WorldWideScience

Sample records for voltage current resistance

  1. HIGH VOLTAGE SMALL – SIZED ALTERNATIVE CURRENT RESISTIVE DIVIDERS FROM MICROWIRE

    Directory of Open Access Journals (Sweden)

    Berzan V.P.

    2011-04-01

    Full Text Available The paper discusses the design parameters and characteristics of the new product, the resistive voltage divider produced from microwire for measuring high-voltage alternating current. Resistive dividers are designed for use in AC circuits and power-frequency electric traction network traffic. Dividers have smaller mass-dimensional size compared with the measuring voltage transformers and higher accuracy class 0.2 at a fixed frequency.

  2. Negative-resistance voltage-current characteristics of superconductor contact junctions for macro-scale applications

    CERN Document Server

    Takayasu, M; Minervini, J V; 10.1109/TASC.2003.812854

    2003-01-01

    Voltage-current characteristics of mechanical pressure contact junctions between superconducting wires are investigated using a voltage-driving method. It is found that the switching regions at low voltages result from negative resistance of the contact junction. The current transport of the contact junctions is discussed from the perspective of two existing models: the multiple Andreev reflections at the two SN interfaces of a SNS (Superconductor/Normal metal /Superconductor) junction and the inhomogeneous multiple Josephson weak-link array. (13 refs).

  3. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  4. A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance

    Science.gov (United States)

    Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur

    2016-10-01

    This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.

  5. Implementation of an active instructional design for teaching the concepts of current, voltage and resistance

    Science.gov (United States)

    Orlaineta-Agüero, S.; Del Sol-Fernández, S.; Sánchez-Guzmán, D.; García-Salcedo, R.

    2017-01-01

    In the present work we show the implementation of a learning sequence based on an active learning methodology for teaching Physics, this proposal tends to promote a better learning in high school students with the use of a comic book and it combines the use of different low-cost experimental activities for teaching the electrical concepts of Current, Resistance and Voltage. We consider that this kind of strategy can be easily extrapolated to higher-education levels like Engineering-college/university level and other disciplines of Science. To evaluate this proposal, we used some conceptual questions from the Electric Circuits Concept Evaluation survey developed by Sokoloff and the results from this survey was analysed with the Normalized Conceptual Gain proposed by Hake and the Concentration Factor that was proposed by Bao and Redish, to identify the effectiveness of the methodology and the models that the students presented after and before the instruction, respectively. We found that this methodology was more effective than only the implementation of traditional lectures, we consider that these results cannot be generalized but gave us the opportunity to view many important approaches in Physics Education; finally, we will continue to apply the same experiment with more students, in the same and upper levels of education, to confirm and validate the effectiveness of this methodology proposal.

  6. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Cho, Yonghwan; Shin, Dongjoon; Choi, Wonjoon

    2015-07-01

    Combustion wave propagation in micro/nanostructured materials generates a chemical-thermal-electrical energy conversion, which enables the creation of an unusual source of electrical energy, called a thermopower wave. In this paper, we report that high electrical resistance regimes would significantly amplify the output voltage of thermopower waves, because the current crowding creates a narrow path for charge carrier transport. We show that the structurally defective regions in the hybrid composites of chemical fuels and carbon nanotube (CNT) arrays determine both the resistance levels of the hybrid composites and the corresponding output voltage of thermopower waves. A sudden acceleration of the crowded charges would be induced by the moving reaction front of the combustion wave when the supplied driving force overcomes the potential barrier to cause charge carrier transport over the defective region. This property is investigated experimentally for the locally manipulated defective areas using diverse methods. In this study, thermopower waves in CNT-based hybrid composites are able to control the peak voltages in the range of 10-1000 mV by manipulating the resistance from 10 Ω to 100 kΩ. This controllable voltage generation from thermopower waves may enable applications using the combustion waves in micro/nanostructured materials and better understanding of the underlying physics.

  7. Combined Digital Electronic Current and Voltage Transducer

    Institute of Scientific and Technical Information of China (English)

    段雄英; 邹积岩; 等

    2002-01-01

    A high-performance current and voltage measurement system has been developed in power system.The system is composed of two parts:one current measurement element and one voltage measurement element.A Rogowski coil and a capacitive voltage divider are used respectively for the line current and voltage measurements.Active electronic components are used to modulate signal,and power supply for these components is drawn from power line via an auxiliary current transformer,Measurement signal is transmitted y optical fibers,which is resistant to electromagnetic induction and noise,With careful design and the use of digital signal processing technology,the whole system can meet 0.5% accuracy for metering and provides large dynamic range coupled with good accuracy for protective relaying use.

  8. New lightning current resistant low voltage limiting device for DC railway systems; Neue blitzstromtragfaehige Niederspannungsbegrenzungseinrichtung zum Potenzialschutz von Gleichstrombahnsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, A.; Hinrichsen, V. [Technische Univ. Darmstadt (Germany). Fachgebiet Hochspannungstechnik; Richter, B. [ABB Schweiz AG, Wettingen (Switzerland); Zayer, H. [ESN Bahngeraete GmbH, Mannheim (Germany)

    2007-07-01

    In dc railway systems, low voltage limiters are applied to limit potential rises in case of failures by forming a permanent short-circuit between return circuit and Earth. These devices can usually carry only moderate lightning currents without permanent failure. In this contribution, a new concept is introduced which provides personal as well as equipment protection by combining a surge arrester and a low voltage limiter in a suited way. (orig.)

  9. Influence of metallic trays on the ac resistance and ampacity of low-voltage cables under non-sinusoidal currents

    Energy Technology Data Exchange (ETDEWEB)

    Demoulias, Charis; Labridis, Dimitris P.; Dokopoulos, Petros; Gouramanis, Kostas [Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, Thessaloniki (Greece)

    2008-05-15

    This paper investigates the influence of metallic trays on the ac resistance of PVC insulated, low-voltage (0.6/1.0 kV) cables made according to CENELEC standard HD603. The investigation is made with a validated finite element model for the fundamental and higher harmonic frequencies. It is shown that the cable's effective resistance is affected significantly by the relative magnetic permeability and specific conductivity of the tray, while the tray's dimensions do not affect it. The orientation of the cable with respect to the tray also influences the ac resistance of the phase and neutral conductors. An ampacity derating factor is defined and calculated for various cable cross-sections and harmonic loads. The presence of a metallic tray is shown to cause an additional derating of cable's ampacity which is relatively significant at large cable cross-sections. Working examples demonstrate the application of the results in calculating the ampacity of low-voltage cables and in assessing the energy savings that will result from the use of active harmonic filters. (author)

  10. High Voltage Resistive Divider Based on Cast Microwire in Glass Insulation on 6–24 kV Alternating Current of Commercial Frequency.

    Directory of Open Access Journals (Sweden)

    Juravleov A.

    2008-12-01

    Full Text Available It is presented the analysis and description of the construction of the high voltage resistive divider on the base of cast microwire in glass insulation on 6–24 kV alternating current of commercial frequency. It is presented the procedure of compensation of frequency error during the process of fabrication of divides and results of tests of the sample model of the divider as well.

  11. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    Science.gov (United States)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  12. Resistance switching memory operation using the bistability in current-voltage characteristics of GaN/AlN resonant tunneling diodes

    Science.gov (United States)

    Nagase, Masanori; Takahashi, Tokio; Shimizu, Mitsuaki

    2016-10-01

    Resistance switching memory operations using the bistability in the current-voltage (I-V) characteristics of GaN/AlN resonant tunneling diodes (RTDs) were investigated to realize an ultrafast nonvolatile memory operating at a picosecond time scale. Resistance switching memory operations based on electron accumulation due to intersubband transitions and electron release due to tunneling current were demonstrated with high reproducibility at room temperature when the leakage of electrons accumulating in the quantum well from the deep level in the AlN barrier was suppressed. A nonvolatile memory for the processor core in a normally off computing system is expected to be realized using the bistability in the I-V characteristics of GaN/AlN RTDs.

  13. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  14. Joint voltages resulting from lightning currents.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Merewether, Kimball O.; Chen, Kenneth C.

    2007-03-01

    Simple formulas are given for the interior voltages appearing across bolted joints from exterior lightning currents. External slot and bolt inductances as well as internal slot and bolt diffusion effects are included. Both linear and ferromagnetic wall materials are considered. A useful simplification of the slot current distribution into linear stripline and cylindrical parts (near the bolts) allows the nonlinear voltages to be estimated in closed form.

  15. Voltage Mode-to-Current Mode Transformation

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-10-01

    Full Text Available This paper proposes a procedure for converting a class of Op Amp-, FTFN-, CC- and CFAbased voltage mode circuits to corresponding current mode circuits without requiring any additional circuit elements and finally from Op Amp-based voltage mode circuits to any of the FTFN, CC and CFA current mode circuits. The latter circuits perform better at high frequency than the former ones. The validity of the transformation has been checked on simulated circuits with PSPICE.

  16. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  17. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  18. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  19. Alternating current breakdown voltage of ice electret

    Science.gov (United States)

    Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.

    2017-09-01

    Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.

  20. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.;

    2002-01-01

    We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...... unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads...... due to the applied bias voltage. For a armchair metallic nanotube, a reduction of current is observed with substitutional doping due to elastic backscattering by the impurity....

  1. Electronic Voltage and Current Transformers Testing Device

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2012-01-01

    Full Text Available A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz. The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  2. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  3. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela;

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  4. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  5. Unified Power Quality Conditioner for voltage and current compensation

    OpenAIRE

    P.Annapandi; Dr.M.Rajaram

    2012-01-01

    This paper deals with a Unified Power Quality Conditioner (UPQC) for load balancing, power factorcorrection, voltage regulation, voltage and current harmonics mitigation, mitigation of voltage sag, swelland voltage dip in a three-phase three-wire distribution system for different combinations of linear and nonlinear loads.The unified power quality conditioner (UPQC) is a combination of back to back connected shunt and series active power filters (APFs) to a common DC link voltage, which compe...

  6. Clopidogrel Resistance: Current Issues

    Directory of Open Access Journals (Sweden)

    NS Neki

    2016-05-01

    Full Text Available Antiplatelet agents are mainly used in the prevention and management of atherothrombotic complications. Dual antiplatelet therapy, combining aspirin and clopidogrel, is the standard care for patients having acute coronary syndromes or undergoing percutaneous coronary intervention according to the current ACC/AHA and ESC guidelines. But in spite of administration of dual antiplatelet therapy, some patients develop recurrent cardiovascular ischemic events especially stent thrombosis which is a serious clinical problem. Antiplatelet response to clopidogrel varies widely among patients based on ex vivo platelet function measurements. Clopidogrel is an effective inhibitor of platelet activation and aggregation due to its selective and irreversible blockade of the P2Y12 receptor. Patients who display little attenuation of platelet reactivity with clopidogrel therapy are labeled as low or nonresponders or clopidogrel resistant. The mechanism of clopidogrel resistance remains incompletely defined but there are certain clinical, cellular and genetic factors including polymorphisms responsible for therapeutic failure. Currently there is no standardized or widely accepted definition of clopidogrel resistance. The future may soon be realised in the routine measurement of platelet activity in the same way that blood pressure, cholesterol and blood sugar are followed to help guide the therapy, thus improving the care for millions of people. This review focuses on the methods used to identify patients with clopidogrel resistance, the underlying mechanisms, metabolism, clinical significance and current therapeutic strategies to overcome clopidogrel resistance. J Enam Med Col 2016; 6(1: 38-46

  7. Associating ground magnetometer observations with current or voltage generators

    DEFF Research Database (Denmark)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.

    2017-01-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for driversof ionospheric currents: ionospheric elec tric fields/voltages constant while current/conductivity vary—the“voltage generator”—and current constant while electric field/conductivity vary—the “current generator.......”Statistical studies of ground magnetometer observations associated with dayside Transient High LatitudeCurrent Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm:some studies associate THLCS with voltage generators, others with current generators. We argue that mostof...... these two assumptions substantially alter expectations for magnetic perturbations associatedwith either a current or a voltage generator. Our results demonstrate that before interpreting groundmagnetometer observations of THLCS in the context of current/voltage generators, the location...

  8. A New Asymmetrical Current-fed Converter with Voltage Lifting

    Directory of Open Access Journals (Sweden)

    DELSHAD, M.

    2011-05-01

    Full Text Available This paper presents a new zero voltage switching current-fed DC-DC converter with high voltage gain. In this converter all switches (main and auxiliary turn on under zero voltage switching and turn off under almost zero voltage switching due to snubber capacitor. Furthermore, the voltage spike across the main switch due to leakage inductance of forward transformer is absorbed. The flyback transformer which is connected to the output in series causes to high voltage gain and less voltage stress on the power devices. Considering high efficiency and voltage gain of this converter, it is suitable for green generated systems such as fuel cells or photovoltaic systems. The presented experimental results verify the integrity of the proposed converter.

  9. Improved Active Harmonic Current Elimination Based on Voltage Detection.

    Directory of Open Access Journals (Sweden)

    Tianyuan Tan

    Full Text Available With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD and harmonic voltage compensator (HVC based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles' trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control.

  10. Unified Power Quality Conditioner for voltage and current compensation

    Directory of Open Access Journals (Sweden)

    P.Annapandi

    2012-07-01

    Full Text Available This paper deals with a Unified Power Quality Conditioner (UPQC for load balancing, power factorcorrection, voltage regulation, voltage and current harmonics mitigation, mitigation of voltage sag, swelland voltage dip in a three-phase three-wire distribution system for different combinations of linear and nonlinear loads.The unified power quality conditioner (UPQC is a combination of back to back connected shunt and series active power filters (APFs to a common DC link voltage, which compensates voltage and current based distortions, independently.Using instantaneous active and reactive Power theory ,harmonic detection, reactive power compensation, voltage sag and swell have been simulated and the results are analyzed. The operation and capability of the proposed system was analyzed through simulations with MATLAB / SIMULINK.

  11. Transient sodium current at subthreshold voltages: activation by EPSP waveforms.

    Science.gov (United States)

    Carter, Brett C; Giessel, Andrew J; Sabatini, Bernardo L; Bean, Bruce P

    2012-09-20

    Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.

  12. Significance of maximum current for voltage boosting of microbial fuel cells in series

    Science.gov (United States)

    An, Junyeong; Lee, Yoo Seok; Kim, Taeyoung; Chang, In Seop

    2016-08-01

    Differences in internal resistances or operational conditions that affect the current between series-connected MFC units are known to cause voltage reversal. In this work, we proved that voltage reversal does not happen when MFCs produce an identical maximum current (i.e., limiting current), even though their internal resistances may differ. Here, two MFCs having an internal resistance difference of 206 Ω produced an almost identical maximum current of 0.4 mA in non-stacked mode. When the MFCs were connected in series, there was no voltage reversal; the voltage at the maximum current of 0.37 mA ranged from 1 mV to 3 mV. This result clearly indicates that differences of internal resistances or operational conditions are not an essential prerequisite for occurrences of voltage reversal in stacked MFCs, and that the maximum current of MFCs may be a direct indicator for predicting voltage reversal occurrences prior to the series connection of MFCs.

  13. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Low-Voltage MOS Current Mode Logic Multiplexer

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2013-04-01

    Full Text Available In this paper, a new low-voltage MOS current mode logic (MCML multiplexer based on the triple-tail cell concept is proposed. An analytical model for static parameters is formulated and is applied to develop a design approach for the proposed low-voltage MCML multiplexer. The delay of the proposed low-voltage MCML multiplexer is expressed in terms of the bias current and the voltage swing so that it can be traded off with the power consumption. The proposed low-voltage MCML multiplexer is analyzed for the three design cases namely high-speed, power-efficient, and low-power. Finally, a comparison in performance of the proposed low-voltage MCML multiplexer with the traditional MCML multiplexer is carried out for all the cases.

  15. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions

    Institute of Scientific and Technical Information of China (English)

    GAO Xi-Li; ZHANG Xiao-Zhong; WAN Cai-Hua; WANG Ji-Min

    2012-01-01

    Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated.For reverse applied voltages,a-C:N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages.After the excitation of repeated high reverse applied voltages,the current-voltage curves show obvious hysteresis behaviors at low temperatures.These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.%Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated. For reverse applied voltages, a-C.N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages. After the excitation of repeated high reverse applied voltages, the current-voltage curves show obvious hysteresis behaviors at low temperatures. These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.

  16. Dynamic range of low-voltage cascode current mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik; Shah, Peter Jivan

    1995-01-01

    Low-voltage cascode current mirrors are reviewed with respect to the design limitations imposed if all transistors in the mirror are required to operate in the saturation region. It is found that both a lower limit and an upper limit exist for the cascode transistor bias voltage. Further, the use...

  17. DFIG Harmonic Current Controlling with the Grid Low Harmonic Voltage

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2014-01-01

    Full Text Available This study presents a vector control strategy based on stator harmonic current closed-loop, it adds individually the control loop about of each stator harmonic current to restrain the stator harmonic current, in order to meet the THD criteria. The control strategy of restraining the harmonic current presents the design of the stator harmonic current restrains the current controller. It influences the rotor voltage of the stator harmonic current restraining strategies.

  18. A New Low Voltage P-MOS Bulk Driven Current Mirror Circuit

    Directory of Open Access Journals (Sweden)

    Anuj Dugaya

    2013-08-01

    Full Text Available This work proposes a new low voltage current mirror circuit using bulk driven technique. Bulk driventechnique is used to reduce the threshold of PMOS used in low voltage current mirror circuits (LVCM.TheProposed circuit consist of 4 PMOS and 5 NMOS. The proposed circuit operated at +0.85 V supplyvoltage.The bandwidth of this circuit has also been enhanced using resistive compensation technique. Theproposed circuit has been simulated in Cadence Design Environment in UMC 180nm CMOS technology. Atransfer characteristic of the proposed circuit has been discussed. The proposed circuit find application inlow voltage and low power analog integrated circuits.

  19. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  20. Survey of Induced Voltage and Current Phenomena in GIS Substation

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Hassan Hosseini

    2014-03-01

    Full Text Available Induced capacitive voltage and current in high voltage GIS substation is one of the most significant phenomena that may have made some problems in this substation operation. At this study the various equipment of 420 KV Karoon4 substations such as powerhouses, input and output lines, bus-bar and bus-duct have simulated by applying EMTP-RV software. Then with the different condition of single-phase and three-phase faults on the lines in critical conditions, capacitive induction voltage and current by parallel capacitor with circuit breaker is surveyed. The results show the value of this induced current and voltage and that this critical conditions the breakers and dis-connector switches must be able to interrupt this value of current.

  1. Enhanced current and voltage regulators for stand-alone applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback decoupling permits to achieve a better dynamic response for Voltage Source in stand-alone applications. The design of current and voltage regulators is performed in the discrete-time domain since it provides better accuracy and allows direct pole placement. As the attainable...... bandwidth of the current loop is mainly limited by computational and PWM delays, a lead compensator structure is proposed to overcome this limitation. The design of the voltage regulator is based on the Nyquist criterion, verifying to guarantee a high sensitivity peak. Discrete-time domain implementation...

  2. Effect of Circuit Breaker Shunt Resistance on Chaotic Ferroresonance in Voltage Transformer

    Directory of Open Access Journals (Sweden)

    RADMANESH, H.

    2010-08-01

    Full Text Available Ferroresonance or nonlinear resonance is a complex electrical phenomenon, which may cause over voltages and over currents in the electrical power system which endangers the system reliability and continuous safe operating. This paper studies the effect of circuit breaker shunt resistance on the control of chaotic ferroresonance in a voltage transformer. It is expected that this resistance generally can cause ferroresonance dropout. For confirmation this aspect Simulation has been done on a one phase voltage transformer rated 100VA, 275kV. The magnetization characteristic of the transformer is modeled by a single-value two-term polynomial with q=7. The simulation results reveal that considering the shunt resistance on the circuit breaker, exhibits a great mitigating effect on ferroresonance over voltages. Significant effect on the onset of chaos, the range of parameter values that may lead to chaos along with ferroresonance voltages has been obtained and presented.

  3. Lateral current effects on the voltage distribution in the emitter of solar cells under concentrated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV-IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, DF (Mexico)

    2009-04-15

    The design of the grid contact in silicon solar cells is one of the most important steps for the optimization and fabrication of these energy conversion devices. The voltage drop due to the lateral flow of current towards the grid fingers can be a limiting factor causing the reduction of conversion efficiency. For low current levels this voltage drop can be made small, for typical values of sheet resistance in the emitter, but for solar cells made to operate at high sun concentrations this efficiency loss can be important, unless there is a clear vision of the current and voltage distribution so that the emitter and grid design can be improved. Hence, it is important to establish and solve the current and voltage distribution equations for solar cells with a grid contact. In this work, first these equations are established and then they are solved in order to show the effects that the lateral current flow in the emitter cause on the voltage distribution, particularly at high illumination levels. In addition, it will be shown that the open circuit voltage is significantly reduced due to the lateral current flow as compared to the value predicted from a simple equivalent circuit with a lumped resistance model. (author)

  4. Current-voltage model of LED light sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig

    2012-01-01

    Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...

  5. Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching.

    Science.gov (United States)

    Choi, Jaeho; Park, Sunghak; Lee, Joohee; Hong, Kootak; Kim, Do-Hong; Moon, Cheon Woo; Park, Gyeong Do; Suh, Junmin; Hwang, Jinyeon; Kim, Soo Young; Jung, Hyun Suk; Park, Nam-Gyu; Han, Seungwu; Nam, Ki Tae; Jang, Ho Won

    2016-08-01

    Organolead halide perovskites are used for low-operating-voltage multilevel resistive switching. Ag/CH3 NH3 PbI3 /Pt cells exhibit electroforming-free resistive switching at an electric field of 3.25 × 10(3) V cm(-1) for four distinguishable ON-state resistance levels. The migration of iodine interstitials and vacancies with low activation energies is responsible for the low-electric-field resistive switching via filament formation and annihilation.

  6. Design of a Novel Current Balanced Voltage Controlled Delay Element

    Directory of Open Access Journals (Sweden)

    Pooja Saxena

    2014-04-01

    Full Text Available This paper presents a design of fast voltage controlled delay element based on modified version of low noise Current Balanced Logic (CBL. This delay element provides identical rising and falling edge delays controlled by the single control voltage. The post layout tunable delay range is from 140 ps to 800 ps over control voltage range of 0 to 2.1 V. An analysis for the delay element is also presented, which is in agreement with the simulated delays. A Delay Lock Loop (DLL is designed using this delay element to verify its performance.

  7. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  8. Current-voltage characteristics and transition voltage spectroscopy of individual redox proteins.

    Science.gov (United States)

    Artés, Juan M; López-Martínez, Montserrat; Giraudet, Arnaud; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2012-12-19

    Understanding how molecular conductance depends on voltage is essential for characterizing molecular electronics devices. We reproducibly measured current-voltage characteristics of individual redox-active proteins by scanning tunneling microscopy under potentiostatic control in both tunneling and wired configurations. From these results, transition voltage spectroscopy (TVS) data for individual redox molecules can be calculated and analyzed statistically, adding a new dimension to conductance measurements. The transition voltage (TV) is discussed in terms of the two-step electron transfer (ET) mechanism. Azurin displays the lowest TV measured to date (0.4 V), consistent with the previously reported distance decay factor. This low TV may be advantageous for fabricating and operating molecular electronic devices for different applications. Our measurements show that TVS is a helpful tool for single-molecule ET measurements and suggest a mechanism for gating of ET between partner redox proteins.

  9. The PPTN-02 new-generation current-voltage transducers for measuring of photosignals

    Directory of Open Access Journals (Sweden)

    Butenko V. K.

    2008-02-01

    Full Text Available The measurement results of technical characteristics of new-generation current-voltage transducers which have low input resistance (<10 Оhm and providing ptotodiodes photocurrent measurement from 1·10-12 to 1·10-3 A are presented.

  10. Prediction of Pollution Flashover Voltage Based on Leakage Current Under AC Operating Voltage

    Institute of Scientific and Technical Information of China (English)

    MEI Hongwei; WANG Liming; GUAN Zhicheng; MAO Yingke

    2012-01-01

    This paper presented a model to predict the AC flashover voltage of contaminated suspension insulators.The prediction method is based on the maximum leakage current under AC operating voltage.Three kinds of widely used suspension insulators were tested in various contamination states such as pollution layers with different equivalent salt deposit density(ESDD),different composition of the conductive components,different non-soluble deposit density(NSDD) and different pollution distribution states to simulate the contamination states in nature.The effective ESDD was proposed and calculated.Influences of contamination states to maximum leakage current and flashover voltage were studied.Then,the relationships between flashover voltage and leakage current in these states were presented.Finally,considering the difference of insulator profiles,a new parameter is defined and a model to estimate the flashover voltage based on this parameter is developed.The model could be used in all kinds of suspension insulators in different contamination states and was validated by the test results.

  11. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...

  12. A New Low Voltage P-MOS Bulk Driven Current Mirror Circuit

    Directory of Open Access Journals (Sweden)

    Anuj Dugaya

    2013-08-01

    Full Text Available This work proposes a new low voltage current mirror circuit using bulk driven technique. Bulk driven technique is used to reduce the threshold of PMOS u sed in low voltage current mirror circuits (LVCM.T he Proposed circuit consist of 4 PMOS and 5 NMOS. The proposed circuit operated at +0.85 V supply voltage.The bandwidth of this circuit has also been enhanced using resistive compensation technique. T he proposed circuit has been simulated in Cadence Desi gn Environment in UMC 180nm CMOS technology. A transfer characteristic of the proposed circuit has been discussed. The proposed circuit find applicat ion in low voltage and low power analog integrated circuit s.

  13. Experimental observation of direct current voltage-induced phase synchronization

    Indian Academy of Sciences (India)

    Haihong Li; Weiqing Liu; Qiongling Dai; Jinghua Xiao

    2006-09-01

    The dynamics of two uncoupled distinct Chua circuits driven by a common direct current voltage is explored experimentally. It was found that, with increasing current intensity, the dominant frequencies of these two Chua circuits will first vary at different speeds, approach an identical value for a certain current intensity and then separate. Techniques such as synchronization index and phase difference distribution were employed to analyze the phase coherence between these two Chua circuits.

  14. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  15. Voltage-dependent currents in microvillar receptor cells of the frog vomeronasal organ.

    Science.gov (United States)

    Trotier, D; Døving, K B; Rosin, J F

    1993-08-01

    Vomeronasal receptor cells are differentiated bipolar neurons with a long dendrite bearing numerous microvilli. Isolated cells (with a mean dendritic length of 65 microns) and cells in mucosal slices were studied using whole-cell and Nystatin-perforated patch-clamp recordings. At rest, the membrane potential was -61 +/- 13 mV (mean +/- SD; n = 61). Sixty-four per cent of the cells had a resting potential in the range of -60 to -86 mV, with almost no spontaneous action potential. The input resistance was in the G omega range and overshooting repetitive action potentials were elicited by injecting depolarizing current pulses in the range of 2-10 pA. Voltage-dependent currents were characterized under voltage-clamp conditions. A transient fast inward current activating near -45 mV was blocked by tetrodotoxin. In isolated cells, it was half-deactivated at a membrane potential near -75 mV. An outward K+ current was blocked by internal Cs+ ions or by external tetraethylammonium or Ba2+ ions. A calcium-activated voltage-dependent potassium current was blocked by external Cd2+ ions. A voltage-dependent Ca2+ current was observed in an iso-osmotic BaCl2 solution. Finally, a hyperpolarization-activated inward current was recorded. Voltage-dependent currents in these microvillar olfactory receptor neurons appear qualitatively similar to those already described in ciliated olfactory receptor cells located in the principal olfactory epithelium.

  16. Low-voltage switched-current delta-sigma modulator

    Science.gov (United States)

    Tan, Nianxiong; Eriksson, Sven

    1995-05-01

    This paper presents the design of a fully differential switched-current delta-sigma modulator using a single 3.3-V power-supply voltage. At system level, we tailor the modulator structure considering the similarity and difference of switched-capacitor and switched-current realizations. At circuit level, we propose a new switched-current memory cell and integrator with improved common mode feedback, without which low power-supply-voltage operation would not be possible. The whole modulator was implemented in a 0.8- micron double-metal digital CMOS process. It occupies an active area of 0.53 x 0.48 mm(sup 2) and consumes a current of 0.6 mA from a single 3.3-V power supply. The measured dynamic range is over 10 b.

  17. Very Low Power, Low Voltage, High Accuracy, and High Performance Current Mirror

    Institute of Scientific and Technical Information of China (English)

    Hassan Faraji Baghtash; Khalil Monfaredi; Ahmad Ayatollahi

    2011-01-01

    A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed.In this circuit,the gain boosting regulated cascode scheme is used to improve the output resistance,while using inverter as an amplifier.The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given,which verify the high performance of the proposed structure.Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ.The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of vin,min~ 0.24 V) and an output (the minimum output voltage of vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current.The current copy error is near zero at the input current of 27 μA.It consumes only 76 μW and introduces a very low output offset current of 50 pA.

  18. Effect of current-voltage characteristics on plasma reforming

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, N. [Univ. of Science and Technology, Daejeon (Korea, Republic of). Environmental System Engineering; Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division; Hur, M.; Kim, K.T.; Kim, S.J.; Song, Y.H. [Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division

    2010-07-01

    Studies have shown that the energy costs associated with plasma fuel reforming can vary depending on the type of plasma generation technique. The reasons for the different energy costs, however, are not yet clear, since different types of plasma reactor lead to not only different plasma conditions but also lead to different reaction conditions that is not relevant to plasma, such as gas residence time, heat and mass flow conditions. This paper presented the results of a parametric study on methane partial oxidation which was conducted to determine the optimal operating conditions and geometrical design of an arc jet plasma fuel reformer. The arc reactor used in this study was designed to control various operating parameters such as arc length, gas residence time, and gas mixing. Two different types of power supply were tested, notably one that produced high voltage with low current, and one that produced relatively low voltage and high current. The effects of these different voltage-current characteristics on gas reforming process were analyzed based on methane conversion rates, selectivity of products, and thermal efficiencies. The study showed that the input power but not the voltage plays an important role in the present partial oxidation process. The gas residence time was also found to be an important factor in controlling the reformer process. 10 refs., 8 figs.

  19. Step voltage transient currents in poly(vinylidene fluoride)

    Science.gov (United States)

    Kaura, T.; Nath, Rabinder

    1983-10-01

    The step voltage current transient characteristics have been studied in poly(vinylidene flouride) as a function of field, temperature, and time. The current peaks have been observed in the current-time characteristics. These peaks have been attributed to the space-charge injection phenomena. Using the space-charge-limited model of current transients the mobility has been estimated to 2.2±0.2×10-9 cm2 v-1 s-1 at 301 K. The analysis of the temperature dependence of mobilities establishes that charge carrier transport in extended states involving trapping is predominant.

  20. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  1. Current-voltage-temperature characteristics of DNA origami

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Zhong Hong; Norton, Michael L [Department of Chemistry, Marshall University, Huntington, WV 25755 (United States); Sinitskii, Alexander [Department of Chemistry, Rice University, Houston, TX 77005 (United States)

    2009-04-29

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of {approx}0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  2. Branching in current-voltage characteristics of intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-02-15

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.

  3. Branching in current voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mahfouzi, F.

    2007-02-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.

  4. Voltage-controlling mechanisms in low-resistivity silicon solar cells - A unified approach

    Science.gov (United States)

    Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.

    1986-01-01

    An experimental technique is used to determine the relative values of the base and emitter components of the dark saturation current of six types of high-voltage low-resistivity silicon solar cells. One of the surprising findings is the suggestion that the magnitude of the minority-carrier mobility may be process-dependent.

  5. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  6. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  7. Current-Voltage Relations for Electrochemical Thin Films

    CERN Document Server

    Bazant, M Z; Bayly, B J; Bazant, Martin Z.; Chu, Kevin T.

    2004-01-01

    The dc response of an electrochemical thin film, such as the separator in a micro-battery, is analyzed by solving the Poisson-Nernst-Planck equations, subject to boundary conditions appropriate for an electrolytic/galvanic cell. The model system consists of a binary electrolyte between parallel-plate electrodes, each possessing a compact Stern layer, which mediates Faradaic reactions with nonlinear Butler-Volmer kinetics. Analytical results are obtained by matched asymptotic expansions in the limit of thin double layers and compared with full numerical solutions. The analysis shows that (i) decreasing the system size relative to the Debye screening length decreases the voltage of the cell and allows currents higher than the classical diffusion-limited current; (ii) finite reaction rates lead to the important possibility of a reaction-limited current; (iii) the Stern-layer capacitance is critical for allowing the cell to achieve currents above the reaction-limited current; and (iv) all polarographic (current-v...

  8. Improved analytical current voltage characteristics of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Koski, M.; Tuominen, E.; Acerbis, M.; Sinkkonen, J.

    1997-12-31

    Application of the Green`s function method to the calculation of the current voltage characteristics of a pn-junction solar cell makes possible to extract more reliable and exact information about the behavior of the cell. With this method not only the minority carrier diffusion currents but also the drift currents in quasi- neutral regions of the solar cell can be taken into consideration. Furthermore, this approach is not limited to an exponentially decaying minority carrier generation function but is valid for any type of optical generation. In addition, the injection boundary condition is exploited with the result that not only the pn-diode current but also the current resulting from the optical generation depends on the voltage of the solar cell. Applying the method also gives the so called position dependent collection efficiency function which is defined as the probability that an electron-hole pair created at a certain point inside the solar cell will contribute to the current leaving the cell. (orig.) 15 refs.

  9. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan;

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  10. A linear auroral current-voltage relation in fluid theory

    Directory of Open Access Journals (Sweden)

    J. Vedin

    2004-04-01

    Full Text Available Progress in our understanding of auroral currents and auroral electron acceleration has for decades been hampered by an apparent incompatibility between kinetic and fluid models of the physics involved. A well established kinetic model predicts that steady upward field-aligned currents should be linearly related to the potential drop along the field line, but collisionless fluid models that reproduce this linear current-voltage relation have not been found. Using temperatures calculated from the kinetic model in the presence of an upward auroral current, we construct here approximants for the parallel and perpendicular temperatures. Although our model is rather simplified, we find that the fluid equations predict a realistic large-scale parallel electric field and a linear current-voltage relation when these approximants are employed as nonlocal equations of state. This suggests that the concepts we introduce can be applied to the development of accurate equations of state for fluid simulations of auroral flux tubes.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions – Space plasma physics (kinetic and MHD theory

  11. Current-voltage curves of gold quantum point contacts revisited

    DEFF Research Database (Denmark)

    Hansen, K.; Nielsen, S K.; Brandbyge, Mads;

    2000-01-01

    We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...... clean ultra-high-vacuum conditions at room temperature. The I - V curves are found to he almost linear in contrast to previous reports. Tight-binding calculations of I - V curves for one- and two-atom contacts are in excellent agreement with our measurements. On the other hand, clearly nonlinear I - V...

  12. Effect of operating current dependent series resistance on the fill factor of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dadu, Meena; Kapoor, A.; Tripathi, K.N. [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez road, -110 021 New Delhi (India)

    2002-02-01

    The fill factor of a solar cell depends upon the series resistance, reverse saturation current, diode quality factor, operating current and voltage. Since the series resistance itself depends upon the operating current (or voltage), it makes the evaluation of fill factor very complicated. In this paper, we have evaluated the fill factor of a solar cell, taking into account operating current dependence of the series resistance.

