WorldWideScience

Sample records for voltage coupling model

  1. Coupling capacitor voltage transformer: A model for electromagnetic transient studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.; Neves, W.L.A. [Department of Electrical Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882 Bodocongo, 58.109-970 Campina Grande, PB (Brazil); Vasconcelos, J.C.A. [Companhia Hidro Eletrica do Sao Francisco, Rua Delmiro Gouveia, 333 Bongi, 50.761-901 Recife, PE (Brazil)

    2007-02-15

    In this work, an accurate coupling capacitor voltage transformer (CCVT) model for electromagnetic transient studies is presented. The model takes into account linear and nonlinear elements. A support routine was developed to compute the linear 230kV CCVT parameters (resistances, inductances and capacitances) from frequency response data. The magnetic core and surge arrester nonlinear characteristics were estimated from laboratory measurements as well. The model is used in connection with the electromagnetic transients program (EMTP) to predict the CCVT performance when it is submitted to transient overvoltages, as are the cases of voltages due to the ferroresonance phenomenon and circuit breaker switching. The difference between simulated and measured results is fairly small. Simulations had shown that transient overvoltages produced inside the CCVT, when a short circuit is cleared at the CCVT secondary side, are effectively damped out by the ferroresonance suppression circuit and the protection circuit. (author)

  2. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  3. A minimalist model of calcium-voltage coupling in GnRH cells

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, Martin; Chan, Rossanna; Duan Wen; Sneyd, James [Department of Mathematics, University of Auckland, Auckland 1142 (New Zealand); Schneider, David, E-mail: schneide@tandar.cnea.gov.ar [Departamento de Fisica, Comision Nacional de Energia Atomica. Av. del Libertador 8250, 1429 Buenos Aires (Argentina)

    2011-03-01

    We present a minimalist model to describe the interplay between burst firing and calcium dynamics in Gonadotropin-releasing hormone (GnRH) cells. This model attempts to give a qualitative representation of Duan's model [3], and it comprises two FithzHugh-Nagumo (FHN) coupled systems describing the dynamics of the membrane potential and calcium concentration in the GnRH cells. Within the framework of our minimalist model, we find that the calcium subsystem drives burst firing by making the voltage subsystem to undergo a Hopf bifurcation. Specifically, fast relaxation oscillations occur in a specific region of the c-z plane (c being the calcium concentration, and z a calcium-dependent gating variable). Slow calcium oscillations, instead, are carried by the voltage subsystem by successive shifts of the calcium steady state, and have the net effect of an external perturbation. The full comprehension of the phase-plane of the voltage subsystem and the 3-dimensional phase-space of the calcium subsystem ultimately allows us to study the behaviours of the entire model under the change of certain parameters. Those special parameters do not necessarily follow realistic assumptions, but merely intend to mimic some pharmacological tests which have been performed experimentally and also simulated by Duan's model under the corresponding physiological considerations.

  4. A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2016-01-28

    The voltage sensitivity of membrane proteins is reflected in the response of the voltage sensing domains (VSDs) to the changes in membrane potential. This response is implicated in the displacement of positively charged residues, associated with the conformational changes of VSDs. The displaced charges generate nonlinear (i.e., voltage-dependent) capacitance current called the gating current (and its corresponding gating charge), which is a key experimental quantity that characterizes voltage activation in VSMP. However, the relevant theoretical/computational approaches, aimed to correlate the structural information on VSMP to electrophysiological measurements, have been rather limited, posing a broad challenge in computer simulations of VSMP. Concomitant with the development of our coarse-graining (CG) model of voltage coupling, we apply our theoretical framework for the treatments of voltage effects in membrane proteins to modeling the VSMP activation, taking the VSDs (Ci-VSD) derived from the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) as a model system. Our CG model reproduces the observed gating charge of Ci-VSD activation in several different perspectives. In particular, a new closed-form expression of the gating charge is evaluated in both nonequilibrium and equilibrium ways, while considering the fluctuation-dissipation relation that connects a nonequilibrium measurement of the gating charge to an equilibrium measurement of charge fluctuations (i.e., the voltage-independent linear component of membrane capacitance). In turn, the expression uncovers a novel link that connects an equilibrium measurement of the voltage-independent linear capacitance to a nonequilibrium measurement of the voltage-dependent nonlinear capacitance (whose integral over voltage is equal to the gating charge). In addition, our CG model yields capacitor-like voltage dependent free energy parabolas, resulting in the free energy difference and the free energy barrier for

  5. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin;

    2015-01-01

    to keep the voltage of the pilot bus tracking its set point considering the DC system’s transmission schedule change. The approach is inspired by model predictive control (MPC) to compensate for predictable voltage change affected by DC side transmission power flow and the potential capacitor switching...

  6. Piezoelectric Voltage Coupled Reentrant Cavity Resonator

    CERN Document Server

    Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund

    2014-01-01

    A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.

  7. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  8. Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions

    Science.gov (United States)

    Weinberg, S. H.

    2017-09-01

    Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.

  9. NUMERICAL ANALYSIS OF MATHEMATICAL MODELS OF THE FACTUAL CONTRIBUTION DISTRIBUTION IN ASYMMETRY AND DEVIATION OF VOLTAGE AT THE COMMON COUPLING POINTS OF ENERGY SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yu.L. Sayenko

    2016-05-01

    Full Text Available Purpose. Perform numerical analysis of the distribution of the factual contributions of line sources of distortion in the voltage distortion at the point of common coupling, based on the principles of superposition and exclusions. Methodology. Numerical analysis was performed on the results of the simulation steady state operation of power supply system of seven electricity consumers. Results. Mathematical model for determining the factual contribution of line sources of distortion in the voltage distortion at the point of common coupling, based on the principles of superposition and exclusions, are equivalent. To assess the degree of participation of each source of distortion in the voltage distortion at the point of common coupling and distribution of financial compensation to the injured party by all sources of distortion developed a one-dimensional criteria based on the scalar product of vectors. Not accounting group sources of distortion, which belong to the subject of the energy market, to determine their total factual contribution as the residual of the factual contribution between all sources of distortion. Originality. Simulation mode power supply system was carried out in the phase components space, taking into account the distributed characteristics of distortion sources. Practical value. The results of research can be used to develop methods and tools for distributed measurement and analytical systems assessment of the power quality.

  10. Estimation of Static Pull-In Instability Voltage of Geometrically Nonlinear Euler-Bernoulli Microbeam Based on Modified Couple Stress Theory by Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Mohammad Heidari

    2013-01-01

    Full Text Available In this study, the static pull-in instability of beam-type micro-electromechanical system (MEMS is theoretically investigated. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. Two supervised neural networks, namely, back propagation (BP and radial basis function (RBF, have been used for modeling the static pull-in instability of microcantilever beam. These networks have four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data employed for training the networks and capabilities of the models in predicting the pull-in instability behavior has been verified. Based on verification errors, it is shown that the radial basis function of neural network is superior in this particular case and has the average errors of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations show a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

  11. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.

    Science.gov (United States)

    Maltsev, Victor A; Lakatta, Edward G

    2009-03-01

    Recent experimental studies have demonstrated that sinoatrial node cells (SANC) generate spontaneous, rhythmic, local subsarcolemmal Ca(2+) releases (Ca(2+) clock), which occur during late diastolic depolarization (DD) and interact with the classic sarcolemmal voltage oscillator (membrane clock) by activating Na(+)-Ca(2+) exchanger current (I(NCX)). This and other interactions between clocks, however, are not captured by existing essentially membrane-delimited cardiac pacemaker cell numerical models. Using wide-scale parametric analysis of classic formulations of membrane clock and Ca(2+) cycling, we have constructed and initially explored a prototype rabbit SANC model featuring both clocks. Our coupled oscillator system exhibits greater robustness and flexibility than membrane clock operating alone. Rhythmic spontaneous Ca(2+) releases of sarcoplasmic reticulum (SR)-based Ca(2+) clock ignite rhythmic action potentials via late DD I(NCX) over much broader ranges of membrane clock parameters [e.g., L-type Ca(2+) current (I(CaL)) and/or hyperpolarization-activated ("funny") current (I(f)) conductances]. The system Ca(2+) clock includes SR and sarcolemmal Ca(2+) fluxes, which optimize cell Ca(2+) balance to increase amplitudes of both SR Ca(2+) release and late DD I(NCX) as SR Ca(2+) pumping rate increases, resulting in a broad pacemaker rate modulation (1.8-4.6 Hz). In contrast, the rate modulation range via membrane clock parameters is substantially smaller when Ca(2+) clock is unchanged or lacking. When Ca(2+) clock is disabled, the system parametric space for fail-safe SANC operation considerably shrinks: without rhythmic late DD I(NCX) ignition signals membrane clock substantially slows, becomes dysrhythmic, or halts. In conclusion, the Ca(2+) clock is a new critical dimension in SANC function. A synergism of the coupled function of Ca(2+) and membrane clocks confers fail-safe SANC operation at greatly varying rates.

  12. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    -to-layer coupling and the comparison of the layout impacts have not been well established. This paper presents modeling of parasitic mutual coupling to analyze the parasitic capacitance directly coupled between two on-chip metal wires. The accurate 3D field solver analysis for the comparable dimensions shows......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...

  13. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    NARCIS (Netherlands)

    Bruneau, B.; Diomede, P.; Economou, D. J.; Longo, S.; Gans, T.; O’Connell, D.; Greb, A.; Johnson, E.; Booth, J. P.

    2016-01-01

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure ( 1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model

  14. Inductive voltage divider modeling in Matlab

    Science.gov (United States)

    Andreev, S. A.; Kim, V. L.

    2017-01-01

    Inductive voltage dividers have the most appropriate metrological characteristics on alternative current and are widely used for converting physical signals. The model of a double-decade inductive voltage divider was designed with the help of Matlab/Simulink. The first decade is an inductive voltage divider with balanced winding, the second decade is a single-stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The study shows errors and differences that appeared between the third degree reduced model and a twenty degree unreduced model. The obtained results of amplitude error differ no more than by 7 % between the reduced and unreduced model.

  15. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    NARCIS (Netherlands)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J. P.

    2017-01-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasmas (CCP), including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these

  16. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  17. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical m

  18. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8).

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-12-19

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.

  19. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.

  20. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high- Tc superconductors

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.

  1. Effect of state feedback coupling on the transient performance of voltage source inverters with LC filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback coupling between the capacitor voltage and inductor current deteriorates notably the performance during transients of voltage and current regulators in stand-alone systems based on voltage source inverters. A decoupling technique is proposed, considering the limitations introduced ...... by system delays. Laboratory experiments were executed in compliance with the normative for Uninterruptible Power Supply systems to prove the developed analysis....

  2. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...... of the conductance when a finite coupling to the voltage probe is taken into account....

  3. Modeling of long High Voltage AC Underground

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Bak, Claus Leth; Wiechowski, W. T.

    2010-01-01

    This paper presents the work and findings of a PhD project focused on accurate high frequency modelling of long High Voltage AC Underground cables. The project is cooperation between Aalborg University and Energinet.dk. The objective of the project is to investigate the accuracy of most up to date...

  4. Effect of coupling on scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high- superconductors

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2005-01-01

    We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...

  5. Maintenance Optimization of High Voltage Substation Model

    Directory of Open Access Journals (Sweden)

    Jan Gala

    2008-01-01

    Full Text Available The real system from practice is selected for optimization purpose in this paper. We describe the real scheme of a high voltage (HV substation in different work states. Model scheme of the HV substation 22 kV is demonstrated within the paper. The scheme serves as input model scheme for the maintenance optimization. The input reliability and cost parameters of all components are given: the preventive and corrective maintenance costs, the actual maintenance period (being optimized, the failure rate and mean time to repair - MTTR.

  6. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.

    Science.gov (United States)

    Zhang, Guohui; Geng, Yanyan; Jin, Yakang; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L; Salkoff, Lawrence; Cui, Jianmin

    2017-03-06

    Large conductance Ca(2+)-activated K(+) channels (BK channels) gate open in response to both membrane voltage and intracellular Ca(2+) The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca(2+) sensor. How these voltage and Ca(2+) sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca(2+) activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca(2+) sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel's β1 and β2 subunits.

  7. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    Energy Technology Data Exchange (ETDEWEB)

    Manipatruni, Sasikanth, E-mail: sasikanth.manipatruni@intel.com; Nikonov, Dmitri E.; Young, Ian A. [Exploratory Integrated Circuits, Components Research, Intel Corp., Hillsboro, Oregon 97124 (United States)

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  8. Mode localized MEMS transducers with voltage-controlled linear coupling

    Science.gov (United States)

    Manav, M.; Srikantha Phani, A.; Cretu, E.

    2017-05-01

    Recent studies have demonstrated mode localized resonant micro-electro-mechanical systems (MEMS) sensing devices with orders of magnitude improvement in sensitivity. Avoided crossings or eigenvalue veering is the physical mechanism exploited to achieve the enhancement in sensitivity of devices operating either in vacuum or in air. The mode localized MEMS devices are typically designed to be symmetric and use gap-varying electrostatic springs to couple motions of two or more resonators. The role of asymmetry in the design of devices and its influence on sensitivity is not fully understood. Furthermore, gap-varying electrostatic springs suffer from nonlinearities when gap variation between coupling plates becomes large due to mode localization, imposing limitations on the device performance. To address these shortcomings, this contribution has two principal objectives. The first objective is to critically assess the role of asymmetry in the device design and operation. We show, based on energy analysis, that carefully designed asymmetry in devices can lead to even higher sensitivities than reported in the literature. Our second objective is to design and implement linear, tunable, electrostatic springs, using shaped combs, which allow large vibration amplitudes of resonators thereby increasing the signal to noise ratio. We experimentally demonstrate linear electrostatic coupling in a two oscillator device. Our study suggests that a future avenue for progress in the mode localized resonant sensing technology is to combine asymmetric devices with tunable linear coupling designs.

