; 杨镇宁; 李俊豪; 吴小钊

    2016-01-01

    Taking a cylinder surface discharge reactor as the object, this paper simulated and analyzed the surface dielectric barrier discharge device by using finite element analyzing software. This paper researched on the influence of excitation voltage, high voltage electrode wire di-ameter and screw pitch, dielectric thickness and relative dielectric constant of dielectric etc on the static electrical field of surface dielectric bar-rier discharge device. The simulation results show that in the same position of air gap the electric field increases linearly with the increase of the applied voltage, reduces nonlinearly with the reduce of the wire diameter, reduces nonlinearly with the increase of the thickness of the dielectric and increases nonlinearly with the increase of relative dielectric constant. The selection of smaller diameter of the electrode, thicker dielectric or dielectric with larger relative dielectric constant could reduce discharge inception voltage.%以螺环型沿面放电作为研究对象,利用有限元仿真软件对沿面介质阻挡放电装置进行静电场的仿真分析,研究激励电压、高压电极线径、高压电极间距(螺距)、介质厚度及介质相对介电常数等对沿面介质阻挡放电装置静电场的影响。仿真结果表明:在气隙的同一位置,场强随电压的升高而线性增大,随线径的减小而非线性减小,随介质厚度的增加而非线性减小,随相对介电常数的增大而非线性增大。选取电极线径较小、介质厚度薄、较大相对介电常数的介质,均可以降低放电起始电压。

  13. High- voltage Pulsed Electric Field Sterilization Equipment and Flow Control%高压脉冲电场灭菌设备及其流量控制

    Institute of Scientific and Technical Information of China (English)

    林荣华; 李伟光

    2012-01-01

    In order to optimize the sterilization effect of high-voltage pulsed electric field sterilization equipment, this paper analyzes its function according the tactors of the enfluence on the system, designs the overall structure and PLC-based flow control system by the way of frequency control of motor speed, describes the structure and principle of high-voltage pulse generator and the theory and realization of the flow control based on frequency control as well as the realization of communication between inverters and PLC with RS-485. The result shows that the equipment is able to control and adjust key process parameters well, comtro the flow by a simple and reliable way, and achieve high effective and fast sterilization.%为优化高压脉冲电场灭菌设备的灭菌效果,根据其影响因素进行了系统功能需求分析,设计了设备的总体架构,采用变频调速的方法,设计了基于PLC的流量控制系统.简述了高压脉冲发生器的结构及原理,重点介绍了基于变频调速的流量控制原理与实现,变频器与PLC的RS - 485通信的实现.实验表明,设备实现了关键工艺参数可调可控,运行效果良好,简单可靠地实现了流量的控制,实现了快速高效灭菌.

  14. Electrostatic interactions in aminoglycoside-RNA complexes.

    Science.gov (United States)

    Kulik, Marta; Goral, Anna M; Jasiński, Maciej; Dominiak, Paulina M; Trylska, Joanna

    2015-02-03

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.

  15. Method for electrostatic deposition of graphene on a substrate

    Science.gov (United States)

    Sumanasekera, Gamini (Inventor); Sidorov, Anton N. (Inventor); Ouseph, P. John (Inventor); Yazdanpanah, Mehdi M. (Inventor); Cohn, Robert W. (Inventor); Jalilian, Romaneh (Inventor)

    2010-01-01

    A method for electrostatic deposition of graphene on a substrate comprises the steps of securing a graphite sample to a first electrode; electrically connecting the first electrode to a positive terminal of a power source; electrically connecting a second electrode to a ground terminal of the power source; placing the substrate over the second electrode; and using the power source to apply a voltage, such that graphene is removed from the graphite sample and deposited on the substrate.

  16. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  17. Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores.

    Science.gov (United States)

    Actis, Paolo; Vilozny, Boaz; Seger, R Adam; Li, Xiang; Jejelowo, Olufisayo; Rinaudo, Marguerite; Pourmand, Nader

    2011-05-17

    Most of the research in the field of nanopore-based platforms is focused on monitoring ion currents and forces as individual molecules translocate through the nanopore. Molecular gating, however, can occur when target analytes interact with receptors appended to the nanopore surface. Here we show that a solid state nanopore functionalized with polyelectrolytes can reversibly bind metal ions, resulting in a reversible, real-time signal that is concentration dependent. Functionalization of the sensor is based on electrostatic interactions, requires no covalent bond formation, and can be monitored in real time. Furthermore, we demonstrate how the applied voltage can be employed to tune the binding properties of the sensor. The sensor has wide-ranging applications and, its simplest incarnation can be used to study binding thermodynamics using purely electrical measurements with no need for labeling.

  18. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  19. Electrostatic Instabilities at High Frequency in a Plasma Shock Front

    Institute of Scientific and Technical Information of China (English)

    LV Jian-Hong; HE Yong; HU Xi-Wei

    2007-01-01

    New electrostatic instabilities in the plasma shock front are reported.These instabilities are driven by the electrostatic field which is caused by charge separation and the parameter gradients in a plasma shock front.The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically.There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation.The real frequencies of both unstable waves are similar to the electron electrostatic wave,and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction.The dependence of growth rates on the electric field and parameter gradients is also presented.