  13. Current-voltage characteristics of borophene and borophane sheets.

    Science.gov (United States)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2017-08-16

    Motivated by recent experimental and theoretical research on a monolayer of boron atoms, borophene, the current-voltage characteristics of three different borophene sheets, 2Pmmn, 8Pmmn, and 8Pmmm, are calculated using density functional theory combined with the nonequilibrium Green's function formalism. Borophene sheets with two and eight atoms in a unit cell are considered. Their band structure, electron density, and structural anisotropy are analyzed in detail. The results show that the 8Pmmn and 8Pmmm structures that have eight atoms in the unit cell have less anisotropy than 2Pmmn. In addition, although 8Pmmn shows a Dirac cone in the band structure, its current is lower than that of the other two. We also consider a fully hydrogenated borophene, borophane, and find that the hydrogenation process reduces the structural anisotropy and the current significantly. Our findings reveal that the current-voltage characteristics of the borophene sheets can be used to detect the type and the growth direction of the sample because it is strongly dependent on the direction of the electron transport, anisotropy, and details of the unit cell of the borophene.

  14. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors

    Science.gov (United States)

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ•μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  15. Flunarizine inhibits sensory neuron excitability by blocking voltage-gated Na+ and Ca2+ currents in trigeminal ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    YE Qing; WANG Qiang; YAN Lan-yun; WU Wen-hui; LIU Sha; XIAO Hang; WAN Qi

    2011-01-01

    Background Although flunarizine has been widely used for migraine prophylaxis with clear success,the mechanisms of its actions in migraine prophylaxis are not completely understood.The aim of this study was to investigate the effects of flunarizine on tetrodotoxin-resistant Na+ channels and high-voltage activated Ca2+ channels of acutely isolated mouse trigeminal ganglion neurons.Methods Sodium currents and calcium currents in trigeminal ganglion neurons were monitored using whole-cell patch-clamp recordings.Paired Student's t test was used as appropriate to evaluate the statistical significance of differences between two group means.Results Both tetrodotoxin-resistant sodium currents and high-voltage activated calcium currents were blocked by flunarizine in a concentration-dependent manner with the concentration producing half-maximal current block values of 2.89 μmol/L and 2.73 μmol/L,respectively.The steady-state inactivation curves of tetrodotoxin-resistant sodium currents and high-voltage activated calcium currents were shifted towards more hyperpolarizing potentials after exposure to flunarizine.Furthermore,the actions of flunarizine in blocking tetrodotoxin-resistant sodium currents and high-voltage activated calcium currents were use-dependent,with effects enhanced at higher rates of channel activation.Conclusion Blockades of these currents might help explain the peripheral mechanism underlying the preventive effect of flunarizine on migraine attacks.

  16. Air Flow Measurements During Medium-Voltage Load Current Interruptions

    OpenAIRE

    Aanensen, Nina Sasaki; Runde, Magne

    2015-01-01

    Air has been considered a good alternative to SF6 as arc quenching medium for load break switchgear at medium voltage ratings. In this work, the air flow characteristics and influence from the electric arc have been studied for typical currents and over-pressures. The cooling air velocity is typically in the range 150 - 200 m/s and thus well below supersonic speed. The arc and the surrounding hot air severely affect the air flow pattern by causing clogging in the contact and nozzle region.

  17. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen

    2009-01-01

    Owing to the anisotropic property and small output signals of the piezoelectric nanogenerators (NGs) and the influence of the measurement system and environment, identification of the true signal generated by the NG is critical. We have developed three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity, and random signals, which might change signs but cannot consistently add up or cancel out under designed connection configurations. This study establishes the standards for designing and scale up of integrated nanogenerators. © 2009 American Institute of Physics.

  18. Spatially resolved voltage, current and electrochemical impedance spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, D.; Kurz, T.; Schwager, M.; Hebling, C. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg im Breisgau (Germany); Merida, W. [Clean Energy Research Centre, University of British Columbia, Vancouver, BC (Canada); Lupotto, P. [Materials Mates Italia, Milano (Italy)

    2011-04-15

    In this work a 50-channel characterisation system for PEMFCs is presented. The system is capable of traditional electrochemical measurements (e.g. staircase voltammetry, chronoamperometry and cyclic voltammetry), and concurrent EIS measurements. Unlike previous implementations, this system relies on dedicated potentiostats for current and voltage control, and independent frequency response analysers (FRAs) at each channel. Segmented fuel cell hardware is used to illustrate the system's flexibility and capabilities. The results here include steady-state data for cell characterisation under galvanostatic and potentiostatic control as well as spatially resolved impedance spectra. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires

    Institute of Scientific and Technical Information of China (English)

    LONG Yun-Ze; DUVAIL Jean-Luc; CHEN Zhao-Jia; JIN Ai-Zi; GU Chang-Zhi

    2008-01-01

    We report the current-voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190 ± 6 nm in diameter and σRT : 11.2±2Ω-1cm-1)over a wide temperature range from 300 to 10K. With lowering temperature, the Ⅰ- Ⅴ characteristics become nonlinear around 50 K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV)spectra. The temperature dependence of the resistance below 70 K follows ln R ∝ T-1/2, which can be interpreted as Efros-Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.

  20. Current-voltage relationship in the auroral particle acceleration region

    Directory of Open Access Journals (Sweden)

    M. Morooka

    2004-11-01

    Full Text Available The current-voltage relationship in the auroral particle acceleration region has been studied statistically by the Akebono (EXOS-D satellite in terms of the charge carriers of the upward field-aligned current. The Akebono satellite often observed field-aligned currents which were significantly larger than the model value predicted by Knight (1973. We compared the upward field-aligned current estimated by three different methods, and found that low-energy electrons often play an important role as additional current carriers, together with the high-energy primary electrons which are expected from Knight's relation. Such additional currents have been observed especially at high and middle altitudes of the particle acceleration region. Some particular features of electron distribution functions, such as "cylindrical distribution functions" and "electron conics", have often been observed coinciding with the additional currents. They indicated time variability of the particle acceleration region. Therefore, we have concluded that the low-energy electrons within the "forbidden" region of electron phase space in the stationary model often contribute to charge carriers of the current because of the rapid time variability of the particle acceleration region. "Cylindrical distribution functions" are expected to be found below the time-varying potential difference. We statistically examined the locations of "cylindrical distribution function", and found that their altitudes are related to the location where the additional currents have been observed. This result is consistent with the idea that the low-energy electrons can also carry significant current when the acceleration region changes in time.

  1. Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells

    Science.gov (United States)

    Cheng, Zhe; Zha, Shaowu; Liu, Meilin

    The sulfur poisoning behavior of nickel-yttria stabilized zirconia (YSZ) cermet anodes in solid oxide fuel cells (SOFCs) was investigated under both potentiostatic and galvanostatic conditions. While the observed relative drop in cell power output caused by sulfur poisoning decreases as the cell-terminal voltage is lowered potentiostatically (thus more current passing through the cell), it increases as more current is drawn from the cell galvanostatically (thus leading to lower terminal voltage). The apparent contradictory trends in relative performance loss due to sulfur poisoning are explained using a simple equivalent circuit analysis, which was further validated by impedance measurements of cells before and after poisoning by trace amounts of hydrogen sulfide (H 2S) under different conditions. Results suggest that the relative increase in cell internal resistance caused by sulfur poisoning is smaller when more current is drawn from the cell (or the cell-terminal voltage is lowered) under either potentiostatic or galvanostatic conditions. Thus, the increase in anode polarization resistance, not the drop in cell power output, should be used to describe the degree of sulfur poisoning in order to avoid any confusion.

  2. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2015-10-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons.

  3. A voltage-dependent persistent sodium current in mammalian hippocampal neurons

    OpenAIRE

    1990-01-01

    Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight- seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These curren...

  4. Voltage-Controlled Square/Triangular Wave Generator with Current Conveyors and Switching Diodes

    Directory of Open Access Journals (Sweden)

    Martin Janecek

    2012-12-01

    Full Text Available A novel relaxation oscillator based on integrating the diode-switched currents and Schmitt trigger is presented. It is derived from a known circuit with operational amplifiers where these active elements were replaced by current conveyors. The circuit employs only grounded resistances and capacitance and is suitable for high frequency square and triangular signal generation. Its frequency can be linearly and accurately controlled by voltage that is applied to a high-impedance input. Computer simulation with a model of a manufactured conveyor prototype verifies theoretic assumptions.

  5. Effects of SDPNFLRF-amide (PF1) on voltage-activated currents in Ascaris suum muscle.

    Science.gov (United States)

    Verma, S; Robertson, A P; Martin, R J

    2009-02-01

    Helminth infections are of significant concern in veterinary and human medicine. The drugs available for chemotherapy are limited in number and the extensive use of these drugs has led to the development of resistance in parasites of animals and humans (Geerts and Gryseels, 2000; Kaplan, 2004; Osei-Atweneboana et al., 2007). The cyclooctadepsipeptide, emodepside, belongs to a new class of anthelmintic that has been released for animal use in recent years. Emodepside has been proposed to mimic the effects of the neuropeptide PF1 on membrane hyperpolarization and membrane conductance (Willson et al., 2003). We investigated the effects of PF1 on voltage-activated currents in Ascaris suum muscle cells. The whole cell voltage-clamp technique was employed to study these currents. Here we report two types of voltage-activated inward calcium currents: transient peak (I(peak)) and a steady-state (I(ss)). We found that 1microM PF1 inhibited the two calcium currents. The I(peak) decreased from -146nA to -99nA (P=0.0007) and the I(ss) decreased from -45nA to -12nA (P=0.002). We also found that PF1 in the presence of calcium increased the voltage-activated outward potassium current (from 521nA to 628nA (P=0.004)). The effect on the potassium current was abolished when calcium was removed and replaced with cobalt; it was also reduced at a higher concentration of PF1 (10microM). These studies demonstrate a mechanism by which PF1 decreases the excitability of the neuromuscular system by modulating calcium currents in nematodes. PF1 inhibits voltage-activated calcium currents and potentiates the voltage-activated calcium-dependent potassium current. The effect on a calcium-activated-potassium channel appears to be common to both PF1 and emodepside (Guest et al., 2007). It will be of interest to investigate the actions of emodepside on calcium currents to further elucidate the mechanism of action.

  6. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Current-voltage characteristics of double-strand DNA sequences

    Science.gov (United States)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  8. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  9. High voltage direct current modelling in optimal power flows

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz-Perez, H. [Comision Federal de Electricidad, Mexico, Unidad de Ingenieria Especializada, Rio Rodano No. 14 - Piso 10, Sala 1002, Col. Cuauhtemoc, C.P. 06598, Mexico, D.F. (Mexico); Acha, E. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G128LT, Scotland (United Kingdom); Fuerte-Esquivel, C.R. [Faculty of Electrical Engineering, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Michoacan (Mexico)

    2008-03-15

    Two-terminal high voltage direct current (HVDC) transmission links are in operation throughout the world. They are key elements in electrical power networks; their representation is oversimplified or ignored in most power system studies. This is particularly the case in Optima Power Flow (OPF) studies. Hence, an OPF program has been extended to incorporate HVDC links, taking due account of overlapping and power transfer control characteristics. This is a new development in Newton Optimal Power Flows, where the converter equations are included directly in the matrix W. The method is indeed a unified one since the solution vector is extended to accommodate the DC variables. The HVDC link model correctly takes into account the relevant DC limit variables. The impact of HVDC links on OPF studies is illustrated by numeric examples, which includes a 5-node system, the AEP 14-node and a 166-node system. (author)

  10. Current-voltage characteristics of double-strand DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bezerril, L.M.; Moreira, D.A. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@dfte.ufrn.b [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Oliveira, E.L. de; Sousa, J.S. de [Departamento de Fisica, Universidade Federal do Ceara, 60455-760, Fortaleza-CE (Brazil)

    2009-09-07

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  11. Thevenin source resistances of the touch, transferred and step voltages of a grounding system

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Y.L.; Salama, M.M.A.; Djogo, G. [University of Waterloo, ON (Canada)

    1999-03-01

    The source resistances for surface voltages (touch, transferred and step voltage) are considered. It is proved that the source resistances of the touch and transferred voltages are the same, given by the grounding resistances between the feet of a human and the grounding system. In a practical situation, however, this resistance is very close to that of the ANSI/IEEE Standard 80 that is widely accepted. The source resistance of the step voltage is simply the resistance between the two feet, not at all perturbed by the grounding system. Proofs are derived rigorously by combining the field Galerkin's moment method and basic circuit theory. (author)

  12. A voltage-dependent persistent sodium current in mammalian hippocampal neurons.

    Science.gov (United States)

    French, C R; Sah, P; Buckett, K J; Gage, P W

    1990-06-01

    Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at

  13. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  14. Current-voltage characteristics with several threshold currents in insulating low-doped La1-xSrxMnO3 (x=0.10) thin films

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kun; FENG Jiafeng; HE Meng; L(U) Huibin; JIN Kuijuan; ZHOU Yueliang; YANG Guozhen3

    2008-01-01

    The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves at 120 K showed hysteresis with several threshold currents corresponding to the switching in resistance to metastable low resistance states, and finally, four closed loops were formed. A mode was proposed, which was based on the low-temperature canted antiferromagnetism ordering for a lightly doped insulating regime.

  15. Surge current capabilities and isothermal current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers

    Science.gov (United States)

    Palmour, J. W.; Levinshtein, M. E.; Ivanov, P. A.; Zhang, Q. J.

    2015-06-01

    Isothermal forward current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers (JBS) have been studied for the first time. Isothermal characteristics were measured with JBS having a blocking voltage of 1700 V up to a current density j  ≈  4200 A cm-2 in the temperature range 297-460 K. Quasi-isothermal current-voltage characteristics of these devices were studied with injection of minority carriers (holes) up to j  ≈  7200 A cm-2 and ambient temperatures of 297 and 460 K. The isothermal forward current-voltage characteristics make it possible to numerically calculate (for example, by an iteration procedure) the overheating in an arbitrary operation mode.

  16. Estimation of the Plant Time Constant of Current-Controlled Voltage Source Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Malvar, Jano

    2014-01-01

    Precise knowledge of the plant time constant is essential to perform a thorough analysis of the current control loop in voltage source converters (VSCs). As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included...... of the VSC interface filter measured at rated conditions. This paper extends that method so that both parameters of the plant time constant (resistance and inductance) are estimated. Such enhancement is achieved through the evaluation of the closed-loop transient responses of both axes of the synchronous...

  17. Novel Low Voltage CMOS Current Controlled Floating Resistor Using Differential Pair

    Directory of Open Access Journals (Sweden)

    S. A. Tekin

    2013-06-01

    Full Text Available In this paper, a low voltage CMOS current controlled floating resistor which is convenient for integrated circuit implementation is designed by using differential pair. The proposed resistor has a simple circuit structure and low power dissipation. This circuit is required ± 0.75 V as a power supply. The basic advantages of this circuit are wide tuning range of the resistance value, satisfied frequency performance and worthwhile dynamic range. As well as the proposed circuit has floating structure, it is able to be used both positive and negative resistor. The performances of the proposed circuit are simulated with SPICE to justify the presented theory.

  18. Voltage and Current Regulators Design of Power Converters in Islanded Microgrids based on State Feedback Decoupling

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    In stand-alone microgrids based on voltage source inverters state feedback coupling between the capacitor voltage and inductor current degrades significantly the dynamics performance of voltage and current regulators. The decoupling of the controlled states is proposed, considering the limitations...... introduced by system delays. Moreover, a proportional resonant voltage controller is designed according to Nyquist criterion taking into account application requirements. Experimental tests performed in compliance with the UPS standards verify the theoretical analysis....

  19. A Versatile Control Scheme For Dynamic Voltage Restorer To Limit Downstream Fault Currents

    Directory of Open Access Journals (Sweden)

    A.Nagendra

    2014-12-01

    Full Text Available The Dynamic Voltage Restorer (DVR is a custom power device utilized to counteract voltage sags. It injects controlled three-phase ac voltages in series with the supply voltage, subsequent to voltage sag, to enhance voltage quality by adjusting the voltage magnitude, wave shape, and phase angle. The DVR is conventionally bypassed during a downstream fault to prevent potential adverse impacts on the fault and to protect the DVR components against the fault current. This paper proposes an augmented control strategy for the DVR that provides:1 voltage-sag compensation under balanced and unbalanced conditions and 2 a fault current interruption (FCI function. This paper introduces and evaluates an auxiliary control strategy for downstream fault current interruption in a radial distribution line by means of a dynamic voltage restorer (DVR. The proposed controller supplements the voltage-sag compensation control of the DVR. It does not require phaselocked loop and independently controls the magnitude and phase angle of the injected voltage for each phase. Fast least error squares digital filters are used to estimate the magnitude and phase of the measured voltages and effectively reduce the impacts of noise, harmonics, and disturbances on the estimated phasor parameters, and this enables effective fault current interrupting even under arcing fault conditions. The performance of the DVR for fault current interruption is analyzed by using MATLAB/SIMULINK software.

  20. Voltage Quality Enhancement and Fault Current Limiting with Z-Source based Series Active Filter

    Directory of Open Access Journals (Sweden)

    F. Gharedaghi

    2011-11-01

    Full Text Available In this study, series active filter or dynamic voltage restorer application is proposed for reduction of downstream fault current in addition to voltage quality enhancement. Recently, the application of Z-source inverter is proposed in order to optimize DVR operation. This inverter makes DVR to operate appropriately when the energy storage device’s voltage level severely falls. Here, the Z-source inverter based DVR is proposed to compensate voltage disturbance at the PCC and to reduce the fault current in downstream of DVR. By calculating instantaneous current magnitude in synchronous frame, control system recognizes if the fault exists or not, and determines whether DVR should compensate voltage disturbance or try to reduce the fault current. The proposed system is simulated under voltage sag and swell and short circuit conditions. The simulation results show that the system operates correctly under voltage sag and short circuit conditions.

  1. Study of imbalanced internal resistance on drop voltage of LiFePO4 battery system connected in parallel

    Science.gov (United States)

    Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif

    2017-01-01

    The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.

  2. High-voltage, high-current, solid-state closing switch

    Energy Technology Data Exchange (ETDEWEB)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  3. Estimation of the Plant Time Constant of Current-Controlled Voltage Source Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Malvar, Jano;

    2014-01-01

    Precise knowledge of the plant time constant is essential to perform a thorough analysis of the current control loop in voltage source converters (VSCs). As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included...... of the VSC interface filter measured at rated conditions. This paper extends that method so that both parameters of the plant time constant (resistance and inductance) are estimated. Such enhancement is achieved through the evaluation of the closed-loop transient responses of both axes of the synchronous...... in the model, through an equivalent series resistance. In a recent work, an algorithm to identify this parameter was developed, considering the inductance value as known and practically constant. Nevertheless, the plant inductance can also present important uncertainties with respect to the inductance...

  4. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions......This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...

  5. CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT

    Directory of Open Access Journals (Sweden)

    T. Scarazzato

    2015-12-01

    Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.

  6. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  7. Lateral Current Reduction by Voltage Drop Compensator for Multiple Autonomously Controlled UPS Connected in Parallel

    Science.gov (United States)

    Sato, Eduardo Kazuhide; Kawamura, Atsuo

    An autonomous control for redundant parallelism of uninterruptible power supplies (UPS) connected in parallel has successfully been proposed and discussed in theoretical and experimental terms. This independent control only requires the measurement of the output current. With the computation of the active and reactive currents, proportional-integral-based controllers provide the phase angle and amplitude, respectively, of the output voltage. However, when voltage difference between UPS exists, there is a flow of reactive lateral current, which makes the load sharing disproportional. A preliminary approach to reduce this circulating current considers a high proportional gain in the control equation for output voltage amplitude in order to reduce the offset error. Nevertheless it implies in high variation of the voltage amplitude, so that voltage levels easily reaches the limit, and the respective control equation becomes incapable to compensate any voltage difference. This paper proposes a compensator to counterbalance the voltage drop caused by the proportional gain of the control equation for the voltage amplitude. Implementation in an experimental setup with three UPS with different output rating connected in parallel shows significant reduction of the reactive lateral current, and consequent improvement of the current distribution, including employment of voltage limiters (1%), under various conditions.

  8. Bidirectional current-voltage converters based on magnetostrictive/piezoelectric composites

    NARCIS (Netherlands)

    Jia, Y.; Or, S.W.; Chan, H.L.W.; Jiao, J.; Luo, H.; Van der Zwaag, S.

    2009-01-01

    We report a power supply-free, bidirectional electric current-voltage converter based on a coil-wound laminated composite of magnetostrictive alloy and piezoelectric crystal. An electric current applied to the coil induces a magnetic field, resulting in an electric voltage from the composite due to

  9. Structure of the breakpoint region on current-voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Suzuki, M.

    2008-10-01

    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.

  10. Current and Voltage Induced on the Cable by Flash of Lightning between Clouds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the transmission line equations, this paper has developed computing formulas of current and voltage induced on the cable over the ground plane by Flash of Lightning Between Clouds (FBC), and estimated current and voltage on the cable of metal shielded sheath and analyzed the results.

  11. Modulation Voltage of High T c DC Superconducting Quantum Interference Device with Damping Resistance

    Science.gov (United States)

    Enpuku, Keiji; Doi, Hideki; Tokita, Go; Maruo, Taku

    1994-05-01

    The effect of damping resistance on the voltage versus flux (V -Φ) relation of the high T c dc superconducting quantum interference device (SQUID) is studied experimentally. Dc SQUID using YBaCuO step-edge junction and damping resistance in parallel with SQUID inductance is fabricated. Measured values of modulation voltage in the V -Φ relation are compared with those of the conventional SQUID without damping resistance. It is shown that modulation voltage is much improved by using damping resistance. The obtained experimental results agree reasonably with theoretical predictions reported previously.

  12. Current concepts in glucocorticoid resistance.

    Science.gov (United States)

    Yang, Nan; Ray, David W; Matthews, Laura C

    2012-09-01

    Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.

  13. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  14. Resistance to AHAS inhibitor herbicides: current understanding.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  15. A Review of Voltage and Current Signature Diagnosis in Industrial Drives

    Directory of Open Access Journals (Sweden)

    K. Vinoth Kumar

    2011-09-01

    Full Text Available This paper presents the review of identify the different types of faults in the induction motor during online condition by using current and voltage signature analysis. Special attention is focused on the effect of both space distribution of rotor breakage and rotor dis-symmetry on the mechanism of generation of diagnosis signatures with the consideration of voltage supply unbalance and speed ripples. A comparison is made between the voltage signature analysis and current signature analysis. Keywords: Fault diagnosis, Induction motor, rotor breakage, MCSA, Motor voltage signature analysis (MVSA.

  16. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  17. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  18. Antibiotic resistance: A current epilogue.

    Science.gov (United States)

    Dodds, David R

    2017-06-15

    The history of the first commercial antibiotics is briefly reviewed, together with data from the US and WHO, showing the decrease in death due to infectious diseases over the 20th century, from just under half of all deaths, to less than 10%. The second half of the 20th century saw the new use of antibiotics as growth promoters for food animals in the human diet, and the end of the 20th century and beginning of the 21st saw the beginning and rapid rise of advanced microbial resistance to antibiotics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming;

    2016-01-01

    are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated......This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...

  20. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick

    2011-01-01

    A short series of alkyl substituted perylenediimides (PDIs) with varying steric bulk are used to demonstrate the relationship between molecular structure, materials properties, and performance characteristics in organic photovoltaics. Devices were made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC\\'s) despite the donor acceptor interface gap (Δ EDA) remaining unchanged. Additionally, series resistance was increased simultaneously with VOC the effect of reducing short circuit current, making the addition of steric bulk a tradeoff that needs to be balanced to optimize power conversion efficiency. © 2011 American Institute of Physics.

  1. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  2. An Identification Method of Magnetizing Inrush Current Phenomena by Voltage Waveform

    Science.gov (United States)

    Naitoh, Tadashi; Takeda, Keiki; Toyama, Atsushi; Maeda, Tatsuhiko

    In this paper, the authors propose a new identification method of the magnetizing inrush current phenomena. In general, the identification is done using with current waveform. However, the saturation of current transformer can't give waveform. Therefore, the authors introduce the identification method using with voltage waveform, in which the saturation of voltage transformer doesn't happen. And then, applying the Aitken's Δ2-process, it is showed that the new identification method gives the exact saturation on/off time.

  3. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells.

    Science.gov (United States)

    Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve

    2015-04-24

    This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.

  4. Development of Fiber Optically Driven Instrument for High-voltage Line Current

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.

  5. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...

  6. A high-speed CMOS current op amp for very low supply voltage operation

    DEFF Research Database (Denmark)

    Bruun, Erik

    1994-01-01

    A CMOS implementation of a high-gain current mode operational amplifier (op amp) with a single-ended input and a differential output is described. This configuration is the current mode counterpart of the traditional voltage mode op amp. In order to exploit the inherent potential for high speed......, low voltage operation normally associated with current mode analog signal processing, the op amp has been designed to operate off a supply voltage of 1.5 V, and the signal path has been confined to N-channel transistors. With this design, a gain of 94 dB and a gain-bandwidth product of 65 MHz has been...

  7. Closed-form expression for the current/ voltage characteristics of pin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Taretto, K.; Rau, U.; Werner, J.H. [Institut fuer Physikalische Elektronik, Pfaffenwaldring 47, 70569, Stuttgart (Germany)

    2003-12-01

    A closed-form expression for the current-voltage relationship of pin diodes and pin solar cells is obtained. The model considers drift and diffusion currents, and assumes a uniform electric field in the intrinsic layer, equal diffusion lengths for electrons and holes and a homogeneous generation rate. We show that both drift and diffusion currents must be taken into account to describe the current over a wide range of applied voltage. The inclusion of both transport mechanisms results in diode ideality factors between 1.8 at low, and 1.2 at high applied voltages. Comparisons of current/voltage characteristics and solar cell output parameters obtained from our model with experimental data of thin-film silicon solar cells show that our model accurately explains the output characteristics of pin solar cells. (orig.)

  8. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    Directory of Open Access Journals (Sweden)

    Jairo Blanco

    2011-07-01

    Full Text Available This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the effects on disturbance magnitude and phase. The study shows that the influence of an induction motor on voltage sag propagation results in increased voltage sag severity. Voltage sags caused by induction motor starting and transformer energising have no zero-sequence component, so they are only affected by type 3 transformers. The influence of fault resistance on voltage sag magnitude and phase characteristics is examined and some aspects of interest in characterising these electromagnetic disturbances is identified.

  9. Equivalent Resistance in Pulse Electric Current Sintering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sintering resistance for conductive TiB2 and non-conductive Al2O3 as well as empty die during pulse current sintering were investigated in this paper.Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions.It is found that the current paths for conductive are different from those for non-conductive materials.For non-conductive materials,sintering resistances are influenced by powder sizes and heating rates,which indicates that pulse current has some interaction with non-conductive powders.For conductive TiB2,sintering resistances are influenced by heating rates and ball-milling time,which indicates the effect of powders activated by spark.

  10. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  11. Profiles for voltage-activated currents are multiphasic, not curvilinear

    CERN Document Server

    Nissen, Per

    2016-01-01

    Data for voltage-activation of a potassium channel (Matulef et al. Proc Natl Acad Sci USA 110: 17886-17891. 2013) were, as conventionally done, fitted by the authors by a Boltzmann function, i.e. by a curvilinear profile. Reanalysis of the data reveals however that this interpretation must be rejected in favor of a multiphasic profile, a series of straight lines separated by discontinuous transitions, quite often in the form of noncontiguities (jumps). In contrast to the generally very poor fits to the Boltzmann profiles, the fits to multiphasic profiles are very good. (For the four replicates, the average deviations from the Boltzmann curves were 10- to 100-fold larger than the deviations from the multiphasic profiles.) The difference in the median values was statistically highly significant, P<0.001 in most cases. For the mean values the deviations from the Boltzmann curve were 20-fold larger than the deviations from the multiphasic profile, and the difference in the median values was also highly signifi...

  12. Proton currents constrain structural models of voltage sensor activation

    Science.gov (United States)

    Randolph, Aaron L; Mokrab, Younes; Bennett, Ashley L; Sansom, Mark SP; Ramsey, Ian Scott

    2016-01-01

    The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic ‘aqueous’ H+ conductance (GAQ). Mutation of a highly conserved ‘gating charge’ residue in the S4 helix (R1H) confers a resting-state H+ ‘shuttle’ conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1. DOI: http://dx.doi.org/10.7554/eLife.18017.001 PMID:27572256

  13. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching

    Science.gov (United States)

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-01

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoOx layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoOx interface by the accumulation and depletion of oxygen vacancies.

  14. An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication with DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai;

    2014-01-01

    resistance in a droop-controlled dc microgrid, since the output voltage of each converter cannot be exactly the same, the output current sharing accuracy is degraded. Second, the DC bus voltage deviation increases with the load due to the droop action. In this paper, in order to improve the performance......, and the LBC system is only used for changing the values of the dc voltage and current. Hence, a decentralized control scheme is accomplished. The simulation test based on Matlab/Simulink and the experimental validation based on a 2×2.2 kW prototype were implemented to demonstrate the proposed approach....

  15. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Science.gov (United States)

    Halpern, Mark

    2011-01-01

    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  16. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...... current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu...

  17. Mitigation of Voltage and Current Harmonics in Grid-Connected Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza;

    2012-01-01

    In this paper, a control approach is proposed for selective compensation of main voltage and current harmonics in grid-connected microgrids. Two modes of compensation are considered, i.e. voltage and current compensation modes. In the case that sensitive loads are connected to the point of common...... impedance loop. Virtual impedance is considered at fundamental frequency to enhance power control and also at harmonic frequencies to improve the nonlinear load sharing among DGs. Simulation results are presented to demonstrate the effectiveness of the proposed method....... coupling (PCC), voltage compensation mode is activated in order to provide a high voltage quality at PCC. Otherwise, grid current harmonics are mitigated (current compensation mode) in order to avoid excessive harmonic supply by the grid. In both modes, harmonic compensation is achieved through proper...

  18. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    National Research Council Canada - National Science Library

    N Hatefi Kargan

    2013-01-01

    In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation...

  19. Effect of welding current and voltage on the mechanical properties of wrought (6063 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Oladele Isiaka Oluwole

    2010-06-01

    Full Text Available This work was carried out to investigate the effect of welded joints on the mechanical properties of wrought (6063 aluminium alloy. The study revealed the influence of current and voltage on the welded joint as well as the mechanical properties of the alloy. The alloy samples were welded together by metal inert gas welding process at varying values of current and voltage after which mechanical tests were performed on the welded samples. The microstructural examination of the various fusion zones obtained was carried out. Appreciable variations in the properties of the welded samples were observed due to changes in the microstructural features of the alloys. It was concluded that variation of current and voltage remarkably affect the mechanical properties of the wrought 6063 Aluminium alloy. As the voltage increases from 25 to 30 V, the ultimate tensile strengths and hardness values increases while the impact strengths decreases but the current did not show such trend.

  20. Mitigation of Grid Current Distortion for LCL-Filtered Voltage Source Inverter with Inverter Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2017-01-01

    LCL filters feature low inductance; thus, the injected grid current from an LCL-filtered Voltage Source Inverter (VSI) can be easily distorted by grid voltage harmonics. This problem is especially tough for the control system with Inverter-side Current Feedback (ICF), since the grid current...... cause noise amplification. In light of the above issue, this paper develops a simple method for the ICF control system to mitigate the grid current harmonics without extra sensors. In the proposed method, resonant harmonic controllers and an additional compensation loop are adopted at the same time...

  1. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons.

    Science.gov (United States)

    O'Dowd, D K; Ribera, A B; Spitzer, N C

    1988-03-01

    Action potentials of embryonic nerve and muscle cells often have a different ionic dependence and longer duration than those of mature cells. The action potential of spinal cord neurons from Xenopus laevis exhibits a prominent calcium component at early stages of development that diminishes with age as the impulse becomes principally sodium dependent. Whole-cell voltage-clamp analysis has been undertaken to characterize the changes in membrane currents during development of these neurons in culture. Four voltage-dependent currents of cells were identified and examined during the first day in vitro, when most of the change in the action potential occurs. There are no changes in the peak density of the calcium current (ICa), its voltage dependence, or time to half-maximal activation; a small increase in inactivation is apparent. The major change in sodium current (INa) is a 2-fold increase in its density. In addition, more subtle changes in the kinetics of the macroscopic sodium current were noted. The peak density of voltage-dependent potassium current (IKv) increases 3-fold, and this current becomes activated almost twice as fast. No changes were noted in the extent of its inactivation. The calcium-dependent potassium current (IKc) consists of an inactivating and a sustained component. The former increases 2-fold in peak current density, and the latter increases similarly at less depolarized voltages. The changes in these currents contribute to the decrease in duration and the change in ionic dependence of the impulse.

  2. Realization of Nth-Order Voltage Transfer Function using Current Conveyors CCII

    Directory of Open Access Journals (Sweden)

    K. Vrba

    1997-06-01

    Full Text Available A universal method for the realization of arbitrary voltage transfer function in canonic form is presented. A voltage-controlled current-source using a plus-type second-generation current conveyor is here applied as the basic building element. Filters designed according to this method have a high input impedance and low sensitivity to variations of circuit parameters. All passive elements are grounded.

  3. Extracellular stimulation of nerve cells with electric current spikes induced by voltage steps

    OpenAIRE

    2016-01-01

    A new stimulation paradigm is presented for the stimulation of nerve cells by extracellular electric currents. In the new paradigm stimulation is achieved with the current spike induced by a voltage step whenever the voltage step is applied to a live biological tissue. By experimental evidence and theoretical arguments, it is shown that this spike is well suited for the stimulation of nerve cells. Stimulation of the human tongue is used for proof of principle. Charge injection thresholds are ...

  4. Effects of Direct Torque Control Switching Strategies on Common Voltage and Bearing Current

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Sadeghzadeh

    2012-04-01

    Full Text Available Bearing current sininduction motorsare considered a sone of the most damaging factors. Induced shaft voltage through the parasitic capacitors cause this type of current. Inthispaper,given the increasing importance of direct torque control of induction motorin industry, various switching tables are assessed in order to ensure the lowest common voltage while maintaining the performance characteristics of the drive. Finally best switching table based on the minimum CMV, less torque rippleand better quality out put reference tracking is proposed.

  5. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    current. In practice , SC bank voltage dropped as low as approximately 5.0 V before the BBC entered DCM and data became invalid. 44 B. LABORATORY...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) For an Energy Management System (EMS)-controlled microgrid that... bank as the only DC energy storage device, the DC link voltage ripple causes a second-order harmonic ripple in battery current that leads to a

  6. Electrode fall voltage of arc between deion plates during direct-current interruption period

    Science.gov (United States)

    Yokomizu, Y.; Ueda, Y.; Matsumura, T.; Ichikawa, T.; Niwa, Y.; Sakaguchi, W.

    2017-07-01

    A direct-current low-voltage circuit breaker has an arc chute that consists of a stack of several metallic deion plates. The deion plate is also called a splitter plate. The function of the deion plates is to split the arc into several series short-gap arcs. This phenomenon leads to the emergence of electrode fall voltages in the arc chute, eventually contributing to rise in the total arc-voltage in the circuit breaker and to successful current-interruption. The electrode fall voltage therefore plays an important role for successful current-interruption. The present paper describes the estimation result for the electrode fall voltage {{v}\\text{ele}} of the arc between steel deion plates. The estimation is performed by using a newly devised method. This method utilizes the voltage {{v}\\text{chute}} measured across the arc chute and eventually derives {{v}\\text{ele}} on the basis of the statistics: a correlation coefficient between an arc-column electric-field strength {{E}\\text{col}} and an arc current i. Adopting the devised method enabled us to derive 19 V as {{v}\\text{ele}} . Verification is furthermore made to show the validity of the determined electrode-fall voltage, 19 V.