  9. P Voltage Control of DFIG with Two-Mass-Shaft Turbine Model Under Utility Voltage Disturbance

    Directory of Open Access Journals (Sweden)

    Hengameh Kojooyan Jafari

    2016-06-01

    Full Text Available Doubly fed induction generators as a variable speed induction generators are applied instead of other electric machines in wind power plants to be connected to the grid with flexible controllers. Nowadays one of the most important subjects in wind farms is control of output power delivered to the grid under utility disturbance. In this paper, a doubly-fed induction generator with external rotor resistance and power converters model as an external voltage source having an adjustable phase and amplitude with an ordinary turbine connected to one mass shaft model and also two mass shaft model, is used and controlled by a P voltage controller to control the output active power for typical high and low wind speeds under two conditions of utility disturbance; while time of disturbance is not too long to change the domain of external rotor voltage source and also while time is long and the domain of external rotor voltage decreases.Simulation results show that P voltage controller can control output active power under 27% stator voltage drop down for typical low wind speed and 11% stator voltage drop down for typical high wind speed in long time disturbance while 80% of rotor external voltage domain drops down under short time utility disturbance.

  10. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    Science.gov (United States)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J.-P.

    2017-07-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H- ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases.

  11. Bottom-series coupled quadrature VCO using the inductive gate voltage boosting technique

    Science.gov (United States)

    Jang, Sheng-Lyang; Chou, Li-Te

    2013-09-01

    This article presents a new low-voltage bottom-series coupled quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled VCOs with the bottom-series coupling transistors. The low-voltage operation is obtained via an inductive gate voltage boosting technique. The proposed CMOS QVCO has been implemented with the TSMC 0.18 µm CMOS technology and the die area is 0.897 × 0.767 mm2. At the supply voltage of 0.7 V, the total power consumption is 1.5 mW. The free-running frequency of the QVCO is tuneable from 3.77 to 4.12 GHz as the tuning voltage is varied from 0.0 to 0.7 V. The measured phase noise at 1 MHz frequency offset is -123.35 dBc/Hz at the oscillation frequency of 4.12 GHz and the figure of merit of the proposed QVCO is -193.5 dBc/Hz.

  12. Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the high-voltage electrostatic theory and numerical analysis, the dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields was studied. The oscillation behavior of the conductive particle between the corona electrode and ground electrode was analyzed and its oscillation amplitude was Sm=(ta+ts)·νm/2. It was found that there was the "lift-off voltage (Ulo)" for the conductive particle between the electrostatic electrode and ground electrode. The concepts of "critical charged rotational speed (n?)", "detaching critical rotational speed of nonconductive particle (n′)" and "ratio of voltage and distance between surface of electrodes (U/D)" were presented and their criteria were established. The trajectories of the conductive particles under the coupling fields of the corona electrode, electrostatic electrode and ground electrode were simulated by the computer. The simulative results were in good agreement with the experimental ones. This research enriches the high-voltage electrostatic theory and provides a theoretic basis for optimization of operating parameters and structure design of high-voltage electrostatic separator.

  13. Modeling of a breakdown voltage in microdischarges

    Directory of Open Access Journals (Sweden)

    Đorđević Ivana

    2009-01-01

    Full Text Available Non-equilibrium plasmas have been used as one of the principal technologies for development of microelectronics and they are the basis for the development of new generations of nano-electronics devices required for 65 and 40 nm technologies. Microdischarges recently have become more common in everyday life. Technology of plasma etching has enabled us to develop such discharges and the field of microdischarges has grown into the most interesting field of the physics of collisional non-equilibrium plasmas. Recently, an effort to fabricate microplasma sources that can be integrated with other MEMS devices to form larger Microsystems has been made. Plasma-based microsystems can find application in bio-microelectro- mechanical system (bio-MEMS sterilization, small-scale materials processing and microchemical analysis systems. However, integrability requires not only a size reduction, but also an understanding of the physics governing the new small-scale discharges. In this paper, we have performed modeling of a breakdown voltage by using Particle-in-Cell/Monte Carlo collision (PIC/MCC code taking into account the secondary electron emission due to a high field.

  14. Low Voltage Low Power Quadrature LC Oscillator Based on Back-gate Superharmonic Capacitive Coupling

    Science.gov (United States)

    Ma, Minglin; Li, Zhijun

    2013-09-01

    This work introduces a new low voltage low power superharmonic capacitive coupling quadrature LC oscillator (QLCO) made by coupling two identical cross-connected LC oscillators without tail transistor. In each of the core oscillators, the back-gate nodes of the cross-coupled NMOS pair and PMOS pair, acting as common mode nodes, have been connected directly. Then the core oscillators are coupled together via capacitive coupling of the PMOS common mode node in one of the core oscillators to the NMOS common mode node in the other core oscillator, and vice versa. Only capacitors are used for coupling of the two core oscillators and therefore no extra noise sources are imposed on the circuit. Operation of the proposed QLCO was investigated with simulation using a commercial 0.18 µm RF CMOS technology: it shows a power dissipation of 5.2 mW from a 0.6 V supply voltage. Since the proposed core oscillator has Complementary NMOS and PMOS cross coupled pairs, and capacitive coupling method will not introduce extra phase noise, so this circuit can operate with a low phase noise as low as -126.8 dBc/Hz at 1 MHz offset from center oscillation frequency of 2.4 GHz, as confirmed with simulation.

  15. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  16. A random resistor network model of voltage trimming

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, C [Laboratoire de Production Microtechnique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Maeder, T [Laboratoire de Production Microtechnique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ryser, P [Laboratoire de Production Microtechnique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Straessler, S [Laboratoire de Production Microtechnique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2004-08-07

    In industrial applications, the controlled adjustment (trimming) of resistive elements via the application of high voltage pulses is a promising technique, with several advantages with respect to more classical approaches such as the laser cutting method. The microscopic processes governing the response to high voltage pulses depend on the nature of the resistor and on the interaction with the local environment. Here we provide a theoretical statistical description of voltage discharge effects on disordered composites by considering random resistor network models with different properties and processes due to the voltage discharge. We compare standard percolation results with biased percolation effects and provide a tentative explanation of the different scenarios observed during trimming processes.

  17. Enhanced Model of Nonlinear Spiral High Voltage Divider

    Directory of Open Access Journals (Sweden)

    V. Panko

    2015-04-01

    Full Text Available This paper deals with the enhanced accurate DC and RF model of nonlinear spiral polysilicon voltage divider. The high resistance polysilicon divider is a sensing part of the high voltage start-up MOSFET transistor that can operate up to 700 V. This paper presents the structure of a proposed model, implemented voltage, frequency and temperature dependency, and scalability. A special attention is paid to the ability of the created model to cover the mismatch and influence of a variation of process parameters on the device characteristics. Finally, the comparison of measured data vs. simulation is presented in order to confirm the model validity and a typical application is demonstrated.

  18. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth

    2013-07-30

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    Science.gov (United States)

    Bruneau, B.; Diomede, P.; Economou, D. J.; Longo, S.; Gans, T.; O'Connell, D.; Greb, A.; Johnson, E.; Booth, J.-P.

    2016-08-01

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure (~1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model are compared to phase resolved optical emission spectroscopy measurements, yielding information on the dynamics of the excitation rate in these discharges. When the discharge is excited with amplitude asymmetric waveforms, the discharge becomes electrically asymmetric, with different ion energies at each of the two electrodes. Unexpectedly, large differences in the \\text{H}2+ fluxes to each of the two electrodes are caused by the different \\text{H}3+ energies. When the discharge is excited with slope asymmetric waveforms, only weak electrical asymmetry of the discharge is observed. In this case, electron power absorption due to fast sheath expansion at one electrode is balanced by electron power absorption at the opposite electrode due to a strong electric field reversal.

  20. Evolution of a Voltage-Time Model of Thermal Batteries

    Science.gov (United States)

    1991-02-01

    MARK I1 VOLTAGE-TIME MODEL 7 6 MARKt III VOLTAGE-TIME MODEL 10 6.1 Capacity degradation II 6,2 Allowance ’for time-dependent polarisation If 6,3...period is sub- divided into two or more segments in the model input data, in all of which the TM MS 1163 13 same current or resistor value operates as

  1. Development of a Marx-coupled trigger generator with high voltages and low time delay

    Science.gov (United States)

    Hu, Yixiang; Zeng, Jiangtao; Sun, Fengju; Cong, Peitian; Su, Zhaofeng; Yang, Shi; Zhang, Xinjun; Qiu, Ai'ci

    2016-10-01

    Coupled by the Marx of the "JianGuang-I" facility, a high voltage, low time-delay trigger generator was developed. Working principles of this trigger generator and its key issues were described in detail. Structures of this generator were also carefully designed and optimized. Based on the "JianGuang-I" Marx generator, a test stand was established. And a series of experiment tests were carried out to the study performance of this trigger generator. Experiment results show that the output voltage of this trigger generator can be continuously adjusted from 58 kV to 384 kV. The time delay (from the beginning of the Marx-discharging pulse to the time that the output pulse of the trigger generator arises) of this trigger pulse is about 200 ns and its peak time (0%˜100%) is less than 50 ns. Experiment results also indicate that the time-delay jitter of trigger voltages decreases rapidly with the increase in the peak voltage of trigger pulses. When the trigger voltage is higher than 250 kV, the time-delay jitters (the standard deviation) are less than 7.7 ns.

  2. Load distribution model and voltage static profile of Smart Grid

    Institute of Scientific and Technical Information of China (English)

    SUN Qiu-ye; LI Zhong-xu; YANG Jun; LUO Yan-hong

    2010-01-01

    Voltage profiles of feeders with the connection of distributed generations(DGs)were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.

  3. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Institute of Scientific and Technical Information of China (English)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  4. A model for voltage collapse study considering load characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.B. [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)

    1994-12-31

    This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.

  5. Hydrological model coupling with ANNs

    Science.gov (United States)

    Kamp, R. G.; Savenije, H. H. G.

    2006-12-01

    Model coupling in general is necessary but complicated. Scientists develop and improve conceptual models to represent physical processes occurring in nature. The next step is to translate these concepts into a mathematical model and finally into a computer model. Problems may appear if the knowledge, encapsulated in a computer model and software program is needed for another purpose. In integrated water management this is often the case when connections between hydrological, hydraulic or ecological models are required. Coupling is difficult for many reasons, related to data formats, compatibility of scales, ability to modify source codes, etc. Hence, there is a need for an efficient and cost effective approach to model-coupling. One solution for model coupling is the use of Artificial Neural Networks (ANNs). The ANN can be used as a fast and effective model simulator which can connect different models. In this paper ANNs are used to couple four different models: a rainfall runoff model, a river channel routing model, an estuarine salt intrusion model, and an ecological model. The coupling as such has proven to be feasible and efficient. However the salt intrusion model appeared difficult to model accurately in an ANN. The ANN has difficulty to represent both short term (tidal) and long term (hydrological) processes.

  6. Calculation Model for Current-voltage Relation of Silicon Quantum-dots-based Nano-memory

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-guan; DAI Da-kang; YU Biao; SHANG Lin-lin; GUO You-hong

    2007-01-01

    Based on the capacitive coupling formalism, an analytic model for calculating the drain currents of the quantum-dots floating-gate memory cell is proposed. Using this model, one can calculate numerically the drain currents of linear, saturation and subthreshold regions of the device with/without charges stored on the floating dots. The read operation process of an n-channel Si quantum-dots floating-gate nano-memory cell is discussed after calculating the drain currents versus the drain to source voltages and control gate voltages in both high and low threshold states respectively.

  7. Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges

    Science.gov (United States)

    Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O’Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán

    2017-03-01

    Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50–700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.

  8. Ac Synchronous Servo Based On The Armature Voltage Prediction Model

    Science.gov (United States)

    Hoshino, Akihiro; Kuromaru, Hiroshi; Kobayashi, Shinichi

    1987-10-01

    A new control method of the AC synchro-nous servo-system (Brushless DC servo-system) is discussed. The new system is based on the armature voltage prediction model. Without a resolver-digital-conver-ter nor a tachometer-generator, the resolver provides following three signals to the system immediately, they are the current command, the induced voltage, and the rotor speed. The new method realizes a simple hardware configuration. Experimental results show a good performance of the system.

  9. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.

    Science.gov (United States)

    Chen, J; Mitcheson, J S; Tristani-Firouzi, M; Lin, M; Sanguinetti, M C

    2001-09-25

    Voltage-gated channels are normally opened by depolarization and closed by repolarization of the membrane. Despite sharing significant sequence homology with voltage-gated K(+) channels, the gating of hyperpolarization-activated, cyclic-nucleotide-gated (HCN) pacemaker channels has the opposite dependence on membrane potential: hyperpolarization opens, whereas depolarization closes, these channels. The mechanism and structural basis of the process that couples voltage sensor movement to HCN channel opening and closing is not understood. On the basis of our previous studies of a mutant HERG (human ether-a-go-go-related gene) channel, we hypothesized that the intracellular linker that connects the fourth and fifth transmembrane domains (S4-S5 linker) of HCN channels might be important for channel gating. Here, we used alanine-scanning mutagenesis of the HCN2 S4-S5 linker to identify three residues, E324, Y331, and R339, that when mutated disrupted normal channel closing. Mutation of a basic residue in the S4 domain (R318Q) prevented channel opening, presumably by disrupting S4 movement. However, channels with R318Q and Y331S mutations were constitutively open, suggesting that these channels can open without a functioning S4 domain. We conclude that the S4-S5 linker mediates coupling between voltage sensing and HCN channel activation. Our findings also suggest that opening of HCN and related channels corresponds to activation of a gate located near the inner pore, rather than recovery of channels from a C-type inactivated state.

  10. Measurements for validation of high voltage underground cable modelling

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Gudmundsdottir, Unnur Stella; Wiechowski, Wojciech Tomasz

    2009-01-01

    This paper discusses studies concerning cable modelling for long high voltage AC cable lines. In investigating the possibilities of using long cables instead of overhead lines, the simulation results must be trustworthy. Therefore a model validation is of great importance. This paper describes...