  20. 高压脉冲电场灭菌方法研究概况%Research on the High-voltage Pulsed Electric Field Sterilization Method

    Institute of Scientific and Technical Information of China (English)

    陈新梅; 李莹; 陈新华

    2014-01-01

    The high-voltage pulsed electric field (PEF) sterilization has significant advantages such as a short process-ing time,low energy consumption,small temperature rise,high sterilization rate and not affecting the effective components of drugs,and so on. Based on the review of the mechanism of PEF sterilization,sterilization devices and the possible influ-encing factors,and the comparison of other sterilization methods,the evaluation of the PEF sterilization method was made and the existing problems and commercial prospects in the fields of food and pharmaceuticals were discussed.%高压脉冲电场灭菌具有处理时间短、耗能低、升温小、灭菌率高、不影响药物的有效成分等显著优点,本文通过对高压脉冲电场灭菌作用机理、灭菌装置、可能的影响因素总结及与其他灭菌方式的比较,对高压脉冲电场灭菌方式进行评价,并探讨其现存问题及在食品、药品领域的应用前景。

  1. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  2. An accurate simulation study on capacitance-voltage characteristics of metal-oxide-semiconductor field-effect transistors in novel structures

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae; Park, Byung-Gook

    2017-09-01

    An essential and important method for physical and electrical characterization of a metal-oxide-semiconductor (MOS) structure is the capacitance-voltage (C-V) measurement. Judging from the C-V characteristics of a MOS structure, we are allowed to predict the DC and AC behaviors of the field-effect transistor and extract a set of primary parameters. The MOS field-effect transistor (MOSFET) technology has evolved to enhance the gate controllability over the channel in order for effectively suppressing the short-channel effects (SCEs) unwantedly taking place as device scaling progresses. For the goal, numerous novel structures have been suggested for the advanced MOSFET devices. However, the C-V characteristics of such novel MOS structures have not been seldom studied in depth. In this work, we report the C-V characteristics of ultra-thin-body (UTB) MOSFETs on the bulk Si and silicon-on-insulator (SOI) substrates by rigorous technology computer-aided design (TCAD) simulation. For higher credibility and accuracy, quantum-mechanical models are activated and empirical material parameters are employed from the existing literature. The MOSFET structure and the material configurations are schemed referring advanced logic technology suggested by the most recent technology roadmap. The C-V characteristics of UTB MOSFETs having a floating body with extremely small volume are closely investigated.

  3. Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.

    Science.gov (United States)

    Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J

    2009-09-01

    Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB.

  4. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  5. Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Ten Eyck, Gregory A.; Branson, Eric D.; Kenis, Paul J. A. (University of Illinois, Champaign Urbana); Desai, Amit (University of Illinois, Champaign Urbana); Schudel, Ben (University of Illinois, Champaign Urbana); Givler, Richard C.; Tice, Josh (University of Illinois, Champaign Urbana); Collord, Andrew; Apblett, Christopher Alan; Cook, Adam W.

    2009-09-01

    We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

  6. Electrostatic Manipulation of Graphene On Graphite

    Science.gov (United States)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  7. Electrode geometry for electrostatic generators and motors

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  8. Electrostatic control of polarity of α-MoTe2 transistors with dual top gates

    Science.gov (United States)

    Nakaharai, Shu; Yamamoto, Mahito; Ueno, Keiji; Lin, Yen-Fu; Li, Song-Lin; Tsukagoshi, Kazuhito

    2015-03-01

    Transition metal dichalcogenides have been expected for future applications in nanoelectronics due to their unique features of the atomically-thin structure. Using semiconducting α-molybdenum ditelluride (α-MoTe2) , we realized field effect transistors (FETs) in which the polarity (n- or p-type) can be electrostatically controlled without impurity doping. The fabricated device had a pair of top gates (aluminum electrode on silicon dioxide) attached in series with a gap length of 100 nm in between. We experimentally performed transistor operations in both n-FET and p-FET modes in a single device by changing the voltage applied to one of the two top gates, which determined the transistor polarity, and sweeping the bias of the other gate. The demonstrated reversibility of the transistor polarity will contribute to the renovated architecture of logic circuits with lower numbers of transistors and hence the lower power consumption than the conventional technology.