  7. Pickup impact on high-voltage multifinger LDMOS-SCR with low trigger voltage and high failure current

    Science.gov (United States)

    Yang, Liu; Jin, Xiangliang; Wang, Yang; Zhou, Acheng

    2015-12-01

    The impact of inserting P+ pickup on high-voltage multi-finger laterally diffused metal-oxide-semiconductor-silicon-controlled rectifier (LDMOS-SCR) has been studied in this article. Four-finger LDMOS-SCR structures with finger length of 50 μm using 0.5 μm 18 V complementarily diffused metal oxide semiconductor (CDMOS) process were fabricated and tested. Theoretical analysis is carried out to make detailed comparisons between LDMOS-SCR with and without P+ pickup. It verifies that the multi-finger LDMOS-SCR with P+ pickup has greater electrostatic discharge (ESD) robustness and effectiveness. Furthermore, transmission line pulse (TLP) test has been done and the results show that the trigger voltage (Vt1) of the LDMOS-SCR with P+ pickup remarkably decreases from 46.19 to 35.39 V and the second breakdown current (It2) effectively increases from 8.13 to 10.08 A.

  8. High temperature behavior of multi-region direct current current-voltage spectroscopy and relationship with shallow-trench-isolation-based high-voltage laterally diffused metal-oxide-semiconductor field-effect-transistors reliability

    Science.gov (United States)

    He, Yandong; Zhang, Ganggang; Zhang, Xing

    2014-01-01

    With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.

  9. The Applications of Current Comparators in the Measurements on High Voltage Insulation

    Directory of Open Access Journals (Sweden)

    Fei Yi-jun

    2016-01-01

    Full Text Available This paper describes the basic structure of the current comparator used for high voltage insulation measurements. Further applications for the current comparator in high voltage insulation are investigated and developed. A measuring system for the measurement of harmonics in the loss current of water tree aged insulation is described, as well as the principles to measure partial discharges with the current comparator bridge. A new system for the measurement of the DC component in the leakage current of insulation is de1veloped and presented. The results of experiments on XLPE cable insulation are also given.

  10. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  11. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  12. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  13. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  14. 一体化电子式电流电压互感器研究%Combined Digital Electronic Current and Voltage Transducer

    Institute of Scientific and Technical Information of China (English)

    段雄英; 邹积岩; 廖敏夫; 张可卫

    2002-01-01

    A high-performance current and voltage measurement system has been developed in power system. The system is composed of two parts: one current measurement element and one voltage measurement element. A Rogowski coil and a capacitive voltage divider are used respectively for the line current and voltage measurements. Active electronic components are used to modulate signal, and power supply for these components is drawn from power line via an auxiliary current transformer. Measurement signal is transmitted by optical fibers, which is resistant to electromagnetic induction and noise. With careful design and the use of digital signal processing technology, the whole system can meet 0.5% accuracy for metering and provides large dynamic range coupled with good accuracy for protective relaying use.

  15. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Science.gov (United States)

    Mathur, Vinay; Tanger, Ramesh; Gupta, Arun Kumar

    2016-01-01

    Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation. PMID:27170922

  16. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Directory of Open Access Journals (Sweden)

    Aditya Pratap Singh

    2016-04-01

    Full Text Available Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation.

  17. Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation

    NARCIS (Netherlands)

    Krol, J.J.; Wessling, M.; Strathmann, H.

    1999-01-01

    Concentration polarization is studied using a commercial anion and cation exchange membrane. Current¿voltage curves show the occurrence of an overlimiting current. The nature of this overlimiting current is investigated in more detail, especially with respect to the contribution of water dissociatio

  18. Improved control strategy for PI-R current of DFIG considering voltage and current harmonics compensation

    Science.gov (United States)

    Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.

    2016-08-01

    With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.

  19. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  20. Current-Voltage Characteristics of Molecular Devices at Low Bias

    Institute of Scientific and Technical Information of China (English)

    LIAO Yun-Xing; CHEN Hao; R.Note; H.Mizuseki; Y.Kawazoe

    2004-01-01

    We use density functional theory and the Green function formalism with charge energy effect included in the self-consistent calculation of the Ⅰ- Ⅴ characteristics of a single benzene ring with an appendage of cf3, and identify some interesting properties of the Ⅰ-Ⅴ characteristics at low bias. The molecule picks up a fractional charge at zero bias, then the additional fractional charge produces a barrier on the junction of the molecule and contacts to perturb current flow on the molecule. This phenomenon may be useful for the design of future molecular devices.

  1. Effect of spontaneous polarization change on current-voltage characteristics of thin ferroelectric films

    Science.gov (United States)

    Podgorny, Yu. V.; Lavrov, P. P.; Vorotilov, K. A.; Sigov, A. S.

    2015-03-01

    The role of a change in the spontaneous polarization charge in the formation of negative differential conductance regions of the current-voltage characteristics of thin ferroelectric films has been determined. It has been shown that the polarization recovery current, which appears due to partial depolarization of a preliminarily polarized film, prevails over the intrinsic leakage current of the ferroelectric film in the coercive field region and corresponds to the Weibull distribution. The influence of polarization recovery current decreases with decreasing voltage sweep rate.

  2. Comparison of resonant current regulators for DFIG during grid voltage distortion

    Institute of Scientific and Technical Information of China (English)

    Yi-peng SONG; Heng NIAN

    2013-01-01

    We investigate two different kinds of resonant current regulators for a doubly fed induction generator (DFIG) under distorted grid voltage conditions:proportional integral resonant (PIR) regulator with traditional resonant part and vector propor-tional integral (VPI) regulator with VPI resonant part. Based on the mathematical model of DFIG under distorted grid voltage, the transfer function and frequency response characteristics of the two current regulators are analyzed and compared. The superiority of the VPI current regulator over the PIR regulator is pointed out, and the influence of discretization methods on the performance of the resonant current regulator is studied. All the results are validated by MATLAB simulation and experiments.

  3. Power lateral pnp transistor operating with high current density in irradiated voltage regulator

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2013-01-01

    Full Text Available The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.

  4. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  5. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance...

  6. A micro-power LDO with piecewise voltage foldback current limit protection

    Institute of Scientific and Technical Information of China (English)

    Wei Hailong; Liu Youbao; Guo Zhongjie; Liao Xue

    2012-01-01

    To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA.To increase the loop stability of the proposed LDO,a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole,and a zero is designed for the purpose of the second pole phase compensation.The proposed LDO is fabricated in a BiCMOS process.The measurement results show that the short-circuit current of the LDO is 190 mA,the constant limit current under a high drop-out voltage is 440 mA,and the maximum load current under a low drop-out voltage is up to 800 mA.In addition,the quiescent current of the LDO is only 7 μA,the load regulation is about 0.56% on full scale,the line regulation is about 0.012%/V,the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA.

  7. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  8. A dulal-functional medium voltage level DVR to limit downstream fault currents

    DEFF Research Database (Denmark)

    Li, Yun Wei; Vilathgamuwa, D. Mahinda; Loh, Poh Chiang

    2007-01-01

    , the DVR will therefore be tasked to mitigate even more faults involving downstream loads. Large fault currents would flow through the DVR during a downstream fault before the opening of a circuit breaker. This will cause the voltage at point of common coupling (PCC) to drop, which would affect the loads...... on the other parallel feeders connected to PCC. Furthermore, if not controlled properly, the DVR might also contribute to this PCC voltage sag in the process of compensating the missing voltage, thus further worsening the fault situation. To limit the flow of large line currents, and therefore restore the PCC...... voltage as well as protect the DVR system components, a downstream fault limiting function is proposed and integrated in the DVR operation. A flux-charge-model feedback algorithm is implemented so that the DVR would act as a large virtual inductance in series with the distribution feeder in fault...

  9. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  10. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    Science.gov (United States)

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology.

  11. Characterization of voltage-gated ionic currents in a peripheral sensory neuron in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Bate Michael

    2010-06-01

    Full Text Available Abstract Background The development, morphology and genetics of sensory neurons have been extensively studied in Drosophila. Sensory neurons in the body wall of larval Drosophila in particular have been the subject of numerous anatomical studies, however, little is known about the intrinsic electrical properties of larval sensory cells. Findings We performed whole cell patch recordings from an identified peripheral sensory cell, the dorsal bipolar sensory neuron (dbd and measured voltage-gated ionic currents in 1st instar larvae. Voltage clamp analysis revealed that dbds have a TEA sensitive, non-inactivating IK type potassium current as well as a 4-AP sensitive, inactivating IA type potassium current. dbds also show a voltage-gated calcium current (ICa and a voltage-gated sodium current (INa. Conclusions This work provides a first characterization of voltage-activated ionic currents in an identified body-wall sensory neuron in larval Drosophila. Overall, we establish baseline physiology data for future studies aimed at understanding the ionic and genetic basis of sensory neuron function in fruit flies and other model organisms.

  12. Mitigation of the impact of transformer inrush current on voltage sag by TCSC

    Energy Technology Data Exchange (ETDEWEB)

    Khederzadeh, Mojtaba [Department of Electrical Engineering, Power and Water University of Technology, Tehran (Iran)

    2010-09-15

    Thyristor Controlled Series Capacitor (TCSC) as a dynamic system, besides its capability in increasing power transfer in transmission lines, can be used to enhance different power system issues. In this paper, the effect of TCSC on voltage sag following transformer inrush current is investigated. It is shown that excessive transient inrush current occurring during transformer energizing can be mitigated by TCSC. Hence, voltage sag as one of the key components of the power quality is alleviated for the sensitive loads that are connected to the same bus which the power transformer is energized from. During a fault, TCSC can improve the voltage sag by limiting the current and help to keep the voltage as high as possible. Moreover, the inrush currents and the associated voltage sags that usually occur after clearing heavy single- or multistage faults are mitigated by the presence of TCSC. The model used for simulating inrush current is based on the characteristics of the major hysteresis loop out of which the internal trajectories are defined using the translation principal and a linear compensation to generate closed loops. An arctangent relation between the flux and the exciting current is defined. The expression parameters are deduced by curve fitting empirical data defining the major loop or the single-valued saturation characteristic. (author)

  13. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    OpenAIRE

    2016-01-01

    A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ) organic solar cells is developed by considering Shockley-Read-Hall (SRH) recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (...

  14. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  15. Calculation Model for Current-voltage Relation of Silicon Quantum-dots-based Nano-memory

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-guan; DAI Da-kang; YU Biao; SHANG Lin-lin; GUO You-hong

    2007-01-01

    Based on the capacitive coupling formalism, an analytic model for calculating the drain currents of the quantum-dots floating-gate memory cell is proposed. Using this model, one can calculate numerically the drain currents of linear, saturation and subthreshold regions of the device with/without charges stored on the floating dots. The read operation process of an n-channel Si quantum-dots floating-gate nano-memory cell is discussed after calculating the drain currents versus the drain to source voltages and control gate voltages in both high and low threshold states respectively.

  16. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.;

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  17. Active power filter for medium voltage networks with predictive current control

    Energy Technology Data Exchange (ETDEWEB)

    Verne, Santiago A.; Valla, Maria I. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata and CONICET, La Plata (Argentina)

    2010-12-15

    A transformer less Shunt Active Power Filter (SAPF) for medium voltage distribution networks based on Multilevel Diode Clamped Inverter is presented in this paper. Converter current control is based on a Model Predictive strategy, which gives very fast current response. Also, the algorithm includes voltage balancing capability which is essential for proper converter operation. The presented current control algorithm is naturally applicable to converters with an arbitrary number of levels with reduced computational effort by virtue of the incorporation of switching restrictions which are necessary for reliable converter operation. The performance of the proposed algorithm is evaluated by means of computer simulations. (author)

  18. A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector

    Science.gov (United States)

    Wei, Liu; Tingcun, Wei; Bo, Li; Lifeng, Yang; Yongcai, Hu

    2016-01-01

    An on-chip reference voltage has been designed in capacitor-resister hybrid SAR ADC for CZT detector with the TSMC 0.35 μm 2P4M CMOS process. The voltage reference has a dynamic load since using variable capacitors and resistances, which need a large driving ability to deal with the current related to the time and sampling rate. Most of the previous articles about the reference for ADC present only the bandgap part for a low temperature coefficient and high PSRR. However, it is not enough and overall, it needs to consider the output driving ability. The proposed voltage reference is realized by the band-gap reference, voltage generator and output buffer. Apart from a low temperature coefficient and high PSRR, it has the features of a large driving ability and low power consumption. What is more, for CZT detectors application in space, a radiation-hardened design has been considered. The measurement results show that the output reference voltage of the buffer is 4.096 V. When the temperature varied from 0 to 80 °C, the temperature coefficient is 12.2 ppm/°C. The PSRR was -70 dB @ 100 kHz. The drive current of the reference can reach up to 10 mA. The area of the voltage reference in the SAR ADC chip is only 449 × 614 μm2. The total power consumption is only 1.092 mW. Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (No. 61376034), and the Shaanxi Province Science and Technology Innovation Project (No. 2015KTZDGY03-03).

  19. Current Understandings of Plant Nonhost Resistance.

    Science.gov (United States)

    Lee, Hyun-Ah; Lee, Hye-Young; Seo, Eunyoung; Lee, Joohyun; Kim, Saet-Byul; Oh, Soohyun; Choi, Eunbi; Choi, Eunhye; Lee, So Eui; Choi, Doil

    2017-01-01

    Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  20. REACTIVE CURRENT OF AN INDUCTION ELECTRIC DRIVES WITH THYRISTOR VOLTAGE REGULATOR

    Directory of Open Access Journals (Sweden)

    J.V. Kovalova

    2014-12-01

    Full Text Available A model for a separation of reactive constituent from current of idling of an induction motor at its feed from a thyristor voltage regulator in the dependences on the control angle of thyristors is developed. As a result of modeling, dependence of relative reactive current which is approximated by formula for calculation of effective current of reactive constituent of nonsinusoidal current is obtained.

  1. Current-voltage characteristics of Pb and Sn granular superconducting nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    Current-voltage characteristics of Pb and Sn granular superconducting nanowires were investigated. The nanowires were prepared by electrodeposition in nanoporous membranes. It was observed that phase-slip-centers were formed far below the critical temperature when dc current was introduced inside...

  2. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  3. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is got.

  4. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...

  5. An Embedded Voltage Harmonic Compensation Strategy for Current Controlled DG Interfacing Converters

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    Harmonics have been considered as one of the major issues in future power grids. With the increasing demand in advanced control functions, power electronic converter interfaced Distributed Generators (DGs) are expected to perform harmonic compensation when necessary. It has been demonstrated in a...... voltage detection; 3) compared with conventional voltage detection based method, it offers better performance because of direct harmonic voltage regulation. Experimental results are presented to demonstrate the effectiveness of the method....... in a number of studies that DG converters operating in Voltage-Controlled Mode (VCM) can be easily configured to realize voltage harmonic suppression utilizing naturally embedded voltage control loop. While for DG converters operating in Current-Controlled Mode (CCM), such function was rarely studied....... Considering that CCM is commonly used in renewable energy based generators and energy storage systems, it has certain significance to achieve the same function with CCM operated converters. Aiming at such objective, this paper proposes a voltage detection based embedded Harmonic Compensator (HC) for CCM...

  6. LED Current Balance Using a Variable Voltage Regulator with Low Dropout vDS Control

    Directory of Open Access Journals (Sweden)

    Hung-I Hsieh

    2017-02-01

    Full Text Available A cost-effective light-emitting diode (LED current balance strategy using a variable voltage regulator (VVR with low dropout vDS control is proposed. This can regulate the multiple metal-oxide-semiconductor field-effect transistors (MOSFETs of the linear current regulators (LCR, maintaining low dropout vDS on the flat vGS-characteristic curves and making all drain currents almost the same. Simple group LCRs respectively loaded with a string LED are employed to implement the theme. The voltage VVdc from a VVR is synthesized by a string LED voltage NvD, source voltage vR, and a specified low dropout vDS = VQ. The VVdc updates instantly, through the control loop of the master LCR, which means that all slave MOSFETs have almost the same biases on their flat vGS-characteristic curves. This leads to all of the string LED currents being equal to each other, producing an almost even luminance. An experimental setup with microchip control is built to verify the estimations. Experimental results show that the luminance of all of the string LEDs are almost equal to one another, with a maximum deviation below 1% during a wide dimming range, while keeping all vDS of the MOSFETs at a low dropout voltage, as expected.

  7. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-01-01

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132

  8. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  9. Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2012-06-01

    Full Text Available The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 µW. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 µm TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit.

  10. A sensorless control method for capacitor voltage balance and circulating current suppression of modular multilevel converter

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    There are several problems in the Modular Multilevel Converter (MMC), such as the appearance of circulating current, capacitor voltage unbalance and the requirement for a high number of sensors. All these problems will decrease the reliability and raise the cost/uncertainty of using MMC solutions....... As a result, a sensorless control method is proposed in this paper, which targets to improve the performances of MMC in respect to the above mentioned disadvantages: To decrease the cost and simplify the physical implementation, a state observer is proposed and designed to estimate both the capacitor voltages...... and the circulating currents in order to replace the high numbers of sensors. Furthermore, a control method combining the circulating current suppression and the capacitor voltage balancing is conducted based on the proposed state observer. It is concluded that the proposed state observer and control method can...

  11. High impulse voltage and current measurement techniques fundamentals, measuring instruments, measuring methods

    CERN Document Server

    Schon, Klaus

    2013-01-01

    Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The book deals with: principal generator circuits for generating high-voltage and high-current impulses measuring systems and their calibration according to IEC 60060 and IEC 62475 methods of estimating uncertainties of measurement mathematical and experimental basis for characterizing the transfer behavior of spatially extended systems used for measuring fast transients. This book is intended for engineers and ...

  12. Measurement system for determination of current-voltage characteristics of PV modules

    Science.gov (United States)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  13. NONLINEAR CURRENT-VOLTAGE CHARACTERISTICS OF CONDUCTIVE POLYETHYLENE COMPOSITES WITH CARBON BLACK FILLED PET MICROFIBRILS

    Institute of Scientific and Technical Information of China (English)

    Qian-ying Chen; Jing Gao; Kun Dai; Huan Pang; Jia-zhuang Xu; Jian-hua Tang; Zhong-ming Li

    2013-01-01

    Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate)(PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field.The current-voltage (Ⅰ-Ⅴ) curves exhibited nonlinearity beyond a critical value of voltage.The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites.Macroscopic nonlinearity originated from the interracial interactions between CB/PET micro fibrils and additional conduction channels.Combined with the special conductive networks,an illustration was proposed to interpret the nonlinear Ⅰ-Ⅴ characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.

  14. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices

    Science.gov (United States)

    Barker, J. A.; Ramsdale, C. M.; Greenham, N. C.

    2003-02-01

    We have developed a numerical model to predict the current-voltage curves of bilayer conjugated polymer photovoltaic devices. The model accounts for charge photogeneration, injection, drift, diffusion, and recombination, and includes the effect of space charge on the electric field within the device. Charge separation at the polymer-polymer interface leads to the formation of bound polaron pairs which may either recombine monomolecularly or be dissociated into free charges, and we develop expressions for the field dependence of the dissociation rate. We find that the short-circuit quantum efficiency is determined by the competition between polaron pair dissociation and recombination. The model shows a logarithmic dependence of the open-circuit voltage on the incident intensity, as seen experimentally. This additional intensity-dependent voltage arises from the field required to produce a drift current that balances the current due to diffusion of carriers away from the interface.

  15. The Current-voltage Characteristics Simulation of the Betavoltaic Power Supply

    Directory of Open Access Journals (Sweden)

    S.U. Urchuk

    2015-12-01

    Full Text Available In order to optimize betavoltaic power supply it was calculated the current-voltage characteristics when changing the depth of the upper p-layer and at changing doping levels structure areas. It is shown that an increase in the depth reduces the short-circuit current and thus reduces the open circuit voltage. It has been observed that the concentration of the lightly doped region more significantly influence on the current-voltage characteristics than the depth of the p-n-junction. The concentration of the n-region, equal to 1014 cm – 3, can be considered as during betavoltaic power supply design. It is shown that, by increasing the power supply activity the conversion efficiency of the structure increases, too.

  16. Master Equation Approach to Current-Voltage Characteristics of Solar Cells

    Science.gov (United States)

    Oh, Sangchul; Zhang, Yiteng; Alharbi, Fahhad; Kais, Sabre

    2015-03-01

    The current-voltage characteristics of solar cells is obtained using quantum master equations for electrons, holes, and excitons, in which generation, recombination, and transport processes are taken into account. As a first example, we simulate a photocell with a molecular aggregate donor to investigate whether a delocalized quantum state could enhance the efficiency. As a second example, we calculate the current-voltage characteristics of conventional p-n junction solar cells and perovskite solar cells using the master equation. The connection between the drift-diffusion model and the master equation method is established. The short-circuit current and the open-circuit voltage are calculated numerically as a function of the intensity of the sunlight and material properties such as energy gaps, diffusion constants, etc.

  17. Combination of Reactive Current Droop Compensation and Line Drop Compensation for Improving Voltage Stability

    Institute of Scientific and Technical Information of China (English)

    TIAN Qing; LIN Xiang-ning

    2009-01-01

    Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability by using a combination of both reactive current droop compensation and line drop compensation.It is shown that the point that the voltage regulator controls can be defined by a new method which is based on a widely accepted vohage stability analysis tool.This tool can be used to determine which generators will have an impact on the maximum permissible loading of a bus.Dynamic analysis was carried out on the CIGRE Nordic test system to study the impact of control point location on time to collapse and it is shown that the new scheme can improve the voltage stability.

  18. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current-voltage characteristics

    Science.gov (United States)

    Chauhan, A. K.; Aswal, D. K.; Koiry, S. P.; Gupta, S. K.; Yakhmi, J. V.; Sürgers, C.; Guerin, D.; Lenfant, S.; Vuillaume, D.

    2008-03-01

    We report the deposition of 3-aminopropyltrimethoxysilane (APTMS) multilayers on SiOx/Si(p++) substrates by a layer-by-layer self-assembly process. The multilayers were grafted in a glove box having nitrogen ambient with both humidity and oxygen contents water contact angle, ellipsometry, X-rayphotoelectron spectroscopy and atomic force microscope measurements revealed that self-assembling of the multilayers takes place in two distinct stages: (i) the first APTMS monolayer chemisorbs on a hydroxylated oxide surface by a silanization process and, (ii) the surface amino group of the first monolayer chemisorbs the hydrolyzed silane group of other APTMS molecules present in the solution, leading to the formation of a bilayer. The second stage is a self-replicating process that results in the layer-by-layer self-assembly of the multilayers with trapped NH3 + ions. The current-voltage characteristics of the multilayers exhibit a hysteresis effect along with a negative differential resistance, suggesting their potential application in the molecular memory devices. A possible mechanism for the observed hysteresis effect based on filling and de-filling of the NH3 + acting as traps is presented.

  19. First-Principles Electronic Structure Studies of the Current-Voltage Characteristics of Molecular Nanostructures

    Science.gov (United States)

    Pati, Ranjit; Karna, Shashi P.

    2001-03-01

    Recent advancements in the experimental measurement of conductance across a single molecule(M. A. Reed et al, Science, 278) , 252 (1997). have generated great deal of interest in the feasibility of molecular electronic devices. A successful realization of molecule based electronic devices rests on a detailed understanding of the physical principles underlying controlled transport of electron/hole across molecular units. In order to develop such a fundamental understanding, we have investigated current-voltage characteristics of metal atom (Ag, Au) substituted 1,4-dithiobenzene within Green's function approach according to Datta and coworkers( W. Tian et al, J. Chem. Phys., 109), 2874 (1998).. Ab initio Hamiltonian matrix elements are used to construct the Green's function. The calculated conductance spectrum for the molecule with S bonded to Au atoms qualitatively agrees with the experiment^1. However, large quantitative difference between the calculated and measured conductance is noted. The Au and Ag bonded 1,4-dithiobenzene molecules exhibit marked difference in their resistance and conductance spectra. The conductance of the Ag-bonded molecule is calculated to be about 1.5 times larger than that bonded with Au.

  20. A Modified Time-Delay Addition Method to Extract Resistive Leakage Current of MOSA

    Science.gov (United States)

    Khodsuz, Masume; Mirzaie, Mohammad

    2016-12-01

    Metal oxide surge arresters are one of the most important equipment for power system protection against switching and lightning over-voltages. High-energy stresses and environmental features are the main factors which degrade surge arresters. In order to verify surge arresters good condition, their monitoring is necessary. The majority of surge arrester monitoring techniques is based on total leakage current decomposition of their capacitive and resistive components. This paper introduces a new approach based on time-delay addition method to extract the resistive current from the total leakage current without measuring voltage signal. Surge arrester model for calculating leakage current has been performed in ATP-EMTP. In addition, the signal processing has been done using MATLAB software. To show the accuracy of the proposed method, experimental tests have been performed to extract resistive leakage current by the proposed method.

  1. Modeling And Simulation of Speed and flux Estimator Based on Current & voltage Model

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Jain

    2011-10-01

    Full Text Available This paper introduce a estimator based on and current & voltage model used in induction motor (IM drive. The rotor speed estimation is based on the model reference adaptive system (MRAS approach. The closed loop control mechanism is based on the voltage and current model. The control and estimation algorithms utilize the synchronous coordinates as a frame of reference. A speed sensor less induction motor (IM drive with Robust control characteristics is introduced. First, a speed observation system, which is insensitive to the variations of motor parameters.

  2. Simulation and investigation of SiPM’s leakage currents at low voltages

    Science.gov (United States)

    Parygin, P. P.; Popova, E. V.; Grachev, V. M.

    2017-01-01

    Technology Computer-Aided Design (TCAD) allows us to use computers in order to develop semiconductor processing technologies and devices and optimize them. Within a framework of a study of silicon photomultipliers (SiPM) a simulation of these devices has been made. The simulation was performed for the irradiated SiPMs and current-voltage characteristics were obtained for the modeled devices. Investigation of current-voltage curve below breakdown with regard to the simulated structure was performed. Obtained curves are presented.

  3. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    Science.gov (United States)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  4. On Calculating the Current-Voltage Characteristic of Multi-Diode Models for Organic Solar Cells

    CERN Document Server

    Roberts, Ken

    2016-01-01

    We provide an alternative formulation of the exact calculation of the current-voltage characteristic of solar cells which have been modeled with a lumped parameters equivalent circuit with one or two diodes. Such models, for instance, are suitable for describing organic solar cells whose current-voltage characteristic curve has an inflection point, also known as an S-shaped anomaly. Our formulation avoids the risk of numerical overflow in the calculation. It is suitable for implementation in Fortran, C or on micro-controllers.

  5. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    Science.gov (United States)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  6. Proportional integral plus multi-frequency resonant current controller for grid-connected voltage source converter under imbalanced and distorted supply voltage conditions

    Institute of Scientific and Technical Information of China (English)

    Jia-bing HU; Wei ZHANG; Hong-sheng WANG; Yi-kang HE; Lie XU

    2009-01-01

    This paper proposes a current control scheme for a grid-connected pulse width modulator (PWM) voltage source converter (GC-VSC) under imbalanced and distorted supply voltage conditions. The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral (PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω, respectively. The experimental results, with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system, validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.

  7. Current orientation and contact distance dependence of rapid voltage oscillations in the organic conductor β''-[bis(ethylenedithio)tetrathiafulvalene]3(HSO4)2

    Science.gov (United States)

    Wakita, Hitoshi; Tamura, Kozo; Ozawa, Tatsuhiko; Bando, Yoshimasa; Kawamoto, Tadashi; Mori, Takehiko

    2010-12-01

    In an organic conductor β″-[bis(ethylenedithio)tetrathiafulvalene]3(HSO4)2, characteristic voltage oscillation is observed in the negative differential resistance region of the nonlinear conductivity below the metal-insulator transition at 125 K. The observed frequency f is 4-25 kHz and increases linearly with the collective current Jco. The oscillation appears in the two crystal directions of the conducting layer in agreement with the two-dimensional nonstripe charge order, where the anisotropy of the Jco/f slope is about two. The voltage oscillation disappears when the contact distance is larger than 0.02 cm, and at the same time the current-voltage characteristics loses a sharp negative resistance region. Since this critical length corresponds to the characteristic domain size of the charge order, the observed oscillation is interpreted by coherent transport of charge order which can move in different two directions.

  8. Tetrahydroacridine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Yi-ping WANG; Guo-yuan HU

    2004-01-01

    AIM: To study the effects of tetrahydroacridine (tacrine) on voltage-gated Na+ channels in cardiac tissues.METHODS: Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltagedependent Na+ current was recorded using whole cell voltage-clamp technique. RESULTS: (1) Tacrine reversibly inhibited Na+ current with an IC50 value of 120 μmol/L (95 % confidence range: 108-133 μmol/L). (2) The inhibitory effects of tacrine on Na+ current exhibited both a tonic nature and use-dependence. (3) Tacrine at 100 μmol/L caused a negative shift (about 10 mV) in the voltage-dependence of steady-state inactivation of Na+ current, and retarded its recovery from inactivation, but did not affect its activation curve. (4) Intracellular application of tacrine significantly inhibited Na+ current. CONCLUSION: In addition to blocking other voltage-gated ion channels,tacrine blocked Na+ channels in guinea-pig ventricular myocytes. Tactine acted as inactivation stabilizer of Na+channels in cardiac tissues.

  9. Luminescence, radiative recombination, and current voltage characteristics in sensitized TiO2 solar cells

    Science.gov (United States)

    Smestad, Greg P.

    1992-12-01

    A connection is made between the luminescence or radiative recombination in an absorber material and the current voltage characteristics of a quantum converter of light. A relationship between luminescence and voltage is derived, using detailed balance and the chemical potential of the excitation, which is similar to that obtained using the techniques of Shockley and Queisser or R. T. Ross. This model relates the absorptivity and photoluminescence efficiency of the light absorber to the I V curve. In this way both thermodynamic properties, or voltage, and the kinetics, or charge transfer and current, can be combined in order to optimize materials and configurations. The model is applied to dye sensitized Ti02 solar cells, and compared with preliminary experimental data for Ru based charge transfer dyes and inorganic compounds. The luminescence model is found to be applicable to dye sensitized converters, as well as to standard silicon solar cells, light detectors, and LEDs.

  10. Multi-Inputs/Multi-Outputs control of plasma current and loop voltage on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Nouailletas, R., E-mail: remy.nouailletas@cea.fr [CEA, F-13108 Saint Paul lez Durance (France); Barana, O.; Saint-Laurent, F.; Brémond, S.; Moreau, P.; Ekedahl, A.; Artaud, J.-F. [CEA, F-13108 Saint Paul lez Durance (France)

    2013-10-15

    During a tokamak discharge, several control modes may have to be run in sequence in order to perform the control of the different discharge phases. The transitions between these control modes are not always easy to handle because in most cases the coupling between the controlled plasma quantities is not taken into account in each control mode design process. This paper presents a new Multi-Inputs/Multi-Outputs (MIMO) controller applied on Tore Supra to control both plasma current and flux variations through the central solenoid voltage and the lower hybrid current drive (LHCD) system power. It deals with the transition from a loop voltage floating mode to a loop voltage control mode. The controller, synthesized and tuned using a model-based approach, has been validated in simulation before its successful implementation on Tore Supra experiments.

  11. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  12. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  13. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  14. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.

    Science.gov (United States)

    Ziskind-Conhaim, Lea; Wu, Linying; Wiesner, Eric P

    2008-10-01

    Neurochemically induced membrane voltage oscillations and firing episodes in spinal excitatory interneurons expressing the HB9 protein (Hb9 INs) are synchronous with locomotor-like rhythmic motor outputs, suggesting that they contribute to the excitatory drive of motoneurons during locomotion. Similar to central pattern generator neurons in other systems, Hb9 INs are interconnected via electrical coupling, and their rhythmic activity does not depend on fast glutamatergic synaptic transmission. The primary objective of this study was to determine the contribution of fast excitatory and inhibitory synaptic transmission and subthreshold voltage-dependent currents to the induced membrane oscillations in Hb9 INs in the postnatal mouse spinal cord. The non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced the amplitude of voltage oscillations but did not alter their frequency. CNQX suppressed rhythmic motor activity. Blocking glycine and GABAA receptor-mediated inhibitory synapses as well as cholinergic transmission did not change the properties of CNQX-resistant membrane oscillations. However, disinhibition triggered new episodes of slow motor bursting that were not correlated with induced locomotor-like rhythms in Hb9 INs. Our observations indicated that fast excitatory and inhibitory synaptic inputs did not control the frequency of induced rhythmic activity in Hb9 INs. We next examined the contribution of persistent sodium current (INaP) to subthreshold membrane oscillations in the absence of primary glutamatergic, GABAergic and glycinergic synaptic drive to Hb9 INs. Low concentrations of riluzole that blocked the slow-inactivating component of sodium current gradually suppressed the amplitude and reduced the frequency of voltage oscillations. Our finding that INaP regulates locomotor-related rhythmic activity in Hb9 INs independently of primary synaptic transmission supports the concept that these neurons constitute an

  15. The influence of microwave irradiation power on current voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mans, M.; Scherbel, J.; Seidel, P.

    2007-02-01

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  16. The influence of microwave irradiation power on current-voltage characteristics of intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mans, M [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Scherbel, J [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Seidel, P [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2007-02-15

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  17. Robust Current Control of Doubly Fed Wind Turbine Generator under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Wang, Yun; Gong, Wenming; Wu, Qiuwei

    2014-01-01

    This paper presents the design of a H ∞ current controller for doubly fed induction generators (DFIGs) in order to maintain stable operation under unbalanced voltage conditions. The H ∞ current controller has a multi-input and multi-output (MIMO) structure and is designed using the loop shaping...... method. Case studies have been carried out in order to verify the efficacy of the proposed H ∞ current controller for DFIGs. The case study results show that the proposed H ∞ current controller can realize different control objectives, i.e. stable stator current, stable stator active power and stable...

  18. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.;

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phas...

  19. ELASTIC-SCATTERING AND THE CURRENT-VOLTAGE CHARACTERISTICS OF SUPERCONDUCTING NB-INAS-NB JUNCTIONS

    NARCIS (Netherlands)

    VANDERPOST, N; NITTA, J; TAKAYANAGI, H

    1993-01-01

    Superconducting niobium contacts are attached to a 0.8-mum-long epitaxially grown InAs channel sandwiched between insulating InGaAs layers. The current-voltage characteristics show nonlinearities at submultiples of the superconducting energy gap indicative of multiple-Andreev reflections. We demonst

  20. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant barri...

  1. Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Blaabjerg, Frede

    2009-01-01

    with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...

  2. Improving the voltage quality of an inverter via by-passing the harmonic current components

    DEFF Research Database (Denmark)

    Zhong, Qing-Chang; Blaabjerg, Frede; Guerrero, Josep M.

    2012-01-01

    In this paper, a control strategy is proposed to improve the total harmonic distortion (THD) of the output voltage of an inverter. The physical interpretation of the control strategy is to connect shunt resonant filters at harmonic frequencies to the output so that the harmonic current components...

  3. Flexible Microgrid Power Quality Enhancement Using Adaptive Hybrid Voltage and Current Controller

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2014-01-01

    To accomplish superior harmonic compensation performance using distributed generation (DG) unit power electronics interfaces, an adaptive hybrid voltage and current controlled method (HCM) is proposed in this paper. It shows that the proposed adaptive HCM can reduce the numbers of low-pass/bandpa...