  11. Voltage control of the magnetic coercive field: Multiferroic coupling or artifact?

    Science.gov (United States)

    Vopsaroiu, M.; Cain, M. G.; Woolliams, P. D.; Weaver, P. M.; Stewart, M.; Wright, C. D.; Tran, Y.

    2011-03-01

    The ability to dynamically tune the coercive field of magnetic thin films is a powerful tool for applications, including in magnetic recording disk technologies. Recently, a number of papers have reported the electrical voltage control of the coercive field of various magnetic thin films in multiferroic composites. Theoretically, this is possible in magneto-electric (ME) multiferroics due to the piezoferroelectric component that can be electrically activated to dynamically modify the properties of the magnetic component of the composite via a direct or strain mediated ME coupling. In this paper we fabricated and examined such structures and we determined that the magnetic coercive field reduction is most likely due to a heating effect. We concluded that this effect is probably an artifact that cannot be attributed to a multiferroic coupling.

  12. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Directory of Open Access Journals (Sweden)

    Palade Philip T

    2010-11-01

    Full Text Available Abstract Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR in cardiac myocytes, with voltage clamp (VC studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR, and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo. Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU, in which resides the mechanistic basis of CICR. The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel. It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its

  13. Prospects for coupled modelling

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.

    2012-07-01

    Clay-based buffer and tunnel backfill materials are important barriers in the KBS- 3 repository concept for final disposal of spent nuclear fuel in Finland. Significant changes can be expected to occur to the properties and behaviour of buffer and backfill, especially during re-saturation and through the thermal period. Reactions will occur in response to thermal and chemical gradients, induced by the thermal output of the spent fuel and at interfaces between different barrier materials, such as cement/clay, steel/clay etc. Processes of ion exchange, mineral dissolution and precipitation, and swelling can lead to significant re-distribution of mass and evolution of physical properties so that reliable predictive modelling of future behaviour and properties must be made. This report evaluates the current status of modelling of buffer and backfill evolution and tries to assess the potential future capabilities in the short- to medium-term (5-10 years) in a number of technical areas: (1) Non-isothermal (T-H-M-C-B) modelling and the potential for cementation, (2) The consistency of models, (3) Swelling pressure, (4) Cement-bentonite interactions, (5) Iron-bentonite interactions, (6) Mechanical (shear) behavior, and (7) Bentonite erosion.

  14. Current-voltage model of LED light sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig

    2012-01-01

    Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...

  15. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...

  16. A novel high-voltage device structure with an N+ ring in substrate and the breakdown voltage model

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Zhu Jinluan; Wang Weidong; Yue Hongwei; Jin Liangnian

    2011-01-01

    A novel high-voltage device structure with a floating heavily doped N+ ring embedded in the substrate is reported,which is called FR LDMOS.When the N+ ring is introduced in the device substrate,the electric field peak of the main junction is reduced due to the transfer of the voltage from the main junction to the N+ ring junction,and the vertical breakdown characteristic is improved significantly.Based on the Poisson equation of cylindrical coordinates,a breakdown voltage model is developed.The numerical results indicate that the breakdown voltage of the proposed device is increased by 56% in comparison to conventional LDMOS.

  17. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    OpenAIRE

    Tourab, Wafa; Babouri, Abdesselam

    2015-01-01

    Background This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods Experimental Measurements for the Multi-lines power...

  18. Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels.

    Science.gov (United States)

    Ruchala, Iwona; Cabra, Vanessa; Solis, Ernesto; Glennon, Richard A; De Felice, Louis J; Eltit, Jose M

    2014-07-01

    Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca(2+) mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca(2+) permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca(2+) channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca(2+) channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca(2+) transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca(2+) channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca(2+)-driven signals in excitable cells.

  19. Coupling between residues on S4 and S1 defines the voltage-sensor resting conformation in NaChBac.

    Science.gov (United States)

    Paldi, Tzur; Gurevitz, Michael

    2010-07-21

    The voltage sensor is a four-transmembrane helix bundle (S1-S4) that couples changes in membrane potential to conformational alterations in voltage-gated ion channels leading to pore opening and ion conductance. Although the structure of the voltage sensor in activated potassium channels is available, the conformation of the voltage sensor at rest is still obscure, limiting our understanding of the voltage-sensing mechanism. By employing a heterologously expressed Bacillus halodurans sodium channel (NaChBac), we defined constraints that affect the positioning and depolarization-induced outward motion of the S4 segment. We compared macroscopic currents mediated by NaChBac and mutants in which E43 on the S1 segment and the two outermost arginines (R1 and R2) on S4 were substituted. Neutralization of the negatively charged E43 (E43C) had a significant effect on channel gating. A double-mutant cycle analysis of E43 and R1 or R2 suggested changes in pairing during channel activation, implying that the interaction of E43 with R1 stabilizes the voltage sensor in its closed/available state, whereas interaction of E43 with R2 stabilizes the channel open/unavailable state. These constraints on S4 dynamics that define its stepwise movement upon channel activation and positioning at rest are novel, to the best of our knowledge, and compatible with the helical-screw and electrostatic models of S4 motion.

  20. A Unified Impedance Model of Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2017-01-01

    This paper proposes a unified impedance model of grid-connected voltage-source converters for analyzing dynamic influences of the Phase-Locked Loop (PLL) and current control. The mathematical relations between the impedance models in the different domains are first explicitly revealed by means...... of complex transfer functions and complex space vectors. A stationary (αβ-) frame impedance model is then proposed, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect explicitly. Furthermore, the impedance shaping effect of the PLL on the current control...

  1. Effect of voltage dynamics on response properties in a model of sensory hair cell

    CERN Document Server

    Amro, Rami

    2012-01-01

    Sensory hair cells in auditory and vestibular organs rely on active mechanisms to achieve high sensitivity and frequency selectivity. Recent experimental studies have documented self-sustained oscillations in hair cells of lower vertebrates on two distinct levels. First, the hair bundle can undergo spontaneous mechanical oscillations. Second, somatic electric voltage oscillations across the baso-lateral membrane of the hair cell have been observed. We develop a biophysical model of the bullfrog's saccular hair cell consisting of two compartments, mechanical and electrical, to study how the mechanical and the voltage oscillations interact to produce coherent self-sustained oscillations and how this interaction contributes to the overall sensitivity and selectivity of the hair cell. The model incorporates nonlinear mechanical stochastic hair bundle system coupled bi-directionally to a Hodgkin-Huxley type system describing somatic ionic currents. We isolate regions of coherent spontaneous oscillations in the par...

  2. Modeling of High-voltage Breakdown in Helium

    Science.gov (United States)

    Xu, Liang; Khrabrov, Alexander; Kaganovich, Igor; Sommerer, Timothy

    2016-09-01

    We investigate the breakdown in extremely high reduced electric fields (E/N) between parallel-plate electrodes in helium. The left branch of the Paschen curve in the voltage range of 20-350kV and inter-electrode gap range of 0.5-3.5cm is studied analytically and with Monte-Carlo/PIC simulations. The model incorporates electron, ion, and fast neutral species whose energy-dependent anisotropic scattering, as well as backscattering at the electrodes, is carefully taken into account. Our model demonstrates that (1) anisotropic scattering is indispensable for producing reliable results at such high voltage and (2) due to the heavy species backscattered at cathode, breakdown can occur even without electron- and ion-induced ionization of the background gas. Fast atoms dominate in the breakdown process more and more as the applied voltage is increased, due to their increasing ionization cross-section and to the copious flux of energetic fast atoms generated in charge-exchange collisions.

  3. Modeling of Coupled Chaotic Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y. [Departments of Physics and Astronomy and of Mathematics, University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, Department of Mathematics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    1999-06-01

    Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. {copyright} {ital 1999} {ital The American Physical Society}

  4. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  5. The Challenges to Coupling Dynamic Geospatial Models

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  6. A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy.

    Science.gov (United States)

    Downing, Kenneth H; Mooney, Paul E

    2008-04-01

    Electron microscopists are increasingly turning to intermediate voltage electron microscopes (IVEMs) operating at 300-400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions, CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single particle reconstruction of protein structures, tomographic studies of cell ultrastructure, and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels.

  7. Experimental and simulation study of a capacitively coupled oxygen discharge driven by tailored voltage waveforms

    Science.gov (United States)

    Derzsi, Aranka; Lafleur, Trevor; Booth, Jean-Paul; Korolov, Ihor; Donkó, Zoltán

    2016-02-01

    We report experimental and particle-based kinetic simulation studies of low-pressure capacitively coupled oxygen plasmas driven by tailored voltage waveforms that consist of up to four harmonics of base frequency 13.56 MHz. Experimentally determined values of DC self-bias and electrical power deposition, as well as flux density and flux-energy distribution of the positive ions at the grounded electrode are compared with simulation data for a wide range of operating conditions. Very good agreement is found for self-bias and flux-energy distribution of the positive ions at the electrodes, while a fair agreement is reached for discharge power and ion flux data. The simulated spatial and temporal behaviour of the electric field, electron density, electron power absorption, ionization rate and mean electron energy shows a transition between sheath expansion heating and drift-ambipolar discharge modes, induced by changing either the number of harmonics comprising the excitation waveform or the gas pressure. The simulations indicate that under our experimental conditions the plasma operates at high electronegativity, and also reveal the crucial role of {{\\text{O}}2}≤ft({{a}1}{{Δ }g}\\right) singlet metastable molecules in establishing discharge behavior via the fast destruction of negative ions within the bulk plasma.

  8. Analysis and Mathematical Model for Restitution of Voltage Using Dynamic Voltage Restorer

    Directory of Open Access Journals (Sweden)

    C. Gopinath

    2014-01-01

    Full Text Available Voltage sag and swell have a major concern in the distribution systems. In order to mitigate the voltage sag and swell, a custom power device called dynamic voltage restorer (DVR is used. The proposed system is a polymer electrolyte membrane (PEM fuel cell based DVR. The energy from the fuel cell is stored in the super capacitor to restitute the voltage. In this proposed DVR, Z-source inverter is used instead of traditional inverter because of buck-boost and shoot through capability. The simulation is performed using three controller topologies: PI controller, synchronous reference frame controller and fuzzy controller and the results are verified using Matlab-Simulink environment.

  9. Small-signal, continuous, exact model of PWM voltage regulators

    Science.gov (United States)

    Burkhardt, W.; Maranesi, P.; Varoli, V.

    1985-02-01

    The small-signal time-continuous open-loop response of buck, boost, and buck-boost pulse-width-modulation (PWM) voltage regulators using MOSFET switches in their power stages is modeled, applying a time-domain sampling theorem (Woodward, 1953) to obtain the Fourier open-loop transfer function corresponding to the comb function describing the response at the chopping instants only. The results are presented graphically along with simplified circuit diagrams of the PWM devices, and the accuracy and computational efficiency of the analytical approach are indicated.

  10. Coupling constant in dispersive model

    Indian Academy of Sciences (India)

    R Saleh-Moghaddam; M E Zomorrodian

    2013-11-01

    The average of the moments for event shapes in + - → hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\\langle 1 - T \\rangle, \\langle ρ \\rangle, \\langle B_{T} \\rangle$ and $\\langle B_{W} \\rangle$. We extract , the coupling constant in perturbative theory and α0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $(M_{Z^{°}})$ = 0.1171 ± 0.00229 and 0 ($_{I} = 2{\\text{GeV}}$) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.

  11. Validation of a Cochlear Implant Patient Specific Model of the Voltage Distribution in a Clinical Setting

    Directory of Open Access Journals (Sweden)

    Waldo Nogueira

    2016-11-01

    Full Text Available Cochlear Implants (CIs are medical implantable devices that can restore the sense of hearing in people with profound hearing loss. Clinical trials assessing speech intelligibility in CI users have found large inter-subject variability. One possibility to explain the variability is the individual differences in the interface created between electrodes of the CI and the auditory nerve. In order to understand the variability, models of the voltage distribution of the electrically stimulated cochlea may be useful. With this purpose in mind, we developed a parametric model that can be adapted to each CI user based on landmarks from individual cone beam computed tomography (CBCT scans of the cochlea before and after implantation. The conductivity values of each cochlea compartment as well as the weighting factors of different grounding modes have been also parameterized. Simulations were performed modeling the cochlea and electrode positions of 12 CI users. Three models were compared with different levels of detail: A homogeneous model (HM, a non-patient specific model (NPSM and a patient specific model (PSM. The model simulations were compared with voltage distribution measurements obtained from the backward telemetry of the 12 CI users. Results show that the PSM produces the lowest error when predicting individual voltage distributions. Given a patient specific geometry and electrode positions we show an example on how to optimize the parameters of the model and how to couple it to an auditory nerve model. The model here presented may help to understand speech performance variability and support the development of new sound coding strategies for CIs.

  12. A new modeling of loading margin and its sensitivities using rectangular voltage coordinates in voltage stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Vander Menengoy da; Rosa, Arlei Lucas de Sousa [Department of Electrical Engineering, Federal University of Juiz de Fora, Campus Universitario - Bairro Martelos, 36036-330 Juiz de Fora - MG (Brazil); Guedes, Magda Rocha [Federal Center of Technologic Education of Minas Gerais - CEFET, Rua Jose Peres, 558 36700-000 Leopoldina - MG (Brazil); Cantarino, Marcelo [Centrais Eletricas Brasileiras S.A - ELETROBRAS, Av. Rio Branco, 53, Centro, 14 andar, 20090-004 Rio de Janeiro - RJ (Brazil)

    2010-05-15

    This paper presents new mathematical models to compute the loading margin, as well as to perform the sensitivity analysis of loading margin with respect to different electric system parameters. The innovative idea consists of evaluating the performance of these methods when the power flow equations are expressed with the voltages in rectangular coordinates. The objective is to establish a comparative process with the conventional models expressed in terms of power flow equations with the voltages in polar coordinates. IEEE test system and a South-Southeastern Brazilian network are used in the simulations. (author)

  13. Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-01-01

    This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.