  9. High fidelity point-spread function retrieval in the presence of electrostatic, hysteretic pixel response

    CERN Document Server

    Rasmussen, Andrew; Lage, Craig; Antilogus, Pierre; Astier, Pierre; Doherty, Peter; Gilmore, Kirk; Kotov, Ivan; Lupton, Robert; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Tyson, Anthony; Walter, Christopher

    2016-01-01

    We employ electrostatic conversion drift calculations to match CCD pixel signal covariances observed in flat field exposures acquired using candidate sensor devices for the LSST Camera. We thus constrain pixel geometry distortions present at the end of integration, based on signal images recorded. We use available data from several operational voltage parameter settings to validate our understanding. Our primary goal is to optimize flux point-spread function (FPSF) estimation quantitatively, and thereby minimize sensor-induced errors which may limit performance in precision astronomy applications. We consider alternative compensation scenarios that will take maximum advantage of our understanding of this underlying mechanism in data processing pipelines currently under development. To quantitatively capture the pixel response in high-contrast/high dynamic range operational extrema, we propose herein some straightforward laboratory tests that involve altering the time order of source illumination on sensors, w...

  10. Physical model of granule adhesion to the belt-electrodes of a tribo-aero-electrostatic separator

    Science.gov (United States)

    Li, Jia; Dascalescu, Lucian; Miloudi, Mohamed; Bilici, Mihai; Xu, Zhenming

    2013-03-01

    Recent studies have demonstrated the effectiveness of tribo-aero-electrostatic separation technologies, which consist in the selective sorting of mixed granular insulating materials in a fluidized bed affected by an electric field orthogonally oriented to the direction of the fluidization air. The aim of the present paper is to put the theoretical bases for the optimization of this process, i. e. maximize the total mass of the granules collected at the two electrodes that generate the electric field. The various forces that drive a granule of given mass and electric charge through the electric field and make it stick to an electrode are expressed as functions of the several input variables and parameters of the process, such as the applied high-voltage or the surface roughness, the size and the position of the electrodes. The concepts of "critical electrostatic field" and "virtual climbing distance" are introduced. The prediction of the theoretical model are confirmed by the results of three sets of experiments, carried out on samples of a granular mixture consisting of 50% Acrylonitrile Butadiene Styrene (ABS) and 50% High Impact Polystyrene (HIPS), originating from the recycling of waste electric and electronic equipment. Higher separation efficiency was obtained when the electric field in the active zone was intensified by the use of an additional electrode connected to the ground and when the collecting electrodes were covered by a thin insulating layer.

  11. An experimental study on the effect of parameters on the depth of crater machined by electrostatic field–induced electrolyte jet micro electrical discharge machining

    Directory of Open Access Journals (Sweden)

    Yaou Zhang

    2016-04-01

    Full Text Available Electrostatic field–induced electrolyte jet micro electrical discharge machining depends on heat generated by the periodic pulsed discharge between the workpiece and the electrolyte fine jet from the tip of Taylor cone, induced by the intense electric field, to erode the material from the workpiece. To further investigate the characteristics of this discharge process, with the NaCl solution as the electrostatic field–induced electrolyte jet electrolyte and the silicon wafer as the workpiece, the governing factors of machining polarity, nozzle-to-workpiece distance, voltage applied between positive and negative polarities, and the effect of concentration of the electrolyte on the depth of crater after a single electrostatic field–induced electrolyte jet discharge have been studied. The experimental results show that the average depth of crater increases with the increase in the voltage applied between the nozzle and the workpiece, and increases with the increase in the concentration of the electrolyte, but decreases with the increase in the distance between the nozzle and the workpiece. The results have also demonstrated that the polarity has no clear influence on the average depth of crater after a single discharge.

  12. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  13. Electrostatic Dust Detection and Removal for ITER

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  14. Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Leon M [ORNL; Huque, Mohammad A [ORNL; Blalock, Benjamin J [ORNL; Islam, Syed K [ORNL

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimising system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8--m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  15. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the magnetic system and stabilizers asynchronous generator of electricity parameters confirmed by the patents for the invention of the Russian Federation. The proposed technical solution voltage stabilizer asynchronous generators, can reduce the weight of the block capacitors excitation and reactive power compensation, as well as to simplify the control system power circuit which has less power electronic devices. For wind power plants it is an important issue not only to stabilize the voltage of the generator, but also the frequency of the current. Recommend functionality stabilizer schemes parameters of electric power made for direct frequency converters with artificial and natural switching power electronic devices. It is also proposed as part of stabilization systems use single-phase voltage, three-phase transformers with rotating magnetic field, reduce the level of electromagnetic interference generated by power electronic devices for switching, enhance the efficiency and reliability of the stabilizer.

  16. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  17. Photoresponse of resonant tunneling diode photodetectors as a function of bias voltage

    Science.gov (United States)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2016-09-01

    We have studied the photocurrent-voltage relation of resonant tunneling diode (RTD) photodetectors by means of electrooptical transport measurements. The investigated RTDs are based on an Al0.6Ga0.4As/GaAs double barrier resonant tunneling structure (RTS) with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ= 1.3 μm. Under illumination, photogenerated holes can be captured for accumulation in vicinity to the RTS and modulate the resonant tunneling current that is highly sensitive to changes in the local electrostatic potential. The resulting photocurrent-voltage relation is found to be a nonlinear function of the applied bias voltage, and governed by the interplay of the electronic transport properties of the RTS and the dynamics of photogenerated holes. Time-resolved photocurrent measurements were employed to analyze the dynamics of photogenerated holes. From the photocurrent-time traces the quantum-efficiency and mean lifetime of photogenerated holes can be separately determined. We found that the photoresponse is suppressed by a low quantum efficiency for bias voltages below V 1 V, the built-in field is compensated by the external bias, and η(V) takes on a constant value. In this regime, the RTD photoresponse is mainly determined by the lifetime of holes accumulated at the RTS. The lifetime is limited by thermionic carrier escape and was found to decrease exponentially with the applied bias voltage.