  4. Harmonic Analysis of Currents and Voltages Obtained in the Result of Computational Experiment

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2011-01-01

    Full Text Available The paper considers a methodology for execution of a harmonic analysis of current and voltage numerical values obtained in the result of a computational experiment and saved in an external data file. The harmonic analysis has been carried out in the Mathcad mathematical packet environment.

  5. Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Blaabjerg, Frede

    2009-01-01

    with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...

  6. Substance P-mediated membrane currents in voltage-clamped guinea pig inferior mesenteric ganglion cells.

    Science.gov (United States)

    Griffith, W H; Hills, J M; Brown, D A

    1988-01-01

    Responses to substance P (SP) and to hypogastric nerve stimulation were recorded from voltage-clamped guinea pig inferior mesenteric ganglion (IMG) neurons, and compared with those to muscarine. Muscarine produced a voltage-dependent inward current accompanied by a reduced input conductance and inhibition of IM a time- and voltage-dependent K+-current (Brown and Adams: Nature 283:673-676, 1980). SP also produced an inward current, accompanied by a fall in input conductance (20 out of 31 cells) or a rise in input conductance (7 out of 31 cells). The fall in input conductance was not accompanied by an inhibition of M-current (unlike frog ganglia: Adams et al.: British Journal of Pharmacology 79:330-333, 1983) or an inhibition of the inward rectifier current (unlike globus pallidus neurons: Stanfield et al.: Nature 315:498-501, 1985). Repetitive hypogastric nerve stimulation (10-20 Hz, 2-10 s) produced a slow inward postsynaptic current lasting 1-3 min, with decreases or increases of input conductance matching those produced by SP. The postsynaptic current did not show a consistent or reproducible change in amplitude on varying the holding potential between -90 and -25 mV. It is concluded that SP and hypogastric stimulation produce complex and variable changes in ionic conductance in IMG neurons.

  7. Distance protection of multiple-circuit shared tower transmission lines with different voltages. Part I: Fault current magnitude

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This paper presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...... at the lower voltage level sees the fault in the reverse direction. The opposite happens if the lower voltage level leads the higher voltage level. It is also demonstrated that the magnitude of fault currents of combined faults is normally slightly larger than of equivalent single-phase-to-ground fault...

  8. Basic Characteristics of New Developed Higher-Voltage Direct-Current Power-Feeding Prototype System

    Science.gov (United States)

    Babasaki, Tadatoshi; Tanaka, Toshimitsu; Tanaka, Toru; Nozaki, Yousuke; Aoki, Tadahito; Kurokawa, Fujio

    High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48V DC power supply system. The output of the rectifier equipment is 100kW, and the output voltage is 401.4V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.

  9. Field emission current-voltage curves as a diagnostic for scanning tunneling microscope tips

    Science.gov (United States)

    Meyer, J. A.; Stranick, S. J.; Wang, J. B.; Weiss, P. S.

    1991-12-01

    The current-voltage (I-V) characteristics of a low temperature ultrahigh vacuum scanning tunneling microscope (STM) tip positioned greater than 100 A from a planar surface have been recorded. We find curvature in the Fowler-Nordheim plots (log 10 I/V(sup 2) vs. I/V) due to the tip-plane geometry as has been predicted theoretically. Additionally, oscillations and sharp breaks in these I-V curves are observed over a wide voltage range, 50-1000 V. These I-V curves are used to characterize the STM tips prior to tunneling.

  10. Inrush Transient Current Analysis and Suppression of Photovoltaic Grid-Connected Inverters During Voltage Sag

    DEFF Research Database (Denmark)

    Li, Zhongyu; Zhao, Rende; Xin, Zhen

    2016-01-01

    The Inrush Transient Current (ITC) in the output of the photovoltaic grid-connected inverters is usually generated when grid voltage sag occurs, which can trigger the protection of the grid-connected inverters, and even destroy the semiconductor switches. Then, the grid-connected inverters...... will thus fail to ride through the voltage sag and even further cause more serious grid faults. This paper analyzes the generation principle of ITC and explores its influence factors, upon which, the suppression approaches are presented. Simulation and experimental results validate the theoretical analysis...

  11. ELABORATION AND TESTING OF SOFTWARE FOR SIGNAL PROCESSING OF RESISTIVE HIGH VOLTAGE DIVIDER

    Directory of Open Access Journals (Sweden)

    Sit М.

    2009-12-01

    Full Text Available Mathematical tools and the software for input in the computer of signals of a resistive divider of a high voltage of the industrial frequency, providing a split-hair accuracy of measurement of parameters of the basic and harmonics which are divisible to the basic is developed.

  12. Multidrug-resistant breast cancer: current perspectives

    Directory of Open Access Journals (Sweden)

    Martin HL

    2014-01-01

    Full Text Available Heather L Martin,1 Laura Smith,2 Darren C Tomlinson11BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK; 2Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UKAbstract: Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.Keywords: PI3K/Akt, epigenetics, miRNA, ER, HER2, triple negative

  13. Electric current and voltage recordings on the myocardium during electrosurgical procedures in canines.

    Science.gov (United States)

    Selikowitz, S M; LaCourse, J R

    1987-03-01

    Voltage and current spectra were measured with probes placed directly on the canine myocardium during transurethral resection (TUR). It was determined that three factors may be related to potential cardiac effects during electrosurgical procedures: obvious low frequency components modulated from a center frequency of the electrosurgical generator; high current density due to high power setting during TUR, and duration of application of the cutting waveform.

  14. Analytical form of current-voltage characteristic of cylindrical and spherical ionization chambers

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The basic processes of ionization and recombination of gas-filled ionization chamber are presented in this article. A differential equation describing the distribution of current densities in the volume of the ionization chamber is obtained from the balance of the particles and charges densities. As a result of the differential equation solving an analytical form of the current-voltage characteristic of cylindrical and spherical ionization chambers is got.

  15. Quaternary Organic Amines Inhibit Na,K Pump Current in a Voltage-dependent Manner

    OpenAIRE

    2004-01-01

    The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na+-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na+-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K+ (K+ o) activation of Na,K pump current; however, the concentration for half maximal inh...

  16. Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2013-06-01

    Full Text Available This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  17. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    ) was clamped to zero and step-changes of Na activity in the outer solution ((Na)(o)) were performed with a fast-flow chamber at constant ionic strength, while the short-circuit current was recorded.3. At pre-selected times after a step-change of (Na)(o) the current response (I) to a fast voltage staircase...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... transport through open Na-selective channels of the outward facing membrane of the stratum granulosum cells can be described as an electrodiffusion process which as such does not saturate with increasing (Na)(o). However, when added to the outer border of the membrane Na causes a decrease of P(Na) within...

  18. Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage

    Science.gov (United States)

    Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2016-01-01

    One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction. PMID:27759080

  19. Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage

    Science.gov (United States)

    Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2016-10-01

    One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction.

  20. Analytical Method to Calculate the DC Link Current Stress in Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus;

    2014-01-01

    The dc-link capacitor is one of the critical components, which influences the lifetime of the whole voltage source converter unit. For reliable design, the operating temperature of the dc-link capacitor should be known, which is primarily determined by the ambient temperature and the rms value...... of the current flowing through the dc-link capacitor. A simple analytical method to calculate the rms value of the dc-link capacitor current is presented in this paper. The effect of the line current ripple on the rms value of the dc-link capacitor current is considered. This yields accurate results, especially...

  1. Verification of a thermal interpretation of BSCCO-2223/Ag current voltage hysteresis

    Science.gov (United States)

    Sastry, P. V. P. S. S.; Nguyen, D. N.; Usak, P.; Schwartz, J.

    2004-03-01

    The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN2) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN2 temperature with and without a thermal insulation sheet upon the tape during ramping up over Ic and ramping down back under Ic. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm-1. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.

  2. Verification of a thermal interpretation of BSCCO-2223/Ag current-voltage hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P V P S S [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Nguyen, D N [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Usak, P [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Sk84239 (Slovakia); Schwartz, J [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States)

    2004-03-01

    The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN{sub 2}) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN{sub 2} temperature with and without a thermal insulation sheet upon the tape during ramping up over I{sub c} and ramping down back under I{sub c}. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm{sup -1}. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.

  3. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all high-voltage, resistance grounded systems shall include a fail safe ground check circuit or other no less effective device... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on...

  4. Determination of Resistor Resistance According to Over-Voltage Criteria in 6–35 kV Mains

    Directory of Open Access Journals (Sweden)

    V. I. Glushko

    2010-01-01

    Full Text Available A new method has been developed  for selection of resistor type according to over-voltage criteria that includes methods for calculation of resistor resistance RN  and over-voltage ratio factor kп which are used for evaluation of protective resistance functions.

  5. Correlation character of ionic current fluctuations: analysis of ion current through a voltage-dependent potassium single channel.

    Science.gov (United States)

    Tong-Han, Lan; Huang, Xi; Jia-Rui, Lin

    2005-10-03

    The gating of ion channels has widely been modeled by assuming the transition between open and closed states is a memoryless process. Nevertheless, the statistical analysis of an ionic current signal recorded from voltage dependence K(+) single channel is presented. Calculating the sample auto-correlation function of the ionic current based on the digitized signals, rather than the sequence of open and closed states duration time. The results provide evidence for the existence of memory. For different voltages, the ion channel current fluctuation has different correlation attributions. The correlations in data generated by simulation of two Markov models, on one hand, auto-correlation function of the ionic current shows a weaker memory, after a delayed period of time, the attribute of memory does not exist; on the other hand, the correlation depends on the number of states in the Markov model. For V(p)=-60 mV pipette potential, spectral analysis of ion channel current was conducted, the result indicates that the spectrum is not a flat spectrum, the data set from ionic current fluctuations shows considerable variability with a broad 1/f -like spectrum, alpha=1.261+/-0.24. Thus the ion current fluctuations give information about the kinetics of the channel protein, the results suggest the correlation character of ion channel protein nonlinear kinetics regardless of whether the channel is in open or closed state.

  6. Soft switching (ZVZCS) high current, low voltage modular power converter (13 kA, 16 V)

    CERN Document Server

    Bordry, Frederick; Thiesen, H

    2001-01-01

    The Large Hadron Collider (LHC) is the next accelerator being constructed at the European Laboratory for Particle Physics (CERN). The superconducting LHC particle accelerator requires high currents (13 kA) and relatively low voltages (16 V) for its magnets. This paper describes the development and the production of a (13 kA, 16 V) power converter. The converter is made with a modular concept with five current sources (3.25 kA, 16 V) in parallel. The 3.25 kA sources are built as plug-in modules: a diode rectifier on the AC mains, a zero voltage zero current switching (ZVZCS) inverter working at 25 k Hz and an output stage. The obtained performance is presented and discussed. (6 refs).

  7. High voltage power supplies for ITER RF heating and current drive systems

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, T., E-mail: thibault.gassmann@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arambhadiya, B.; Beaumont, B. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Baruah, U.K. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Bonicelli, T. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Darbos, C.; Purohit, D.; Decamps, H. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Albajar, F. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Parmar, D.; Patel, A. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Rathi, D. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Singh, N.P. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)

    2011-10-15

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  8. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  9. Temperature current-voltage characterisation of MOCVD grown InGaN/GaN MQW LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Grigore; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Phillips, Andrew [phconsult Ltd., 54 Covent Garden, Cambridge, CB1 2HR (United Kingdom); Thrush, E.J. [Thomas Swan Scientific Equipment Limited, Buckingway Business Park, Cambridge, CB4 5UK (United Kingdom)

    2006-06-15

    A methodology of temperature current-voltage characterisation for blue GaN-based LED is described, with emphasis on artefacts arising from self-heating at high forward currents and voltage transients at low forward currents. Examples of LEDs with Al{sub 2}O{sub 3} and SiC substrates are discussed, with methods of accounting and avoiding these errors. For the devices studied here it is found that tunnelling dominates the charge transport and that two parallel conduction pathways are present. A method of interpretation of extracted data is also presented, in the context of desired device performance. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Emerging memories: resistive switching mechanisms and current status.

    Science.gov (United States)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R S; Scott, J F; Kohlstedt, H; Petraru, A; Hwang, Cheol Seong

    2012-07-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

  11. Mechanisms of current conduction in Pt/BaTiO{sub 3}/Pt resistive switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R.K. [School of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Zhang, T.J., E-mail: tj65zhang@yahoo.com.cn [School of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang, J.Y.; Wang, J.Z. [School of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang, D.F. [School of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); q-Psi and Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Duan, M.G. [School of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2012-03-30

    The 80-nm-thickness BaTiO{sub 3} (BT) thin film was prepared on the Pt/Ti/SiO{sub 2}/Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO{sub 2}/Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current-voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current-voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole-Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths. - Highlights: Black-Right-Pointing-Pointer Pt/BaTiO{sub 3}/Pt cell shows the bipolar resistive switching behavior. Black-Right-Pointing-Pointer The current-voltage curves were well fitted for different conduction mechanisms. Black-Right-Pointing-Pointer The electroforming and switching processes were explained.

  12. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  13. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  14. Current-voltage characteristics in macroporous silicon/SiOx/SnO2:F heterojunctions.

    Science.gov (United States)

    Garcés, Felipe A; Urteaga, Raul; Acquaroli, Leandro N; Koropecki, Roberto R; Arce, Roberto D

    2012-07-25

    We study the electrical characteristics of macroporous silicon/transparent conductor oxide junctions obtained by the deposition of fluorine doped-SnO2 onto macroporous silicon thin films using the spray pyrolysis technique. Macroporous silicon was prepared by the electrochemical anodization of a silicon wafer to produce pore sizes ranging between 0.9 to 1.2 μm in diameter. Scanning electronic microscopy was performed to confirm the pore filling and surface coverage. The transport of charge carriers through the interface was studied by measuring the current-voltage curves in the dark and under illumination. In the best configuration, we obtain a modest open-circuit voltage of about 70 mV and a short-circuit current of 3.5 mA/cm2 at an illumination of 110 mW/cm2. In order to analyze the effects of the illumination on the electrical properties of the junction, we proposed a model of two opposing diodes, each one associated with an independent current source. We obtain a good accordance between the experimental data and the model. The current-voltage curves in illuminated conditions are well fitted with the same parameters obtained in the dark where only the photocurrent intensities in the diodes are free parameters.

  15. Testing and analysis of tube voltage and tube current in the radiation generator for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hong Ryang; Hong, Dong Hee [Dept. of Health Care, Hanseo University, Seosan (Korea, Republic of); Han, Beom Hui [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2014-03-15

    Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant , manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration 'about the safety of diagnostic radiation generator rule' specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.

  16. Power Improvement of Transmission Line Using High Voltage Direct Current (Hvdc Transmission System

    Directory of Open Access Journals (Sweden)

    Lasisi, H

    2016-08-01

    Full Text Available The use of long EHV (Extremely High Voltage ac lines for the transmission of electrical energy increases the line reactance and susceptance which limits the thermal loadings on the line in order to keep sufficient margin against transient instability. With the scheme proposed in this paper, it is possible to load the lines very close to their limit with zero reactance and susceptance. The conductors are allowed to carry usual ac along with dc superimposed on it. The added dc power flow does not cause any transient instability. The scheme comprises a twelve-pulse bridge rectifier, dc-links, pulse width modulated (PSW-voltage sourced inverter (VSI and converter transformers. The master current controller is used to implement the scheme which senses ac current and regulates the dc current orders for converters online such that conductor current never exceeds its thermal limit. This paper gives the feasibility of converting a double circuit ac line into composite ac–dc power transmission line given the advantage of stability improvement, damping oscillations, voltage stabilization and reactive power compensation for ac weak buses. Simulation and experimental studies using MATLAB (Matrix Laboratory are carried out for the coordinated control as well as independent control of ac and dc power transmissions.

  17. High current, low voltage carbon nanotube enabled vertical organic field effect transistors.

    Science.gov (United States)

    McCarthy, Mitchell A; Liu, Bo; Rinzler, Andrew G

    2010-09-08

    State-of-the-art performance is demonstrated from a carbon nanotube enabled vertical field effect transistor using an organic channel material. The device exhibits an on/off current ratio >10(5) for a gate voltage range of 4 V with a current density output exceeding 50 mA/cm(2). The architecture enables submicrometer channel lengths while avoiding high-resolution patterning. The ability to drive high currents and inexpensive fabrication may provide the solution for the so-called OLED backplane problem.

  18. A Primary and Backup Protection Algorithm based on Voltage and Current Measurements for HVDC Grids

    OpenAIRE

    Abedrabbo, Mudar; Van Hertem, Dirk

    2016-01-01

    DC grids are susceptible to DC side faults, which lead to a rapid rise of the DC side currents. DC side faults should be detected in a very short time before fault currents cause damage to the system or equipment, e.g., exceed the maximum interruptible limits of DC circuit breaker. This paper presents a primary and backup protective data-based algorithm. The proposed algorithm depends on the local voltage and current measurements to detect and identify various kinds of faults in the HVDC grid...

  19. Low voltage substrate current: a monitor for interface states generation in ultra-thin oxide n-MOSFETs under constant voltage stresses

    Institute of Scientific and Technical Information of China (English)

    Wang Yan-Gang; Xu Ming-Zhen; Tan Chang-Hua

    2007-01-01

    The low voltage substrate current (Ib) has been studied based on generation kinetics and used as a monitor of interface states (Nit) generation for ultra-thin oxide n-MOSFETs under constant voltage stress. It is found that the low voltage Ib is formed by electrons tunnelling through interface states, and the variations of Ib(△Ib) are proportional to variations of Nit (△Nit). The Nit energy distributions were determined by differentiating Nit(Vg). The results have been compared with that measured by using gate diode technique.

  20. A PAC Based Current Feedforward Control for Three-Phase PWM Voltage-Type Converter

    Institute of Scientific and Technical Information of China (English)

    屈克庆; 陈国呈; 孙承波

    2004-01-01

    This paper presents a novel current feedforward control strategy for a three-phase pulse-width modulation (PWM) DC voltage-type converter based on phase and amplitude control (PAC). With right-angle triangle relation of phasors and principle of conservation of energy, a phasor adjustment method and the relevant low-frequency mathematical model of the system are analyzed in detail, both in rectification and regeneration modes for the converter, are discussed. For improving the traditional PAC dynamic performance, variable load current is detected indirectly by the change of the DC voltage, which is fed to the control system as an additional control variable to generate modulation index and phase angle. Also, the algorithm is derived and the system principle is introduced. Experimental results from a 3 kw laboratory device are included to demonstrate the effectiveness of the proposed control strategy.

  1. Current-voltage characteristics of light-emitting diodes under optical and electrical excitation

    Institute of Scientific and Technical Information of China (English)

    Wen Jing; Wen Yumei; Li Ping; Li Lian

    2011-01-01

    The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.

  2. Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.

  3. Effects of hydrogen bonding on current-voltage characteristics of molecular junctions

    Science.gov (United States)

    Kula, Mathias; Jiang, Jun; Lu, Wei; Luo, Yi

    2006-11-01

    We present a first-principles study of hydrogen bonding effect on current-voltage characteristics of molecular junctions. Three model charge-transfer molecules, 2'-amino-4,4'-di(ethynylphenyl)-1-benzenethiolate (DEPBT-D), 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate (DEPBT-A), and 2'-amino-4,4'-di(ethynylphenyl)-5'-nitro-1-benzenethiolate (DEPBT-DA), have been examined and compared with the corresponding hydrogen bonded complexes formed with different water molecules. Large differences in current-voltage characteristics are observed for DEPBT-D and DEPBT-A molecules with or without hydrogen bonded waters, while relatively small differences are found for DEPBT-DA. It is predicted that the presence of water clusters can drastically reduce the conductivities of the charge-transfer molecules. The underlying microscopic mechanism has been discussed.

  4. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  5. Low Noise Bias Current/Voltage References Based on Floating-Gate MOS Transistors

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    The exploitation of floating-gate MOS transistors as reference current and voltage sources is investigated. Test structures of common source and common drain floating-gate devices have been implemented in a commercially available 0.8 micron double-poly CMOS process. The measurements performed...... promise a good maintenance of the operating point of the floating-gate devices. Examples of utilizing of such bias sources in low-noise sensor preamplifiers are discussed....

  6. A High Voltage High Frequency Resonant Inverter for Supplying DBD Devices with Short Discharge Current Pulses

    OpenAIRE

    Bonnin, Xavier; Brandelero, Julio; Videau, Nicolas; Piquet, Hubert; Meynard, Thierry

    2014-01-01

    International audience; In this paper, the merits of a high-frequency resonant converter for supplying dielectric barrier discharges (DBD) devices are established. It is shown that, thanks to its high-frequency operating condition, such a converter allows to supply DBD devices with short discharge current pulses, a high repetition rate, and to control the injected power. In addition, such a topology eliminates the matter of connecting a high-voltage transformer directly across the DBD device ...

  7. Low Noise Bias Current/Voltage References Based on Floating-Gate MOS Transistors

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    The exploitation of floating-gate MOS transistors as reference current and voltage sources is investigated. Test structures of common source and common drain floating-gate devices have been implemented in a commercially available 0.8 micron double-poly CMOS process. The measurements performed...... promise a good maintenance of the operating point of the floating-gate devices. Examples of utilizing of such bias sources in low-noise sensor preamplifiers are discussed....

  8. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Science.gov (United States)

    Ekdahl, Carl

    2016-06-01

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  9. Investigations on the electrical current-voltage response in protein light receptors

    CERN Document Server

    Alfinito, E; Reggiani, L

    2014-01-01

    We report a theoretical/computational approach for modeling the current-voltage characteristics of sensing proteins. The modeling is applied to a couple of transmembrane proteins, bacteriorhodopsin and proteorhodopsin, sensitive to visible light and promising biomaterials for the development of a new generation of photo-transducers. The agreement between theory and experiments sheds new light on the microscopic interpretation of charge transfer in proteins and biological materials in general.

  10. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    Science.gov (United States)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  11. Analytical evaluation of DC capacitor RMS current and voltage ripple in neutral-point clamped inverters

    Indian Academy of Sciences (India)

    K S GOPALAKRISHNAN; SANTOSH JANAKIRAMAN; SOUMITRA DAS; G NARAYANAN

    2017-06-01

    The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor. Analytical closed-form expressions are derived for the capacitor RMS current for single-phase half-bridge,single-phase full-bridge and three-phase three-leg topologies of a three-level inverter. The worst-case capacitor current stress is determined for each topology based on the analytical expressions. Further, analytical expressions are derived for the RMS values of low-frequency and high-frequency capacitor currents. These expressions are then used to estimate voltage ripple across the DC capacitor for sinusoidally modulated three-phase NPC inverter. The analytical expressions for the RMS current and voltage ripple are validated experimentally over a wide range of operating points.

  12. Voltage-gated proton currents in microglia of distinct morphology and functional state.

    Science.gov (United States)

    Klee, R; Heinemann, U; Eder, C

    1999-01-01

    Whole-cell patch-clamp measurements were performed to investigate voltage-gated proton currents (I(PR)) in cultured murine microglia of distinct morphology and functional state. We studied I(PR) in ameboid microglia of untreated cultures, in ameboid microglia which had been activated by lipopolysaccharide, and in ramified microglia which had been exposed to astrocyte-conditioned medium. Proton currents of these three microglia populations did not differ regarding their activation threshold or the voltage dependence of steady-state activation. Moreover, pharmacological properties of I(PR) were similar: proton currents were sensitive to extracellularly applied Zn2+ or La3+, and could be abolished by each of those at a concentration of 100 microM. In the presence of extracellular Na+, I(PR) was decreased to a similar small extent due to activity of the Na+/H+ exchanger in all microglial populations. In contrast, proton currents of microglia differed between the three cell populations with respect to their current density and their time-course of activation: in comparison with untreated microglia, the current density of I(PR) was reduced by about 50% in microglia after their treatment with either lipopolysaccharide or astrocyte-conditioned medium. Moreover, I(PR) activated significantly more slowly in cells exposed to lipopolysaccharide or astrocyte-conditioned medium than in untreated cells. It can be concluded that the distinct H+ current characteristics of the three microglial populations do not correlate with the functional state of the cells.

  13. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  14. An automatic method to analyze the Capacity-Voltage and Current-Voltage curves of a sensor

    CERN Document Server

    Matorras Cuevas, Pablo

    2017-01-01

    An automatic method to perform Capacity versus voltage analysis for all kind of silicon sensor is provided. It successfully calculates the depletion voltage to unirradiated and irradiated sensors, and with measurements with outliers or reaching breakdown. It is built using C++ and using ROOT trees with an analogous skeleton as TRICS, where the data as well as the results of the ts are saved, to make further analysis.

  15. Asymmetry of Polarization Reversal and Current-Voltage Characteristics of Pt/PZT-Film/Pt:Ti/SiO2/Si-Substrate Structures

    Directory of Open Access Journals (Sweden)

    S. L. Bravina

    2011-01-01

    Full Text Available The characterization of the asymmetries of bipolar charge-voltage and current-voltage loops of polarization reversal and unipolar current-voltage curves for Pt/PZT-film/Pt:Ti/SiO2/Si-substrate systems was performed in the dynamic mode. The asymmetry of local deformation-voltage loops was observed by piezoresponse force microscopy. The comparison of the dependences of introduced asymmetry factors for the bipolar charge-voltage and current-voltage loops and unipolar current-voltage curves on drive voltage indicates the interconnection of ferroelectric and electrical space charge transfer asymmetries.

  16. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  17. Rotor speed estimation of induction machines by monitoring the stator voltages and currents

    Energy Technology Data Exchange (ETDEWEB)

    Ho, S.Y.S.; Langman, R.A. [Tasmania Univ., Hobart, TAS (Australia)

    1995-12-31

    Accurate measurement of induction motor speed is routinely obtained by using a transducer coupled on the shaft. In many industrial situations, this is not acceptable as there may be no room for a suitable transducer, or else the motor environment may be too unpleasant. It is in theory possible to calculate the speed by monitoring the terminal voltages and currents (plus knowing the angular synchronous speed) and then applying these to the differential equations of motor. Two rotor speed algorithms were investigated. Unsatisfactory results were obtained with an algorithm based on the machine equations in a stationary reference frame because at some stage the algorithm divides zero by zero. To avoid these problems the time varying stator voltages and currents were further transformed into the synchronous reference frame so that they end up with dc electrical quantities. This algorithm of obtaining the tangent of the phase angle, for the determination of the rotor speed, was discussed and tested. The analysis presented in this paper points out that the speed of induction motor may be estimated at about +- 0.1 percent uncertainty from measurement of the stator voltage and current. (author). 5 figs., 5 refs.

  18. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  19. Suppression of endurance degradation by applying constant voltage stress in one-transistor and one-resistor resistive random access memory

    Science.gov (United States)

    Su, Yu-Ting; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Chen, Hsin-Lu; Chen, Min-Chen; Yang, Chih-Cheng; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2017-01-01

    In this letter we demonstrate an operation method that effectively suppresses endurance degradation. After many operations, the off-state of resistance random access memory (RRAM) degrades. This degradation is caused by reduction of active oxygen ions participating in the set process, as determined by current fitting of current-voltage (I-V) curves obtained from the endurance test between the interval of seventy to one hundred million operations. To address this problem, we propose the application of constant voltage stress after every five million operations during the endurance test. The experimental result shows that this method can maintain oxygen ions at the proper depth in the electrode and improve RRAM reliability.

  20. SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    Science.gov (United States)

    Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.

    1990-01-01

    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.

  1. Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density.

    Science.gov (United States)

    Perissinotti, Paula P; Ethington, Elizabeth G; Cribbs, Leanne; Koob, Michael D; Martin, Jody; Piedras-Rentería, Erika S

    2014-05-01

    The actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.2 calcium channels, resulting in up-regulation of P/Q and T-type current density. Here we tested whether endogenous KLHL1 modulates voltage gated calcium currents in cultured hippocampal neurons by down-regulating the expression of KLHL1 via adenoviral delivery of shRNA targeted against KLHL1 (shKLHL1). Control adenoviruses did not affect any of the neuronal properties measured, yet down-regulation of KLHL1 resulted in HVA current densities ~68% smaller and LVA current densities 44% smaller than uninfected controls, with a concomitant reduction in α(1A) and α(1H) protein levels. Biophysical analysis and western blot experiments suggest Ca(V)3.1 and 3.3 currents are also present in shKLHL1-infected neurons. Synapsin I levels, miniature postsynaptic current frequency, and excitatory and inhibitory synapse number were reduced in KLHL1 knockdown. This study corroborates the physiological role of KLHL1 as a calcium channel modulator and demonstrates a novel, presynaptic role.

  2. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    Science.gov (United States)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  3. Comparison of Voltage Gated K(+) Currents in Arterial Myocytes with Heterologously Expressed K v Subunits.

    Science.gov (United States)

    Cox, Robert H; Fromme, Samantha

    2016-12-01

    We have shown that three components contribute to functional voltage gated K(+) (K v) currents in rat small mesenteric artery myocytes: (1) Kv1.2 plus Kv1.5 with Kvβ1.2 subunits, (2) Kv2.1 probably associated with Kv9.3 subunits, and (3) Kv7.4 subunits. To confirm and address subunit stoichiometry of the first two, we have compared the biophysical properties of K v currents in small mesenteric artery myocytes with those of Kv subunits heterologously expressed in HEK293 cells using whole cell voltage clamp methods. Selective inhibitors of Kv1 (correolide, COR) and Kv2 (stromatoxin, ScTx) channels were used to separate these K v current components. Conductance-voltage and steady state inactivation data along with time constants of activation, inactivation, and deactivation of native K v components were generally well represented by those of Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels. The slope of the steady state inactivation-voltage curve (availability slope) proved to be the most sensitive measure of accessory subunit presence. The availability slope curves exhibited a single peak for both native K v components. Availability slope curves for Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels expressed in human embryonic kidney cells also exhibited a single peak that shifted to more depolarized voltages with increasing accessory to α subunit transfection ratio. Availability slope curves for SxTc-insensitive currents were similar to those of Kv1.2-1.5 expressed with Kvβ1.2 at a 1:5 molar ratio while curves for COR-insensitive currents closely resembled those of Kv2.1 expressed with Kv9.3 at a 1:1 molar ratio. These results support the suggested Kv subunit combinations in small mesenteric artery, and further suggest that Kv1 α and Kvβ1.2 but not Kv2.1 and Kv9.3 subunits are present in a saturated (4:4) stoichiometry.

  4. The architecture design of a 2mW 18-bit high speed weight voltage type DAC based on dual weight resistance chain

    Institute of Scientific and Technical Information of China (English)

    Chen Qixing; Luo Qiyu

    2013-01-01

    At present,the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current,and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase,which is 2n-1 times of its least weight current.But for a dual weight resistance chain type DAC,by using the weight voltage manner to D/A conversion,the D/A signal current is fixed to chain current Icha; it is only 1/2n-1 order of magnitude of the average signal current value of the weight current type DAC.Its principle is:n pairs dual weight resistances form a resistance chain,which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point,that could directly control the total weight voltage of the output point,so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized:(1) the total current is less than 200 μA; (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance,so it is smaller than the error of the subsection current-steering type DAC;(6) the conversion time is only one action time of switch on or off,so its speed is not lower than the present DAC.

  5. Experimental manifestation of the breakpoint region in the current-voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Irie, A.; Shukrinov, Yu. M.; Oya, G.

    2008-10-01

    The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi2Sr2CaCu2Oy IJJs has been investigated. At 4.2K, clear breakpoint region is observed on the branches in the IVCs. It is found that due to the coupling between junctions, the hysteresis observed on the IVC is small compared to that expected from the McCumber parameter. Measurements agree well with the results predicted by the capacitively coupled Josephson junction model including the diffusion current.

  6. Contrasting roles of Ih and the persistent sodium current at subthreshold voltages during naturalistic stimuli.

    Science.gov (United States)

    Thor, Michael G; Morris, Gareth

    2016-11-01

    The subthreshold activity of hippocampal CA1 pyramidal neurons is regulated by the persistent sodium current (INaP) and the h-current (Ih), carried by tetrodotoxin-sensitive sodium channels and hyperpolarization-activated cyclic-nucleotide-gated channels, respectively. Recently, Yamada-Hanff and Bean (J Neurophysiol 114: 2376-2389, 2015) used pharmacological methods to discern the roles of Ih and INaP at subthreshold voltages during naturalistic stimuli. We discuss these findings in the context of dorsoventral heterogeneity in the hippocampus and suggest further applications of the method.

  7. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zuhui [Lee-Kuan-Yew Postdoctoral Fellow, 2007-2010, Nanyang Technological University, Singapore 639798 (Singapore); Jie Binbin; Sah Chihtang, E-mail: bb_jie@msn.com [Department of Physics, Xiamen University, Xiamen 361005 (China)

    2010-12-15

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO{sub 2}/Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  8. CNTF inhibits high voltage activated Ca2+ currents in fetal mouse cortical neurones

    DEFF Research Database (Denmark)

    Holm, Ninna R; Christophersen, Palle; Hounsgaard, Jørn;

    2002-01-01

    Neurotrophic factors yield neuroprotection by mechanisms that may be related to their effects as inhibitors of apoptosis as well as their effects on ion channels. The effect of ciliary neurotrophic factor (CNTF) on high-threshold voltage-activated Ca channels in cultured fetal mouse brain cortical...... neurones was investigated. Addition of CNTF into serum-free growth medium resulted in delayed reduction of the Ca2+ currents. The currents decreased to 50% after 4 h and stabilized at this level during incubation with CNTF for 48 h. Following removal of CNTF the inhibition was completely reversed after 18...

  9. A simple method of extracting the polarization charge density in the AlGaN/GaN heterostructure from current-voltage and capacitance-voltage characteristics

    Institute of Scientific and Technical Information of China (English)

    Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo

    2012-01-01

    An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated.The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current-voltage characteristics.With the measured capacitance-voltage curve and the flat-band voltage,the polarization charge density in the AlGaN/GaN heterostructure is investigated,and a simple formula for calculating the polarization charge density is obtained and analyzed.With the approach described in this paper,the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.

  10. Current-voltage characteristics of quantum-point contacts in the closed-channel regime: Transforming the bias voltage into an energy scale

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Aagesen, M.;

    2006-01-01

    We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our...... analysis is based on a single scaling factor, extracted from the experimental I(V) characteristics. For both polarities, this scaling factor transforms the change of bias voltage into a change of electron energy. The latter is determined with respect to the top of the potential barrier of the contact....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...

  11. Voltage-gated potassium currents within the dorsal vagal nucleus: inhibition by BDS toxin.

    Science.gov (United States)

    Dallas, Mark L; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim

    2008-01-16

    Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.

  12. Power grid current harmonics mitigation drawn on low voltage rated switching devices with effortless control

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Hugo S.; Anunciada, Victor; Borges, Beatriz V. [Power Electronics Group, Instituto de Telecomunicacoes, Lisbon (Portugal); Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2010-01-15

    The great majority of the existing hybrid active power filter solutions is normally focused in 3{phi} systems and, in general, concentrates its domain of application in specific loads with deterministic behavior. Because common use grids do not exhibit these characteristics, it is mandatory to develop solutions for more generic scenarios, encouraging the use of less classical hybrid solutions. In fact, due to the widely use of switch mode converters in a great variety of consumer electronics, the problematic of mains current harmonic mitigation is no longer an exclusive matter of 3{phi} systems. The contribution of this paper is to present a shunt hybrid active power filter topology, initially conceived to work in 1{phi} domestic grids, able to operate the inverter at a voltage rate that can be lower than 10% of the mains voltage magnitude, even under nonspecific working conditions. In addition, the results shown in this paper demonstrate that this topology can, without lack of generality, be suitable to medium voltage (1{phi} or 3{phi}) systems. A new control approach for the proposed topology is discussed in this paper. The control method exhibits an extremely simple architecture requiring single point current sensing only, with no need for any kind of reference. Its practical implementation can be fulfilled by using very few, common use, operational amplifiers. The principle of operation, design criteria, simulation predictions and experimental results are presented and discussed. (author)

  13. Distributed voltage control and load sharing for inverter-interfaced microdrid with resistive lines

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad S.; Lu, D. D C; Shafiee, Q.