  14. A model based DC analysis of SiPM breakdown voltages

    CERN Document Server

    Nagy, Ferenc; Kalinka, Gabor; Molnar, Jozsef

    2016-01-01

    A new method to determine the breakdown voltage of SiPMs is presented. It is backed up by a DC model which describes the breakdown phenomenon by distinct avalanche turn-on ($V_{01}$) and turn off ($V_{10}$) voltages. It is shown that $V_{01}$ is related to the 'breakdown voltage' that previous DC methods derive from simple reverse current-voltage measurements, while $V_{10}$ is the 'real' breakdown voltage commonly obtained from complex gain-voltage measurements. The proposed method reveals how the microcell population distributes around $V_{01}$ and $V_{10}$. It is found that if this distribution is assumed to be normal, then both voltages and even their standard deviation can readily be extracted from current-voltage curves. Measurements are in good agreement with the theoretical model.

  15. Matlab/Simulink Modeling of Four-leg Voltage Source Inverter With Fundamental Inverter output Voltages Vector Observation

    Directory of Open Access Journals (Sweden)

    Riyadh G. Omar

    2014-12-01

    Full Text Available Four-leg voltage source inverter is an evolution of the three-leg inverter, and was ought about by the need to handle the non-linear and unbalanced loads. In this work Matlab/ Simulink model is presented using space vector modulation technique. Simulation results for worst conditions of unbalanced linear and non-linear loads are obtained. Observation for the continuity of the fundamental inverter output voltages vector in stationary coordinate is detected for better performance. Matlab programs are executed in block functions to perform switching vector selection and space vector switching.

  16. Low-voltage high-speed coupling modulation in silicon racetrack ring resonators.

    Science.gov (United States)

    Yang, Rui; Zhou, Linjie; Zhu, Haike; Chen, Jianping

    2015-11-02

    We demonstrate a low-voltage high-speed modulator based on a silicon racetrack resonator with a tunable Mach-Zehnder interferometer coupler. Both static measurement and dynamic modulation experiment are carried out. The 3-dB electro-optic bandwidth is measured to be >30 GHz beyond the limit by the cavity photon lifetime. A 32 Gb/s on-off keying (OOK) modulation is realized under a peak-to-peak drive voltage as low as 0.4 V, and a 28 Gb/s binary phase-shift-keying (BPSK) modulation is realized with a drive voltage of 3 V. The low drive voltages results in low energy consumptions of ~13.3 fJ/bit and ~1.2 pJ/bit for OOK and BPSK modulations, respectively.

  17. Modeling of the voltage-controlled friction effect

    Institute of Scientific and Technical Information of China (English)

    孟永钢; 蒋洪军; 常秋英; 黄柏林

    2002-01-01

    A phenomenological model of the dependence of friction coefficient on external voltage is proposed based on experimental results of friction and electric current of three different trbopairs, Si3N4-ball/steel-disc, Si3N4-ball/brass-disc and SiO2-ball/steel-disc, lubricated with zinc strearate suspension. It was found that the variation of friction coefficient correlates with the variation of electric current for all of the three tribopairs. The change in electric current is considered to be caused by the rate of electrochemical reactions occurring on the rubbing surface. By taking the electrochemical reaction into account in the total energy consumption, an expression for describing the relationship between the rates of friction coefficient and electric current is derived, and the constants included in the expression are determined through curve fitting of experimental data.

  18. High voltage direct current modelling in optimal power flows

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz-Perez, H. [Comision Federal de Electricidad, Mexico, Unidad de Ingenieria Especializada, Rio Rodano No. 14 - Piso 10, Sala 1002, Col. Cuauhtemoc, C.P. 06598, Mexico, D.F. (Mexico); Acha, E. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G128LT, Scotland (United Kingdom); Fuerte-Esquivel, C.R. [Faculty of Electrical Engineering, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Michoacan (Mexico)

    2008-03-15

    Two-terminal high voltage direct current (HVDC) transmission links are in operation throughout the world. They are key elements in electrical power networks; their representation is oversimplified or ignored in most power system studies. This is particularly the case in Optima Power Flow (OPF) studies. Hence, an OPF program has been extended to incorporate HVDC links, taking due account of overlapping and power transfer control characteristics. This is a new development in Newton Optimal Power Flows, where the converter equations are included directly in the matrix W. The method is indeed a unified one since the solution vector is extended to accommodate the DC variables. The HVDC link model correctly takes into account the relevant DC limit variables. The impact of HVDC links on OPF studies is illustrated by numeric examples, which includes a 5-node system, the AEP 14-node and a 166-node system. (author)

  19. Investigations on the magnetic field coupling of automotive high voltage systems to determine relevant parameters for an EMR-optimized designing

    Science.gov (United States)

    Krause, David; John, Werner; Weigel, Robert

    2016-03-01

    The implementation of electrical drive trains in modern vehicles is a new challenge for EMC development. This contribution depicts a variety of investigations on magnetic field coupling of automotive high-voltage (HV) systems in order to fulfil the requirements of an EMR-optimized designing. The theoretical background is discussed within the scope of current analysis, including the determination of current paths and spectral behaviour. It furthermore presents models of shielded HV cables with particular focus on the magnetic shielding efficiency. Derived findings are validated by experimental measurements of a state-of-the-art demonstrator on system level. Finally EMC design rules are discussed in the context of minimized magnetic fields.

  20. A multilingual programming model for coupled systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.

    2008-01-01

    Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.

  1. Electrochemical modelling of Li-ion battery pack with constant voltage cycling

    Science.gov (United States)

    Ashwin, T. R.; McGordon, A.; Jennings, P. A.

    2017-02-01

    In a battery pack, cell-to-cell chemical variation, or the variation in operating conditions, can possibly lead to current imbalance which can accelerate pack ageing. In this paper, the Pseudo-Two-Dimensional(P2D) porous electrode model is extended to a battery pack layout, to predict the overall behaviour and the cell-to-cell variation under constant voltage charging and discharging. The algorithm used in this model offers the flexibility in extending the layout to any number of cells in a pack, which can be of different capacities, chemical characteristics and physical dimensions. The coupled electro-thermal effects such as differential cell ageing, temperature variation, porosity change and their effects on the performance of the pack, can be predicted using this modelling algorithm. The pack charging voltage is found to have an impact on the performance as well as the SEI layer growth. Numerical studies are conducted by keeping the cells at different thermal conditions and the results show the necessity to increase the heat transfer coefficient to cool the pack, compared to single cell. The results show that the thermal imbalance has more impact than the change in inter-connecting resistance on the split current distribution, which accelerates the irreversible porous filling and ageing.

  2. A rapid and sensitive assay of intercellular coupling by voltage imaging of gap junction networks.

    Science.gov (United States)

    Ceriani, Federico; Mammano, Fabio

    2013-10-21

    A variety of mechanisms that govern connexin channel gating and permeability regulate coupling in gap junction networks. Mutations in connexin genes have been linked to several pathologies, including cardiovascular anomalies, peripheral neuropathy, skin disorders, cataracts and deafness. Gap junction coupling and its patho-physiological alterations are commonly assayed by microinjection experiments with fluorescent tracers, which typically require several minutes to allow dye transfer to a limited number of cells. Comparable or longer time intervals are required by fluorescence recovery after photobleaching experiments. Paired electrophysiological recordings have excellent time resolution but provide extremely limited spatial information regarding network connectivity. Here, we developed a rapid and sensitive method to assay gap junction communication using a combination of single cell electrophysiology, large-scale optical recordings and a digital phase-sensitive detector to extract signals with a known frequency from Vf2.1.Cl, a novel fluorescent sensor of plasma membrane potential. Tests performed in HeLa cell cultures confirmed that suitably encoded Vf2.1.Cl signals remained confined within the network of cells visibly interconnected by fluorescently tagged gap junction channels. We used this method to visualize instantly intercellular connectivity over the whole field of view (hundreds of cells) in cochlear organotypic cultures from postnatal mice. A simple resistive network model reproduced accurately the spatial dependence of the electrical signals throughout the cellular network. Our data suggest that each pair of cochlear non-sensory cells of the lesser epithelial ridge is coupled by ~1500 gap junction channels, on average. Junctional conductance was reduced by 14% in cochlear cultures harboring the T5M mutation of connexin30, which induces a moderate hearing loss in connexin30T5M/T5M knock-in mice, and by 91% in cultures from connexin30-/- mice, which are

  3. Modeling self-priming circuits for dielectric elastomer generators towards optimum voltage boost

    Science.gov (United States)

    Zanini, Plinio; Rossiter, Jonathan; Homer, Martin

    2016-04-01

    One of the main challenges for the practical implementation of dielectric elastomer generators (DEGs) is supplying high voltages. To address this issue, systems using self-priming circuits (SPCs) — which exploit the DEG voltage swing to increase its supplied voltage — have been used with success. A self-priming circuit consists of a charge pump implemented in parallel with the DEG circuit. At each energy harvesting cycle, the DEG receives a low voltage input and, through an almost constant charge cycle, generates a high voltage output. SPCs receive the high voltage output at the end of the energy harvesting cycle and supply it back as input for the following cycle, using the DEG as a voltage multiplier element. Although rules for designing self-priming circuits for dielectric elastomer generators exist, they have been obtained from intuitive observation of simulation results and lack a solid theoretical foundation. Here we report the development of a mathematical model to predict voltage boost using self-priming circuits. The voltage on the DEG attached to the SPC is described as a function of its initial conditions, circuit parameters/layout, and the DEG capacitance. Our mathematical model has been validated on an existing DEG implementation from the literature, and successfully predicts the voltage boost for each cycle. Furthermore, it allows us to understand the conditions for the boost to exist, and obtain the design rules that maximize the voltage boost.

  4. Modeling And Simulation of Speed and flux Estimator Based on Current & voltage Model

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Jain

    2011-10-01

    Full Text Available This paper introduce a estimator based on and current & voltage model used in induction motor (IM drive. The rotor speed estimation is based on the model reference adaptive system (MRAS approach. The closed loop control mechanism is based on the voltage and current model. The control and estimation algorithms utilize the synchronous coordinates as a frame of reference. A speed sensor less induction motor (IM drive with Robust control characteristics is introduced. First, a speed observation system, which is insensitive to the variations of motor parameters.

  5. Proton currents constrain structural models of voltage sensor activation

    Science.gov (United States)

    Randolph, Aaron L; Mokrab, Younes; Bennett, Ashley L; Sansom, Mark SP; Ramsey, Ian Scott

    2016-01-01

    The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic ‘aqueous’ H+ conductance (GAQ). Mutation of a highly conserved ‘gating charge’ residue in the S4 helix (R1H) confers a resting-state H+ ‘shuttle’ conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1. DOI: http://dx.doi.org/10.7554/eLife.18017.001 PMID:27572256

  6. Equidistance of branch structure in capacitively coupled Josephson junctions model with diffusion current

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Seidel, P. [Institut fuer Festkorperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2006-11-01

    Branch structure in current-voltage characteristics of intrinsic Josephson junctions of HTSC is studied in the framework of two models: capacitively coupled Josephson junctions (CCJJ) model and CCJJ model with diffusion current (CCJJ + DC). We investigate the coupling dependence of the branch's slopes and demonstrate that the equidistance of the branch structure in CCJJ model is broken at enough small values of coupling parameter (at {alpha} << 1). We show that the inclusion of diffusion in the tunneling current through intrinsic Josephson junctions might restore the equidistance of the branch structure. Change of the current-voltage characteristics in CCJJ + DC model under variation of the coupling and McCumber parameters and effect of boundary conditions on the branch structure is analyzed.

  7. Equidistance of branch structure in capacitively coupled Josephson junctions model with diffusion current

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Seidel, P.

    2006-11-01

    Branch structure in current-voltage characteristics of intrinsic Josephson junctions of HTSC is studied in the framework of two models: capacitively coupled Josephson junctions (CCJJ) model and CCJJ model with diffusion current (CCJJ + DC). We investigate the coupling dependence of the branch’s slopes and demonstrate that the equidistance of the branch structure in CCJJ model is broken at enough small values of coupling parameter (at α ≪ 1). We show that the inclusion of diffusion in the tunneling current through intrinsic Josephson junctions might restore the equidistance of the branch structure. Change of the current-voltage characteristics in CCJJ + DC model under variation of the coupling and McCumber parameters and effect of boundary conditions on the branch structure is analyzed.

  8. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    Science.gov (United States)

    Liu, Yang Hui; Qiang Zhu, Li; Shi, Yi; Wan, Qing

    2014-03-01

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ˜5.5 × 10-3 S/cm and a high lateral electric-double-layer (EDL) capacitance of ˜2.0 μF/cm2 at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm2 V-1 s-1, 2.8 × 106, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  9. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  10. Convectively coupled Kelvin waves in CMIP5 coupled climate models

    Science.gov (United States)

    Wang, Lu; Li, Tim

    2016-04-01

    This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.

  11. Convectively coupled Kelvin waves in CMIP5 coupled climate models

    Science.gov (United States)

    Wang, Lu; Li, Tim

    2017-02-01

    This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.

  12. Bayesian Model comparison of Higgs couplings

    CERN Document Server

    Bergstrom, Johannes

    2014-01-01

    We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where the magnitude of the Higgs production and decay rates are rescaled though Higgs coupling scale factors. We perform Bayesian parameter inference on these scale factors, concluding that there is good compatibility with the SM. Furthermore, we carry out Bayesian model comparison on all models where any combination of scale factors can differ from their SM values and find that typically models with fewer free couplings are strongly favoured. We consider the evidence that each coupling individually equals the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of the SM against a single "not-SM" model, and find that there is moderate to strong evidence for the SM.

  13. Neutral-point voltage dynamic model of three-level NPC inverter for reactive load

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, Sergio

    2012-01-01

    A three-level neutral-point-clamped inverter needs a controller for the neutral-point voltage. Typically, the controller design is based on a dynamic model. The dynamic model of the neutral-point voltage depends on the pulse width modulation technique used for the inverter. A pulse width modulati...

  14. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  15. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  16. Chronic inflammatory injury results in increased coupling of delta opioid receptors to voltage-gated Ca2+ channels.