  18. Process monitoring to determine electrostatic risks

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, David E [Affinity Static Control Consulting, LLC 2609 Quanah Drive, Round Rock, TX 78681 (United States)], E-mail: deswenson@affinity-esd.com

    2008-12-01

    Designing a factory electrostatic discharge (ESD) control program requires an understanding of all the processes where unprotected ESD susceptible items are handled either manually or by machine. Human handling aspects are generally understood and control procedures where people are involved are commonly implemented with great care. Personnel grounding systems, monitors, and the like, are installed in order to make sure that personnel do not accumulate and transfer electrostatic charge that could damage sensitive parts during handling or assembly operations. However, the ability to determine what is occurring inside of process equipment has not been particularly easy up to now. Equipment is now available that allows the measurement and recording of electrical field information inside of many process tools. One of the goals of this work is to be able to characterize equipment as capable of handling parts susceptible to specific levels that may be related to component part sensitivity.

  19. Contemporary NMR Studies of Protein Electrostatics.

    Science.gov (United States)

    Hass, Mathias A S; Mulder, Frans A A

    2015-01-01

    Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.

  20. A new power regulator control system based on verilog for electrostatic precipitators

    Science.gov (United States)

    Zhang, Zisheng; Li, Guan; Liu, Taotao; Ge, Pengbo; Liu, Zhiqiang

    2013-03-01

    In order to improve the inefficient response of the power system in traditional electrostatic precipitators, such as long design cycles and low safety, a new power regulator control system is designed to tackle the deficiencies. The working voltage system of an electrostatic precipitator consists of an L-C component, a rectifier bridge group and a step-up transformer. The Verilog hardware description language is used to complete the design of the feedback systems. Continuous steady current can be obtained automatically through changing the number of steady voltage control units. The results show that control systems can accurately feed back the changes of the voltage signal of the electrostatic precipitator. Comparing with other control systems, it has the advantages of faster response, higher accuracy, better monitoring performance and superior anti-interference capacity.

  1. Undamped electrostatic plasma waves

    CERN Document Server

    Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M

    2015-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...

  2. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  3. On Possible Arc Inception on Low Voltage Solar Array

    Science.gov (United States)

    Vayner, Boris

    2015-01-01

    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 percent of all registered failures and anomalies, and comprised the most costly losses (25 percent) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over cover-glass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in cover-glass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent

  4. New analytical threshold voltage model for halo-doped cylindrical surrounding-gate MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Li Cong; Zhuang Yiqi; Han Ru, E-mail: cong.li@mail.xidan.edu.cn [Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices of Ministry of Education, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2011-07-15

    Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates, a new analytical model comprising electrostatic potential, electric field, threshold voltage and subthreshold current for halo-doped surrounding-gate MOSFETs is developed. It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide. It is also revealed that moderate halo doping concentration, thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics. The derived analytical model agrees well with a three-dimensional numerical device simulator ISE. (semiconductor devices)

  5. Comparative Study of Si and SiC MOSFETs for High Voltage Class D Audio Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Silicon (Si) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are traditional utilised in class D audio amplifiers. It has been proposed to replace the traditional inefficient electrodynamic transducer with the electrostatic transducer. This imposes new high voltage requirements...... on the MOSFETs of class D amplifiers, and significantly reduces the selection of suitable MOSFETs. As a consequence it is investigated, if Silicon-Carbide (SiC) MOSFETs could represent a valid alternative. The theory of pulse timing errors are revisited for the application of high voltage and capactive loaded...... class D amplifiers. It is shown, that SiC MOSFETs can compete with Si MSOFETs in terms of THD. Validation is done using simulations and a 500 V amplifier driving a 100 nF load. THD+N below 0.3 % is reported...

  6. A small-gap electrostatic micro-actuator for large deflections.

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  7. High temperature behavior of multi-region direct current current-voltage spectroscopy and relationship with shallow-trench-isolation-based high-voltage laterally diffused metal-oxide-semiconductor field-effect-transistors reliability

    Science.gov (United States)

    He, Yandong; Zhang, Ganggang; Zhang, Xing

    2014-01-01

    With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.

  8. Phase-field modeling of switchable diode-like current-voltage characteristics in ferroelectric BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shen, J. [Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-05-05

    A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.