    2016-01-01

    method is based upon the practical assumption of resistive network impedance. In this context, a V-I droop mechanism is adopted in the primary control level, where GPS timing is used to synchronize the control agents. A new distributed secondary control method based on consensus protocol is introduced......This paper proposes a new distributed control method for coordination of distributed energy resources (DERs) in low-voltage resistive microgrids. The proposed framework consists of two level structure; primary and secondary control. Unlike the existing distributed control methods, the proposed...

  14. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    Directory of Open Access Journals (Sweden)

    Nick Baker

    2017-03-01

    Full Text Available In fast switching power semiconductors, the use of a fourth terminal to provide the reference potential for the gate signal—known as a kelvin-source terminal—is becoming common. The introduction of this terminal presents opportunities for condition monitoring systems. This article demonstrates how the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs, it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more detailed information regarding the aging process of a device.

  15. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Science.gov (United States)

    Chunhua, Wang; Minglin, Ma; Jingru, Sun; Sichun, Du; Xiaorong, Guo; Haizhen, He

    2011-02-01

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (Gm-LNA) and a differential current-mode down converted mixer. The single terminal of the Gm-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, Cx1 and Cx2, can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance, but they also enable the gate inductance Lg1,2 to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 μm CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.

  16. A novel low-voltage high precision current reference based on subthreshold MOSFETs

    Institute of Scientific and Technical Information of China (English)

    YU Guo-yi; ZOU Xue-cheng

    2007-01-01

    A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference current by a proper combination current of two first-order temperature-compensation current References , which exploit the temperature characteristics of integrated poly2 resistors and the Ⅰ- Ⅴ transconductance characteristics of MOSFET operating in the subthreshold region. The circuit, designed with the 1st silicon 0.35 μm standard CMOS logic process technology, exhibits a stable current of about 2.25 μA with much low temperature coefficient of 3 ×10-4 μA/℃ in the temperature range of -40~150 ℃ at 1 V supply voltage, and also achieves a better power supply rejection ratio (PSRR) over a broad frequency. The PSRR is about -78 dB at DC and remains -42dB at the frequency higher than 10 MHz. The maximal process error is about 6.7% based on the Monte Carlo simulation. So it has good process compatibility.

  17. Effect of high-voltage impulse current on the structure and function of rabbit heart

    Directory of Open Access Journals (Sweden)

    Xin-ping XU

    2011-06-01

    Full Text Available Objective To explore the effect of high-voltage impulse current(HVIC on the structure and function of rabbit heart.Methods Sixty healthy male rabbits were involved in present study and divided into 6 groups randomly(n=10.The rabbits were then shocked using a high-voltage pulse generator with current intensity of 0,50,100,150,250 and 500mA(pulse width 100μs,duration 5s respectively.The heart rate and electrocardiogram(ECG of rabbits were detected before and 0,1,3,7,14 and 28 days after the electric shock.Moreover,the myocardial tissue of rabbits was obtained immediately and 28 days after shock to observe the pathological changes.Results Immediately after electric shock of 50 to 500mA,the heart rate of rabbit increased by different degree,and the ECG showed arrhythmia,myocardial ischemia,atrial fibrillation and atrioventricular block,and the changes recovered gradually one day later.The pathological observation showed cell swelling,separation of myofibril and sarcoplasmic condensation of Purkinje fibers immediately after electric shock of 50 to 500mA,and the changes recovered 28 days after shock.The cardiac injuries aggravated with the increasing of current intensity,especially when it exceeded 150mA,and the recovery time prolonged.Conclusion High-voltage impulse current may induce recoverable injuries on heart structure and function,and the damage effect shows a correlation with the current intensity.

  18. DC buffering and floating current for a high voltage IMB application

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    An interface technique for the latest generation of the Impedance Measurement Box (IMB) has been conceived to enable measurement of impedance spectra for battery modules up to 300V. A 300V capable or higher IMB is an enabling technology for in-situ diagnostics within electric vehicle charging stations or battery back-ups within power distribution sub-stations. It is possible that the existing IMB can be adapted via a 300V interface module to a test battery with voltage significantly greater than 50V. Recently a new concept was conceived for the calibration, algorithm and electronics of the IMB. That algorithm and calibration for that concept have been physically validated. The principal feature of the new electronics is the floating current source excitation of the battery under test. The single ended current excitation of the battery under test, used in the 50V IMB, requires that the negative terminal of the test battery must be the analog ground for the IMB. The new floating current technique allows the test battery to be fully high impedance isolated for a measurement. That isolation will improve IMB noise immunity and enable interrogation of cells internal to a battery module. All these techniques still use the same rapid concept for impedance measurement with the IMB. The purpose of this disclosure is to provide an overview of the analytical validation for three concepts to interface the floating current excitation to a high voltage battery. Recursive simulation models were used in different test scenarios to validate the various new concepts. The analysis will show that it is possible to interface the floating signal current to obtain an impedance measurement on a high voltage test battery. Additionally, the analysis will investigate stress seen by electronics while testing a 300V battery.

  19. Charge effects controlling the current hysteresis and negative differential resistance in periodical nanosize Si/CaF sub 2 structures

    CERN Document Server

    Berashevich, Y A; Kholod, A N; Borisenko, V E

    2002-01-01

    A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes

  20. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  1. Current voltage analysis and band diagram of Ti/TiO{sub 2} nanotubes Schottky junction

    Energy Technology Data Exchange (ETDEWEB)

    Mini, P.A.; Sherine, Alex; Shalumon, K.T.; Balakrishnan, Avinash; Nair, S.V.; Subramanian, K.R.V. [Amrita Vishwa Vidyapeetham (University), Amrita Centre for Nanosciences and Molecular Medicine, Kochi (India)

    2012-08-15

    Here, we report on how the energy band diagram of a nanostructured semiconductor- metal interface aligns in accordance with semiconductor morphology. Electrochemically, titanium metal is anodized to form titanium dioxide nanotubes, which forms a junction with the free Ti substrate and this junction forms a natural Schottky barrier. With reduced dimensionality of the nanotube structures (lower wall thickness), we have observed band edge movements and band gap quantum confinement effects and lowering of the Schottky barrier. These results were corroborated with the help of cyclic voltammetry, ultraviolet-visible spectrometry, and impedance analysis. Current voltage analysis of the Schottky barrier showed a lowering of the barrier (by 25 %) with reducing dimensionality of the nanotube structures. At externally applied voltages higher than the Schottky barrier, charges can travel along the nanotubes and reside at an interface between the nanotubes and a high-{kappa} dielectric. This property was utilized to develop high surface area solid-state capacitors. (orig.)

  2. Current voltage analysis and band diagram of Ti/TiO2 nanotubes Schottky junction

    Science.gov (United States)

    Mini, P. A.; Sherine, Alex; Shalumon, K. T.; Balakrishnan, Avinash; Nair, S. V.; Subramanian, K. R. V.

    2012-08-01

    Here, we report on how the energy band diagram of a nanostructured semiconductor- metal interface aligns in accordance with semiconductor morphology. Electrochemically, titanium metal is anodized to form titanium dioxide nanotubes, which forms a junction with the free Ti substrate and this junction forms a natural Schottky barrier. With reduced dimensionality of the nanotube structures (lower wall thickness), we have observed band edge movements and band gap quantum confinement effects and lowering of the Schottky barrier. These results were corroborated with the help of cyclic voltammetry, ultraviolet-visible spectrometry, and impedance analysis. Current voltage analysis of the Schottky barrier showed a lowering of the barrier (by 25 %) with reducing dimensionality of the nanotube structures. At externally applied voltages higher than the Schottky barrier, charges can travel along the nanotubes and reside at an interface between the nanotubes and a high- κ dielectric. This property was utilized to develop high surface area solid-state capacitors.

  3. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  4. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    Science.gov (United States)

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.

    2012-07-01

    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  5. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2016-01-01

    (soiling, shading, discoloration). The premise of the method that is proposed is that different degradation modes affect the light and dark I-V characteristics of the PV module in different ways, leaving distinct signatures. This work focuses on identifying and correlating these specific signatures present......This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation...... in the light and dark I-V measurements, to specific degradation modes; a number of new dark I-V diagnostic parameters are proposed to quantify these signatures. The experimental results show that these dark I-V diagnostic parameters, complemented by light I-V performance and series resistance measurements can...

  6. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  7. New Voltage-Mode All-pass Filter Topology Employing Single Current Operational Amplifier

    Directory of Open Access Journals (Sweden)

    Hasan Çiçekli

    2016-02-01

    Full Text Available In this paper, a new voltage-mode all-pass filter topology based on single current operational amplifier (COA and the implementation of COA by using current conveyors are presented. The proposed topology employs three admittances and single active circuit element. COA implementation by using current conveyor blocks as sub-circuit contributes to workability of the COA employing circuits by using commercially available integrated circuits that can be employed as current conveyor. The validity of the proposed filter is verified by PSPICE simulation programme by using the MOSIS 0.35 micron CMOS process parameters. The simulation results agree well with the theoretical analysis and the circuit achieve a good total harmonic distortion (THD performance.

  8. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  9. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  10. Whole-cell recordings of voltage-gated Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Shuyun Huang; Qing Cai; Weitian Liu; Xiaoling Wang; Tao Wang

    2009-01-01

    Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hip-pocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca2+ currents, delayed rectifier K+ current and voltage-gated Na+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.

  11. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.; Cho, Gvan Chun [National Research University “Moscow Power Engineering Institute,” (Russian Federation)

    2016-01-15

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.

  12. Eliminating leakage current in voltage-controlled exchange-bias devices

    Science.gov (United States)

    Mahmood, Ather; Echtenkamp, Will; Street, Michael; Binek, Christian; Magnetic Heterostructures Team

    Manipulation of magnetism by electric field has drawn much attention due to the technological importance for low-power devices, and for understanding fundamental magnetoelectric phenomena. A manifestation of electrically controlled magnetism is voltage control of exchange bias (EB). Robust isothermal voltage control of EB was demonstrated near room temperature using a heterostructure of Co/Pd thin film and an exchange coupled single crystal of the antiferromagnetic Cr2O3 (Chromia). A major obstacle for EB in lithographically patterned Chromia based thin-film devices is to minimize the leakage currents at high electric fields (>10 kV/mm). By combining electrical measurements on patterned devices and conductive Atomic Force Microscopy of Chromia thin-films, we investigate the defects which form conducting paths impeding the application of sufficient voltage for demonstrating the isothermal EB switching in thin film heterostructures. Technological challenges in the device fabrication will be discussed. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC Abstract DMR-0820521.

  13. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    Science.gov (United States)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  14. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements.Application to n-InP

    Institute of Scientific and Technical Information of China (English)

    Ali Ahaitouf; Abdelaziz Ahaitouf; Jean Paul Salvestrini; Hussein Srour

    2011-01-01

    Based on current voltage (I-Vg) and capacitance voltage (C-Vg) measurements,a reliable procedure is proposed to determine the effective surface potential Vd (Vg) in Schottky diodes.In the framework of thermionic emission,our analysis includes both the effect of the series resistance and the ideality factor,even voltage dependent.This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C-Vg measurements.The study clearly shows that the depletion width and the flat band barrier height deduced from C-Vg,which are important parameters directly related to the surface potential in the semiconductor,should be estimated within our approach to obtain more reliable information.

  15. S-shaped current-voltage characteristics of polymer composite films containing graphene and graphene oxide particles

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Fefelov, S. A.; Komolov, A. S.; Aleshin, A. N.

    2016-12-01

    The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.

  16. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...

  17. Method and system for a gas tube-based current source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  18. Elimination of the channel current effect on the characterization of MOSFET threshold voltage using junction capacitance measurements

    Science.gov (United States)

    Tomaszewski, Daniel; Głuszko, Grzegorz; Łukasiak, Lidia; Kucharski, Krzysztof; Malesińska, Jolanta

    2017-02-01

    An alternative method for an extraction of the MOSFET threshold voltage has been proposed. It is based on an analysis of the MOSFET source-bulk junction capacitance behavior as a function of the gate-source voltage. The effect of the channel current on the threshold voltage extraction is fully eliminated. For the threshold voltage and junction capacitance model parameters non-iterative methods have been used. The proposed method has been demonstrated using a series of MOS transistors manufactured using a standard CMOS technology.

  19. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  20. Admittance Modeling of Voltage and Current Controlled Inverter for Harmonic Instability Studies

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Bak, Claus Leth

    2016-01-01

    This paper proposes an impedance/admittance based model for voltage and current controlled inverters with passive elements suitable for harmonic instability study of grid connected inverters in frequency domain. This linearized model of inverters, significantly simplifies investigation of resonance...... instability and control loop interaction of wind turbines with each other and/or with the grid, while they are installed in wind farms. The derived impedance ratio at point of common connection demonstrates how the inverters participate in harmonic stability of the grid....

  1. Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  2. Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  3. Experimental manifestation of the breakpoint region in the current-voltage characteristics of intrinsic Josephson junctions

    OpenAIRE

    Irie, A.; Shukrinov, Yu M.; Oya, G.

    2008-01-01

    The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi$_2$Sr$_2$CaCu$_2$O$_y$ IJJs has been investigated. At 4.2 K, clear breakpoint region is observed on the branches in the IVCs. It is found that the hysteresis observed on the IVC is suppressed due to the coupling compared with that expected from the McCumber parameter. Measurement...

  4. Determining the mobility of ions by transient current measurements at high voltages.

    Science.gov (United States)

    Kohn, Peter; Schröter, Klaus; Thurn-Albrecht, Thomas

    2007-08-24

    We present polarization and transient current experiments that allow an independent determination of the charge carrier density and the mobility of ions in polymer electrolytes at low charge carrier density. The method relies on a complete depletion of ions in the bulk electrolyte achieved by applying high voltages. Based on a qualitative model for the charge dynamics in this nonlinear regime, the method is exemplarily applied to a system of polymethylmethacrylate doped with small amounts of a lithium salt. The independently obtained values for the ionic mobility, the charge carrier density, and the conductivity are consistent for all salt concentrations studied. Criteria for the applicability of the method are discussed.

  5. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Li, YunWei; Blaabjerg, Frede;

    2015-01-01

    The virtual impedance concept is increasingly used for the control of power electronic systems. Generally, the virtual impedance loop can either be embedded as an additional degree of freedom for active stabilization and disturbance rejection, or be employed as a command reference generator...... for the converters to provide ancillary services. This paper presents an overview of the virtual-impedance-based control strategies for voltage-source and current-source converters. The control output impedance shaping attained by the virtual impedances is generalized first using the impedance-based models...

  6. Comment on "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires"

    Institute of Scientific and Technical Information of China (English)

    P. Ohlckers; P. Pipinys

    2009-01-01

    @@ In "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires", Long et al.[1] reported the currentvoltage ( Ⅰ - Ⅴ) characteristics of individual poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in the temperature range from 20 to 50K (Fig. 2(a)). The authors stated that at temperatures equal to 50 K and higher, the Ⅰ - Ⅴ curves were linear. With decreasing temperature the Ⅰ - Ⅴ curves gradually became nonlinear. The temperature behavior of Ⅰ - Ⅴ characteristics is not suitably explained.

  7. Current-voltage characteristics of an individual helical CdS nanowire rope

    Institute of Scientific and Technical Information of China (English)

    Long Yun-Ze; Wang Wen-Long; Bai Feng-Lian; Chen Zhao-Jia; Jin Ai-Zi; Gu Chang-Zhi

    2008-01-01

    This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleacls are attached by focused-ion beam deposition. The current-voltage (Ⅰ - Ⅴ ) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the Ⅰ - Ⅴ curves and oscillation peaks in the differential conductance (dⅠ/dⅤ - Ⅴ) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.

  8. Influence of semiconductor barrier tunneling on the current-voltage characteristics of tunnel metal-oxide-semiconductor diodes

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1983-01-01

    Current–voltage characteristics have been examined for Al–SiO2–pSi diodes with an interfacial oxide thickness of delta[approximately-equal-to]20 Å. The diodes were fabricated on and oriented substrates with an impurity concentration in the range of NA=1014–1016 cm−3. The results show that for low...... forward voltages, the diode current is increased with increased NA, but for higher forward voltages, the diode current is decreased as NA is increased. For the diodes examined in this work, the results presented lead to the conclusion that the diode current should be treated as a superposition...... of multistep tunneling recombination current and injected minority carrier diffusion current. This can explain the observed values of the diode quality factor n. The results also show that the voltage drop across the oxide Vox is increased with increased NA, with the result that the lowering of the minority...

  9. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations

    Science.gov (United States)

    Seoane, F.; Macías, R.; Bragós, R.; Lindecrantz, K.

    2011-11-01

    In this work, the single Op-Amp with load-in-the-loop topology as a current source is revisited. This circuit topology was already used as a voltage-controlled current source (VCCS) in the 1960s but was left unused when the requirements for higher frequency arose among the applications of electrical bioimpedance (EBI). The aim of the authors is not only limited to show that with the currently available electronic devices it is perfectly viable to use this simple VCCS topology as a working current source for wideband spectroscopy applications of EBI, but also to identify the limitations and the role of each of the circuit components in the most important parameter of a current for wideband applications: the output impedance. The study includes the eventual presence of a stray capacitance and also an original enhancement, driving with current the VCCS. Based on the theoretical analysis and experimental measurements, an accurate model of the output impedance is provided, explaining the role of the main constitutive elements of the circuit in the source's output impedance. Using the topologies presented in this work and the proposed model, any electronic designer can easily implement a simple and efficient current source for wideband EBI spectroscopy applications, e.g. in this study, values above 150 kΩ at 1 MHz have been obtained, which to the knowledge of the authors are the largest values experimentally measured and reported for a current source in EBI at this frequency.

  10. Note: Development of 9 A current source for precise resistance measurement method.

    Science.gov (United States)

    Štambuk, Igor; Malarić, Roman

    2012-10-01

    In this Note, design of voltage controlled current source intended to be used in precise resistance measurement system in the range from 0.1 mΩ to 10 Ω is presented. The design specifications of current source include gross-tuning of current in the range from 0.1 mA to 9 A, low noise, low temperature coefficient, and short term stability better than 50 ppm. The realized current source has achieved better short term stability than comparable commercial devices.

  11. A Novel 800mV Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems

    Science.gov (United States)

    Kwon, Oh Jun; Kwack, Kae Dal

    In this paper, a novel 800mV beta-multiplier reference current source circuit is presented. In order to cope with the narrow input common-mode range of the Opamp in the reference circuit, the resistive voltage divider was employed. High gain Opamp was designed to compensate for the intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18µm CMOS process with nominal Vth of 420mV and -450mV for n-MOS and p-MOS transistor, respectively. The total power consumption including Opamp is less than 50µW.

  12. Improvement in nano-hardness and corrosion resistance of low carbon steel by plasma nitriding with negative DC bias voltage

    Science.gov (United States)

    Alim, Mohamed Mounes; Saoula, Nadia; Tadjine, Rabah; Hadj-Larbi, Fayçal; Keffous, Aissa; Kechouane, Mohamed

    2016-10-01

    In this work, we study the effect of plasma nitriding on nano-hardness and corrosion resistance of low carbon steel samples. The plasma was generated through a radio-frequency inductively coupled plasma source. The substrate temperature increased (by the self-induced heating mechanism) with the treatment time for increasing negative bias voltages. X-rays diffraction analysis revealed the formation of nitride phases (ɛ-Fe2-3N and γ'-Fe4N) in the compound layer of the treated samples. A phase transition occurred from 3.5 kV to 4.0 kV and was accompanied by an increase in the volume fraction of the γ'-Fe4N phase and a decrease in that of the ɛ-Fe2-3N phase. Auger electron spectroscopy revealed a deep diffusion of the implanted nitrogen beyond 320 nm. The nano-hardness increased by ~400% for the nitrogen-implanted samples compared to the untreated state, the nitride phases are believed to participate to the hardening. Potentiodynamic polarization measurements revealed that the plasma nitriding has improved the corrosion resistance behavior of the material. When compared to the untreated state, the sample processed at 4.0 kV exhibits a shift of +500 mV and a reduction to 3% in its corrosion current. These results were obtained for relatively low bias voltages and short treatment time (2 h).

  13. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    Science.gov (United States)

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  14. Antibacterial resistance: Current problems and possible solutions

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2005-03-01

    Full Text Available Antimicrobial resistance is a natural biological phenomenon of response of microbes to the selective pressure of an antimicrobial drug. Resistance may be inherent, which explains the phenomenon of opportunistic infection or acquired. Concern about the resistance increased in the late 1990′s and since then, many governmental and agency reports have been published regarding the agricultural use of antibacterials, advising less use of antibacterials, appropriate choice of antibacterials and regimens, prevention of cross-infection and development of new antibacterials. The emergence of multidrug resistant strains of Gram-negative bacteria (Pseudomonas, Klebsiella, Enterobacter, Acinetobacter, Salmonella species and Gram-positve organisms (Staphylococcus, Enterococcus, Streptococcus species is the more worrisome in the present therapeutic scenario. Multidrug - resistant tuberculosis is another serious public health problems. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy or inhibiting the resistance mechanism (e.g., beta-lactamase inhibitors, whereas other mechanisms of resistance can only be overcome by using an agent from a different class. It is urgently required to ban the sale of antibiotics without prescription, to use antibiotics more judiciously in hospitals by intensive teaching of the principles of the use of antibiotics and to establish better control measures for nosocomial infections. Thus, it is highly recommended that practicing physicians should become aware of the magnitude of existing problem of antibacterial resistance and help in fighting this deadly threat by rational prescribing.

  15. Voltage-gated K+ currents in mouse articular chondrocytes regulate membrane potential.

    Science.gov (United States)

    Clark, Robert B; Hatano, Noriyuki; Kondo, Colleen; Belke, Darrell D; Brown, Barry S; Kumar, Sanjay; Votta, Bartholomew J; Giles, Wayne R

    2010-01-01

    Membrane currents and resting potential of isolated primary mouse articular chondrocytes maintained in monolayer cell culture for 1-9 days were recorded using patch clamp methods. Quantitative RT-PCR showed that the most abundantly expressed transcript of voltage-gated K(+) channels was for K(V)1.6, and immunological methods confirmed the expression of K(V)1.6 α-subunit proteins. These chondrocytes expressed a large time- and potential-dependent, Ca(2+)-independent 'delayed rectifier' K(+) current. Steady-state activation was well-fit by a Boltzmann function with a threshold near -50 mV, and a half-activation potential of -34.5 mV. The current was 50% blocked by 1.48 mM tetraethylammonium, 0.66 mM 4-aminopyridine and 20.6 nM α-dendrotoxin. The current inactivated very slowly at membrane potentials in the range of the resting potential of the chondrocytes. Resting membrane potential of the chondrocytes at room temperature (19-21°C) and in 5 mM external K(+) was -46.4 ± 1.3 mV (mean ± s.e.m; n = 23), near the 'foot' of the activation curve of this K(+) current. Resting potential was depolarized by an average of 4.2 ± 0.8 mV by 25 mM TEA, which blocked about 95% of the K(+) current. At a membrane potential of -50 mV, the apparent time constant of inactivation (tau(in)) was 37.9 s, and the 'steady-state' current level was 19% of that at a holding potential of -90 mV; at -40 mV, tau(in) was 20.3 s, and 'steady-state' current was 5% of that at -90 mV. These results demonstrate that in these primary cultured, mouse articular chondrocytes steady-state activation of a voltage-gated K(+) current contributes to resting membrane potential. However, this current is also likely to have a significant physiological role in repolarizing the chondrocyte following depolarizing stimuli that might occur in conditions of membrane stretch. For example, activation of TRP('transient receptor potential') non-specific cation channels in these cells during cyclic loading and unloading

  16. Pronase acutely modifies high voltage-activated calcium currents and cell properties of Lymnaea neurons.

    Science.gov (United States)

    Hermann, P M; Lukowiak, K; Wildering, W C; Bulloch, A G

    1997-12-01

    Pronase E ('pronase') is one of the proteolytic enzymes that are used in preparative procedures such as cell isolation and to soften the sheath of invertebrate ganglia. Although several effects of proteolytic enzymes on the physiology of non-neuronal tissues have been described, the effects of these enzymes on central neurons have received little attention. We examined the effects of bath-applied pronase on neurons in the Lymnaea central nervous system and in vitro. Pronase caused action potential broadening in neurons that exhibit a shoulder on the repolarization phase of their action potentials. This effect of pronase was accompanied by, although unrelated to, a depolarization and decrease in action potential interval. Some, but not all, effects of pronase in the central nervous system were reversible. For example, the decreases in membrane potential and action potential interval were both reversed after approximately 1 h of washing with saline. However, the effect of pronase on the action potential duration was not reversed after a period of 90 min. The modulation of action potential width prompted us to examine Ca2+ currents. Exposure to pronase resulted in an increase in both peak and late high voltage-activated Ca2+ currents in isolated neurons. Pronase neither changed the inactivation rate nor caused a shift in the current-voltage relationship of the current. The changes in action potential duration could be prevented by application of 0.1 mM Cd2+, indicating that the action potential broadening caused by pronase depends on Ca2+ influx. This is the first systematic study of the acute and direct actions of pronase on Ca2+ currents and cell properties both in the CNS and in vitro.

  17. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.

  18. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high- Tc superconductors

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.

  19. Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements

    Directory of Open Access Journals (Sweden)

    M. Greyson Christoforo

    2015-11-01

    Full Text Available The determination of the power conversion efficiency of solar cells based on organo-metal-halides is subject to an ongoing debate. As solar cell devices may exhibit very slow transient response, current-voltage scans in different directions may not be congruent, which is an effect often referred to as hysteresis. We here discuss time-resolved current-voltage measurements as a means to evaluate appropriate delay times (voltage settling times to be used in current-voltage measurements of solar cells. Furthermore, this method allows the analysis of transient current response to extract time constants that can be used to compare characteristic differences between devices of varying architecture types, selective contacts and changes in devices due to storage or degradation conditions.

  20. High voltage pulsed current in collagen realignment, synthesis, and angiogenesis after Achilles tendon partial rupture

    Directory of Open Access Journals (Sweden)

    Érika P. Rampazo

    2016-01-01

    Full Text Available ABSTRACT Objective To verify the efficacy of high voltage pulsed current in collagen realignment and synthesis and in angiogenesis after the partial rupturing of the Achilles tendon in rats. Method Forty male Wistar rats were randomized into four groups of 10 animals each: sham, cathodic stimulation, anodic stimulation, and alternating stimulation. Their Achilles tendons were submitted to direct trauma by a free-falling metal bar. Then, the treatment was administered for six consecutive days after the injury. In the simulation group, the electrodes were positioned on the animal, but the device remained off for 30 minutes. The other groups used a frequency of 120 pps, sensory threshold, and the corresponding polarity. On the seventh day, the tendons were removed and sent for histological slide preparation for birefringence and Picrosirius Red analysis and for blood vessel quantification. Results No significant difference was observed among the groups regarding collagen realignment (types I or III collagen or quantity of blood vessels. Conclusion High voltage pulsed current for six consecutive days was not effective in collagen realignment, synthesis, or angiogenesis after the partial rupturing of the Achilles tendon in rats.

  1. High voltage pulsed current in collagen realignment, synthesis, and angiogenesis after Achilles tendon partial rupture

    Science.gov (United States)

    Rampazo, Érika P.; Liebano, Richard E.; Pinfildi, Carlos Eduardo; Folha, Roberta A. C.; Ferreira, Lydia M.

    2016-01-01

    ABSTRACT Objective To verify the efficacy of high voltage pulsed current in collagen realignment and synthesis and in angiogenesis after the partial rupturing of the Achilles tendon in rats. Method Forty male Wistar rats were randomized into four groups of 10 animals each: sham, cathodic stimulation, anodic stimulation, and alternating stimulation. Their Achilles tendons were submitted to direct trauma by a free-falling metal bar. Then, the treatment was administered for six consecutive days after the injury. In the simulation group, the electrodes were positioned on the animal, but the device remained off for 30 minutes. The other groups used a frequency of 120 pps, sensory threshold, and the corresponding polarity. On the seventh day, the tendons were removed and sent for histological slide preparation for birefringence and Picrosirius Red analysis and for blood vessel quantification. Results No significant difference was observed among the groups regarding collagen realignment (types I or III collagen) or quantity of blood vessels. Conclusion High voltage pulsed current for six consecutive days was not effective in collagen realignment, synthesis, or angiogenesis after the partial rupturing of the Achilles tendon in rats. PMID:27556387

  2. Ion properties in a Hall current thruster operating at high voltage

    Science.gov (United States)

    Garrigues, L.

    2016-04-01

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.

  3. Brivaracetam Differentially Affects Voltage-Gated Sodium Currents Without Impairing Sustained Repetitive Firing in Neurons

    Science.gov (United States)

    Niespodziany, Isabelle; André, Véronique Marie; Leclère, Nathalie; Hanon, Etienne; Ghisdal, Philippe; Wolff, Christian

    2015-01-01

    Aims Brivaracetam (BRV) is an antiepileptic drug in Phase III clinical development. BRV binds to synaptic vesicle 2A (SV2A) protein and is also suggested to inhibit voltage-gated sodium channels (VGSCs). To evaluate whether the effect of BRV on VGSCs represents a relevant mechanism participating in its antiepileptic properties, we explored the pharmacology of BRV on VGSCs in different cell systems and tested its efficacy at reducing the sustained repetitive firing (SRF). Methods Brivaracetam investigations on the voltage-gated sodium current (INa) were performed in N1E-155 neuroblastoma cells, cultured rat cortical neurons, and adult mouse CA1 neurons. SRF was measured in cultured cortical neurons and in CA1 neurons. All BRV (100–300 μM) experiments were performed in comparison with 100 μM carbamazepine (CBZ). Results Brivaracetam and CBZ reduced INa in N1E-115 cells (30% and 40%, respectively) and primary cortical neurons (21% and 47%, respectively) by modulating the fast-inactivated state of VGSCs. BRV, in contrast to CBZ, did not affect INa in CA1 neurons and SRF in cortical and CA1 neurons. CBZ consistently inhibited neuronal SRF by 75–93%. Conclusions The lack of effect of BRV on SRF in neurons suggests that the reported inhibition of BRV on VGSC currents does not contribute to its antiepileptic properties. PMID:25444522

  4. High-voltage (> 1 kV) SiC Schottky barrier diodes with low on-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Tsunenobu; Urushidani, Tatsuo; Kobayashi, Sota; Matsunami, Hiroyuki (Kyoto Univ. (Japan). Dept. of Electrical Engineering)

    1993-12-01

    Au/6H-SiC Schottky barrier diodes with high blocking voltages were successfully fabricated using layers grown by step-controlled epitaxy. A breakdown voltage over 1,100 V could be achieved, which is the highest ever reported for silicon carbide (SiC) Schottky barrier diodes. These high-voltage SiC rectifiers had specific on-resistances lower than the theoretical limits of Si rectifiers by more than one order of magnitude. The specific on-resistance increased with temperature according to T[sup 2.0] dependence. The diodes showed good characteristics at temperature as high as 400 C.

  5. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Science.gov (United States)

    Hayashi, K.; Saitoh, K.; Shibayama, Y.; Shirahama, K.

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 106 V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  6. Temperature-dependent current-voltage characteristics of niobium SNIS Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Lacquaniti, V; Andreone, D; Cassiago, C; De Leo, N; Fretto, M; Sosso, A [National Institute of Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M, E-mail: v.lacquaniti@inrim.i [Donetsk Physical and Technical Institute, National Academy of Sciences of Ukraine, Str. Rosa Luxemburg. 72, 83114 Donetsk (Ukraine)

    2010-06-01

    Motivated by a search for a suitable technology to fabricate Josephson junctions with a tunable damping regime, we performed a systematic study of the temperature effect on the critical current in Nb/Al-AlO{sub x}-Nb heterostructures with a nanometer-thick Al interlayer. For Al layer thicknesses ranging from 40 to 110 nm, we have observed a transition from hysteretic (below 4.2 K) to non-hysteretic (above 4.2 K) current-voltage curves. Measured supercurrent-vs-temperature characteristics which significantly differ from those of traditional SIS and SNS devices are interpreted in terms of the superconducting proximity effect between Al and Nb films. Thermal stability and good reproducibility of our junctions are demonstrated.

  7. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells

    Science.gov (United States)

    Rela, Lorena; Piantanida, Ana Paula; Bordey, Angelique; Greer, Charles A.

    2015-01-01

    The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that olfactory ensheathing cells express voltage-dependent potassium currents compatible with inward rectifier (Kir) and delayed rectifier (KDR) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in olfactory ensheathing cells. The relevance of K+ currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve. PMID:25856239

  8. Modeling and Simulation of 3-Phase Voltage and Current Source Inverter using MATLAB/SIMULINK for Various Loads

    Directory of Open Access Journals (Sweden)

    Braj Kishor Verma

    2014-05-01

    Full Text Available In today’s world inverters are used to convert a single or multiple phase AC voltages from a DC supply source. Various types of inverters such as 1-phase inverters and 3-phase inverters are used for various industrial applications. Inverter comes in two categories which is voltage source inverter (VSI and current source inverter (CSI. In this paper work simulation of three phase VSI and CSI is performed using MATLAB/SIMULINK. THD is compared in voltage and current waveform and analyzed in different load conditions

  9. Investigation of Current-Voltage Characteristics of Ni/GaN Schottky Barrier Diodes for Potential HEMT Applications

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2011-01-01

    Full Text Available In the present work, the I-V characteristics of Ni/GaN Schottky diodes have been studied. The Schottky diodes, having different sizes using Ni/Au and ohmic contacts using Ti/Al/Ni/Au were made on n-GaN. The GaN was epitaxially grown on c-plane sapphire by metal organic chemical vapor deposition (MOCVD technique and had a thickness of about 3.7 µm. The calculated ideality factor and barrier height from current-voltage (I-V characteristics (at 300 K for two GaN Schottky diodes were close to ~1.3 and ~ 0.8 eV respectively. A high reverse leakage current in the order of 10 – 4A/cm2 (at – 1 V was observed in both diodes. A careful analysis of forward bias I-V characteristics showed very high series resistance and calculation for ideality factor indicated presence of other current transport mechanism apart from thermionic model at room temperature.

  10. Characterization of voltage-gated K+ currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons.

    Science.gov (United States)

    Morin, France; Haufler, Darrell; Skinner, Frances K; Lacaille, Jean-Claude

    2010-06-01

    CA1 inhibitory interneurons at the stratum lacunosum-moleculare and radiatum junction (LM/RAD-INs) display subthreshold membrane potential oscillations (MPOs) involving voltage-dependent Na(+) and A-type K(+) currents. LM/RAD-INs also express other voltage-gated K(+) currents, although their properties and role in MPOs remain unclear. Here, we characterized these voltage-gated K(+) currents and investigated their role in MPOs. Using outside-out patch recordings from LM/RAD-IN somata, we distinguished four voltage-gated K(+) currents based on their pharmacology and activation/inactivation properties: a fast delayed rectifier current (I(Kfast)), a slow delayed rectifier current (I(Kslow)), a rapidly inactivating A-type current (I(A)), and a slowly inactivating current (I(D)). Their relative contribution to the total K(+) current was I(A) > I(Kfast) > I(Kslow) = I(D). The presence of I(D) and the relative contributions of K(+) currents in LM/RAD-INs are different from those of other CA1 interneurons, suggesting the presence of differential complement of K(+) currents in subgroups of interneurons. We next determined whether these K(+) currents were sufficient for MPO generation using a single-compartment model of LM/RAD-INs. The model captured the subthreshold voltage dependence of MPOs. Moreover, all K(+) currents were active at subthreshold potentials but I(D), I(A), and the persistent sodium current (I(NaP)) were most active near threshold. Using impedance analysis, we found that I(A) and I(NaP) contribute to MPO generation by modulating peak spectral frequency during MPOs and governing the voltage range over which MPOs occur. Our findings uncover a differential expression of a complement of K(+) channels that underlies intrinsic rhythmic activity in inhibitory interneurons.