    Science.gov (United States)

    Pradhan, Amynah; Smith, Monique; McGuire, Brenna; Evans, Christopher; Walwyn, Wendy

    2013-03-04

    Opioid receptors regulate a diverse array of physiological functions. Mu opioid receptor agonists are well-known analgesics for treating acute pain. In contrast, animal models suggest that chronic pain is more effectively relieved by delta opioid receptor agonists. A number of studies have shown that chronic pain results in increased function of delta opioid receptors. This is proposed to result from enhanced trafficking of the delta opioid receptor to the cell membrane induced by persistent tissue injury. However, recent studies have questioned this mechanism, which has resulted in some uncertainty as to whether delta opioid receptors are indeed upregulated in chronic pain states. To clarify this question, we have examined the effect of chronic inflammatory pain over time using both an ex vivo measure of delta function: receptor-Ca2+ channel coupling, and an in vivo measure; the relief of chronic pain by a delta opioid receptor agonist. In addition, as beta-arrestin 2 can regulate delta opioid receptor trafficking and signaling, we have further examined whether deleting this scaffolding and signal transduction molecule alters delta opioid receptor function. We used the Complete Freund's Adjuvant model of inflammatory pain, and examined the effectiveness of the delta agonist, SNC80, to both inhibit Ca2+ channels in primary afferent neurons and to attenuate mechanical allodynia. In naïve beta-arrestin 2 wildtype and knockout mice, SNC80 neither significantly inhibited voltage-dependent Ca2+ currents nor produced antinociception. However, following inflammatory pain, both measures showed a significant and long-lasting enhancement of delta opioid receptor function that persisted for up to 14 days post-injury regardless of genotype. Furthermore, although this pain model did not alter Ca2+ current density, the contribution of N-type Ca2+ channels to the total current appeared to be regulated by the presence of beta-arrestin 2. Our results indicate that there is an

  17. An non-uniformity voltage model for proton exchange membrane fuel cell

    Science.gov (United States)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  18. Correction factor based double model fuzzy logic control strategy of arc voltage in pulsed MIG welding

    Institute of Scientific and Technical Information of China (English)

    Wu Kaiyuan; Huang Shisheng; Meng Yongmin

    2005-01-01

    According to the feature of arc voltage control in welding steel using pulsed MIG welding, a correction factor based double model fuzzy logic controller (FLC) was developed to realize the arc voltage control by means of arc voltage feedback.When the error of peak arc voltage was great, a coarse adjusting fuzzy logic control rules with correction factor was designed,in the controller, the peak arc voltage was controlled by the wire feeding speed by means of arc voltage feedback. When the error of peak arc voltage was small, a fine adjusting fuzzy logic control rules with correction factor was designed, in this controller, the peak arc voltage was controlled by the background time by means of arc voltage feedback. The FLC was realized in a Look-Up Table ( LUT) method. Experiments had been carried out aiming at implementing the control strategy to control the arc length change in welding process. Experimental results show that the controller proposed enables the consistency of arc length and the stabolity of arc voltage and welding process to be achieved in pulsed MIG welding process.

  19. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang Hui; Wan, Qing, E-mail: wanqing@nju.edu.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Qiang Zhu, Li, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Shi, Yi [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  20. Coupling dark energy with Standard Model states

    CERN Document Server

    Bento, M C; Bertolami, O

    2009-01-01

    In this contribution one examines the coupling of dark energy to the gauge fields, to neutrinos, and to the Higgs field. In the first case, one shows how a putative evolution of the fundamental couplings of strong and weak interactions via coupling to dark energy through a generalized Bekenstein-type model may cause deviations on the statistical nuclear decay Rutherford-Soddy law. Existing bounds for the weak interaction exclude any significant deviation. For neutrinos, a perturbative approach is developed which allows for considering viable varying mass neutrino models coupled to any quintessence-type field. The generalized Chaplygin model is considered as an example. For the coupling with the Higgs field one obtains an interesting cosmological solution which includes the unification of dark energy and dark matter.

  1. Modeling Endovascular MRI Coil Coupling with Transmit RF Excitation

    Science.gov (United States)

    Venkateswaran, Madhav; Unal, Orhan; Hurley, Samuel; Samsonov, Alexey; Wang, Peng; Fain, Sean; Kurpad, Krishna

    2016-01-01

    Objective To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. Methods Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1+ fields and induced currents and voltages. Our models are validated using the Bloch Siegert B1+ mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization and high resolution endovascular imaging. Results Validation shows good agreement at 24, 28 and 34 μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates trade off in coil performance metrics when varying number of coil turns. Tracking, imaging and wireless marker multimode coil features and their integration is demonstrated in a pig study. Conclusion Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time-consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention and an animal imaging experiment. Significance Our modular, adaptable and computationally efficient modeling approach enables rapid comparison, selection and optimization of inductively-coupled coils for MRI-guided interventions. PMID:26960218

  2. A breakdown voltage model for implanted resurf p-LDMOS device on n+ buried layer

    NARCIS (Netherlands)

    Zhou, Ming-Jiang; Van Calster, A.

    1994-01-01

    This paper presents an analytical expression of the breakdown voltage of a high voltage implanted RESURF p-LDMOS device which uses the n+ buried layer as an effective device substrate. In this model, the doping profile of the buried layer is considered and discussed. The implant dose for the drift r

  3. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick

    2011-01-01

    A short series of alkyl substituted perylenediimides (PDIs) with varying steric bulk are used to demonstrate the relationship between molecular structure, materials properties, and performance characteristics in organic photovoltaics. Devices were made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC\\'s) despite the donor acceptor interface gap (Δ EDA) remaining unchanged. Additionally, series resistance was increased simultaneously with VOC the effect of reducing short circuit current, making the addition of steric bulk a tradeoff that needs to be balanced to optimize power conversion efficiency. © 2011 American Institute of Physics.

  4. Generalized circuit model for coupled plasmonic systems

    CERN Document Server

    Benz, Felix; Tserkezis, Christos; Chikkaraddy, Rohit; Sigle, Daniel O; Pukenas, Laurynas; Evans, Stephen D; Aizpurua, Javier; Baumberg, Jeremy J

    2015-01-01

    We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.

  5. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  6. Evaluation of HVDC interconnection models for considering its impact in real-time voltage stability assessment

    DEFF Research Database (Denmark)

    Perez, Angel; Jóhannsson, Hjörtur; Lund, P.;

    2015-01-01

    An approach to evaluate the HVDC interconnectionsmodels to be used in real-time voltage stability assessment is proposed.The existing models for the HVDC interconnections, thatare based on voltage source converter, were studied selecting theones that are suitable for its application in Thevenin...... equivalent ´methods for voltage stability assessment. The proposed methodis to evaluate the validity of the models by using synthetizedPMU measurements from simulations and from PMUs connectedto the danish system. Wide-area measurements are used toestimate the HVDC model parameters which are needed...

  7. Dynamical model of series-resonant converter with peak capacitor voltage predictor and switching frequency control

    Science.gov (United States)

    Pietkiewicz, A.; Tollik, D.; Klaassens, J. B.

    1989-08-01

    A simple small-signal low-frequency model of an idealized series resonant converter employing peak capacitor voltage prediction and switching frequency control is proposed. Two different versions of the model describe all possible conversion modes. It is found that step down modes offer better dynamic characteristics over most important network functions than do the step-up modes. The dynamical model of the series resonant converter with peak capacitor voltage prediction and switching frequency programming is much simpler than such popular control stategies as frequency VCO (voltage controlled oscillators) based control, or diode conduction angle control.

  8. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.

    Science.gov (United States)

    Takahashi, Izumi; Yoshino, Masami

    2015-10-01

    In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.

  9. Dynamic Model of the Universal Motor Supplied by a Harmonic Voltage Dynamic Model of the Universal Motor Supplied by a Harmonic Voltage

    Directory of Open Access Journals (Sweden)

    Jan Dupej

    2005-01-01

    Full Text Available In present article a dynamic model of universal motors, based on the measured data is developed. Suppose that the supply voltage is harmonic and motor operate in open circuit loop. After representing of the mathematical model a simulation model based on the Matlab-Simulink is derived; this allows for the determination of the waveforms of the speed current and torque of the machine for different state operation. Induced voltage of the rotor is determined as a function of the magnetic core saturation and of the armature reaction.In present article a dynamic model of universal motors, based on the measured data is developed. Suppose that the supply voltage is harmonic and motor operate in open circuit loop. After representing of the mathematical model a simulation model based on the Matlab-Simulink is derived; this allows for the determination of the waveforms of the speed current and torque of the machine for different state operation. Induced voltage of the rotor is determined as a function of the magnetic core saturation and of the armature reaction.

  10. Modeling and Simulation of Flexible Transmission Mechanism with Multiclearance Joints for Ultrahigh Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Fangang Meng

    2015-01-01

    Full Text Available The transmission mechanism, of which the dynamic characteristics determine the reliability of the circuit breaker, is the principal component of the ultrahigh voltage (UHV circuit breaker. The characteristics of transmission mechanism are quick motion, high sensibility, and high reliability. The transmission mechanism with multiclearance joints present strong no-linear vibration feature which strongly affects the reliability of the UHV circuit breaker. In this investigation, a planar rigid-flexible coupling model of the transmission mechanism considering the clearance joints and the flexibility of components is established by using ADAMS software. The dynamic contact model in clearance joints is performed, based on clearance vector model of clearance joint. Then, the reliability of the model is proved by means of comparing the results of experiments. The simulation results show that the dynamic response of the mechanism is greatly influenced by the clearance and the flexibility of components has a role of suspension for the mechanism. Moreover, the influence of the clearance size, input speed, and number of clearance joints on the dynamic characteristics of the mechanism are also investigated.

  11. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  12. Effect of inductive and capacitive coupling on the current-voltage characteristic and electromagnetic radiation from a system of Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Zemlyanaya, E. V.; Bashashin, M. V.

    2017-01-01

    We have studied the current-voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current-voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current-voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and it is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.

  13. The effect of reactive power generation modeling on voltage stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, E.; Guizar, J.G.C. [Inst. de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-08-13

    One of the most significant concerns for power system planning and operation in many countries involves problems related to voltage instability in electrical power systems. Blackouts have been caused by voltage instability problems throughout the world during the last few decades. Several factors can contribute to long term voltage instability problems, including high active and reactive loading, operation of on load tap changer transformers, inadequate locally available reactive power resources, load characteristics at low voltage magnitudes and operation of relay protection. There is a significant need to evaluate an index which gives the operating point proximity to voltage instability. This paper examined the influence of generator voltage dependent reactive power production on system voltage stability using the minimum singular value from the Jacobian Matrix of the load flow formulation. The synchronous generator model considered voltage reactive power limits due to maximum armature current, maximum and minimum field current as well as under excitation limiters. The generation model used in this paper was included in an ordinary load flow program, and resulted from studies of a representative 62 bus Norwest control area Mexican system, which included 19 generators. Specifically, the paper discussed the generator model with particular reference to the maximum field current limit; armature current limit; minimum field current limit; and underexcitation limit. The singular value decomposition and computational results were also presented. It was concluded that as the loading of the system increases, the reactive power produced by the machines also increases, and that reactive power is delivered when the induced voltage is greater than the terminal voltage. 15 refs., 3 tabs., 2 figs.

  14. Field testing, modelling and analysis of ferroresonance in a high-voltage power system

    Science.gov (United States)

    Jacobson, David Allan Nils

    2000-11-01

    Catastrophic equipment failures continue to occur today due to ferroresonance even though this phenomenon has been extensively studied over the past ninety years. This thesis is concerned with the tasks of defining where ferroresonance problems can exist in a high voltage power system, of determining methods for displaying safety margins between nonferroresonant and ferroresonant operating regions and improving upon existing ferroresonance simulation techniques. Several different ferroresonant circuits have been modelled and compared with field measurements taken on the Manitoba Hydro 230-kV power system or compared with laboratory measurements including: a de-energized transformer connected to the grading capacitance of an open circuit breaker, a transformer-terminated doublecircuit transmission line and a coupling capacitor voltage transformer. In a high voltage power system, the most prevalent ferroresonance circuit occurs between a de-energized transformer and the grading capacitor of an open circuit breaker. Experimental work has shown that losses in a practical transformer are much larger during ferroresonance oscillation modes than predicted by conventional modelling techniques. A simple switched eddy-current loss resistor is found able to model the losses during subharmonic and fundamental frequency ferroresonance in a laboratory transformer. A major contribution of this work is a new method of visualizing the margin between nonferroresonant and ferroresonant states in a transformer/grading capacitor circuit has been developed. A general set of averaged equations is derived that permit the analysis of an nth order polynomial approximation of the magnetization curve. The location of the saddle points and slope of the stable manifold through the saddle points can be determined for a particular transformer under study. The Limacon of Pascal is found to be a good approximation to the geometric shape of the basin of attraction of the period-1 ferroresonant

  15. Raytracing simulations of coupled dark energy models

    CERN Document Server

    Pace, Francesco; Moscardini, Lauro; Bacon, David; Crittenden, Robert

    2014-01-01

    Dark matter and dark energy are usually assumed to be independent, coupling only gravitationally. An extension to this simple picture is to model dark energy as a scalar field which is directly coupled to the cold dark matter fluid. Such a non-trivial coupling in the dark sector leads to a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that dark energy-dark matter couplings have on weak lensing statistics by constructing realistic simulated weak-lensing maps using raytracing techniques through a suite of N-body cosmological simulations. We construct maps for an array of different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance $\\Lambda$CDM model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities, in particular the power spect...