  9. Lowered operation voltage in Pt/SBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by oxynitriding Si

    Science.gov (United States)

    Horiuchi, Takeshi; Takahashi, Mitsue; Li, Qiu-Hong; Wang, Shouyu; Sakai, Shigeki

    2010-05-01

    Oxynitrided Si (SiON) surfaces show smaller subthreshold swings than do directly nitrided Si (SiN) surfaces when used in ferroelectric-gate field-effect transistors (FeFETs) having the following stacked-gate structure: Pt/SrBi2Ta2O9(SBT)/HfO2/Si. SiON/Si substrates for FeFETs were prepared by rapid thermal oxidation (RTO) in O2 at 1000 °C and subsequent rapid thermal nitridation (RTN) in NH3 at various temperatures in the range 950-1150 °C. The electrical properties of the Pt/SBT/HfO2/SiON/Si FeFET were compared with those of reference FETs, i.e. Pt/SBT/HfO2 gate stacks formed on Si substrates subjected to various treatments: SiNx/Si formed by RTN, SiO2/Si formed by RTO and untreated Si. The Pt/SBT/HfO2/SiON/Si FeFET had a larger memory window than all the other reference FeFETs, particularly at low operation voltages when the RTN temperature was 1050 °C.

  10. Martian Environment Electrostatic Precipitator

    Science.gov (United States)

    McDougall, Michael Owen

    2016-01-01

    As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a part of life support to keep the astronauts alive continuously is overly expensive, and impractical. As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ resource utilization) initiative, would extract water from the regolith, or the Martian soil which can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen can then be used in the Sabatier reaction with carbon dioxide to produce methane and water producing a net reaction that does not lose water and outputs methane and oxygen for use as rocket fuel and breathing.

  11. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  12. Electrostatic Characterization of Lunar Dust

    Science.gov (United States)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  13. Carbon Nanotube Field Emission Devices With Integrated Gate for High Current Applications

    Science.gov (United States)

    2008-08-01

    exhibits an edge effect and in fact, shows a slight enhancement. A baseline structure, consisting of two parallel plates with the same applied field and...electrostatics the addition of the gate electrode will not reduce the edge effect for the CNT pillars. As a result of this it is expected that the voltage...field emission from an individual aligned carbon nanotube bundle enhanced by edge effect ", Appl. Phys. Lett., 90, 153108, 2007. [6] Killian, J. L

  14. A randomized, double-blind, sham-controlled study of static electric field therapy by high voltage alternating current for active rheumatoid arthritis.

    Science.gov (United States)

    Naito, Yuji; Yamaguchi, Shinnichi; Mori, Yasuhiro; Nakajima, Kouji; Hashimoto, Sanshiro; Tomaru, Masakazu; Satoh, Yoshihiko; Hitomi, Yuji; Karita, Masakazu; Hiwatashi, Tomoaki; Kawahito, Yutaka; Yoshikawa, Toshikazu

    2013-07-01

    Static electric field therapy by high voltage alternating current (EF-HVAC) is a traditional complementary Japanese medicine used for headache, shoulder stiffness, chronic constipation and insomnia. Open-label studies and clinical experience in Japan have suggested that this electric field therapy is safe and effective in treating chronic arthritis. We evaluated the efficacy of EF-HVAC therapy in a randomized, double-blinded, sham-controlled trial in patients with active rheumatoid arthritis (RA) in community-based general physician centers. Thirty patients fulfilling American College of Rheumatology (ACR) criteria for RA were treated with EF-HVAC therapy with the LEGACIS PLUS System (COCOROCA Corp., Tokyo, Japan) or sham therapy for 12 weeks and followed for 4 weeks without treatment. The disease activity score 28 (DAS28-CRP), visual analogue scale for pain (VAS), modified health assessment questionnaire (MHAQ), and inflammatory parameters were used as the outcome variable. Twenty four patients (n = 12 in each group) were analyzed by a per protocol analysis. Although a significant reduction in DAS28-CRP was observed in EF-HVAC group at 8 and 12 weeks compared to before treatment, there were no significant differences in DAS28-CRP scores during treatment between two groups. The scale of VAS was also significantly decreased by the treatment with EF-HVAC compared to before treatment, in addition, the scale of VAS in EF-HVAC group was significantly lower than sham group at 8 and 12 weeks. Changes in another parameters including MHAQ were not significant between before and after treatment, or by all comparative study between two groups. There were no adverse events related the treatment. In conclusion, the EF-HVAC therapy has a beneficial effect on the improvement to subjective pain of RA.

  15. Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications

    Science.gov (United States)

    Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von

    2009-01-01

    We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.

  16. Biot-Savart-like law in electrostatics

    CERN Document Server

    Oliveira, M H; Oliveira, Mario H.; Miranda, Jose A.