  11. Current resistance issues in anti- microbial therapy

    African Journals Online (AJOL)

    the reasons why antimicrobial therapy prescribed for the treatment of respiratory tract ... may not be confined to a single antibiotic, but may affect multiple antimicrobial classes. ..... of Antimicrobial Resistance: Guidelines for the prevention of ...

  12. Leakage current and stability of acrylic elastomer subjected to high DC voltage

    Science.gov (United States)

    Hammami, S.; Jean-Mistral, C.; Jomni, F.; Gallot-Lavallée, O.; Rain, P.; Yangui, B.; Sylvestre, A.

    2015-04-01

    Dielectric elastomers such as 3M VHB4910 acrylate film have been widely used for electromechanical energy conversion such as actuators, sensors and generators, due to their lightweight, high efficiency, low cost and high energy density. Mechanical and electric properties of such materials have been deeply investigated according to various parameters (temperature, frequency, pre-stress, nature of the compliant electrodes…). Models integrating analytic laws deduced from experiments increase their accuracy. Nevertheless, leakage current and electrical breakdown reduce the efficiency and the lifetime of devices made with these polymers. These two major phenomena are not deeply investigated in the literature. Thus, this paper describes the current-voltage characteristics of acrylate 3M VHB4910 and investigates the stability of the current under high electric field (kV) for various temperatures (from 20°C to 80°C) and over short (300 s) and long (12h) periods. Experimental results show that, with gold electrodes at ambient temperature, the current decreases with time to a stable value corresponding to the conduction current. This decrease occurs during 6 hours, whereas in the literature values of current at short time (less than 1 hour) are generally reported. This decrease can be explained by relaxations mechanisms in the polymer. Schottky emission and Poole-Frenkel emission are both evaluated to explain the leakage current. It emerges from this study that the Schottky effect constitutes the main mechanism of electric current in the 3M VHB4910. For high temperatures, the steady state is reached quickly. To end, first results on the leakage current changes for pre-stretch VHB4910 complete this study.

  13. Resistant hypertension: Current status, future challenges

    Directory of Open Access Journals (Sweden)

    Niloofar Hajizadeh

    2014-01-01

    Full Text Available Resistant hypertension in adolescents is increasing in frequency and is increasingly recognized as having significant short- and long-term health consequences. It may be seen in up to 30% of all hypertensive patients cared for. Adolescents with resistant hypertension are at higher cardiovascular (CV risk due to a long history of severe hypertension complicated by other CV risk factors such as obesity. Common causes of resistant hypertension include primary aldosteronism, sleep apnea, diabetes and chronic kidney disease. Careful blood pressure (BP measurement and thorough evaluation of patients with sustained BP elevation should make a possible early diagnosis of resistant hypertension. Successful treatment requires identification and reversal of life-style factors contributing to treatment resistant and diagnosis and appropriate treatment of causes of hypertension. Improved pharmacologic therapies may offer the potential for preventing or at least ameliorating early CV disease. This review highlights these and other important issues in the evaluation and management of adolescents with resistant hypertension and provides practical guidance to the practitioners involved in caring for such patients.

  14. The current interruption process in vacuum analysis of the currents and voltages of current-zero measurements

    NARCIS (Netherlands)

    van Lanen, E.P.A.

    2008-01-01

    The circuit breaker helps protecting vulnerable equipment in a power network from hazardous short-circuit currents by isolating a fault, when it occurs. They perform this task by extinguishing a plasma arc that appears as soon as the breaker's contacts separate, and through which the short-circuit c

  15. The current interruption process in vacuum analysis of the currents and voltages of current-zero measurements

    NARCIS (Netherlands)

    van Lanen, E.P.A.

    2008-01-01

    The circuit breaker helps protecting vulnerable equipment in a power network from hazardous short-circuit currents by isolating a fault, when it occurs. They perform this task by extinguishing a plasma arc that appears as soon as the breaker's contacts separate, and through which the short-circuit

  16. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    Science.gov (United States)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  17. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    Science.gov (United States)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  18. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array.

  19. Methods for specific electrode resistance measurement during transcranial direct current stimulation.

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q; Bikson, Marom

    2015-01-01

    Monitoring of electrode resistance during tDCS is considered important for tolerability and safety. Conventional resistance measurement methods do not isolate individual electrode resistance and for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. We propose a novel method to monitor individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low intensity and low frequency sinusoids with electrode-specific frequencies) and a sentinel electrode (not used for DC). We developed and solved lumped-parameter models of tDCS electrodes with or without a sentinel electrode to validate this methodology. Assumptions were tested and parameterized in participants using forearm stimulation combining tDCS (2 mA) and test-signals (38 and 76 μA pk-pk at 1 Hz, 10 Hz, & 100 Hz) and an in vitro test (creating electrode failure modes). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. Cross talk aggravated with electrode proximity and resistance mismatch in multi-electrode resistance tracking could be corrected using proposed approaches. Average voltage and pain scores were not significantly different across test current intensities and frequencies. Using our developed method, a test signal can predict DC electrode resistance. Since unique test frequencies can be used at each tDCS electrode, specific electrode resistance can be resolved for any number of stimulating channels - a process made still more robust by the use of a sentinel electrode. Published by Elsevier Inc.

  20. Integration of offshore wind farms through high voltage direct current networks

    Science.gov (United States)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  1. Variable Temperature Current-Voltage Measurements of CdTe Solar Cells

    Science.gov (United States)

    Smith, A. D.

    2000-03-01

    We have used a 2" x 2" Peltier heat pump chip powered with 24 V from a computer power supply to build a variable temperature stage for current voltage measurements of solar cells. A voltage divider was used to achieve several different set point temperatures from 25 oC to -24 oC. This system was used with a halogen lamp to study the electrical performance of polycrystalline thin-film solar cells fabricated in our group. These cells have the superstrate structure glass/SnO2:F/CdS/CdTe/metal.(1) The I-V characteristic shows evidence of a blocking back-diode which sets in below room temperature. This behavior will be related to the diffusion into the CdTe of the metals used for our back contact.(2) 1. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan, Appl. Phys. Lett. 69, 3045-3047 (1996). 2. D. Grecu and A.D. Compaan, Appl. Phys. Lett. 75, 361-363 (1999).

  2. UPQC Controlled Capable Of Mitigating Unbalance In Source Voltage And Load Current

    Directory of Open Access Journals (Sweden)

    B. Santhosh Kumar

    2013-11-01

    Full Text Available This paper reports the development of a laboratory prototype of a fully digital DSP-controlled 12-kVA unified power quality conditioner (UPQC, capable of compensating for both the supply voltage and the load current imperfections. A fully digital controller based on the TMS320F2812 DSP platform is implemented for the reference generation as well as control purposes. The delay problem in the digital controller is overcome by application of a fast DSP, a compact control technique and proper flow of control steps in the DSP software. A phase-locked loop- less software grid synchronization method has been implemented for the effective operation of the UPQC under conditions of grid frequency variation. A sequence-based compensation strategy has been developed to compensate for balanced and unbalanced sags while accommodating the fact that the voltage injection capability of the UPQC is limited. The prototype UPQC power circuit, control features, and control algorithm along with experimental results are presented in this paper.

  3. Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars

    Directory of Open Access Journals (Sweden)

    Jaime Rodríguez Arribas

    2014-01-01

    Full Text Available Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.

  4. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  5. Current-voltage characteristics of individual conducting polymer nanotubes and nanowires

    Institute of Scientific and Technical Information of China (English)

    Long Yun-ze; Yin Zhi-Hua; Li Meng-Meng; Gu Chang-Zhi; Duvail Jean-Luc; Jin Ai-zi; Wan Mei-xiang

    2009-01-01

    We report the current-voltage (Ⅰ-Ⅴ) characteristics of individual polypyrrole nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent Ⅰ-Ⅴ curves. It is found that the Ⅰ-Ⅴ data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression)could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition,similar Ⅰ-Ⅴ characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.

  6. Comparison of Twitch Responses During Current- or Voltage-Controlled Transcutaneous Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Vargas Luna, José Luis; Krenn, Matthias; Löfler, Stefan; Kern, Helmut; Cortés R, Jorge A; Mayr, Winfried

    2015-10-01

    Neuromuscular electrical stimulation (NMES) is an established method for functional restoration of muscle function, rehabilitation, and diagnostics. In this work, NMES was applied with surface electrodes placed on the anterior thigh to identify the main differences between current-controlled (CC) and voltage-controlled (VC) modes. Measurements of the evoked knee extension force and the myoelectric signal of quadriceps and hamstrings were taken during stimulation with different amplitudes, pulse widths, and stimulation techniques. The stimulation pulses were rectangular and symmetric biphasic for both stimulation modes. The electrode-tissue impedance influences the differences between CC and VC stimulation. The main difference is that for CC stimulation, variation of pulse width and amplitude influences the amount of nerve depolarization, whereas VC stimulation is only dependent on amplitude variations for pulse widths longer than 150 μs. An important remark is that these findings are strongly dependent on the characteristics of the electrode-skin interface. In our case, we used large stimulation electrodes placed on the anterior thigh, which cause higher capacitive effects. The controllability, voltage compliance, and charge characteristics of each stimulation technique should be considered during the stimulators design. For applications that require the activation of a large amount of nerve fibers, VC is a more suitable option. In contrast, if the application requires a high controllability, then CC should be chosen prior to VC.

  7. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William;

    2014-01-01

    within a safe and pre-defined range. A theoretical treatment of the INEC algorithm and its implementation and integration within a conventional VSC control system are presented, and the impact on the total DC capacitance required within the MTDC network to ensure that DC voltages vary within...... an acceptable range are discussed. The proposed INEC scheme is validated using a Matlab/Simulink model under various changes in demand and in response to AC network faults. The model incorporates a multi-machine AC power system connected to a MTDC transmission system with multiple converter-interfaced nodes....... The effectiveness of the INEC in damping post-fault oscillations and in enhancing AC system frequency stability is also investigated. The system is shown to perform well and is attractive for providing a stable MTDC system that is capable of providing valuable support to the connected AC systems....

  8. Current understanding of iberiotoxin-resistant BK channels in the nervous system

    OpenAIRE

    Bin eWang; Jaffe, David B.; Robert eBrenner

    2014-01-01

    While most large-conductance, calcium- and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called type II subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. ...

  9. On Neuron Membrane Potential Distributions for Voltage and Time Dependent Current Modulation

    Science.gov (United States)

    Salig, J. B.; Carpio-Bernido, M. V.; Bernido, C. C.; Bornales, J. B.

    Tracking variations of neuronal membrane potential in response to multiple synaptic inputs remains an important open field of investigation since information about neural network behavior and higher brain functions can be inferred from such studies. Much experimental work has been done, with recent advances in multi-electrode recordings and imaging technology giving exciting results. However, experiments have also raised questions of compatibility with available theoretical models. Here we show how methods of modern infinite dimensional analysis allow closed form expressions for important quantities rich in information such as the conditional probability density (cpd). In particular, we use a Feynman integral approach where fluctuations in the dynamical variable are parametrized with Hida white noise variables. The stochastic process described then gives variations in time of the relative membrane potential defined as the difference between the neuron membrane and firing threshold potentials. We obtain the cpd for several forms of current modulation coefficients reflecting the flow of synaptic currents, and which are analogous to drift coefficients in the configuration space Fokker-Planck equation. In particular, we consider cases of voltage and time dependence for current modulation for periodic and non-periodic oscillatory current modulation described by sinusoidal and Bessel functions.

  10. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Baixing; Peng, Zhenjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Qing [School of Science, Lanzhou University of Technology, Lanzhou 730050 (China)

    2014-04-01

    Highlights: • The PEO coating growth rate increased with the cathodic voltage increasing. • Higher cathodic voltage resulted in more compact coating structure. • The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline γ-Al{sub 2}O{sub 3} and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  11. A read-in IC for infrared scene projectors with voltage drop compensation for improved uniformity of emitter current

    Science.gov (United States)

    Cho, Min Ji; Shin, Uisub; Lee, Hee Chul

    2017-05-01

    This paper proposes a read-in integrated circuit (RIIC) for infrared scene projectors, which compensates for the voltage drops in ground lines in order to improve the uniformity of the emitter current. A current output digital-to-analog converter is utilized to convert digital scene data into scene data currents. The unit cells in the array receive the scene data current and convert it into data voltage, which simultaneously self-adjusts to account for the voltage drop in the ground line in order to generate the desired emitter current independently of variations in the ground voltage. A 32 × 32 RIIC unit cell array was designed and fabricated using a 0.18-μm CMOS process. The experimental results demonstrate that the proposed RIIC can output a maximum emitter current of 150 μA and compensate for a voltage drop in the ground line of up to 500 mV under a 3.3-V supply. The uniformity of the emitter current is significantly improved compared to that of a conventional RIIC.

  12. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  13. Voltage-driven versus current-driven spin torque in anisotropic tunneling junctions

    KAUST Repository

    Manchon, Aurelien

    2011-10-01

    Nonequilibrium spin transport in a magnetic tunnel junction comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is studied theoretically. The interfacial SOI generates a spin torque of the form T=T∥ M×(z× M)+T⊥ z× M, even in the absence of an external spin polarizer. For thick and large tunnel barriers, the torque reduces to the perpendicular component T⊥, which can be electrically tuned by applying a voltage across the insulator. In the limit of thin and low tunnel barriers, the in-plane torque T∥ emerges, proportional to the tunneling current density. Experimental implications on magnetic devices are discussed. © 2011 IEEE.

  14. Membrane voltage differently affects mIPSCs and current responses recorded from somatic excised patches in rat hippocampal cultures.

    Science.gov (United States)

    Pytel, Maria; Mozrzymas, Jerzy W

    2006-01-30

    Recent analysis of current responses to exogenous GABA applications recorded from excised patches indicated that membrane voltage affected the GABAA receptor gating mainly by altering desensitization and binding [M. Pytel, K. Mercik, J.W. Mozrzymas, Membrane voltage modulates the GABAA receptor gating in cultured rat hippocampal neurons, Neuropharmacology, in press]. In order investigate the impact of such voltage effect on GABAA receptors in conditions of synaptic transmission, mIPSCs and current responses to rapid GABA applications were recorded from the same culture of rat hippocampal neurons. We found that I-V relationship for mIPSCs amplitudes showed a clear outward rectification while for current responses an inward rectification was seen, except for very low GABA concentrations. A clear shift in amplitude cumulative distributions indicated that outward rectification resulted from the voltage effect on the majority of mIPSCs. Moreover, the decaying phase of mIPSCs was clearly slowed down at positive voltages and this effect was represented by a shift in cumulative distributions of weighted decaying time constants. In contrast, deactivation of current responses was only slightly affected by membrane depolarization. These data indicate that the mechanisms whereby the membrane voltage modulates synaptic and extrasynaptic receptors are qualitatively different but the mechanism underlying this difference is not clear.

  15. The action of a phorbol ester on voltage-dependent parameters of the sodium current in isolated hippocampal neurons.

    Science.gov (United States)

    Chizhmakov, I V; Klee, M R

    1994-03-01

    The action of a phorbol ester (phorbol-12,13-diacetate) on the voltage-activated sodium current has been investigated by the voltage-clamp method in acutely isolated pyramidal neurons from rat hippocampus. The intracellular perfusion of isolated pyramidal neurons for 30-40 min induced a gradual 10-15 mV shift in both the current-voltage relationship and voltage-dependent steady-state inactivation to more negative potentials. The application of phorbol ester (1-10 microM) to isolated neurons for the same time increased the amplitude of sodium current by 15-20%, shifted the above-mentioned voltage-dependent parameters for an additional 10-15 mV in the same direction and changed the slope of the steady-state inactivation curve. In contrast, after prolonged incubation of slices in the phorbol ester-containing solution (1-10 microM) for 0.5-3 h, subsequent application of phorbol ester at the same concentration caused neither the addition shift of the voltage-dependent characteristics of sodium channels nor the change of the slope of the steady-state inactivation curve. However, in this case an increase in the amplitude of sodium current by 15-20% during 30-40 min intracellular perfusion was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    Science.gov (United States)

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  17. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  18. Regulation of voltage-gated sodium current by endogenous Src family kinases in cochlear spiral ganglion neurons in culture.

    Science.gov (United States)

    Feng, Shuang; Pflueger, Melissa; Lin, Shuang-Xiu; Groveman, Bradley R; Su, Jiping; Yu, Xian-Min

    2012-04-01

    Voltage-gated sodium (Na+) and potassium (K+)channels have been found to be regulated by Src family kinases(SFKs).However, how these channels are regulated by SFKs in cochlear spiral ganglion neurons (SGNs) remains unknown.Here, we report that altering the activity of endogenous SFKs modulated voltage-gated Na+, but not K+, currents recorded in embryonic SGNs in culture. Voltage-gated Na+ current was suppressed by inhibition of endogenous SFKs or just Src and potentiated by the activation of these enzymes. Detailed investigations showed that under basal conditions, SFK inhibitor application did not significantly affect the voltage-dependent activation, but shifted the steady-state inactivation curves of Na+ currents and delayed the recovery of Na+ currents from inactivation. Application of Src specific inhibitor, Src40–58,not only shifted the inactivation curve but also delayed the recovery of Na+ currents and moved the voltage-dependent activation curve towards the left. The pre-inhibition of SFKs occluded all the effects induced by Src40–58 application, except the left shift of the activation curve. The activation of SFKs did not change either steady-state inactivation or recovery of Na+ currents, but caused the left shift of the activation curve.SFK inhibitor application effectively prevented all the effects induced by SFK activation, suggesting that both the voltage-dependent activation and steady-state inactivation of Na+ current are subjects of SFK regulation. The different effects induced by activation versus inhibition of SFKs implied that under basal conditions, endogenously active and inactive SFKs might be differentially involved in the regulation of voltage-gated Na+ channels in SGNs.

  19. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth;

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  20. CMOS temperature sensor using a resistively degenerated common-source amplifier biased by an adjustable proportional-to-absolute-temperature voltage

    Science.gov (United States)

    Wang, Ruey-Lue; Fu, Chien-Cheng; Yu, Chi; Hao, Yi-Fan; Shi, Jian-Liang; Lin, Chen-Fu; Liao, Hsin-Hao; Tsai, Hann-Huei; Juang, Ying-Zong

    2014-01-01

    A high-linearity CMOS temperature sensor with pulse output is presented. The temperature core is a resistively degenerated common-source amplifier which gate is biased by a proportional-to-absolute-temperature (PTAT) voltage generator. The source resistor is made of polysilicon which resistance has a PTAT characteristic. The current flowing through the resistor exhibits a PTAT characteristic with high linearity of 99.99% at least for a temperature range from 0 to 125 °C. The PTAT voltage generator can be adjusted by a bias voltage Vb and hence the PTAT current can also be adjusted by the Vb. The PTAT current is mirrored to an added current controlled oscillator which output pulse frequencies also exhibit a PTAT characteristic. For the chip using the 0.35 µm process, the plots of measured pulse frequencies against temperature exhibit the sensitivity of 2.30 to 2.24 kHz/°C with linearity of more than 99.99% at the Vb of 1 to 1.2 V.

  1. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  2. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    Science.gov (United States)

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.

  3. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  4. Impact of parasitic resistance on the ESD robustness of high-voltage devices

    Institute of Scientific and Technical Information of China (English)

    Lin Lijuan; Jiang Lingli; Fan Hang; Zhang Bo

    2012-01-01

    The impacts ofsubstrate parasitic resistance and drain ballast resistance on electrostatic discharge (ESD)robustness of LDMOS are analyzed.By increasing the two parasitic resistances,the ESD robustness of LDMOS are significantly improved.The proposed structures have been successfully verified in a 0.35 μm BCD process without using additional process steps.Experimental results show that the second breakdown current of the optimal structure increases to 3.5 A,which is about 367% of the original device.

  5. Conventional P-ω/Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid

    DEFF Research Database (Denmark)

    Hou, Xiaochao; Sun, Yao; Yuan, Wenbin

    2016-01-01

    In low-voltage converter-based alternating current (AC) microgrids with resistive distribution lines, the P-V droop with Q-f boost (VPD/FQB) is the most common method for load sharing. However, it cannot achieve the active power sharing proportionally. To overcome this drawback, the conventional P......-ω/Q-V droop control is adopted in the low-voltage AC microgrid. As a result, the active power sharing among the distributed generators (DGs) is easily obtained without communication. More importantly, this study clears up the previous misunderstanding that conventional P-ω/Q-V droop control is only applicable...... to microgrids with highly inductive lines, and lays a foundation for the application of conventional droop control under different line impedances. Moreover, in order to guarantee the accurate reactive power sharing, a guide for designing Q-V droop gains is given, and virtual resistance is adopted to shape...

  6. Torque harmonics of an asynchronous motor supplied by a voltage- or current-sourced inverter quasi-square operation

    Energy Technology Data Exchange (ETDEWEB)

    Kyyrae, J. [Helsinki University of Technology, Institute of Intelligent Power Electronics, Espoo (Finland)

    1997-12-31

    Voltage- and current-sourced dc-ac converters operating in quasi-square area are compared. Their characteristics are calculated with switching vector, which is space-vector of switching functions. When the load is an asynchronous motor various analytical equations, including torque, are calculated efficiently. Motor current and torque approximations are compared with the simulated ones. (orig.) 6 refs.

  7. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    CERN Document Server

    Stoyanov, Dimitar G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in the ionization chamber are considered. On the basic of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage.

  8. SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes.

    Science.gov (United States)

    Chen, Kui-Hao; Liu, Hui; Yang, Lei; Jin, Man-Wen; Li, Gui-Rong

    2015-06-01

    SKF-96365 (1-(beta-[3-(4-methoxy-phenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride) is a general TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in cardiovascular system. Recent reports showed that SKF-96365 induced a reduction in cardiac conduction. The present study investigates whether the reduced cardiac conduction caused by SKF-96365 is related to the blockade of voltage-gated sodium current (I Na) in rat ventricular myocytes using the whole-cell patch voltage-clamp technique. It was found that SKF-96365 inhibited I Na in rat ventricular myocytes in a concentration-dependent manner. The compound (1 μM) negatively shifted the potential of I Na availability by 9.5 mV, increased the closed-state inactivation of I Na, and slowed the recovery of I Na from inactivation. The inhibition of cardiac I Na by SKF-96365 was use-dependent and frequency-dependent, and the IC₅₀ was decreased from 1.36 μM at 0.5 Hz to 1.03, 0.81, 0.61, 0.56 μM at 1, 2, 5, 10 Hz, respectively. However, the selective TRPC3 antagonist Pyr3 decreased cardiac I Na by 8.5% at 10 μM with a weak use and frequency dependence. These results demonstrate that the TRPC channel antagonist SKF-96365 strongly blocks cardiac I Na in use-dependent and frequency-dependent manners. Caution should be taken for interpreting the alteration of cardiac electrical activity when SKF-96365 is used in native cells as a TRPC antagonist.

  9. Antibiotic resistance: current issues and future strategies

    Directory of Open Access Journals (Sweden)

    Giancarlo Scarafile

    2016-09-01

    Full Text Available The antibiotic resistance (antimicrobial resistance – AMR and the particular emergence of multi-resistant bacterial strains, is a problem of clinical relevance involving serious threats to public health worldwide. From early this decade, a lot of studies have demonstrated a significant increase in the rates of antibiotic resistance by bacterial pathogens responsible for nosocomial and community infections all over the world. The AMR leads to a reduced drug efficacy in the treatment options available and therefore, to an increase in mortality rates. The original causes of the phenomenon are: environmental factors which favor a mutation of the genetic bacterial inheritance, thereby inhibiting the active ingredient of the antibiotics; unsuitable administering of antibiotics in veterinary, incorrect taking both in hospitals and at home and, lately, lack of investments in the development of new drugs. The alarming epidemiological data prompted the World Health Organization (WHO in 2011 to coin the slogan "No action today, no cure tomorrow" in order to immediately implement a new strategy to improve the use of available drugs and to accelerate the introduction of new ones through a new phase of research involving private and public institutions. The European Union has stressed that the surveillance is considered an essential factor for an effective response to this problem but it has also highlighted that the results produced have been lower than expectations because of serious shortcomings such as lack of methodological standards, insufficient data sharing and no coordination among European countries. In Italy the situation is much more troubling; in fact, according to the Ministry of Health, 5000-7000 yearly deaths are deemed due to nosocomial infections, with an annual cost of more than 100 million €.These figures explain how the fight against infections is far from being won. The purpose of this review is to analyze the basic causes of the

  10. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    Science.gov (United States)

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  11. Large naturally-produced electric currents and voltage traverse damaged mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Borgens Richard B

    2008-12-01

    Full Text Available Abstract Background Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages. We investigated the most ignored and earliest component of secondary injury. Large bioelectric currents immediately enter damaged cells and tissues of guinea pig spinal cords. The driving force behind these currents is the potential difference of adjacent intact cell membranes. For perhaps days, it is the biophysical events caused by trauma that predominate in the early biology of neurotrauma. Results An enormous (≤ mA/cm2 bioelectric current transverses the site of injury to the mammalian spinal cord. This endogenous current declines with time and with distance from the local site of injury but eventually maintains a much lower but stable value (2. The calcium component of this net current, about 2.0 pmoles/cm2/sec entering the site of damage for a minimum of an hour, is significant. Curiously, injury currents entering the ventral portion of the spinal cord may be as high as 10 fold greater than those entering the dorsal surface, and there is little difference in the magnitude of currents associated with crush injuries compared to cord transection. Physiological measurements were performed with non-invasive sensors: one and two-dimensional extracellular vibrating electrodes in real time. The calcium measurement was performed with a self-referencing calcium selective electrode. Conclusion The enormous bioelectric current, carried in part by free calcium, is the major initiator of secondary injury processes and causes significant damage after breach of the membranes of vulnerable cells adjacent to the injury site. The large intra-cellular voltages, polarized along the length of

  12. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Saitoh, K; Shibayama, Y; Shirahama, K [Department of Physics, Keio University, Yokohama 223-8522 (Japan)], E-mail: khayashi@a2.keio.jp

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 10{sup 6} V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  13. Neuregulin directly decreases voltage-gated sodium current in hippocampal ErbB4-expressing interneurons.

    Science.gov (United States)

    Janssen, Megan J; Leiva-Salcedo, Elias; Buonanno, Andres

    2012-10-03

    The Neuregulin 1 (NRG1)/ErbB4 signaling pathway has been genetically and functionally implicated in the etiology underlying schizophrenia, and in the regulation of glutamatergic pyramidal neuron function and plasticity. However, ErbB4 receptors are expressed in subpopulations of GABAergic interneurons, but not in hippocampal or cortical pyramidal neurons, indicating that NRG1 effects on principal neurons are indirect. Consistent with these findings, NRG1 effects on hippocampal long-term potentiation at CA1 pyramidal neuron synapses in slices are mediated indirectly by dopamine. Here we studied whether NRG/ErbB signaling directly regulates interneuron intrinsic excitability by pharmacologically isolating ErbB4-expressing neurons in rat dissociated hippocampal cultures, which lack dopaminergic innervation. We found that NRG1 acutely attenuates ErbB4-expressing interneuron excitability by depolarizing the firing threshold; neurons treated with the pan-ErbB inhibitor PD158780 or negative for ErbB4 were unaffected. These effects of NRG1 are primarily attributable to decreased voltage-gated sodium channel activity, as current density was attenuated by ∼60%. In stark contrast, NRG1 had minor effects on whole-cell potassium currents. Our data reveal the direct actions of NRG1 signaling in ErbB4-expressing interneurons, and offer novel insight into how NRG1/ErbB4 signaling can impact hippocampal activity.

  14. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  15. Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice.

    Science.gov (United States)

    Connaughton, V P; Maguire, G

    1998-04-01

    Whole-cell voltage-gated currents were recorded from bipolar cells in the zebrafish retinal slice. Two physiological populations of bipolar cells were identified. In the first, depolarizing voltage steps elicited a rapidly activating A-current that reached peak amplitude or = 10 ms after step onset and did not inactivate. IK was antagonized by internal caesium and external tetraethylammonium. Bipolar cells expressing IK also expressed a time-dependent h-current at membrane potentials calcium-dependent potassium current (IK(Ca)) were identified. Depolarizing voltage steps > -50 mV activated ICa, which reached peak amplitude between -20 and -10 mV. ICa was eliminated in Ca+2-free Ringer and blocked by cadmium and cobalt, but not tetrodotoxin. In most cells, Ica was transient, activating rapidly at -50 mV. This current was antagonized by nickel. The remaining bipolar cells expressed a nifedipine-sensitive sustained current that activated between -40 and -30 mV, with both slower kinetics and smaller amplitude than transient ICa. IK(Ca) was elicited by membrane depolarizations > -20 mV. Bipolar cells in the zebrafish retinal slice preparation express an array of voltage-gated currents which contribute to non-linear I-V characteristics. The zebrafish retinal slice preparation is well-suited to patch clamp analyses of membrane mechanisms and provides a suitable model for studying genetic defects in visual system development.

  16. Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Dahai Zhang

    2017-02-01

    Full Text Available This paper analyses the effects of doubly fed induction generator (DFIG tidal current turbines on a distribution grid under unbalanced voltage conditions of the grid. A dynamic model of an electrical power system under the unbalanced network is described in the paper, aiming to compare the system performance when connected with and without DFIG at the same location in a distribution grid. Extensive simulations of investigating the effect of DFIG tidal current turbine on stability of the distribution grid are performed, taking into account factors such as the power rating, the connection distance of the turbine and the grid voltage dip. The dynamic responses of the distribution system are examined, especially its ability to ride through fault events under unbalanced grid voltage conditions. The research has shown that DFIG tidal current turbines can provide a good damping performance and that modern DFIG tidal current power plants, equipped with power electronics and low-voltage ride-through capability, can stay connected to weak electrical grids even under the unbalanced voltage conditions, whilst not reducing system stability.

  17. Modelling of current-voltage characteristics of infrared photo-detectors based on type – II InAs/GaSb super-lattice diodes with unipolar blocking layers

    Directory of Open Access Journals (Sweden)

    Vishnu Gopal

    2015-09-01

    Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.

  18. Development of Electrostatic Actuator, which enables the Stable Contact Resistance, Driven at Low Voltage

    Science.gov (United States)

    Masuda, Takahiro; Seki, Tomonori; Miyaji, Takaaki; Sato, Fumihiko

    The switches play an important role in making the multifunctional radio communication circuit and therefore, the high-performance microminiaturized high-frequency switches are urgently expected. RF-MEMS switch with mechanical switching structure is hoped to improve both high-frequency signal loss and isolation quality simultaneously and to provide better linearity on the performance and compatibility to silicon-based circuit elements. But considering the applications, such as cellular phone and wireless-LAN, lower driving voltage and smaller switch dimensions are required. In order to solve these requirements, a novel electrostatic actuator with a unique structure of movable electrodes which enables the stable contact resistance is developed for RF-MEMS switches. This actuator has slits between the movable electrodes and the restoring spring. The electrostatic actuator with a movable electrode area of 0.5mm2 was driven at low voltage of 9-11V. And no defect due to restoration shortage is observed during switching test up to 400million cycles. In this paper, the results of mechanical design of the electrostatic actuator, the simulation, the experiments, and the reliability test are described

  19. Hysteresis Current Control of the Single-Phase Voltage Source Inverter Using eMEGAsim Real-Time Simulator

    Directory of Open Access Journals (Sweden)

    BOTEZAN, A.

    2015-08-01

    Full Text Available The paper presents the hysteresis current control of the voltage source inverter. The eMEGAsim real-time simulator is developed by OPAL-RT. Real-time simulation is used in many cases because it allows the behavior of the industrial processes operation to be determined. Two research directions are developed in this case, Rapid Control Prototyping and Hardware-In-the-Loop. Using eMEGAsim simulator allows implementing the command and control strategy of a single-phase voltage source inverter. At this stage, the real-time behavior of operation is monitored, because the voltage source inverter will be the part of a single-phase shunt active filter. In order to command and control the voltage source inverter, the current and voltage signals are acquired, since these signals are necessary to estimate reference signal. Extension of the Instantaneous Reactive Power Theorem is used because this theorem is suitable for single-phase active filter control. To test the real-time command and control strategy implemented, it was used a low power single-phase voltage source inverter (full bridge.

  20. Effect of Light Intensity and Temperature on the Current Voltage Characteristics of Al/ SY/ p- Si Organic-Inorganic Heterojunction

    Science.gov (United States)

    Imer, Arife Gencer; Ocak, Yusuf Selim

    2016-10-01

    An organic-inorganic contact was fabricated by forming a thin film of sunset yellow dye ( SY) on a p- Si wafer. The device showed a good rectification property, and the sunset yellow thin film modified the barrier height (Φb) of Al/ p- Si contact by influencing the space charge region. The heterojunction had a strong response to the different illumination intensities and showed that it can be suitable for photodiode applications. The I- V measurements of the device were also applied in the temperature range of 100-500 K. It was seen that characteristic parameters of the device were strongly dependent upon temperature. While the value of Φb increased, the ideality factor ( n) decreased with the increase in temperature. This variation was attributed to spatial inhomogeneity at the interface. The Norde function was used to determine the temperature-dependent series resistance and Φb values, and there was a good agreement with that of ln I- V data. The values of the Richardson constant ( A*) and mean Φb were determined as 29.47 Acm-2 K-2 by means of a modified activation energy plot, matching with a theoretical one, and 1.032 eV, respectively. Therefore, it was stated that the current voltage characteristic with the temperature can be explained by thermionic emission theory with Gaussian distribution of the Φb at the interface.

  1. The degradation and recovery properties of AlGaN/GaN high-electron mobility transistors under direct current reverse step voltage stress

    Institute of Scientific and Technical Information of China (English)

    Shi Lei; Feng Shi-Wei; Guo Chun-Sheng; Zhu Hui; Wan Ning

    2013-01-01

    Direct current (DC) reverse step voltage stress is applied on the gate of an AlGaN/GaN high-electron mobility transistor (HEMT).Experiments show that parameters degenerate under stress.Large-signal parasitic source/drain resistance (Rs/RD) and gate-source forward I-V characteristics are recoverable after breakdown of the device under test (DUT).Electrons trapped by both the AlGaN barrier trap and the surface state under stress lead to this phenomenon,and surface state recovery is the major reason for the recovery of device parameters.

  2. The influence of galvanic currents and voltage on the proliferation activity of lymphocytes and expression of cell surface molecules.