  16. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure

    Science.gov (United States)

    Chen, Cao; Bing, Zhang; Longsheng, Wu; Xin, Li; Junfeng, Wang

    2014-07-01

    A novel analytical model of pinch-off voltage for CMOS image pixels with a pinned photodiode structure is proposed. The derived model takes account of the gradient doping distributions in the N buried layer due to the impurity compensation formed by manufacturing processes; the impurity distribution characteristics of two boundary PN junctions located in the region for particular spectrum response of a pinned photodiode are quantitative analyzed. By solving Poisson's equation in vertical barrier regions, the relationships between the pinch-off voltage and the corresponding process parameters such as peak doping concentration, N type width and doping concentration gradient of the N buried layer are established. Test results have shown that the derived model features the variations of the pinch-off voltage versus the process implant conditions more accurately than the traditional model. The research conclusions in this paper provide theoretical evidence for evaluating the pinch-off voltage design.

  17. Application of Cat Swarm Optimization in testing Static Load Models for Voltage Stability

    Directory of Open Access Journals (Sweden)

    G. Naveen Kumar

    2016-03-01

    Full Text Available Power System Load Modeling is a method which is used to model the power system and essential for voltage stability studies. Voltage stability defines the ability of a power network to maintain steady state voltages at all the buses under normal operating conditions, and when subjected to a disturbance. The research presented as part of this paper, deals with analysis of different static load models for voltage stability studies. The precision of the results are directly related to the load models used in this analysis. The method is analyzed using continuation power flow routine. Flexible AC Transmission System technology with a combination of Cat Swarm Optimization Meta Heuristic Search approach is applied to give a solution for the problem of instability. The effectiveness of the proposed method is demonstrated through quantitative simulation on standard IEEE 14 bus system for contingency condition.

  18. Suppression of Spiral Waves by Voltage Clamp Techniques in a Conductance-Based Cardiac Tissue Model

    Institute of Scientific and Technical Information of China (English)

    YU Lian-Chun; MA Jun; ZHANG Guo-Yong; CHEN Yong

    2008-01-01

    A new control method is proposed to control the spatio-temporal dynamics in excitable media, which is described by the Morris-Lecar cells model. It is confirmed that successful suppression of spiral waves can be obtained by spatially clamping the membrane voltage of the excitable cells. The low voltage clamping induces breakup of spiral waves and the fragments are soon absorbed by low voltage obstacles, whereas the high voltage clamping generates travel waves that annihilate spiral waves through collision with them. However, each method has its shortcomings. Furthermore, a two-step method that combines both low and high voltage clamp techniques is then presented as a possible way of out this predicament.

  19. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    OpenAIRE

    2016-01-01

    A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ) organic solar cells is developed by considering Shockley-Read-Hall (SRH) recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (...

  20. Standard-model coupling constants from compositeness

    CERN Document Server

    Besprosvany, J

    2003-01-01

    A coupling-constant definition is given based on the compositeness property of some particle states with respect to the elementary states of other particles. It is applied in the context of the vector-spin-1/2-particle interaction vertices of a field theory, and the standard model. The definition reproduces Weinberg's angle in a grand-unified theory. One obtains coupling values close to the experimental ones for appropriate configurations of the standard-model vector particles, at the unification scale within grand-unified models, and at the electroweak breaking scale.

  1. Dual coupling effective band model for polarons

    Science.gov (United States)

    Marchand, Dominic J. J.; Stamp, Philip C. E.; Berciu, Mona

    2017-01-01

    Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling found previously in the pure SSH model, at which the k =0 effective mass diverges, now becomes a transition line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios. The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with a finite ground-state momentum, but with everywhere a continuously evolving band shape. No "self-trapping transition" exists in any of these models. The physics may be understood entirely in terms of competition between different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is suggested by the results.

  2. Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope.

    Science.gov (United States)

    Yamamoto, K; Tanji, T; Hibino, M; Schauer, P; Autrata, R

    2000-06-15

    A new lens coupling television (TV) system using a YAG (Yttrium Aluminum Garnet: Y(3)Al(5)O(12) : Ce(3+)) single crystal screen has been developed for a high-voltage electron microscope (HVEM), and its performance is examined. The system, using a combination of YAG and lenses, is less damaged by high-energy electron irradiation and reduces the influence of X-rays on the image. YAG screens have not been used for lens-coupling systems, because the high refractive index (n = 1.84) of YAG results in a low light collection efficiency for emitted light. This disadvantage is overcome by combining a thin YAG disk screen (thickness; 100 microm) with a glass hemisphere whose refractive index is 1.81. We found that the light intensity is almost the same as that obtained with a conventional P22 powder screen and lenses system. The resolution is about 55 microm on the YAG screen, and this value is 1.3 times higher than that measured by the conventional system. Shading and distortion do not affect TV observation. Detection quantum efficiency, obtained after correction of the channel mixing effect, is about 0.1.

  3. Mathematical modeling of intrinsic Josephson junctions with capacitive and inductive couplings

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu M.; Zemlyanaya, E. V.; Sarhadov, I.; Andreeva, O.

    2012-11-01

    We investigate the current voltage characteristics (CVC) of intrinsic Josephson junctions (IJJ) with two types of couplings between junctions: capacitive and inductive. The IJJ model is described by a system of coupled sine-Gordon equations which is solved numerically by the 4th order Runge-Kutta method. The method of numerical simulation and numerical results are presented. The magnetic field distribution is calculated as the function of coordinate and time at different values of the bias current. The influence of model parameters on the CVC is studied. The behavior of the IJJ in dependence on coupling parameters is discussed.

  4. Simulation Model solves exact the Enigma named Generating high Voltages and high Frequencies by Tesla Coil

    Directory of Open Access Journals (Sweden)

    Simo Janjanin

    2016-11-01

    Full Text Available Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer and spark gap in the exit of the coil. The investigation of the oscillating process Tesla coil‟s system using the simulation model in MATLAB & SIMULINK have given the exact solution the enigma named the generating high voltage and high frequency the Tesla‟s coil. The inductance voltage from the spark current in the primary (coil with its high voltage impulse excites the oscillating series circuit Ce-L3-R3 on the secondary of the air transformer to its own damped oscillations

  5. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  6. Fractional dynamical model for neurovascular coupling

    KAUST Repository

    Belkhatir, Zehor

    2014-08-01

    The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.

  7. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......, coupled photonic crystal nanocavity structures are simulated. The resonance frequencies of in-phase and out-of-phase coupled quadrupole modes in rectangular photonic crystal H1 cavities are extracted and are found to vary non-trivially with the intercavity separation. A qualitative explanation is given...... in terms of the in-plane mode profiles. Fareld emission patterns for the structures are calculated based on the finite-dierence time-domain simulations. It is found that only systems with an even number of holes separating the cavities show clear signs of being coupled. This non-trivial coupling behavior...

  8. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  9. Playing with fermion couplings in Higgsless models

    CERN Document Server

    Casalbuoni, R; Dolce, D; Dominici, Daniele

    2005-01-01

    We discuss the fermion couplings in a four dimensional SU(2) linear moose model by allowing for direct couplings between the left-handed fermions on the boundary and the gauge fields in the internal sites. This is realized by means of a product of non linear $\\sigma$-model scalar fields which, in the continuum limit, is equivalent to a Wilson line. The effect of these new non local couplings is a contribution to the $\\epsilon_3$ parameter which can be of opposite sign with respect to the one coming from the gauge fields along the string. Therefore, with some fine tuning, it is possible to satisfy the constraints from the electroweak data.

  10. Preliminary Modeling of Permanent Magnet Probe Flowmeter for Voltage Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Jeong, Ji Young; Kim, Tae Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An experimental study on performance analysis of the flowmeter has been performed. The study shows that sodium flow rate is linearly proportional to the induced voltage signal from the flowmeter under the turbulent flow condition. The experimental results support its availability in the PDRC system. But, the flowmeter should be able to measure sodium flow at low Reynolds number as well. That is because the PDRC system uses sodium natural convection for its operation. Thus, calibration of the flowmeter should be done at very low sodium flow rates. However, Von Weissenfluh et al. showed that the relationship between flow rate and measured voltage signal from the flowmeter may become non-linear at very low flow rates. The nonlinearity restricts the utilization of level sensor which provide reference flow rate in the calibration experiment. The primary objective of this study is to predict the sodium flow rate range where the induced voltage signals are linearly proportional to flow rates by estimating the induced voltage signals against sodium flow rates for a wide range of flows numerically. A commercial code FLUENT is adopted for the analysis of flow field. And MAXWELL which is an electromagnetic analysis software using a finite volume method has been used to analyze the magnetic field generated by permanent magnet of the flowmeter. The induced voltage signals have been estimated by coupling the sodium flow field and the magnetic field using FLUENT MHD module. It is expected that the PMPF voltage signals are linearly proportional to flow rates range of 0.0059 to 1.96 lps. This suggests that simple calibration technique using the linearity between flow rate and the voltage signal can be adopted in calibration of the PMPF.

  11. Reheating in nonminimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2012-01-01

    We consider a model with nonminimal derivative coupling of inflaton to gravity. The reheating process during rapid oscillation of the inflaton is studied and the reheating temperature is obtained. Behaviors of the inflaton and produced radiation in this era are discussed.

  12. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  13. Coordinated Voltage Control of a Wind Farm based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2016-01-01

    This paper presents an autonomous wind farm voltage controller based on Model Predictive Control (MPC). The reactive power compensation and voltage regulation devices of the wind farm include Static Var Compensators (SVCs), Static Var Generators (SVGs), Wind Turbine Generators (WTGs) and On......-Load Tap Changing (OLTC) Transformer, and they are coordinated to keep the voltages of all the buses within the feasible range. Moreover, the reactive power distribution is optimized throughout the wind farm in order to maximize the dynamic reactive power reserve. The sensitivity coefficients...... are calculated based on an analytical method to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both voltage violated and normal operation conditions. A wind farm with 20 wind turbines was used to conduct case studies to verify the proposed coordinated...

  14. Modelling Of Converter Characteristics of Wind Energy Conversion System during Voltage Sags

    Directory of Open Access Journals (Sweden)

    Pratyusha Dikkala,

    2014-01-01

    Full Text Available The proposed system presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. This hybrid system allows maximum utilization of freely available renewable energy sources like wind and photovoltaic energies. For this, an adaptive maximum power point tracking (MPPT algorithm along with standard perturbs and observe method will be used for the system. The turbine rotor speed is the main determinant of mechanical output from wind energy and Solar cell operating voltage in the case of output power from solar energy. Permanent Magnet Synchronous Generator is coupled with wind turbine for attaining wind energy conversion system. This paper addresses dynamic modeling and control of a grid-connected wind–PV–battery hybrid system with versatile power transfer. The hybrid system, unlike conventional systems, considers the stability and dispatch-ability of its power injection into the grid. The hybrid system can operate in three different modes, which include normal operation without use of battery, dispatch operation, and averaging operation. This paper also indicates the merits of the proposed system.

  15. Comprehensive behavioral model of dual-gate high voltage JFET and pinch resistor

    Science.gov (United States)

    Banáš, Stanislav; Paňko, Václav; Dobeš, Josef; Hanyš, Petr; Divín, Jan

    2016-09-01

    Many analog technologies operate in large voltage range and therefore include at least one or more high voltage devices built from low doped layers. Such devices exhibit effects not covered by standard compact models, namely pinching (depletion) effects, in high voltage FETs often called quasisaturation. For example, the conventional compact JFET model is insufficient and oversimplified. Its scalability is controlled by the area factor, which only multiplies currents and capacitances but does not take into account existing 3-D effects. Also the optional second independent gate is missing. Therefore, the customized four terminal (4T) model written in Verilog-A (FitzPatrick and Miller, 2007; Sagdeo, 2007) was developed. It converges very well, its simulation speed is comparable with conventional compact models, and contains all required phenomena, including parasitic effects as, for example, impact ionization. This model has universal usage for many types of devices in various high voltage technologies such as stand-alone voltage dependent resistor, pinch resistor, drift area of power FET, part of special high side or start-up devices, and dual-gate JFET.

  16. Coupling GIS with Nitrogen Leaching Models

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geographical information systems (GIS) are increasingly being applied to surface and subsurface flow and transport modeling issues. In this paper, more attentions are focused on the methodology and strategies of coupling GIS with non-point pollution models. Suggestions are made on how to best integrate current available or selected nitrogen leaching models, especially in the aspect of programming development so as to effectively and flexibly address the specific tasks. The new possibilities for dealing with non-point pollution problems at a regional scale are provided in the resulting integrated approach, including embedding grid-based GIS components in models.

  17. A threshold voltage model for high-κgate-dielectric MOSFETs considering fringing-field effect

    Institute of Scientific and Technical Information of China (English)

    Ji Feng; Xu Jing-Ping; Lai Pui-To

    2007-01-01

    In this paper, a threshold voltage model for high-κgate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived through a conformal mapping transformation method to consider the fringing-field effects including the influences of high-κgate-dielectric and sidewall spacer. Comparing with similar models, the proposed model can be applied to general situations where the gate dielectric and sidewall spacer can have different dielectric constants. The influences of sidewall spacer and high-κgate dielectric on fringing field distribution of the gate dielectric and thus threshold voltage behaviours of a MOSFET are discussed in detail.

  18. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  19. Modeling and Testing of Unbalanced Loading and Voltage Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report covers work to (1) develop and validate distribution circuit models, (2) determine optimum distributed generator operating conditions, and (3) determine distributed generation penetration limits.

  20. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.