    2000-01-01

    The Biot-Savart law is a well-known and powerful theoretical tool used to calculate magnetic fields due to currents in magnetostatics. We extend the range of applicability and the formal structure of the Biot-Savart law to electrostatics by deriving a Biot-Savart-like law suitable for calculating electric fields. We show that, under certain circumstances, the traditional Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem. We find an integral expression for the electric field due to an arbitrarily shaped, planar region kept at a fixed electric potential, in an otherwise grounded plane. As a by-product we present a very simple formula to compute the field produced in the plane defined by such a region. We illustrate the usefulness of our approach by calculating the electric field produced by planar regions of a few nontrivial shapes.

  17. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Institute of Scientific and Technical Information of China (English)

    Liu Jin; Chen Yongguang; Tan Zhiliang; Yang Jie; Zhang Xijun; Wang Zhenxing

    2011-01-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects,and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability.Therefore,the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally.100 samples have been tested for multiple pulses until a failure occurred.Meanwhile,the distributions of electric field,current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici.There is a good agreement between the simulated results and failure analysis.In the case of a thermal couple,the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects.The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure.When the ESD level increased to 1.3 kV,the collector-base junction has been burnt out first.The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic.In addition,fatigue phenomena are observed during ESD testing,with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  18. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  19. Electrostatic acceleration and deflection system for modification of semiconductor materials in laser-produced ion implantation

    Science.gov (United States)

    Rosinski, M.; Parys, P.; Wolowski, J.; Gasior, P.; Pisarek, M.

    2010-10-01

    To optimize the efficiency of laser ion implantation technology, it is advisable to properly select the laser beam characteristics (i.e. power density, target illumination geometry, etc.). In many applications, it is important to select a specific range of ion energy to implant the ions at a given depth and at a given density. To make it possible, the electrostatic system for acceleration and deflection of low-energy laser-produced ions can be used. This contribution provides a description of the experiments aimed at the implantation of Ge ions from a narrow energy band onto SiO2/Si substrates, which were conducted at IPPLM. As the source of irradiation, we used a Nd:YAG up to 10 Hz laser system with pulse duration of 3.5 ns and pulse energy ∼ 0.5 J, which gave a power density of 1010 W/cm2. The ion stream parameters were measured using the time-of-fight method. The laser-produced ions passing through the diaphragm have been accelerated in the system of electrodes. Due to the electrostatic field configuration provided by the electrode system and a diaphragm located at the axis of the system, the selected ions were focussed at the area of interest to increase implantation density. The accelerating voltage, the distance of the diaphragm from the target, the diaphragm diameter and the gap width between electrodes were changed for choosing the desired parameters of the ion stream.

  20. Improved Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors by Employing Polyimide/Chromium Composite Thin Films as Surface Passivation and High-Permittivity Field Plates

    Science.gov (United States)

    Chu, Fu-Tong; Chen, Chao; Zhou, Wei; Liu, Xing-Zhao

    2013-09-01

    The breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs) is enhanced by employing metal chromium (Cr) nanoparticle-embedded polyimide (PI) as a high-permittivity (high-K) dielectric covering both the source-gate and gate-drain regions. The PI/Cr composite high-K dielectrics acting as a field plate prevent the occurrence of strong electric fields produced at the drain side edge of the gate electrode to obtain an optimum lateral electric flux of HEMTs. The breakdown voltage is improved by approximately 35% when using the PI/Cr thin film dielectric field plate while maintaining high performance, a high transconductance value of 122.4 mS/mm, and a large saturated drain-current value of 748 mA/mm.

  1. 高压电场对植物电特性的影响及促进光合作用的室内试验%Laboratory test on effects of high voltage electricity on electrostatic properties and promoting photosynthesis of plants

    Institute of Scientific and Technical Information of China (English)

    朱世秋; 张琳雪; 陈周; 徐艳; 王梦迪; 闫建河; 刘滨疆

    2016-01-01

    The photosynthesis and growth of plants are affected by many environment factors such as temperature, humidity, light, carbon dioxide (CO2)concentration, electrical field and magnetic field. In this paper the effects of high voltage electricity on the photosynthesis of plants are studied experimentally. Two boxes A and B which have positive or negative high voltage electricity are used. Plants can be grown in the garden pot with electricity, and electrical sources are fixed inside the bottom of the boxes. On the top of box a LED (light-emitting diode) bulb is settled as photosynthesis light. We use red light in these experiments. Another box C with no electricity is used for contrast research. First, the static-electrical parameters such as capacitance and current of living tissue of pepper tree leaves are measured while the plants are cultivated with high static-electricity in the boxes. Experimental results show no matter which positive or negative electricity is added on the plants, the capacitances at different points of leaves are lowed by about 0.01 nF, and the currents at different points of plants increase by 1.00-2.00μA. A high electrical field of several kilovolts per meter is created at the edges of leaves and branches while the plants are cultivated with high voltage electricity. In order to study how the photosynthesis of plants is affected by positive or negative electricity, the CO2 concentrations in the closed boxes A, B and C are measured during the same cultivation time, respectively. The results show that the CO2 concentration in the box B where plants are charged negatively decreases the most. In the experiment of green pineapple the decrease rate of CO2 concentration is 2μL/(L·min) in A box, 2.35μL/(L·min) in B box and 1.2μL/(L·min) in C box. In the experiment of golden diamond tree the decrease rate of CO2 concentration is 0.3μL/(L·min) in A box, 0.98μL/(L·min) in B box and 0.12μL/(L·min) in C box, respectively. In the experiments

  2. Memristive model of hysteretic field emission from carbon nanotube arrays

    Science.gov (United States)

    Gorodetskiy, Dmitriy V.; Gusel'nikov, Artem V.; Shevchenko, Sergey N.; Kanygin, Mikhail A.; Okotrub, Alexander V.; Pershin, Yuriy V.