    Science.gov (United States)

    Podzimek, S; Hána, K; Miksovský, M; Pousek, L; Matucha, P; Meloun, M; Procházková, J

    2008-01-01

    Release of metal ions from dental metal fillings supported by galvanism can cause local or general pathological problems in sensitive and genetically susceptible individuals. We aimed to investigate in vitro lymphocyte responses and expression of surface molecules influenced by galvanic currents and voltage. Human peripheral blood lymphocytes were influenced by galvanic currents and voltages and lymphocyte proliferation was measured. Control samples were not exposed to the influence of galvanism. We also studied the expression of surface molecules by the FACS analysis. A 15-h and shorter influence of almost all tested currents and voltages caused a significant decrease in lymphocyte proliferation and the 15-h influence of 20 microA currents significantly increased expression of surface molecules CD 19, 11a/18, 19/69 and 19/95. An influence of 10 and 3 microA currents led to a significant decrease in the expression of surface molecules CD 3, 11a/18, 3/69 and 3/95 and to a significant increase in CD 19 expression. An 80 mV voltage influence led to a significant decrease in the expression of surface molecules CD 3, 11a/18, 3/69, 3/95, 19/69 and 19/95, and 200 and 300 mV voltages significantly decreased the expression of surface molecules CD 3, 19, 11a/18, 3/95 and 19/95 and significantly increased CD 19/69 expression. A long-lasting influence of galvanism can, in sensitive and genetically susceptible individuals, influence lymphocyte proliferation and surface molecule expression. The threshold for pathological values of 5 microA for galvanic currents and 100 mV for galvanic voltage was confirmed.

  3. Analytical models of on-resistance and breakdown voltage for 4H-SiC floating junction Schottky barrier diodes

    Science.gov (United States)

    Yuan, Hao; Tang, Xiaoyan; Song, Qingwen; Zhang, Yimen; Zhang, Yuming; Yang, Fei; Niu, Yingxi

    2015-01-01

    The analytical models of on-resistance and reverse breakdown voltage for 4H-SiC floating junction SBD are presented with the analysis of the transport path of the carriers and electric field distribution in the drift region. The calculation results from the analytical models well agree with the simulation results. The effects of the key structure parameters on specific on-resistance and breakdown voltage are described respectively by analytical models. Moreover, the relationship between BFOM and parameters of floating junction are investigated. It is proved that the analytical models are more convenient for the design of the floating junction SBDs.

  4. A practical solution in delineating thin conducting structures and suppression problem in direct current resistivity sounding

    Indian Academy of Sciences (India)

    Shashi Prakash Sharma; Arkoprovo Biswas

    2013-08-01

    In hard rock areas, conventional apparent resistivity measurement using Schlumberger resistivity sounding fails to detect thin conducting structures (2-D and 3-D fractures filled with groundwater and mineral aggregate) concealed at a large depth. In the present study, an attempt is made to way-out the detection problem of deep seated thin conducting layer. It is proposed to study the apparent conductance simultaneously with resistivity sounding to detect such conductive zones qualitatively. Apparent conductance is defined as the magnitude of current flowing in the subsurface for a unit applied voltage through current electrodes. Even though such measurement is of qualitative importance, it gives extremely valuable information for the presence of conductive zones at depth in challenging hard rock terrain. It has been observed that apparent conductance increases significantly when groundwater bearing fractures and conductive bodies are encountered in the subsurface. Field data from different locations are presented to demonstrate the efficacy of such measurement. The measurement assists to the conventional resistivity sounding for successful prediction of groundwater zones at large depth in different hard rock areas and is of enormous importance. The approach is also used for possible solution of suppression problem in the DC resistivity sounding when intermediate layer is not reflected in the resistivity sounding curve. Finally, the approach can be used together with resistivity sounding to solve many practical problems.

  5. Sinomenine produces peripheral analgesic effects via inhibition of voltage-gated sodium currents.

    Science.gov (United States)

    Lee, Jeong-Yun; Yoon, Seo-Yeon; Won, Jonghwa; Kim, Han-Byul; Kang, Youngnam; Oh, Seog Bae

    2017-09-01

    Sinomenium acutum has been used in traditional medicine to treat a painful disease such as rheumatic arthritis and neuralgia. Sinomenine, which is a main bioactive ingredient in Sinomenium acutum, has been reported to have an analgesic effect in diverse pain animal models. However little is known about the detailed mechanisms underlying peripheral analgesic effect of sinomenine. In the present study, we aimed to elucidate its cellular mechanism by using formalin-induced acute inflammatory pain model in mice. We found that intraperitoneal (i.p.) administration of sinomenine (50mg/kg) suppressed formalin-induced paw licking behavior in both the first and the second phase. Formalin-induced c-Fos protein expression was also suppressed by sinomenine (50mg/kg i.p.) in the superficial dorsal horn of spinal cord. Whole-cell patch-clamp recordings from small-sized dorsal root ganglion (DRG) neurons revealed that sinomenine reversibly increased the spike threshold and the threshold current intensity for evoking a single spike and decreased firing frequency of action potentials evoked in response to a long current pulse. Voltage-gated sodium currents (INa) were also significantly reduced by sinomenine in a dose-dependent manner (IC50=2.3±0.2mM). Finally, we confirmed that intraplantar application of sinomenine suppressed formalin-induced pain behavior only in the first phase, but not the second phase. Taken together, our results suggest that sinomenine has a peripheral analgesic effect by inhibiting INa. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  7. Current Status of Early Blight Resistance in Tomato: An Update.

    Science.gov (United States)

    Adhikari, Pragya; Oh, Yeonyee; Panthee, Dilip R

    2017-09-21

    Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.

  8. Current Status of Early Blight Resistance in Tomato: An Update

    Directory of Open Access Journals (Sweden)

    Pragya Adhikari

    2017-09-01

    Full Text Available Early blight (EB is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila, as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.

  9. DESIGN NOTE: A very high output resistance current source

    Science.gov (United States)

    Hayatleh, K.; Terzopoulos, N.; Hart, B. L.

    2007-01-01

    The vertical stacking of two identical sub-circuits—improved versions of a bipolar transistor configuration proposed by Baxandall and Swallow—driven by dual output current mirrors, facilitates the design of a current generator producing a direct current of 1 mA with an incremental output resistance exceeding 200 GΩ.

  10. High-Precision Multi-Wave Rectifier Circuit Operating in Low Voltage + 1.5 Volt Current Mode

    Directory of Open Access Journals (Sweden)

    Bancha Burapattanasiri

    2009-12-01

    Full Text Available This article is present high-precision multi-wave rectifier circuit operating in low voltage +/- 1.5 Volt current modes by CMOS technology 0.5 μm, receive input and give output in current mode, respond at high frequency period. The structure compound with high-speed current comparator circuit, current mirror circuit, and CMOS inverter circuit. PSpice program used for confirmation the performance of testing. The PSpice program shows operating of circuit is able to working at maximum input current 400 μAp-p, maximum frequency responding 200 MHz, high precision and low power losses, and non-precision zero crossing output signal.Keywords-component; rectifier circuit; high-precision; low voltage; current mode;

  11. New drain current model for nano-meter MOS transistors on-chip threshold voltage test

    NARCIS (Netherlands)

    Wan, Jinbo; Kerkhoff, Hans G.

    2015-01-01

    Traditional reliability tests use complicated equipment, like probe stations and semiconductor parameter analyzers, to measure changes in transistors' threshold voltages, which are both expensive and time consuming. This paper provides an idea to test the threshold voltage with existing low-to-moder

  12. Resistive current states in wide superconducting films in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V M [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Zolochevskii, I V [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine)

    2006-04-15

    The temperature dependence of the current-voltage characteristics of high-quality thin films of tin from 7 to 50 {mu}m thick are investigated in the absence of an external magnetic field. For the first time, we have experimentally observed phase slip centres (PSCs) and phase slip lines (PSLs) on the same superconducting tin film with known parameters in the temperature intervals corresponding to the mechanisms of their formation and existence. We have shown that the states of a wide film with increasing transport current appear in the following order: the superconducting state for current less than critical; the resistive vortex state for current more than critical, but less than maximum current for the uniform flux flow (instability current); the critical state due to the onset of instability of the steady pattern of viscous motion of the vortices; a vortex-free resistive state with PSLs for current more than instability current, but less than the upper critical current; and the normal state at a current higher than the upper critical current.

  13. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    Science.gov (United States)

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  14. A Low Input Current and Wide Conversion Ratio Buck Regulator with 75% Efficiency for High-Voltage Triboelectric Nanogenerators

    Science.gov (United States)

    Luo, Li-Chuan; Bao, De-Chun; Yu, Wu-Qi; Zhang, Zhao-Hua; Ren, Tian-Ling

    2016-01-01

    It is meaningful to research the Triboelectric Nanogenerators (TENG), which can create electricity anywhere and anytime. There are many researches on the structures and materials of TENG to explain the phenomenon that the maximum voltage is stable and the current is increasing. The output voltage of the TENG is high about 180-400 V, and the output current is small about 39 μA, which the electronic devices directly integration of TENG with Li-ion batteries will result in huge energy loss due to the ultrahigh TENG impedance. A novel interface circuit with the high-voltage buck regulator for TENG is introduced firstly in this paper. The interface circuit can transfer the output signal of the TENG into the signal fit to a lithium ion battery. Through the circuit of the buck regulator, the average output voltage is about 4.0 V and the average output current is about 1.12 mA. Further, the reliability and availability for the lithium ion battery and the circuit are discussed. The interface circuit is simulated using the Cadence software and verified through PCB experiment. The buck regulator can achieve 75% efficiency for the High-Voltage TENG. This will lead to a research hot and industrialization applications.

  15. Electrooptic Methods for Measurement of Small DC Currents at High Voltage Level

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Beatty, Neville; Skilbreid, Asbjørn Ottar

    1989-01-01

    . The measuring methods can be used both for development and supervision of electrical insulating systems. For DC measurements a system wherein the voltage is applied (across the Pockels cell) not directly but via an electrooptic circuit was developed. This circuit periodically inverts the polarity of the voltage...... fibre to an electrooptic converter. Second, by use of an electronic circuit the measured signal can be converted into a modulated frequency form for transmission along an optical fibre. These systems are described, measurement results are presented and improvements to be made in the future are outlined...... across the cell, effectively applying a square wave voltage with amplitude equal to the DC voltage to be measured. The switching circuit is based around two high voltage transistors TA, TB, with the Pockels cell electrodes being each connected to one of the transistor collectors. The transistor...

  16. Modulation by extracellular pH of low- and high-voltage-activated calcium currents of rat thalamic relay neurons.

    Science.gov (United States)

    Shah, M J; Meis, S; Munsch, T; Pape, H C

    2001-03-01

    The effects of changes in the extracellular pH (pH(o)) on low-voltage- (LVA) and high-voltage- (HVA) activated calcium currents of acutely isolated relay neurons of the ventrobasal thalamic complex (VB) were examined using the whole cell patch-clamp technique. Modest extracellular alkalinization (pH 7.3 to 7.7) reversibly enlarged LVA calcium currents by 18.6 +/- 3.2% (mean +/- SE, n = 6), whereas extracellular acidification (pH 7.3 to 6.9) decreased the current by 24.8 +/- 3.1% (n = 9). Normalized current amplitudes (I/I(7.3)) fitted as a function of pH(o) revealed an apparent pK(a) of 6.9. Both, half-maximal activation voltage and steady-state inactivation were significantly shifted to more negative voltages by 2-4 mV on extracellular alkalinization and to more positive voltages by 2-3 mV on extracellular acidification, respectively. Recovery from inactivation of LVA calcium currents was not significantly affected by changes in pH(o). In contrast, HVA calcium currents were less sensitive to changes in pH(o). Although extracellular alkalinization increased maximal HVA current by 6.0 +/- 2.0% (n = 7) and extracellular acidification decreased it by 11.9 +/- 0.02% (n = 11), both activation and steady-state inactivation were only marginally affected by the moderate changes in pH(o) used in the present study. The results show that calcium currents of thalamic relay neurons exhibit different pH(o) sensitivity. Therefore activity-related extracellular pH transients might selectively modulate certain aspects of the electrogenic behavior of thalamic relay neurons.

  17. Series resistance mapping of Cu(In,Ga)Se{sub 2} solar cells by voltage dependent electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Daume, Felix; Puttnins, Stefan [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Scheit, Christian; Rahm, Andreas [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Grundmann, Marius [Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-07-01

    Cu(In,Ga)Se{sub 2} (CIGSe) thin film solar cells deposited on flexible polyimide foil promising innovative applications and a fabrication in continuous roll-to-roll processes currently reach efficiencies up to 17.6 %. The optimization of the solar cell efficiency requires the reduction of inherent losses in the cell. In order to achieve this goal preferably spatially resolved access to parameters characterizing ohmic losses like series and shunt resistances are indispensable. We apply an interpretation method for electroluminescence (EL) images taken at different voltages which is known for solar cells made of crystalline silicon from literature to solar cells made of polycrystalline CIGSe. The theory of this method to obtain a mapping of the series resistance and the EL imaging process as well as the data interpretation ils reviewed and demonstrated on an example. Furthermore, the benefit of this method for the characterization of solar cells under accelerated aging conditions (damp heat) which is important for the estimation of the long-term stability is shown.

  18. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle.

    Science.gov (United States)

    Karagueuzian, H S; Katzung, B G

    1982-06-01

    1. We studied the effects of a toxic concentration of ouabain on transmembrane electrical activity and on mechanical behaviour of right ventricular papillary muscles from ferrets in a single sucrose-gap using current clamp and voltage clamp.2. Ouabain (1.4-1.8 muM) induced oscillatory after-potentials and after-concentrations in current-clamp experiments. Voltage clamp showed that the oscillatory after-potential was caused by a transient inward current, similar to that in Purkinje fibres.3. The transient current had a sigmoidal dependence on the preceding (activating) voltage step V1, with a treshold around -13 mV and a plateau between +10 and 20 mV. There was a decline in current amplitude for more positive clamps. When activated by a fixed V1 voltage step, and measured at different repolarization levels V2, the transient current manifested an inverse dependence on V2 between -50 and -10 mV. No outward transient current could be detected. Total replacement of Na in the bathing medium by Tris or by sucrose abolished the transient current.4. Ouabain caused an increase of phasic (twitch) tension responses to voltage steps at all potentials without shifting the curve relating these variables on the voltage axis. The drug evoked an even greater increase in the tonic tension responses.5. After prolonged exposure, oscillatory mechanical responses were frequently recorded during positive voltage steps. Unlike the after-contraction, these mechanical fluctuations were not consistently damped and were not accompanied by detectable synchronous current fluctuations. Catecholamines and dibutyryl cyclic AMP markedly reduced the amplitude of the tonic contraction and the mechanical oscillations but increased their frequency. Caffeine had no effect on the tonic contraction amplitude but abolished the fluctuations.6. These results support the proposal that Ca is transiently released from the overloaded sarcoplasmic reticulum in ouabain-intoxicated muscle and may evoke oscillatory

  19. Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.

    Science.gov (United States)

    Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen

    2016-08-01

    This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.

  20. Solar Cell Parameters Extraction from a Current-Voltage Characteristic Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Sanjaykumar J. Patel

    2013-05-01

    Full Text Available The determination of solar cell parameters is very important for the evaluation of the cell performance as well as to extract maximum possible output power from the cell. In this paper, we propose a computational based binary-coded genetic algorithm (GA to extract the parameters (I0, Iph and n for a single diode model of solar cell from its current-voltage (I-V characteristic. The algorithm was implemented using LabVIEW as a programming tool and validated by applying it to the I-V curve synthesized from the literature using reported values. The values of parameters obtained by GA are in good agreement with those of the reported values for silicon and plastic solar cells. change to “After the validation of the program, it was used to extract parameters for an experimental I-V characteristic of 4 × 4 cm2 polycrystalline silicon solar cell measured under 900 W/m. The I-V characteristic obtained using GA shows excellent match with the experimental one.

  1. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K., E-mail: pramod@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Kazarian, F.; Garibaldi, P.; Gassman, T. [ITER Organization, CS 90 046, 13067 Saint-Paul-Les-Durance (France); Artaud, J.F. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Belo, J. [Associacao Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal); Berger-By, G.; Bernard, J.M.; Cara, Ph. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy); Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2011-10-15

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  2. A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); CSIRO Energy Flagship, Newcastle, NSW 2300 (Australia); Zhou, X.; Belcher, W. J.; Dastoor, P. C. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-07

    We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known to remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.

  3. Feasibility Implementation of Voltage-Current Waveform Telemetry System in Power Delivery System

    Science.gov (United States)

    Furukawa, Tatsuya; Akagi, Keita; Fukumoto, Hisao; Itoh, Hideaki; Wakuya, Hiroshi; Hirata, Kenji; Ohchi, Masashi

    The electric power is indispensable for modern life. However, there is a problem of harmonic disturbance when the harmonic power runs into electronic devices. To overcome the problem and realize a stable supply of the electric power is an important issue. In this study, we have developed a voltage-current waveform telemetry system for the remote measurement of the harmonics in the power delivery lines. The system consists of sensors, preamplifiers, a single board computer, and power collectors. Improvements are made on all of these components except the sensors. The power collector is a coil that can be placed around the same power line that we measure. We have designed the power collector by a finite element method(FEM) so that it can provide enough electricity for the computer to work properly. Thus, no other power source such as a battery except the secondary rechargeable battery for the recovery is necessary at the measurement place. The preamplifier in the new system is a single-supply differential amplifier circuit, and the single board computer has an inexpensive SH-3 CPU. Through experiments, we have confirmed that the power collector can provide sufficient electricity and that the new system can successfully measure the waveforms and the harmonics in power delivery systems.

  4. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  5. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Mr. Ashish Choubey

    2011-09-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point

  6. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Ashish Choubey

    2011-12-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point.

  7. Transient Fault Locating Method Based on Line Voltage and Zero-mode Current in Non-solidly Earthed Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linli; XU Bingyin; XUE Yongduan; GAO Houlei

    2012-01-01

    Non-solidly earthed systems are widely used for middle voltage distribution network at home and abroad. Fault point location especially the single phase-to-earth fault is very difficult because the fault current is very weak and the fault arc is intermittent. Although several methods have been developed, the problem of fault location has not yet been resolved very well. A new fault location method based on transient component of line voltage and 0-mode current is presented in this paper, which can realize fault section location by the feeder automation (FA) system. Line voltage signal can be obtained conveniently without requiring any additional equipment. This method is based on transient information, not affected by arc suppression coil.

  8. The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte

    Science.gov (United States)

    Valota, A.; LeClere, D. J.; Hashimoto, T.; Skeldon, P.; Thompson, G. E.; Berger, S.; Kunze, J.; Schmuki, P.

    2008-09-01

    The formation of nanotubes on titanium is compared for anodizing under controlled voltage and controlled current in a fluoride/glycerol electrolyte. Rutherford backscattering spectroscopy and nuclear reaction analysis are employed to determine the film compositions. Film morphologies are examined by electron microscopy. The findings reveal films of approximate composition TiO2.0.15TiF4 that probably also contain derivatives of glycerol. Controlled voltage conditions resulted in more uniform final nanotube dimensions, for a particular charge density, and the highest efficiency of film growth, with the charge of the titanium in the film representing ~48% of the charge passed during anodizing. Under current control, the efficiency decreased from ~40% to ~23% with increase of the current density from 0.1 to 0.5 mA cm-2. Further, the thickness of the barrier layer was sometimes enhanced under current control, possibly due to a non-uniform current distribution and consequently elevated local temperature.

  9. Current regulators for I/SUP 2/L circuits to be operated from low-voltage power supplies

    DEFF Research Database (Denmark)

    Bruun, Erik; Hansen, Ole

    1980-01-01

    A new bandgap current reference is described which can be used to control the injector current of I/SUP 2/L circuits for supply voltages down to about 1 V. For small currents the total injector current is obtained as a mirror of the reference current. For large injector currents the current control...... is performed by a series regulator which compares the injector current of one I/SUP 2/L gate to the reference current. The described reference current can be adjusted to give a variation with temperature of about 60 ppm/°C over the temperature range -10 to +70°C. However, in some applications a nonzero......, but well controlled temperature coefficient is desired. It is shown how a temperature stable ring oscillator with I/SUP 2/L gates can be constructed by tailoring the temperature dependence of the supply current appropriately....

  10. Antiferromagentic resonance detected by direct current voltages in MnF{sub 2}/Pt bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Philipp, E-mail: philipp.ross.13@ucl.ac.uk [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Schreier, Michael, E-mail: michael.schreier@wmi.badw.de; Lotze, Johannes [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany); Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich, Munich (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany); Nanosystems Initiative Munich, Munich (Germany)

    2015-12-21

    We performed coplanar waveguide-based broadband ferromagnetic resonance experiments on the antiferromagnetic insulator MnF{sub 2}, while simultaneously recording the DC voltage arising in a thin platinum film deposited onto the MnF{sub 2}. The antiferromagnetic resonance is clearly reflected in both the transmission through the waveguide as well as the DC voltage in the Pt strip. The DC voltage remains largely unaffected by field reversal and thus presumably stems from microwave rectification and/or heating effects. However, we identify a small magnetic field orientation dependent contribution, compatible with antiferromagnetic spin pumping theory.

  11. Current understanding of iberiotoxin-resistant BK channels in the nervous system.

    Science.gov (United States)

    Wang, Bin; Jaffe, David B; Brenner, Robert

    2014-01-01

    While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called "type II" subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these

  12. Current understanding of iberiotoxin-resistant BK channels in the nervous system

    Directory of Open Access Journals (Sweden)

    Bin eWang

    2014-10-01

    Full Text Available While most large-conductance, calcium- and voltage-activated potassium channels (BK or Maxi-K type are blocked by the scorpion venom iberiotoxin, the so-called type II subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs. In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the

  13. The Space Charge Effect on the Discharge Current in Cross-Linked Polyethylene under High AC Voltages

    Science.gov (United States)

    Kwon, Yoon-Hyeok; Hwangbo, Seung; Lee, June-Ho; Yi, Dong-Young; Han, Min-Koo

    2003-12-01

    The space charge distributions in solid dielectrics have been usually investigated by means of the pulsed electroacoustic (PEA) method. However, most previous studies have been limited to the phenomenological analysis under DC voltages. In our study, the space charge distribution in cross-linked polyethylene (XLPE) has been measured using AC voltages by means of the modified PEA method. Simultaneously, the streamer discharges in an air gap have been measured in order to investigate the relationship between space charge and discharge current, and the relationship has been adapted to the case of dielectric barrier discharge. At high AC voltages, discharge current increases to the critical point, but no further increase is exhibited over the critical voltage and the discharge pattern is resolved by the space charge. This result indicates that the frequency effect and space charge characteristics of dielectric materials are preferred to the voltage effect in the adaptation to dielectric barrier discharge. The results well explain the space charge effect on partial discharge and the dielectric barrier discharge phenomenon.

  14. Inhibitory effect of resveratrol on the proliferation of GH3 pituitary-adenoma cells and voltage-dependent potassium current

    Institute of Scientific and Technical Information of China (English)

    Ming Chu; Lanlan Wei; Chao Wang; Yu Cheng; Kongbin Yang; Baofeng Yang

    2006-01-01

    BACKGROUND:Recent researches indicate that activation of potassium channel is likely to cause many kinds of cells to proliferate and differentiate;using chemical to block the potassium channel can restrain the proliferation of small lung-cancer cells.breast cancer.prostate cancer and human lymphocyte,etc.Previous researches proved that resveratrol(RE),a selective estrogen receptor modulator(SERM).could inhibit growth of GH3 calls,induce apoptosis,and resist tumor through interfering K+ channel.OBJECTIVE:To investigate the effects of RE on Voltage-dependent K+ current [Ik(v)] and cell proliferation in GH3 pituitary-tumor cells.DESIGN:Observational contrast study.SETTING:Department of Neurosurgery.the First Clinical Hospital of Harbin Medical University;Department of Microbiology,Harbin Medical University;Department of Pharmacology,Harbin Medical University.MATERIALS: GH3 pituitary-tumor cell line of rats was purchased from the American Type Culture Collection (ATCC).RE and[3-(4,5-dimethylthiazo1-2-y1)-2.5-diphenyl-tetrazolium bromide](MTT)were obtained from Sigma Chemical CO,St Louis,USA;Ham's F-10 medium from Gibco BRL;Equine serum and fetal bovine serum from Hyclone Laboratories,Logan,UT;FACSCalibur flow cytometer from BD Company,USA.RE was dissolved in ethanol and stored at-20 ℃.It was diluted to different concentrations (10.50,100 μmol/L)with medium and extra cellular solution when needed.rhe final concentration of ethanol was Jess than 0.01%.METHODS:The experiment was carried out in the Department of Microbiology and Pharmacology of Harbin Medical University from March 2005 to January 2006.①Cell preparation:Proliferating indexes affected by 10.50 and 100 μmol/L RE were measured with MTT,respectively.0.0001 volume fraction of ethan ol was added into control group.Inhibitory rate of cellular growth was calculated as the following formula:Inhibitory rate (%)=(1-A value in experimental group/A value in control group)x100%.The experiments mentioned above were

  15. Fault Ride Though Control of Photovoltaic Grid-connected Inverter with Current-limited Capability under Offshore Unbalanced Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Savaghebi, Mehdi;

    2016-01-01

    of the excessive current phenomenon with the conventional fault ride through control is discussed. The quantitative analysis of the current peak value is conducted and a new current-limiting control strategy is proposed to achieve the flexible power control and successful fault ride through in a safe current......The photovoltaic (PV) inverter installed on board experiences the excessive current stress in case of the offshore unbalanced voltage fault ride through (FRT), which significantly affects the operation reliability of the power supply system. In order to solve the problem, the inherent mechanism...

  16. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  17. THE NO SINUSOIDAL VOLTAGES UNDER THE SINUSOIDAL CURRENT AT THE ENTRY OF THE OPEN–ENDED LINE WITH REAL LOSS

    Directory of Open Access Journals (Sweden)

    Patsiuk V.I.

    2008-12-01

    Full Text Available he classical problems of the theoretical electrical engineering, such as open-ended (or short-circuited line energization on alternating voltage (or current, are solved by means of Fourier series method. The conditions of creation of no sinusoidal steady-state regimes in the lines with nonzero loss are discovered.

  18. Active damping of LLCL-filter resonance based on LC-trap voltage and capacitor current feedback

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    . In this paper, different feedback coefficients like the proportional, derivative, integral, high pass and low pass feedback coefficients of the filter capacitor current and the LC-trap circuit voltage are investigated for damping the filter resonance. Active damping methods are analyzed by using the concept...

  19. Design and implementation of a bidirectional current-controlled voltage-regulated DC-DC switched-mode converter

    CSIR Research Space (South Africa)

    Coetzer, A

    2016-01-01

    Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...

  20. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...

  1. Kinetics deformation of current-voltage characteristics of the varistor oxide structures due to overcharging of the localized states

    Directory of Open Access Journals (Sweden)

    Tonkoshkur A. S.

    2014-12-01

    Full Text Available Prolonged exposure of zinc oxide varistors to the electrical load leads to current-voltage characteristics (CVC deformation, which is associated with a change in the height and width of the intergranular barriers, which are main structural element of the varistors. Polarization phenomena in zinc oxide ceramics are studied in a number of works, but those are mainly limited to the study of the physics of the CVC deformation process and to determining the parameters of localized electronic states involved in this process. This paper presents the results on the simulation of the deformation of pulse CVC of a separate intergranular potential barrier at transient polarization/depolarization, associated with recharging of surface electronic states (SES, which cause this barrier. It is found that at high density of SES their degree of electron filling is small and the effect of DC voltage leads to a shift of pulse current-voltage characteristics into the region of small currents. Conversely, the low density SES are almost completely filled with electrons, and after crystallite polarization CVC is shifted to high currents. Experimental studies have confirmed the possibility of applying the discovered laws to ceramic varistor structures. The proposed model allows interpreting the «anomalous» effects (such as increase in the classification voltage and reduction of active losses power observed during the varistors accelerated aging test.

  2. Improvement of the voltage-controlled negative resistance of a porous silicon emitter using cathode reduction and electro-pretreatment

    Science.gov (United States)

    He, Li; Zhang, Xiaoning; Wang, Wenjiang; Zhao, Xiaoning

    2016-09-01

    A new composite treatment method combining cathode reduction (CR) and electro-pretreatment (EP) is proposed to improve the voltage-controlled negative resistance (VCNR) of porous silicon (PS) emitters. Four groups of PS emitters were treated, with nothing, CR, EP, and a combination of CR and EP, during different preparation stages. The experimental results indicate that both CR and EP improved the VCNR property and the emission characteristics of the PS emitter. The most favorable results occurred for the electron emitter treated with a combination of CR-EP. A peak-to-valley current ratio of 1.06 and an emission current density of 150 µA cm-2, which are the lowest value and approximately twice that of other samples, respectively, were obtained. In addition, the operating stability of the PS emitter also improved significantly compared with the two methods alone. Scanning electron microscopy, atomic force microscopy, and energy dispersive x-ray spectrometry results demonstrate that the improvements of the VCNR and the emission characteristics of PS emitters are due to the content variation of defects, impurities, and unstable microstructures in the PS layer under the influence of CR and EP. The mechanism of VCNR behavior is explained by a proposed energy band model, which is consistent with the experimental results.

  3. Current Threat of Triclabendazole Resistance in Fasciola hepatica.

    Science.gov (United States)

    Kelley, Jane M; Elliott, Timothy P; Beddoe, Travis; Anderson, Glenn; Skuce, Philip; Spithill, Terry W

    2016-06-01

    Triclabendazole (TCBZ) is the only chemical that kills early immature and adult Fasciola hepatica (liver fluke) but widespread resistance to the drug greatly compromises fluke control in livestock and humans. The mode of action of TCBZ and mechanism(s) underlying parasite resistance to the drug are not known. Due to the high prevalence of TCBZ resistance (TCBZ-R), effective management of drug resistance is now critical for sustainable livestock production. Here, we discuss the current status of TCBZ-R in F. hepatica, the global distribution of resistance observed in livestock, the possible mechanism(s) of drug action, the proposed mechanisms and genetic basis of resistance, and the prospects for future control of liver fluke infections using an integrated parasite management (IPM) approach.

  4. Adaptive controller design based on input-output signal selection for voltage source converter high voltage direct current systems to improve power system stability

    Institute of Scientific and Technical Information of China (English)

    Abdolkhalegh Hamidi; Jamal Beiza; Ebrahim Babaei; Sohrab Khanmohammadi

    2016-01-01

    An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current (HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.

  5. Effect of etomidate on voltage-dependent potassium currents in rat isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    TAN Hong-yu; SUN Li-na; WANG Xiao-liang; YE Tie-hu

    2010-01-01

    Background Previous studies demonstrated general anesthetics affect potassium ion channels, which may be one of the mechanisms of general anesthesia. Because the effect of etomidate on potassium channels in rat hippocampus which is involved in memory function has not been studied, we investigated the effects of etomidate on both delayed rectifier potassium current (I_((K(DR))) and transient outward potassium current (I_((K(A))) in acutely dissociated rat hippocampal pyramidal neurons.Methods Single rat hippocampal pyramidal neurons from male Wistar rats of 7-10 days were acutely dissociated by enzymatic digestion and mechanical dispersion according to the methods of Kay and Wong with slight modification. Voltage-clamp recordings were performed in the whole-cell patch clamp configuration. Currents were recorded with a List EPC-10 amplifier and data were stored in a computer using Pulse 8.5. Student's paired two-tail t test was used for data analysis. Results At the concentration of 100 μmol/L, etomidate significantly inhibited I_(K(DR)) by 49.2% at +40 mV when depolarized from -110 mV (P 0.05). The IC_(50) value of etomidate for blocking I_(K(DR)) was calculated as 5.4 μmol/L, with a Hill slope of 2.45. At the presence of 10 μmol/L etomidate, the V_(1/2) of activation curve was shifted from (17.3±1.5) mV to (10.7±9.9) mV (n=8, P <0.05), the V_(1/2) of inactivation curve was shifted from (-18.3±2.2) mV to (-45.3±9.4) mV (n=8, P <0.05). Etomidate 10 μmol/L shifted both the activation curve and inactivation curve of I_(K(DR)) to negative potential, but mainly affected the inactivation kinetics.Conclusions Etomidate potently inhibited I_(K(DR)) but not I_(K(A)) in rat hippocampal pyramidal neurons. I_(K(DR)) was inhibited by etomidate in a concentration-dependent manner, while I_(K(A)) remained unaffected.

  6. Current-Controlled Negative Differential Resistance Due to Joule Heating In Tio2

    Science.gov (United States)

    Bratkovsky, A. M.; Alexandrov, A. S.; Savel'Ev, S. E.; Strukov, D. B.; Williams, R. S.

    2012-02-01

    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 memristive systems by constructing an analytical model of the current-voltage characteristics based on polaronic transport for Ohm's law and Newton's law of cooling and fitting this model to experimental data. This threshold switching is he ``soft breakdown'' observed during electroforming in TiO2 and other transition-metal oxide based memristors, as well as a precursor to ``ON'' or ``SET'' switching of unipolar memristors from their high to their low resistance states. The shape of the V-I curves is a sensitive indicator of the nature of the polaronic conduction, which apparently follows an adiabatic regime [1]. [4pt] [1] A.S. Alexandrov, A.M.Bratkovsky, B.Bridle, S.E.Savel'ev, D. Strukov, and R.S.Williams, Appl. Phys. Lett. 99, xxx (2011).

  7. Development, Testing and Installation of a Superconducting Fault Current Limiter for Medium Voltage Distribution Networks

    Science.gov (United States)

    Martini, Luciano; Bocchi, Marco; Ascade, Massimo; Valzasina, Angelo; Rossi, Valerio; Angeli, Giuliano; Ravetta, Cesare

    Since 2009 Ricerca sul Sistema Energetico (RSE S.p.A.) has been involved in the design of resistive-type Superconducting Fault Current Limiter (SFCL) for MV applications to be installed in the A2A Reti Elettriche S.p.A distribution grid in the Milano area. The project started with simulations, design and testing activities for a singlephase device; in this paper we report on the successive step, which is concerned with developing, testing and installation at the hosting utility of the final three-phase SFCL prototype. The result of this research activity is a resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes, developed by RSE in the framework of a R&D national project. Owing to the positive test results of partial discharge, dielectric and shortcircuit results the three-phase SFCL device is being to be installed in the A2A distribution grid in the Milano area and it is going to be soon energized starting a one-year long field-testing activity.

  8. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    Science.gov (United States)

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  9. Maximum Output Power Control Using Short-Circuit Current and Open-Circuit Voltage of a Solar Panel

    Science.gov (United States)

    Kato, Takahiro; Miyake, Takuma; Tashima, Daisuke; Sakoda, Tatsuya; Otsubo, Masahisa; Hombu, Mitsuyuki

    2012-10-01

    A control method to optimize the output power of a solar cell is necessary because the output of a solar cell strongly depends on solar radiation. We here proposed two output power control methods using the short-circuit current and open-circuit voltage of a solar panel. One of them used a current ratio and a voltage ratio (αβ control), and the other used a current ratio and a short-circuit current-electric power characteristic coefficient (αγ control). The usefulness of the αβ and the αγ control methods was evaluated. The results showed that the output power controlled by our proposed methods was close to the maximum output power of a solar panel.

  10. Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Henrique L; Rocha, Paulo R F; Kiazadeh, Asal [Center of Electronics Optoelectronics and Telecommunications (CEOT) Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Meskers, Stefan C J, E-mail: hgomes@ualg.pt [Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-01-19

    Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current-voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an enormous positive temperature coefficient. This anomalous behaviour contradicts the widely held view that switching is due to filaments that are formed reversibly by the diffusion of metal atoms. Instead, these findings together with small-signal impedance measurements indicate that creation and annihilation of filaments is controlled by filling of shallow traps localized in the oxide or at the oxide/polymer interface.