    Science.gov (United States)

    Altamirano, Julio; Bers, Donald M

    2007-09-14

    Excitation-contraction coupling in cardiac myocytes occurs by Ca2+-induced Ca2+ release, where L-type Ca2+ current evokes a larger sarcoplasmic reticulum (SR) Ca2+ release. The Ca2+-induced Ca2+ release amplification factor or gain (SR Ca2+ release/I(Ca)) is usually assessed by the V(m) dependence of current and Ca2+ transients. Gain rises at negative V(m), as does single channel I(Ca) (i(Ca)), which has led to the suggestion that the increases of i(Ca) amplitude enhances gain at more negative V(m). However, I(Ca) = NP(o) x i(Ca) (where NP(o) is the number of open channels), and NP(o) and i(Ca) both depend on V(m). To assess how i(Ca) and NP(o) separately influence Ca2+-induced Ca2+ release, we measured I(Ca) and junctional SR Ca2+ release in voltage-clamped rat ventricular myocytes using "Ca2+ spikes" (confocal microscopy). To vary i(Ca) alone, we changed [Ca2+](o) rapidly at constant test V(m) (0 mV) or abruptly repolarized from +120 mV to different V(m) (at constant [Ca2+](o)). To vary NP(o) alone, we altered Ca2+ channel availability by varying holding V(m) (at constant test V(m)). Reducing either i(Ca) or NP(o) alone increased excitation-contraction coupling gain. Thus, increasing i(Ca) does not increase gain at progressively negative test V(m). Such enhanced gain depends on lower NP(o) and reduced redundant Ca2+ channel openings (per junction) and a consequently smaller denominator in the gain equation. Furthermore, modest i(Ca) (at V(m) = 0 mV) may still effectively trigger SR Ca2+ release, whereas at positive V(m) (and smaller i(Ca)), high and well-synchronized channel openings are required for efficient excitation-contraction coupling. At very positive V(m), reduced i(Ca) must explain reduced SR Ca2+ release.

  1. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects.

    Science.gov (United States)

    Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen

    2015-10-21

    The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

  2. Analytical modeling of threshold voltage for Cylindrical Gate All Around (CGAA MOSFET using center potential

    Directory of Open Access Journals (Sweden)

    K.P. Pradhan

    2015-12-01

    Full Text Available In this paper, an analytical threshold voltage model is proposed for a cylindrical gate-all-around (CGAA MOSFET by solving the 2-D Poisson’s equation in the cylindrical coordinate system. A comparison is made for both the center and the surface potential model of CGAA MOSFET. This paper claims that the calculation of threshold voltage using center potential is more accurate rather than the calculation from surface potential. The effects of the device parameters like the drain bias (VDS, oxide thickness (tox, channel thickness (r, etc., on the threshold voltage are also studied in this paper. The model is verified with 3D numerical device simulator Sentaurus from Synopsys Inc.

  3. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices

    Science.gov (United States)

    Barker, J. A.; Ramsdale, C. M.; Greenham, N. C.

    2003-02-01

    We have developed a numerical model to predict the current-voltage curves of bilayer conjugated polymer photovoltaic devices. The model accounts for charge photogeneration, injection, drift, diffusion, and recombination, and includes the effect of space charge on the electric field within the device. Charge separation at the polymer-polymer interface leads to the formation of bound polaron pairs which may either recombine monomolecularly or be dissociated into free charges, and we develop expressions for the field dependence of the dissociation rate. We find that the short-circuit quantum efficiency is determined by the competition between polaron pair dissociation and recombination. The model shows a logarithmic dependence of the open-circuit voltage on the incident intensity, as seen experimentally. This additional intensity-dependent voltage arises from the field required to produce a drift current that balances the current due to diffusion of carriers away from the interface.

  4. Modeling of Wind Turbines Equipped with Induction Machines for Voltage Profile Studies Using PSCAD

    Directory of Open Access Journals (Sweden)

    T. Abedinzadeh

    2012-12-01

    Full Text Available As a result of increasing environmental concern, more and more electricity is generated from wind turbines. Therefore, adequate models to study the impact of wind turbines on electrical power system behavior are needed. One of the most important considerations is the effect of wind turbines on the voltage profile, i.e. the induced slow voltage variations, which are the subject of this paper. The wind turbines can be operated in two modes: constant-speed and variable-speed. Each one of these cases has different impact on steady state voltage of distribution grids. For evaluation of these impacts, SCIG generator has been simulated that works in constant-speed operation and DFIG generator that is used in a variable-speed turbine. Variable-speed wind turbines can be controlled in two ways. They can produce power with constant power factor or they control magnitude of voltage of PCC. PSCAD/EMTDC simulation program is used to investigate the impact of these turbines on a distribution grid. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation and control schemes. Also, it is shown that voltage control scheme has better results and improves the voltage profile considerably.

  5. Grid modeling, analysis and simulation of different scenarios for a smart low-voltage distribution grid

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Han, Xue; Bindner, Henrik W.

    2013-01-01

    , the number of cabinets and customers and the load per customer. The aim of the model is to design, implement and test the proposed configuration and to investigate whether the low-voltage distribution grid is prepared for the expected future increase of PV penetration, heat pumps and electric cars. The model...

  6. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant barri...

  7. The mathematical model realization algorithm of high voltage cable

    OpenAIRE

    2006-01-01

    At mathematical model realization algorithm is very important to know the account order of necessary relations and how it presents. Depending of loads or signal sources connection in selected points of mathematical model its very important to know as to make the equations in this point that it was possible to determine all unknown variables in this point. The number of equations which describe this point must to coincide with number of unknown variables, and matrix which describes factor...

  8. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage

    Directory of Open Access Journals (Sweden)

    Sangeeta Singh

    2016-03-01

    Full Text Available In this paper, we have investigated a novel Schottky tunneling source impact ionization MOSFET (STS-IMOS to lower the breakdown voltage of conventional impact ionization MOS (IMOS and developed an analytical model for the same. In STS-IMOS there is an accumulative effect of both impact ionization and source induced barrier tunneling. The silicide source offers very low parasitic resistance, the outcome of which is an increment in voltage drop across the intrinsic region for the same applied bias. This reduces operating voltage and hence, it exhibits a significant reduction in both breakdown and threshold voltage. STS-IMOS shows high immunity against hot electron damage. As a result of this the device reliability increases magnificently. The analytical model for impact ionization current (Iii is developed based on the integration of ionization integral (M. Similarly, to get Schottky tunneling current (ITun expression, Wentzel–Kramers–Brillouin (WKB approximation is employed. Analytical models for threshold voltage and subthreshold slope is optimized against Schottky barrier height (ϕB variation. The expression for the drain current is computed as a function of gate-to-drain bias via integral expression. It is validated by comparing it with the technology computer-aided design (TCAD simulation results as well. In essence, this analytical framework provides the physical background for better understanding of STS-IMOS and its performance estimation.

  9. Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

    CERN Document Server

    Zhao, L; Houard, J; Blum, I; Delaroche, F; Vurpillot, F

    2016-01-01

    We have recently proposed an atom probe design based on a femtosecond time-resolved pump-probe setup. This setup unlocks the limitation of voltage pulsed mode atom probe thanks to the occurrence of local photoconductive switching effect . In this paper, we have used a numerical model to simulate the field evaporation process triggered by the synchronous two pulses. The model takes into account the local photoconductive effect and the temperature rise caused by the laser application and the voltage pulse distortion due to the RC effect.

  10. On Calculating the Current-Voltage Characteristic of Multi-Diode Models for Organic Solar Cells

    CERN Document Server

    Roberts, Ken

    2016-01-01

    We provide an alternative formulation of the exact calculation of the current-voltage characteristic of solar cells which have been modeled with a lumped parameters equivalent circuit with one or two diodes. Such models, for instance, are suitable for describing organic solar cells whose current-voltage characteristic curve has an inflection point, also known as an S-shaped anomaly. Our formulation avoids the risk of numerical overflow in the calculation. It is suitable for implementation in Fortran, C or on micro-controllers.

  11. Modeling and Control of Low Voltage Flexible Units for Enhanced Operation of Distribution Feeders

    DEFF Research Database (Denmark)

    Raboni, Pietro; Hu, Weihao; Chaudhary, Sanjay

    2013-01-01

    Battery (EVB) is proposed for providing primary regulation in grid connected mode and for hierarchically manage an islanded LV distribution feeder. The unit models are described and a novel EVB model directly based on manufacturer’s data is proposed and evaluated comparing its performances with Sim......PowerSystems library block. Moreover a voltage dependant power term is applied to the Voltage-Source Converter (VSC) control scheme of the EVB for improving the performances of the islanded feeder. The control is tested in case of under frequency and consequent load shedding occurring at the residential feeder...

  12. Coupled intertwiner dynamics - a toy model for coupling matter to spin foam models

    CERN Document Server

    Steinhaus, Sebastian

    2015-01-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple 2D toy model for Yang--Mills coupled to spin foams, namely an Ising model coupled to so--called intertwiner models defined for $\\text{SU}(2)_k$. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretisation. We coarse grain this toy model via tensor network renor...

  13. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  14. Towards Better Coupling of Hydrological Simulation Models

    Science.gov (United States)

    Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.

    2012-12-01

    Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time

  15. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.

    Science.gov (United States)

    Decher, Niels; Chen, Jun; Sanguinetti, Michael C

    2004-04-02

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.

  16. Development and Validation of an Enhanced Coupled-Field Model for PZT Cantilever Bimorph Energy Harvester

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2013-01-01

    Full Text Available The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.

  17. Inductive Voltage Adder Network Analysis and Model Simplification

    Science.gov (United States)

    2007-06-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) Brookhaven National Laboratory Upton, NY 11973 USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/ MONITORING ... Kicker Pulser for DARHT-II”, Proceedings of the 20th International LINAC Conference, pp. 509-511, 2000. [4] Wang, G. J. Caporaso, E. G. Cook...Modeling of an Inductive Adder Kicker Pulser for a Proton Radiography System”, Digest of Technical Papers, Pulsed Power Plasma Science, 2001. PPPS-2001

  18. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  19. A Unified Mutual Coupling Model for Multiple Antenna Systems

    Institute of Scientific and Technical Information of China (English)

    WU Yu-jiang; NIE Zai-ping

    2006-01-01

    A unified mutual coupling model for multiple antenna communication systems based on moment methods is proposed. This model combines antenna coupling and RF front-end circuit coupling, thus providing a more accurate and complete analysis of the mutual coupling effect on multiple antenna systems.

  20. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  1. Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single-Phase Self-Excited Induction Generator

    Science.gov (United States)

    Ahmed, Tarek; Noro, Osamu; Hiraki, Eiji; Nakaoka, Mutsuo

    In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize smoothly the generated output voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of inductive load variations and prime mover speed changes. The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor (FC) in parallel with the thyristor switched capacitor (TSC) and the thyristor controlled reactor TCR. A PI closed-loop feedback voltage control scheme based on the SVC for the single-phase SEIG coupled by a VSPM prototype set-up is established. The closed-loop feedback output voltage responses in the single-phase SEIG coupled by a VSPM with different inductive load variations using the single-phase SVC with the PI controller are considered and discussed herein. Based on the SVC with the PI controller closed-loop feedback voltage regulation scheme, the experimental results for the single-phase SEIG driven by a VSPM are illustrated and proved its practical effectiveness in terms of the fast response and the high performances.

  2. Coupled electrothermal modeling of microheaters using SPICE

    Science.gov (United States)

    Swart, Nicholas R.; Nathan, Arokia

    1994-06-01

    A novel simulation approach that computes both the transient and steady state electrothermal behavior in integrated circuit (IC) compatible thermally isolated microheaters is reported. The resulting distribution of heat, current density and temperature, as well as the electrical terminal behavior have been obtained for realistic device structures. The results are based on a two-dimensional solution of the coupled system of partial differential equations that govern both electrical and heat transport in the device. Unlike standard numerical approaches for coupled systems, our technique is based on the behavioural models, available in most commercial circuit simulators (e.g., HSPICE), that allow synthesis of complex, nonlinear, and coupled circuit elements. The simulation results are in excellent agreement with measurement data of steady state and transient terminal characteristics, obtained under conditions of vacuum. We note that this modeling approach allows concurrent simulation (and subsequent optimization) of the performance of both the control electronics as well as the thermal element(s), within the same IC design environment.

  3. The standard model with gravity couplings

    CERN Document Server

    Chang, L N; Lay Nam Chang; Chopin Soo

    1996-01-01

    ABSTRACT-The Standard Model with Gravity Couplings-Lay Nam Chang(Virginia Tech) & Chopin Soo(Penn State)--- It has been shown by Ashtekar, and many others after him, that classical gravity in four dimensions can be described equally well by (anti)self-dual variables instead of the conventional variables. In this paper, we examine the coupling of matter fields to gravity from this perspective, and show that the known quark and lepton multiplets in the Standard Model of particle physics can be introduced into the theory in a manner which ensures the cancellation of perturbative chiral gauge anomalies, despite the fact that the the Ashtekar-Sen connection allows for couplings only to left-handed Weyl fermions. We also explore a global anomaly associated with the theory, and argue that its removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition, we investigate the behavior of the theory under discrete transformations P, C and T, and discuss possible violatio...

  4. Modeling and Control of a DFIG-Based Wind Turbine During a Grid Voltage Drop

    Directory of Open Access Journals (Sweden)

    M. Shahabi

    2011-10-01

    Full Text Available Doubly-fed induction generators (DFIG are widely used in wind energy generation systems. During a grid voltage drop, performance is degraded with rotor over current deteriorating the fault-ride through (FRT capability of the DFIG wind-energy generation system. In this paper, a complete mathematical DFIG model is proposed. The rotor is considered fed by a voltage source converter whereas the stator is connected to the grid directly. Output power and electromagnetic torque are controlled using field-oriented control (FOC. Simulation results show the efficiency of the controller in exploiting the maximum power of wind.

  5. Coupling/Tradeoff Analysis and Novel Containment Control for Reactive Power, Output Voltage in Islanded Micro-Grid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    and voltage magnitudes are provided specifically. In the secondary level, the tradeoffs between accurate reactive power sharing and voltage magnitudes regulation are further detailed. The analysis results can provide a guideline for the design of MG structure and its control parameters. In addition, a novel...... containment-based controller is proposed to control the voltage into a reasonable range which is the first time to apply this algorithm in MG. Furthermore, dynamic-consensus-based controller is used to guarantee accurate reactive power sharing. The combination of controllers offers a coordinated distributed...