    2016-01-01

    Some instances of electron field emitters are characterized by frequency-dependent hysteresis in their current-voltage characteristics. We argue that such emitters can be classified as memristive systems and introduce a general framework to describe their response. As a specific example of our approach, we consider field emission from a carbon nanotube array. Our experimental results demonstrate a low-field hysteresis, which is likely caused by an electrostatic alignment of some of the nanotubes in the applied field. We formulate a memristive model of such phenomena, whose results are in agreement with the experimental results.

  3. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    Science.gov (United States)

    Yehia, Ashraf; Abdel-Fattah, E.; Mizuno, Akira

    2016-05-01

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

  4. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com [Department of Physics, College of Science and Humanitarian Studies at Alkharj, Prince Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Arab Republic of Egypt (Egypt); Abdel-Fattah, E. [Department of Physics, College of Science and Humanitarian Studies at Alkharj, Prince Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Department of Physics, Faculty of Science, Zagazig University, Zagazig 44519, Arab Republic of Egypt (Egypt); Mizuno, Akira [Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2016-05-15

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

  5. Unconventional Specimen Preparation Techniques Using High Resolution Low Voltage Field Emission Scanning Electron Microscopy to Study Cell Motility, Host Cell Invasion, and Internal Cell Structures in Toxoplasma gondii

    Science.gov (United States)

    Schatten, Heide; Ris, Hans

    2002-04-01

    Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.

  6. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen

    Science.gov (United States)

    Bowker, George E.; Crenshaw, Hugh C.

    Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3×10 6 V m -1. If wind-dispersed pollen grains are electrically charged, the electrostatic force (which is the product of the pollen's charge and the electric field at the pollen's location) could influence pollen capture. In this article, we report measurements of the electrostatic charge carried by wind-dispersed pollen grains. Pollen charge was measured using an adaptation of the Millikan oil-drop experiment for seven anemophilous plants: Acer rubrum, Cedrus atlantica, Cedrus deodara, Juniperus virginiana, Pinus taeda, Plantago lanceolata and Ulmus alata. All species had charged pollen, some were positive others negative. The distributions (number of pollen grains as a function of charge) were bipolar and roughly centered about zero although some distributions were skewed towards positive charges. Most pollen carried small amounts of charge, 0.8 fC in magnitude, on average. A few carried charges up to 40 fC. For Juniperus, pollen charges were also measured in nature and these results concurred with those found in the laboratory. For nearly all charged pollen grains, the likelihood that electrostatics influence pollen capture is evident.

  7. On electrostatically actuated NEMS/MEMS circular plates

    Science.gov (United States)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  8. Piezo Voltage Controlled Planar Hall Effect Devices

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  9. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  10. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  11. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  12. An efficient numerical approach to electrostatic microelectromechanical system simulation

    Institute of Scientific and Technical Information of China (English)

    Li Pu

    2009-01-01

    Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS.

  13. RNA topology remoulds electrostatic stabilization of viruses

    CERN Document Server

    Erdemci-Tandogan, Gonca; van der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2013-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell-the capsid. Spontaneous co-assembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to {\\sl maximize} the amount of encapsulated genome and make assembly more efficient, allowing viral RNAs to out-compete cellular RNAs during replication in infected host cells.

  14. Ballooning Spiders: The Case for Electrostatic Flight

    CERN Document Server

    Gorham, Peter W

    2013-01-01

    We consider general aspects of the physics underlying the flight of Gossamer spiders, also known as ballooning spiders. We show that existing observations and the physics of spider silk in the presence of the Earth's static atmospheric electric field indicate a potentially important role for electrostatic forces in the flight of Gossamer spiders. A compelling example is analyzed in detail, motivated by the observed "unaccountable rapidity" in the launching of such spiders from H.M.S. Beagle, recorded by Charles Darwin during his famous voyage.

  15. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  16. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco;

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  17. In Vitro Study of a Superhydrophilic Thin Film Nitinol Endograft that is Electrostatically Endothelialized in the Catheter Prior to the Endovascular Procedure.