  11. Development and Testing of a Transmission Voltage SuperLimiter™ Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Romanosky, Walter [American Superconductor Corporation, Devens, MA (United States)

    2012-09-01

    This report summarizes work by American Superconductor (AMSC), Los Alamos National Laboratory (LANL), Nexans, Siemens and Southern California Edison on a 138kV resistive type high temperature superconductor (HTS) fault current limiter (FCL) under a cooperative agreement with the U.S. Department of Energy (DOE). Phase 1A encompassed core technology development and system design and was previously reported (see summary that follows in Section 1.1 of the Introduction). This report primarily discusses work performed during Phase 1B, and addresses the fabrication and test of a single-phase prototype FCL. The results are presented along with a discussion of requirements/specifications and lessons learned to aid future development and product commercialization.

  12. Fault Characteristics and Control Strategies of Multiterminal High Voltage Direct Current Transmission Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2015-01-01

    Full Text Available The modular multilevel converter (MMC is an emerging voltage source converter topology suitable for multiterminal high voltage direct current transmission based on modular multilevel converter (MMC-MTDC. This paper presents fault characteristics of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by establishing a three-terminal MMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.

  13. Water Dissociation Phenomena on a Bipolar Membrane——Current-voltage Curve in Relation with Ionic Transport and Limiting Current Density

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage;while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ- Ⅴ in the two directions were compared with the theoretical calculations. It is demonstrated that above the limiting current density, the experimental results,either in the L-H direction or in the H-L direction, are consistent with the theoretical calculations; below the limiting current density, a slight deviation exists between the experimental and the theoretical results, and between the experimental results in the two directions. The change in Donnan potential due to the asymmetry of the mono-layers and the changes of ionic composition in the two directions is possibly responsible for this deviation.

  14. Cryogenic current comparators with optimum SQUID readout for current and resistance quantum metrology

    NARCIS (Netherlands)

    Bartolomé Porcar, María Elena

    2002-01-01

    This thesis describes the development of several systems based on the Cryogenic Current Comparator with optimum SQUID readout, for current and resistance metrology applications. the CCC-SQUID is at present the most accurate current comparator available. A (type I) CCC consists basically of a

  15. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  16. A Study on Measurement Error during Alternating Current Induced Voltage Tests on Large Transformers

    Institute of Scientific and Technical Information of China (English)

    WANG Xuan; LI Yun-ge; CAO Xiao-long; LIU Ying

    2006-01-01

    The large transformer is pivotal equipment in an electric power supply system; Its partial discharge test and the induced voltage withstand test on large transformers are carried out at a frequency about twice the working frequency. If the magnetizing inductance cannot compensate for the stray capacitance, the test sample turns into a capacitive load and a capacitive rise exhibits in the testing circuit. For self-restoring insulation, a method has been recommended in IEC60-1 that an unapproved measuring system be calibrated by an approved system at a voltage not less than 50% of the rated testing voltage, and the result then be extrapolated linearly. It has been found that this method leads to great error due to the capacitive rise if it is not correctly used during a withstand voltage test under certain testing conditions, especially for a test on high voltage transformers with large capacity. Since the withstand voltage test is the most important means to examine the operation reliability of a transformer, and it can be destructive to the insulation, a precise measurement must be guaranteed. In this paper a factor, named as the capacitive rise factor, is introduced to assess the rise. The voltage measurement error during the calibration is determined by the parameters of the test sample and the testing facilities, as well as the measuring point. Based on theoretical analysis in this paper, a novel method is suggested and demonstrated to estimate the error by using the capacitive rise factor and other known parameters of the testing circuit.

  17. Mitigation of grid-current distortion for LCL-filtered grid-connected voltage-source inverter with inverter-side current control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2017-01-01

    Due to the low inductance of an LCL-filter, the grid current generated by an LCL-filtered Voltage Source Inverter (VSI) is sensitive to low-order grid-voltage harmonics. This issue is especially tough for the control system with Inverter Current Feedback (ICF), because the grid-current harmonics...... can freely flow into the filter capacitor without control. To cope with this issue, this paper develops an approach for the ICF control system to suppress the grid-current harmonics without adding extra sensors. The proposed method applies harmonic controllers and feedforward scheme simultaneously......, and the instability risk introduced by the feedforward loop can be ingeniously avoided through a special design of the feedforward position, which maintains the inherent stability characteristic of the ICF control system. The effectiveness of the proposed method and the correctness of the theoretical analyses...

  18. The conduction mechanism of stress induced leakage current through ultra-thin gate oxide under constant voltage stresses

    Institute of Scientific and Technical Information of China (English)

    Wang Yan-Gang; Xu Ming-Zhen; Tan Chang-Hua; Zhang Zhang J.F; Duan Xiao-Rong

    2005-01-01

    The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.

  19. Wind Farm Stabilization by using DFIG with Current Controlled Voltage Source Converters Taking Grid Codes into Consideration

    Science.gov (United States)

    Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.

  20. A Novel Modulation Function-Based Control of Modular Multilevel Converters for High Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Majid Mehrasa

    2016-10-01

    Full Text Available In this paper, a novel modulation function-based method including analyses of the modulation index and phase is proposed for operation of modular multilevel converters (MMCs in high voltage direct current (HVDC transmission systems. The proposed modulation function-based control technique is developed based on thorough and precise analyses of all MMC voltages and currents in the a-b-c reference frame in which the alternating current (AC-side voltage is the first target to be obtained. Using the AC-side voltage, the combination of the MMC upper and lower arm voltages is achieved as the main structure of the proposed modulation function. The main contribution of this paper is to obtain two very simple new modulation functions to control MMC performance in different operating conditions. The features of the modulation function-based control technique are as follows: (1 this control technique is very simple and can be easily achieved in a-b-c reference frame without the need of using Park transformation; and (2 in addition, the inherent properties of the MMC model are considered in the proposed control technique. Considering these properties leads to constructing a control technique that is robust against MMC parameters changes and also is a very good tracking method for the components of MMC input currents. These features lead to improving the operation of MMC significantly, which can act as a rectifier in the HVDC structure. The simulation studies are conducted through MATLAB/SIMULINK software, and the results obtained verify the effectiveness of the proposed modulation function-based control technique.

  1. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  2. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus.

    Science.gov (United States)

    Cao, Xiao-Jie; Oertel, Donata

    2011-08-01

    In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.

  3. Online Partial Discharge Measurement of a High-voltage Direct Current Converter Wall-bushing%Online Partial Discharge Measurement of a High-voltage Direct Current Converter Wall-bushing

    Institute of Scientific and Technical Information of China (English)

    Nathan D. Jacob; William M. McDermid; Behzad Kordi

    2011-01-01

    An online partial discharge (PD) measurement performed on a high voltage direct current (HVDC) wall bushing successfully identified the presence of internal discharges. The wall bushing is a sulfur hexafluoride gas-insu- lated bushing, rated for 500 kV dc and terminated on a thyristor-controlled HVDC converter bridge. The measure- ment of PD within the HVDC station environment is particularly challenging due to the high levels of electromagnetic noise caused by thyristor switching events and external air-corona from the neighboring high-voltage equipment. An additional challenge is the "mixed" voltage stress on the bushing insulation, which has both ac and dc high-voltage components. There are also fast transients during the firing of thyristors in the HVDC conversion process that cause added stress to the insulation. As a result, the analysis and interpretation of PD data for HVDC equipment is more complex; PD pulses may occur in response to the ac, dc, or switching transient voltage stresses. In this paper, an on- line PD measurement strategy for noise filtering and isolation of PD sources within the bushing are discussed. The PD measurement data is plotted on a phase-resolved diagram where the line supply power cord voltage was used as a reference. The phase-resolved diagram appears to suggest that the fast transients, caused during switching, trigger some PD events. Measurements were also performed with the aid of a modern PD measurement instrument having noise separation capabilities. The findings from the online PD measurements are verified with physical evidence, found after the bushing was removed from service, suggested internal PD had occurred inside the bushing.

  4. Power Quality Improvement And Mitigation Of Voltage Sag And Current Swell Using Distributed Power Flow Controller

    Directory of Open Access Journals (Sweden)

    P.NIRMALA

    2014-09-01

    Full Text Available Modern power utilities have to respond to a number of challenges such as growth of electricity demand specially in non-linear loads in power grids, consequently, That higher power quality should be considered. In this paper, DPFC which is similar to unified power flow controller (UPFC in structure, which is used to mitigate the voltage sag and swell as a power quality issue. Unlike UPFC, the common dc-link in DPFC, between the shunt and series converter devices should be eliminated and three-phase series converter is divided to several single-phase series distributed converters through the power transmission line. And also to detect the voltage sags and find out the three single-phase reference voltages of DPFC, the synchronous reference frame method is proposed. Application of DPFC in power quality enhancement is simulated in Mat lab/Simulink environment which show the effectiveness of the proposed structure

  5. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    Science.gov (United States)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  6. Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.

    Science.gov (United States)

    Martina, Marco; Metz, Alexia E; Bean, Bruce P

    2007-01-01

    We characterized the kinetics and pharmacological properties of voltage-activated potassium currents in rat cerebellar Purkinje neurons using recordings from nucleated patches, which allowed high resolution of activation and deactivation kinetics. Activation was exceptionally rapid, with 10-90% activation in about 400 mus at +30 mV, near the peak of the spike. Deactivation was also extremely rapid, with a decay time constant of about 300 mus near -80 mV. These rapid activation and deactivation kinetics are consistent with mediation by Kv3-family channels but are even faster than reported for Kv3-family channels in other neurons. The peptide toxin BDS-I had very little blocking effect on potassium currents elicited by 100-ms depolarizing steps, but the potassium current evoked by action potential waveforms was inhibited nearly completely. The mechanism of inhibition by BDS-I involves slowing of activation rather than total channel block, consistent with the effects described in cloned Kv3-family channels and this explains the dramatically different effects on currents evoked by short spikes versus voltage steps. As predicted from this mechanism, the effects of toxin on spike width were relatively modest (broadening by roughly 25%). These results show that BDS-I-sensitive channels with ultrafast activation and deactivation kinetics carry virtually all of the voltage-dependent potassium current underlying repolarization during normal Purkinje cell spikes.

  7. Distortions identification and compensation based on artificial neural networks using symmetrical components of the voltages and the currents

    Energy Technology Data Exchange (ETDEWEB)

    Flieller, D. [Institut National Superieur des Sciences Appliquees de Strasbourg, Laboratoire GREEN (UMR 7037, CNRS) Antenne de Strasbourg, 24 Bd de la Victoire, 67084 Strasbourg Cedex (France); Ould Abdeslam, D.; Wira, P.; Merckle, J. [Universite de Haute-Alsace, Laboratoire MIPS-TROP, 4 rue des Freres Lumiere, 68093 Mulhouse Cedex (France)

    2009-07-15

    The problem of harmonics identifying and compensating has been of great interest in recent years. A new neural identification scheme for an active power filter (APF) is proposed. This scheme identifies the direct, inverse and zero sequence components of both the voltages and the currents of the power network. The components result from a new and generic decomposition of a three-phase signal which can be either the voltage or the current. For one signal, the direct components extraction requires two independent Adaline networks, and the inverse components extraction two other Adalines. The voltage and current components are used to on-line compute the instantaneous direct, inverse and zero sequence powers. The proposed decomposition is a new formulation of the instantaneous powers and is also appropriate for unbalanced systems. The reference compensation currents can be determined according to different compensation objectives. The resulting compensation currents are then re-injected phase-opposite through the APF in real-time. The performance is evaluated through several simulation examples and through different experiments. The results show that the proposed neural method outperforms other methods, such as the conventional instantaneous power theory. (author)

  8. Inhomogeneity effects in HTS coated conductors used as resistive FCLs in medium voltage grids

    Science.gov (United States)

    Colangelo, Daniele; Dutoit, Bertrand

    2012-09-01

    For resistive fault current limiters (RFCLs) based on high temperature superconducting coated conductors (HTS-CCs), inhomogeneity, in terms of critical current and geometrical imperfections such as stabilizer and substrate thicknesses, plays a very important role and it may limit the penetration of such devices into the electrical market. This paper presents an electrothermal model, developed in SimPowerSystem™, able to describe the transient response of HTS-CC candidates with different degrees of inhomogeneity, both in terms of critical current and of stabilizer thickness. Critical current inhomogeneity has been modeled with Gaussian distributions. The layer thicknesses used in the simulations have been chosen by fitting the temperature dependence of real tape resistances. Our approach considers relative inhomogeneity positions as well as thermal conduction along the HTS-CC length. The model is tuned using experimental measurements made on ReBaCuO coated conductors. A new dynamical thermal calibration of the model is proposed using finite element method calculations. Inhomegeneity effects with different possible faults (e.g. three phase and single phase short-circuit) are presented.

  9. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons.

    Science.gov (United States)

    Hight, Ariel E; Kalluri, Radha

    2016-08-01

    The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.

  10. Current state of herbicides in herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2014-09-01

    Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems.

  11. A Suitable Coordinate Transformation Method for Correcting Voltage Vector in Motor Current Detection Using a Single Shunt Resistor

    Science.gov (United States)

    Tomigashi, Yoshio; Hida, Hajime; Ueyama, Kenji

    To reduce costs of inverters, a current detection method using a single shunt resistor is required for motor drive systems in home electrical appliances. In this paper, a method is proposed to correct a voltage reference vector by converting coordinates from a rotating reference frame into a fixed reference frame. Also proposed is a new coordinate transformation method that is appropriate for the correction. Authors focused on the undetectable area that exists every 60 degrees in α-β coordinates. When the α-β coordinates in an nπ/3 rotation are defined as αn-βn, the αn-axis can be defined as the central axis in an undetectable area. We propose a coordinate transformation method that converts the voltage vector in the d-q coordinates into uvw phase voltages through αn-βn coordinates then correct it. This method corrects the voltage vector by a very simple algorithm that limits the αn-βn elements. The effectiveness of the proposed method is confirmed by simulation and experiment. Currents were clearly detected by using the proposed method. This shows that the proposed method is suitable for position sensor-less drives in permanent magnet synchronous motors.

  12. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    Science.gov (United States)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  13. Programmable Voltage-Mode Multifunction Filter Using Two Current Conveyors and One Operational Transconductance Amplifier

    OpenAIRE

    Muhammad Taher Abuelma'atti; Azhar Quddus

    1996-01-01

    A new voltage-mode active-filter with single input and three outputs is presented. The parameters of the proposed filter are programmable and the filter uses grounded capacitors. The proposed circuit can simultaneously realize lowpass, highpass, and bandpass biquadratic filter functions and enjoys low temperature sensitivities.

  14. Theoretical aspects and methods of parameters identification of the electric traction system devices. method of cyclic current-voltage characteristics

    Directory of Open Access Journals (Sweden)

    T.M.Mishchenko

    2013-02-01

    Full Text Available Purpose. To define the characteristics of numerical calculations of mathematical model with one or more cyclic current voltage characteristics (CVC. This is an urgent problem, since any electric traction system device and electrified track in general, like non-linear passive or active two-terminal network in the present operating mode is described by current-voltage characteristic (CVC, which is based on the given input voltage and input current. Me-thodology. The electromagnetic process calculation in the power circuits of traction electric energy supply is the probabilistic task with solving nonlinear stochastic differential equations requiring for the development of special methods. Given the calculation difficulty, it is reasonable to perform them either by real CVC graph bypass or initially by applying its equivalent replacement with, for example, an ellipse. Findings. Numerical calculations of the mathematical model with one or more cyclic CVC can be performed by “real” CVC bypass or by "idealization" i. e. approximate replacement of real cyclic CVC. Originality. This paper presents the dynamic CVC of the DS3 and 2ES5K electric locomotives at different currents of electric locomotives. Practical value. Cyclic CVC normally and definitely can be applied in the system of electromagnetic state equations while transient state calculating in the traction system. Therefore while calculating the experimentally obtained CVC for the most “difficult and complex” (or/and the “easiest” mode is applied.

  15. Comparison between Underground Cable and Overhead Line for a Low-Voltage Direct Current Distribution Network Serving Communication Repeater

    Directory of Open Access Journals (Sweden)

    Jae-Han Kim

    2014-03-01

    Full Text Available This paper compares the differences in economic feasibility and dynamic characteristics between underground (U/G cable and overhead (O/H line for low-voltage direct current (LVDC distribution. Numerous low loaded long-distance distribution networks served by medium-voltage alternative current (MVAC distribution lines exist in the Korean distribution network. This is an unavoidable choice to compensate voltage drop, therefore, excessive cost is expended for the amount of electrical power load. The Korean Electric Power Corporation (KEPCO is consequently seeking a solution to replace the MVAC distribution line with a LVDC distribution line, reducing costs and providing better quality direct current (DC electricity. A LVDC distribution network can be installed with U/G cables or O/H lines. In this paper, a realistic MVAC distribution network in a mountainous area was selected as the target model to replace with LVDC. A 30 year net present value (NPV analysis of the economic feasibility was conducted to compare the cost of the two types of distribution line. A simulation study compared the results of the DC line fault with the power system computer aided design/electro-magnetic transient direct current (PSCAD/EMTDC. The economic feasibility evaluation and simulation study results will be used to select the applicable type of LVDC distribution network.

  16. Wound-Induced Changes of Membrane Voltage, Endogenous Currents, and Ion Fluxes in Primary Roots of Maize.

    Science.gov (United States)

    Meyer, A. J.; Weisenseel, M. H.

    1997-07-01

    The effects of mechanical wounding on membrane voltage, endogenous ion currents, and ion fluxes were investigated in primary roots of maize (Zea mays) using intracellular microelectrodes, a vibrating probe, and ion-selective electrodes. After a wedge-shaped wound was cut into the proximal elongation zone of the roots, a large inward current of approximately 60 [mu]A cm-2 was measured, together with a change in the current pattern along the root. The changes of the endogenous ion current were accompanied by depolarization of the membrane voltage of cortex cells up to 5 mm from the wound. Neither inhibitors of ion channels nor low temperature affected the large, wound-induced inward current. The fluxes of H+, K+, Ca2+, and Cl- contributed only about 7 [mu]A cm-2 to the wound-induced ion current. This suggests the occurrence of a large mass flow of negatively charged molecules, such as proteins, sulfated polysaccharides, and galacturonic acids, from the wound. Natural wounding of the root cortex by developing lateral roots caused an outwardly directed current, which was clearly different in magnitude and direction from the current induced by mechanical injury.

  17. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?

    Science.gov (United States)

    Tarek, Mounir; Delemotte, Lucie

    2013-12-17

    Ion channels conduct charged species through otherwise impermeable biological membranes. Their activity supports a number of physiological processes, and genetic mutations can disrupt their function dramatically. Among these channels, voltage gated cation channels (VGCCs) are ubiquitous transmembrane proteins involved in electrical signaling. In addition to their selectivity for ions, their function requires membrane-polarization-dependent gating. Triggered by changes in the transmembrane voltage, the activation and deactivation of VGCCs proceed through a sensing mechanism that prompts motion of conserved positively charged (basic) residues within the S4 helix of a four-helix bundle, the voltage sensor domain (VSD). Decades of experimental investigations, using electrophysiology, molecular biology, pharmacology, and spectroscopy, have revealed details about the function of VGCCs. However, in 2005, the resolution of the crystal structure of the activated state of one member of the mammalian voltage gated potassium (Kv) channels family (the Kv1.2) enabled researchers to make significant progress in understanding the structure-function relationship in these proteins on a molecular level. In this Account, we review the use of a complementary technique, molecular dynamics (MD) simulations, that has offered new insights on this timely issue. Starting from the "open-activated state" crystal structure, we have carried out large-scale all atom MD simulations of the Kv1.2 channel embedded in its lipidic environment and submitted to a hyperpolarizing (negative) transmembrane potential. We then used steered MD simulations to complete the full transition to the resting-closed state. Using these procedures, we have followed the operation of the VSDs and uncovered three intermediate states between their activated and deactivated conformations. Each conformational state is characterized by its network of salt bridges and by the occupation of the gating charge transfer center by a

  18. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  19. Studies on temperature dependence of current-voltage characteristics of glancing angle deposited indium oxide nanowire on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Aniruddha, E-mail: aniruddhamo@gmail.com; Das, Amit Kumar [Department of Physics, National Institute of technology Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, India-713209 (India); Dey, Anubhab [Indian Institute of Science Education and Research, Thiruvananthapuram, Computer Science Building, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Choudhuri, Bijit [Department of Electronics & Communication Engineering, National Institute of Technology Agartala, Jirania, Tripura, India - 799046 (India)

    2016-05-06

    The 1D perpendicular In{sub 2-x}O{sub 3-y} nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The current - voltage characteristics for the In{sub 2-x}O{sub 3-y}nanocolumnar array based were measured through a gold Schottky contact at different temperatures. The temperature dependent ideality factor was calculated from the observed currentvoltage characteristics. The ideality factor was found to vary from 4.19 to 2.75 with a variation in temperature from 313 K to 473 K.

  20. A new model analysis of the third harmonic voltage in inductive measurement for critical current density of superconducting films

    Institute of Scientific and Technical Information of China (English)

    Zhang Xu; Wu Zhi-Zhen; Zhou Tie-Ge; He Ming; Zhao Xin-Jie; Yan Shao-Lin; Fang Lan

    2011-01-01

    The critical current density Jc is one of the most important parameters of high temperature superconducting films in superconducting applications, such as superconducting filter and superconducting Josephson devices. This paper presents a new model to describe inhomogeneous current distribution throughout the thickness of superconducting films applying magnetic field by solving the differential equation derived from Maxwell equation and the second London equation. Using this model, it accurately calculates the inductive third-harmonic voltage when the film applying magnetic field with the inductive measurement for Jc. The theoretic curve is consistent with the experimental results about measuring superconducting film, especially when the third-harmonic voltage just exceeds zero. The Jc value of superconducting films determined by the inductive method is also compared with results measured by four-probe transport method. The agreements between inductive method and transport method are very good.

  1. Low-voltage large-current ion gel gated polymer transistors fabricated by a "cut and bond" process.

    Science.gov (United States)

    Shao, Xianyi; Bao, Bei; Zhao, Jiaqing; Tang, Wei; Wang, Shun; Guo, Xiaojun

    2015-03-04

    A "cut and bond" process using a commercial die bonder was developed for fabricating ion gel gated organic thin-film transistors (OTFTs). It addresses the issues of damaging or contaminating the channel layer when depositing the ion gel layer on top in conventional fabrication processes. The formed isolated dielectric regions can help to eliminate possible lateral electric field coupling through the dielectric layer when several devices are integrated to construct functional circuits. The fabricated OTFTs provide mA-level ON current, and an ON/OFF current ratio higher than 10(5) with the gate swing voltage of less than 3 V. With the developed process, the ion gel OTFTs are integrated with inorganic light emitting diodes (LEDs) of different colors on plastic substrate using the same die bonder, and the light emission of the LEDs can be modulated in a wide range from dark to high brightness with change of the gate voltage less than 3 V.

  2. High currents, low voltages. Low-cost, high efficiency power supply meets the requirements of Intel Mobile Voltage Positioning; Von dicken Stroemen und kleinen Spannungen. Preiswerte Stromversorgung mit hohem Wirkungsgrad erfuellt die Anforderungen des Intel Mobile Voltage Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, V.W.; Guan, P.; Chen, D. [Linear Technology, CA (United States)

    2001-12-27

    The increasing demands on notebook computers have clock rates and currents and reduced voltages as CPUs are produced in increasingly smaller structural sizes. This makes high demands on power supply. [German] Die steigende Nachfrage nach Rechenleistung in Notebook-Computern hat zu einem betraechtlichen Anstieg der Taktfrequenzen und der Stromaufnahme der CPUs gefuehrt. Gleichzeitig sind die Versorgungsspannungen erheblich gesunken, da die CPUs in Prozessen mit immer kleineren Strukturgroessen hergestellt werden. Als die CPU-Taktfrequenzen 1 GHz ueberstiegen, hat die Stromaufnahme der CPU erstmals 20 A ueberschritten, und die minimale Versorgungsspannung ist auf unter 1 V gefallen. Dies stellt gewaltige Anforderungen an die Stromversorgungen. (orig.)

  3. Effects of increase extent of voltage on wear and corrosion resistance of micro-arc oxidation coatings on AZ91D alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of increase extent of voltage on the wear resistance and corrosion resistance of micro-arc oxidation(MAO)coatings on AZ91D magnesium alloy were investigated in silicate electrolyte.The results show that with increasing extent of voltage,both of the thickness and bonding force of MAO coatings first increase,and then decrease.These parameters are all up to their maximum values when the increase extent of voltage is 20 V.The roughness of the coatings always increases.The coating has the best corrosion resistance when the increase extent of voltage is not below 25 V,and the coating has the best wear resistance when the increase extent of voltage is 10 V.The wear mechanisms for the micro-arc oxidation are abrasive wear and micromachining wear.These are related to their microstructures.

  4. Effect of coupling on scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high- superconductors

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2005-01-01

    We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...

  5. Modeling and Control of High-Voltage Direct-Current Transmission Systems: From Theory to Practice and Back

    OpenAIRE

    2014-01-01

    The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework - based on port-Hamiltonian representations - of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Cl...

  6. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    Science.gov (United States)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  7. New method evaluating currents keeping the voltage constant for fast and highly resolved measurement of Arrhenius relation and capacity fade

    Science.gov (United States)

    Lewerenz, Meinert; Käbitz, Stefan; Knips, Marcus; Münnix, Jens; Schmalstieg, Johannes; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-06-01

    The evaluation of floating currents is a powerful method to characterize capacity fade induced by calendaric aging and enables a highly resolved representation of the Arrhenius relation. The test arrangement is simple and could constitute a cheap alternative to state-of-the-art calendaric aging tests including check-up tests. Therefore the currents to maintain a constant voltage are evaluated. This method is validated by analyzing nine cylindrical 8 Ah LiFePO4|Graphite battery cells during calendaric aging at 25 °C, 40 °C and 60 °C at 3.6 V (100% SOC). The 3.6 V are kept by applying constant voltage while the floating currents are logged. The floating currents correlate with the rate of capacity loss measured during capacity tests. The floating currents reveal to be rather constant at 25 °C, linearly increasing at 40 °C and decreasing from a higher level at 60 °C. Additional tests with three test cells, with the temperature rising from 40 to 60 °C in steps of 5 K, exhibit non-constant currents starting from 50 °C on with high variations amongst the tested cells. Once stored above 50 °C, the cells exhibit increased floating currents compared to the measurement at the same temperature before exceeding 50 °C.

  8. A Technique to Estimate the Equivalent Loss Resistance of Grid-Tied Converters for Current Control Analysis and Design

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Fernandez, Francisco Daniel Freijedo

    2015-01-01

    Rigorous analysis and design of the current control loop in voltage source converters (VSCs) requires an accurate modeling. The loop behavior can be significantly influenced by the VSC working conditions. To consider such effect, converter losses should be included in the model, which can be done...... by means of an equivalent series resistance. This paper proposes a method to identify the VSC equivalent loss resistance for the proper tuning of the current control loop. It is based on analysis of the closed-loop transient response provided by a synchronous proportional-integral current controller......, according to the internal model principle. The method gives a set of loss resistance values linked to working conditions, which can be used to improve the tuning of the current controllers, either by online adaptation of the controller gains or by open-loop adaptive adjustment of them according to prestored...

  9. An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Xiaobo Dou

    2015-07-01

    Full Text Available Inverter voltage control is an important task in the operation of a DC/AC microgrid system. To improve the inverter voltage control dynamics, traditional approaches attempt to measure and feedforward the load current, which, however, needs remote measurement with communications in a microgrid system with distributed loads. In this paper, a load current observer (LCO based control strategy, which does not need remote measurement, is proposed for sinusoidal signals tracking control of a three-phase inverter of the microgrid. With LCO, the load current is estimated precisely, acting as the feedforward of the dual-loop control, which can effectively enlarge the stability margin of the control system and improve the dynamic response to load disturbance. Furthermore, multiple PR regulators are applied in this strategy conducted in a stationary  frame to suppress the transient fluctuations and the total harmonic distortion (THD of the output voltage and achieve faster transient performance compared with traditional dual-loop control in a rotating dq0 frame under instantaneous change of various types of load (i.e., balanced load, unbalanced load, and nonlinear load. The parameters of multiple PR regulators are analyzed and selected through the root locus method and the stability of the whole control system is evaluated and analyzed. Finally, the validity of the proposed approach is verified through simulations and a three-phase prototype test system with a TMS320F28335 DSP.

  10. A pulsed-power generator merging inductive voltage and current adders and its switch trigger application example.

    Science.gov (United States)

    Li, Lee; Yafeng, Ge; Heqin, Zhong; Bin, Yu; Longjun, Xie

    2013-07-01

    A pulsed-power generator using inductive adder technology is proposed for the case of a discharge gap. The merit of this generator is to merge the pulsed-voltage and pulsed-current adders via the dual secondary windings with special circuit. For the nonlinear impedance in any discharge gap, the standalone voltage-pulse and current-pulse can be outputted successively by this generator. The proposed generator is especially useful for the common resolution of implementing pulse discharge at less cost. As an application example, a compact trigger prototype was developed to compatibly use in the gas-insulated and vacuum switches. Experiments achieved good results that the triggered switches showed stable performance and long life. If the basic circuit of this proposed generator is regarded as a pulsed-generating unit, a certain number of such units connected in parallel can be expected to form a general device with generating greater breakdown-voltage and sustained-current pulses for discharge gaps.

  11. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  12. Design of a constant-voltage and constant-current controller with dual-loop and adaptive switching frequency control

    Science.gov (United States)

    Yingping, Chen; Zhiqian, Li

    2015-05-01

    A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.

  13. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....

  14. Self-field effects on critical current density and current-voltage characteristics in superconducting YBaCuO thick films

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.D.; Hart, C.; Martinez, C.M.; Ares, O. [Superconductivity Lab, IMRE-University of Havana, Vedado 10400, Havana (Cuba)

    1999-07-01

    The self-field and percolative influences on transport measurements of polycrystalline bridges engraved on YBaCuO thick film have been investigated. A maximum in the dependence of the critical current density on cross-sectional area of the bridge (A = 0.003 mm{sup 2}-0.3 mm{sup 2}) has been found experimentally, in samples with low critical current densities (J{sub c}<50 A cm{sup -2}). The result of the measurements are in agreement with Mulet and coworkers, who have predicted that, under certain conditions, the self-field effects on transport measurements are negligible and the J{sub c} dependence on the sample dimensions is determined by the percolative character of the transport current. Self-field influences have also been observed in current-voltage characteristics, which have been analysed using the Ambegaokar-Halperin phase-slip theory. By allowing the noise parameter ({gamma}) to change with temperature, magnetic field and transport current, adequate agreement between theoretical and experimental current-voltage characteristics has been obtained. The dependence of the noise parameter with the transport current is demonstrated to be related with the self-field. (author)

  15. System for verification in situ of current transformers in high voltage substations; Sistema para verificacao in situ de transformadores de corrente em substacoes de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Pedro Henrique; Costa, Marcelo M. da; Dahlke, Diogo B.; Ikeda, Minoru [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)], Emails: pedro.henrique@lactec.org.br, arinos@lactec.org.br, diogo@lactec.org.br, minoru@lactec.org.br, Celso.melo@copel.com; Carvalho, Joao Claudio D. de [ELETRONORTE, Belem, PR (Brazil)], E-mail: marcelo.melo@eln.gov.br; Teixeira Junior, Jose Arinos [ELETROSUL, Florianopolis, SC (Brazil)], E-mail: jclaudio@eletrosul.gov.br; Melo, Celso F. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)], E-mail: Celso.melo@copel.com

    2009-07-01

    This work presents an alternative proposal to the execute the calibration of conventional current transformer at the field, using a verification system composed by a optical current transformer as a reference standard, able to installation in extra high voltage bars.

  16. β-Adrenergic receptor agonist increases voltage-gated Na(+) currents in medial prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Szulczyk, Bartlomiej

    2015-05-19

    The prefrontal cortex does not function properly in neuropsychiatric diseases and during chronic stress. The aim of this study was to test the effects of isoproterenol, a β-adrenergic receptor agonist, on the voltage-dependent fast-inactivating Na(+) currents in medial prefrontal cortex (mPFC) pyramidal neurons obtained from young rats. The recordings were performed in the cell-attached configuration. Isoproterenol (2μM) did not change the peak Na(+) current amplitude but shifted the IV curve of the Na(+) currents toward hyperpolarization. Pretreatment of the cells with the β-adrenergic antagonists propranolol and metoprolol abolished the effect of isoproterenol on the Na(+) currents, suggesting the involvement of β1-adrenergic receptors. The effect of β-adrenergic receptor stimulation on the sodium currents was dependent on kinase A and kinase C; the effect was diminished in the presence of the kinase A antagonist H-89 and the kinase C antagonist chelerythrine and abolished when the antagonists were coapplied. Moreover, isoproterenol depolarized the membrane potential recorded using the perforated-patch method, and this depolarization was abolished by cesium ions. Thus, in mPFC pyramidal neurons, stimulation of β-adrenergic receptors up-regulates the fast-inactivating voltage-gated Na(+) currents evoked by suprathreshold depolarizations.

  17. Double injection, resonant-tunneling recombination, and current-voltage characteristics in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Maltsev, P. P. [Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Leiman, V. G. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Ryabova, N. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States)

    2014-01-14

    We evaluate the effect of the recombination associated with interlayer transitions in ungated and gated double-graphene-layer (GL) structures on the injection of electrons and holes. Using the proposed model, we derive analytical expressions for the spatial distributions of the electron and hole Fermi energies and the energy gap between the Dirac points in GLs as well as their dependences on the bias and gate voltages. The current-voltage characteristics are calculated as well. The model is based on hydrodynamic equations for the electron and hole transports in GLs under the self-consistent electric field. It is shown that in undoped double-GL structures with weak scattering of electrons and holes on disorder, the Fermi energies and the energy gap are virtually constant across the main portions of GLs, although their values strongly depend on the voltages and recombination parameters. In contrast, the electron and hole scattering on disorder lead to substantial nonuniformities. The resonant inter-GL tunneling enables N-shaped current-voltage characteristics provided that GLs are sufficiently short. The width of the current maxima is much larger than the broadening of the tunneling resonance. In the double-GL structures with relatively long GLs, the N-shaped characteristics transform into the Z-shaped characteristics. The obtained results are in line with the experimental observations [Britnell et al., Nat. Commun. 4, 1794–1799 (2013)] and might be useful for design and optimization of different devices based on double-GL structures, including field-effect transistors and terahertz lasers.

  18. A High Voltage Power Supply That Mitigates Current Reversals in Capillary Zone Electrophoresis-Electrospray Mass Spectrometry

    Science.gov (United States)

    Flaherty, Ryan J.; Sarver, Scott A.; Sun, Liangliang; Brownell, Greg A.; Go, David B.; Dovichi, Norman J.

    2017-02-01

    Capillary electrophoresis coupled with electrospray ionization typically employs two power supplies, one at each end of the capillary. One power supply is located at the proximal (injection) end of the capillary. The power supply located at the distal (detector) end of the capillary drives the electrospray. Electrophoresis is driven by the difference in potential between these power supplies. Separations that employ large capillary inner diameter, high conductivity background electrolyte, and high separation potentials generate higher current than that produced by the electrospray. Excess current flows through the electrospray power supply. Most power supplies are not designed to sink current, and the excess current will cause the electrospray voltage to deviate from its set point. We report a simple circuit to handle this excess current, allowing separations under a wide range of electrophoretic conditions.

  19. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  20. Fluconazole resistance in Candida species: a current perspective

    Directory of Open Access Journals (Sweden)

    Berkow EL

    2017-07-01

    Full Text Available Elizabeth L Berkow, Shawn R Lockhart Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract: Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it. Keywords: Candida, fluconazole resistance, ERG11, drug efflux, ergosterol