    Science.gov (United States)

    Shayan, Mahdis; Chen, Yanfei; Shridhar, Puneeth; Kealey, Colin P; Chun, YoungJae

    2016-11-29

    Electrostatic endothelial cell seeding has evolved as an exceptional technique to improve the efficiency of cell seeding in terms of frequency of attached cells and the amount of cell adhesion for the treatment of vascular diseases. In the recent times, both untreated and superhydrophilic thin film nitinol (TFN) have exhibited strong prospects as substrates for creation of small-diameter endovascular grafts due to their hallmark properties of superelasticity, ultra low-profile character, and grown hemocompatible oxide layer with the presence of a uniform endothelial layer on the surface. The purpose of the current study is to understand the effects of endothelial cell seeding parameters (i.e., applied voltage, incubation time, substrate chemistry, and cell suspension solution) to investigate the cell seeding phenomenon and to improve the cell adhesion and growth on the TFN surface under electrostatic transplantation. Both parallel plate and cylindrical capacitor models were used along with the Taguchi Design of Experiment (DOE) methods to design in vitro test parameters. A novel in vitro system for a cylindrical capacitor model was created using a micro flow pump, micro incubation system, and silicone tubings. The augmented endothelialization on thin film nitinol was developed to determine the effect of cell seeding and deployed in a 6 Fr intravascular catheter setup. Cell viability along with morphology and proliferation of adhered cells were evaluated using fluorescent and scanning electron microscopy. Our results demonstrated that the maximum number of cells attached on STFN in the catheter was observed in 5 V with the 2 h exposure of in the cell culture medium (CCM) solution. The condition showed 5 V voltage with 0.68 × 10(-6) µC electrostatic charge and 5.11 V·mm(-1) electric field. Our findings have first demonstrated that the electrostatic endothelialization on the superhydrophilic thin film nitinol endograft within the catheter prior to the endovascular

  18. In Vitro Study of a Superhydrophilic Thin Film Nitinol Endograft that is Electrostatically Endothelialized in the Catheter Prior to the Endovascular Procedure

    Directory of Open Access Journals (Sweden)

    Mahdis Shayan

    2016-11-01

    Full Text Available Electrostatic endothelial cell seeding has evolved as an exceptional technique to improve the efficiency of cell seeding in terms of frequency of attached cells and the amount of cell adhesion for the treatment of vascular diseases. In the recent times, both untreated and superhydrophilic thin film nitinol (TFN have exhibited strong prospects as substrates for creation of small-diameter endovascular grafts due to their hallmark properties of superelasticity, ultra low-profile character, and grown hemocompatible oxide layer with the presence of a uniform endothelial layer on the surface. The purpose of the current study is to understand the effects of endothelial cell seeding parameters (i.e., applied voltage, incubation time, substrate chemistry, and cell suspension solution to investigate the cell seeding phenomenon and to improve the cell adhesion and growth on the TFN surface under electrostatic transplantation. Both parallel plate and cylindrical capacitor models were used along with the Taguchi Design of Experiment (DOE methods to design in vitro test parameters. A novel in vitro system for a cylindrical capacitor model was created using a micro flow pump, micro incubation system, and silicone tubings. The augmented endothelialization on thin film nitinol was developed to determine the effect of cell seeding and deployed in a 6 Fr intravascular catheter setup. Cell viability along with morphology and proliferation of adhered cells were evaluated using fluorescent and scanning electron microscopy. Our results demonstrated that the maximum number of cells attached on STFN in the catheter was observed in 5 V with the 2 h exposure of in the cell culture medium (CCM solution. The condition showed 5 V voltage with 0.68 × 10−6 µC electrostatic charge and 5.11 V·mm−1 electric field. Our findings have first demonstrated that the electrostatic endothelialization on the superhydrophilic thin film nitinol endograft within the catheter prior to

  19. CONTROLLING SENSITIVITY OF THE SENSOR WITH DIFFERENTIAL ELECTROSTATIC TRANSDUCERS

    Directory of Open Access Journals (Sweden)

    I. Z. Gilavdary

    2015-01-01

    Full Text Available The problem of developing a sensor for measuring of moment forces of inertia and gravitation with minimal noise and minimal rigidity of the torsion suspension of proof mass (PM is formulated. The possibility to solve this problem by a differential capacitive system, which simultaneously provides forming of the useful signal and reducing the torsion rigidity is shown. Sensor’s electromechanical circuit with differential electrostatic system is described. Method of calculating the electrostatic capacitance of the capacitor with an inclined plate is proposed. Calculations of electrical and mechanical forces moment acting on the movable plate of the differential capacitor in quasi-static mode are performed. It is shown that the main factor leading to the pull-in effect in the differential capacitor is the asymmetry of electrostatic system. The coefficient of asymmetry of the differential electrostatic system is introduced. The dependence on voltage of the resonance frequency of the sensor is received. The areas of the quasi-static stability of the system are calculated. It is shown that their boundaries are determined by the value of the coefficient of asymmetry, as well as by the value of the resonant frequency of the PM. It is shown that for reducing the resonant frequency of the sensor in more then ten times an unrealistically low values of the coefficient of asymmetry are required. 

  20. Variable stiffness sandwich panels using electrostatic interlocking core

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.