  6. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  7. Analysis and modeling of zero-threshold voltage native devices with industry standard BSIM6 model

    Science.gov (United States)

    Gupta, Chetan; Agarwal, Harshit; Lin, Y. K.; Ito, Akira; Hu, Chenming; Singh Chauhan, Yogesh

    2017-04-01

    In this paper, we present the modeling of zero-threshold voltage (V TH) bulk MOSFET, also called native devices, using enhanced BSIM6 model. Devices under study show abnormally high leakage current in weak inversion, leading to degraded subthreshold slope. The reasons for such abnormal behavior are identified using technology computer-aided design (TCAD) simulations. Since the zero-V TH transistors have quite low doping, the depletion layer from drain may extend upto the source (at some non-zero value of V DS) which leads to punch-through phenomenon. This source–drain leakage current adds with the main channel current, causing the unexpected current characteristics in these devices. TCAD simulations show that, as we increase the channel length (L eff) and channel doping (N SUB), the source–drain leakage due to punch-through decreases. We propose a model to capture the source–drain leakage in these devices. The model incorporates gate, drain, body biases and channel length as well as channel doping dependency too. The proposed model is validated with the measured data of production level device over various conditions of biases and channel lengths.

  8. Coupling a Terrestrial Biogeochemical Model to the Common Land Model

    Institute of Scientific and Technical Information of China (English)

    SHI Xiaoying; MAd Jiafu; WANG Yingping; DAI Yongjiu; TANG Xuli

    2011-01-01

    A terrestrial biogeochemical model (CASACNP) was coupled to a land surtace model (the Common Land Model,CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration.The combined model,CoLM_CASACNP,was able to predict long-term carbon sources and sinks that CoLM alone could not.The coupled model was tested using measurenents of belowground respiration and surface fluxes from two forest ecosystems.The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange,as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study.However,the agreement between model simulations and actual measurements was poorer under dry conditions.The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.

  9. Electrical description of N2 capacitively coupled plasmas with the global model

    Science.gov (United States)

    Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team

    2016-10-01

    N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.

  10. Model Predictive Controlled Active NPC Inverter for Voltage Stress Balancing Among the Semiconductor Power Switches

    Science.gov (United States)

    Parvez Akter, Md.; Dah-Chuan Lu, Dylan

    2017-07-01

    This paper presents a model predictive controlled three-level three-phase active neutral-point-clamped (ANPC) inverter for distributing the voltage stress among the semiconductor power switches as well as balancing the neutral-point voltage. The model predictive control (MPC) concept uses the discrete variables and effectively operates the ANPC inverter by avoiding any linear controller or modulation techniques. A 4.0 kW three-level three-phase ANPC inverter is developed in the MATLAB/Simulink environment to verify the effectiveness of the proposed MPC scheme. The results confirm that the proposed model predictive controlled ANPC inverter equally distributes the voltage across all the semiconductor power switches and provides lowest THD (0.99%) compared with the traditional NPC inverter. Moreover, the neutral-point voltage balancing is accurately maintained by the proposed MPC algorithm. Furthermore, this MPC concept shows the robustness capability against the parameter uncertainties of the system which is also analyzed by MATLAB/Simulink.

  11. FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions

    Science.gov (United States)

    Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani

    2017-01-01

    Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.

  12. Modeling and characterization of multiple coupled lines

    Science.gov (United States)

    Tripathi, Alok

    1999-10-01

    A configuration-oriented circuit model for multiple coupled lines in an inhomogeneous medium is developed and presented in this thesis. This circuit model consists of a network of uncoupled transmission lines and is readily modeled with simulation tools like LIBRA© and SPICE ©. It provides an equivalent circuit representation which is simple and topologically meaningful as compared to the model based on modal decomposition. The configuration-oriented model is derived by decomposing the immittance matrices associated with an n coupled line 2n-port system. Time- and frequency- domain simulations of typical coupled line multiports are included to exemplify the utility of the model. The model is useful for the simulation and design of general single and multilayer coupled line components, such as filters and couplers, and for the investigation of signal integrity issues including crosstalk in interconnects associated with high speed digital and mixed signal electronic modules and packages. It is shown that multiconductor lossless structures in an inhomogeneous medium can be characterized by multiport time-domain reflection (MR) measurements. A synthesis technique of an equivalent lossless (non-dispersive) uniform multiconductor n coupled lines (UMCL) 2n-port system from the measured discrete time-domain reflection response is presented. This procedure is based on the decomposition of the characteristic immittance matrices of the UMCL in terms of partial mode immittance matrices. The decomposition scheme leads to the discrete transition matrix function of a UMCL 2n-port system. This in turn establishes a relationship between the normal-mode parameters of the UMCL and the measured impulse reflection and transmission response. Equivalence between the synthesis procedure presented in this thesis and the solution of a special form of an algebraic Riccati matrix equation whose solution can lead to the normal-mode parameters and a real termination network is illustrated. In

  13. Quantum Ising model coupled with conducting electrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Yasufumi; Yonemitsu, Kenji [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Graduate University for Advanced studies, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2005-01-01

    The effect of photo-doping on the quantum paraelectric SrTiO{sub 3} is studied by using the one-dimensional quantum Ising model, where the Ising spin describes the effective lattice polarization of an optical phonon. Two types of electron-phonon couplings are introduced through the modulation of transfer integral via lattice deformations. After the exact diagonalization and the perturbation studies, we find that photo-induced low-density carriers can drastically alter quantum fluctuations when the system locates near the quantum critical point between the quantum para- and ferro-electric phases.

  14. Quantum Ising model coupled with conducting electrons

    Science.gov (United States)

    Yamashita, Yasufumi; Yonemitsu, Kenji

    2005-01-01

    The effect of photo-doping on the quantum paraelectric SrTiO3 is studied by using the one-dimensional quantum Ising model, where the Ising spin describes the effective lattice polarization of an optical phonon. Two types of electron-phonon couplings are introduced through the modulation of transfer integral via lattice deformations. After the exact diagonalization and the perturbation studies, we find that photo-induced low-density carriers can drastically alter quantum fluctuations when the system locates near the quantum critical point between the quantum para- and ferro-electric phases.

  15. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    Science.gov (United States)

    Khoshkbar Sadigh, Arash

    by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and

  16. Peculiarities of phase dynamics of coupled Josephson junctions in CCJJ and CCJJ+DC models

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Y U M; Rahmonov, I R; Demery, M E L, E-mail: shukrinv@theor.jinr.r

    2010-11-01

    The phase dynamics of the coupled Josephson junctions in the framework of CCJJ and CCJJ+DC models is studied. The current voltage characteristics (CVC) are numerically calculated for the stacks with different number of junctions at different model parameters. We manifest the difference of these models for the branching at I = Ic and in the hysteretic region. The essential difference is observed in the breakpoint region, where the longitudinal plasma wave is created. We discuss the main features of both models, related with the role of the diffusion current between the superconducting layers.

  17. Modeling and Design of DC Boost and AC Side Voltage Controllers in Asymmetrical Γ-Source Inverter

    OpenAIRE

    2014-01-01

    In this paper a control system is proposed to simultaneously control the voltage boost and output voltage of assymetrical Γ-Source Inverters. Dynamic model of the system is used to design the controllers. Voltage boost on assymetrical Γ-Source Inverters is done by voltage control of impedance network capacitor and the regulation of inverter shoot through duty cycle. Since the stability margin of the system is low due to the right half plane zero in its dynamic model, the design of fast contro...

  18. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect

    Science.gov (United States)

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems. PMID:27832098

  19. A new coupled model for alloy solidification

    Institute of Scientific and Technical Information of China (English)

    LI Daming; LI Ruo; ZHANG Pingwen

    2004-01-01

    A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA)technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain.The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at differentscales, I.e. The macro-scale and micro-scale. The variation ofsolid fraction in this model is solved using several algebraicrelations coming from the chemical potential equilibrium andthermodynamic equilibrium which can be cheaply solved insteadof the calculation of S/L interface velocity. With the assumptionof the solute conservation and energy conservation, the solidfraction can be directly obtained according to the thermodynamicdata. This model is natural to be applied to multiple (>2)spatial dimension case and multiple (>2) component alloy. Themorphologies of equiaxed dendrite are obtained in numericalexperiments.

  20. Simple supersymmetric strongly coupled preon model

    Science.gov (United States)

    Fajfer, S.; Tadić, D.

    1988-08-01

    This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.

  1. The Standard Model Coupled to Quantum Gravitodynamics

    CERN Document Server

    Aldabe, Fermin

    2016-01-01

    We show that the renormalizable SO(4) X U (1) X SU (2) X SU (3) Yang Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable 4-dimensional theory descr...

  2. The standard model coupled to quantum gravitodynamics

    Science.gov (United States)

    Aldabe, Fermin

    2017-01-01

    We show that the renormalizable SO(4)× U(1)× SU(2)× SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions.

  3. The standard model coupled to quantum gravitodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Aldabe, Fermin

    2017-01-15

    We show that the renormalizable SO(4) x U(1) x SU(2) x SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions. (orig.)

  4. Modeling and Design of DC Boost and AC Side Voltage Controllers in Asymmetrical Γ-Source Inverter

    Directory of Open Access Journals (Sweden)

    Seyed Mahyar Mehdizadeh Moghadam

    2014-07-01

    Full Text Available In this paper a control system is proposed to simultaneously control the voltage boost and output voltage of assymetrical Γ-Source Inverters. Dynamic model of the system is used to design the controllers. Voltage boost on assymetrical Γ-Source Inverters is done by voltage control of impedance network capacitor and the regulation of inverter shoot through duty cycle. Since the stability margin of the system is low due to the right half plane zero in its dynamic model, the design of fast control system is impossible therefore a nonlinear feedforward control loop is used to faster the control system performance. Linear control system is used to control the AC-side in synchrony reference frame such that the AC voltage control system regulates the output voltage by means of modulation index regulation. The proposed control system performance is investigated by simulation in MATLAB/Simulink

  5. Experimental Modelling of the Breakdown Voltage of Air Using Design of Experiments

    Directory of Open Access Journals (Sweden)

    REZOUGA, M.

    2009-02-01

    Full Text Available Many experimental and numerical studies were devoted to the electric discharge of air, and some mathematical models were proposed for the critical breakdown voltage. As this latter depends on several parameters, it is difficult to find a formula, theoretical or experimental, which considers many factors. The aim of this paper is to model the critical breakdown voltage in a "Sphere-Sphere� electrodes system by using the methodology of experimental designs. Several factors were considered, such as geometrical factors (inter-electrodes interval, diameter of the electrodes and climatic factors (temperature, humidity. Two factorial centred faces experimental designs (CCF were carried out, a first one for the geometrical factors and a second one for the climatic factors. The obtained results made it possible to propose mathematical models and to study the interactions between the various factors.

  6. Quasi-3D modeling of surface potential and threshold voltage of Triple Metal Quadruple Gate MOSFETs

    Science.gov (United States)

    Gupta, Santosh Kumar; Shah, Mihir Kumar P.

    2017-01-01

    In this paper we present electrostatic model of 3D Triple Metal Quadruple Gate (TMQG) MOSFET of rectangular cross-section based on quasi-3D method. The analytical equations for channel potential and characteristic length have been derived by decomposing TMQG into two 2D perpendicular cross-sections (triple metal double gate, TMDG) and the effective characteristic length of TMQG is found using equivalent number of gates (ENG) method. For each of the TMDG, 2D Poisson's equation is solved by parabolic approximation and proper boundary conditions to calculate channel potential. The threshold voltage expression is developed using inversion carrier charge sheet density method. The developed models for channel potential and threshold voltage are validated using numerical simulations of TMQG. The developed model provides the design guidelines for TMQG with improved HCEs and SCEs.

  7. New analytical threshold voltage model for halo-doped cylindrical surrounding-gate MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Li Cong; Zhuang Yiqi; Han Ru, E-mail: cong.li@mail.xidan.edu.cn [Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices of Ministry of Education, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2011-07-15

    Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates, a new analytical model comprising electrostatic potential, electric field, threshold voltage and subthreshold current for halo-doped surrounding-gate MOSFETs is developed. It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide. It is also revealed that moderate halo doping concentration, thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics. The derived analytical model agrees well with a three-dimensional numerical device simulator ISE. (semiconductor devices)

  8. A Thermal Runaway Failure Model for Low-Voltage BME Ceramic Capacitors with Defects

    Science.gov (United States)

    Teverovsky, Alexander

    2017-01-01

    Reliability of base metal electrode (BME) multilayer ceramic capacitors (MLCCs) that until recently were used mostly in commercial applications, have been improved substantially by using new materials and processes. Currently, the inception of intrinsic wear-out failures in high quality capacitors became much greater than the mission duration in most high-reliability applications. However, in capacitors with defects degradation processes might accelerate substantially and cause infant mortality failures. In this work, a physical model that relates the presence of defects to reduction of breakdown voltages and decreasing times to failure has been suggested. The effect of the defect size has been analyzed using a thermal runaway model of failures. Adequacy of highly accelerated life testing (HALT) to predict reliability at normal operating conditions and limitations of voltage acceleration are considered. The applicability of the model to BME capacitors with cracks is discussed and validated experimentally.

  9. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  10. Corona noise model of high-voltage AC transmission lines and engineering applications

    Institute of Scientific and Technical Information of China (English)

    Wu Jiuhui; Di Zelong

    2013-01-01

    In order to predict the levels of corona noise from high-voltage alternating current (AC) transmission lines,the mechanism of corona noise and the corresponding theoretical prediction model are investigated.On the basis of Drude model,the motion of positive and negative ions produced by high-voltage corona is analyzed,and the mechanism of corona noise is discovered.The theoretical prediction model is put forward by using Kirchhoff formula,which is verified by the well agreement between our result and others',considering the case of three-phase single lines.Moreover,the calculation results show that for both single and bundled lines,the sound pressure level of the typical frequency,i.e.twice the power frequency,attenuates slowly and leads to an obviously interferential phenomenon near the transmission lines,but the level of the bundled lines is smaller than that of the single ones under the same transmission voltage.Based on the mechanism of corona noise and the prediction model,it is obvious that bundled lines and/or increased line radius can be adopted to reduce corona noise in the practical engineering applications effectively.This model can also provide a theoretical guidance for the high-volt-age AC transmission line design.

  11. A new analytical model of high voltage silicon on insulator (SOI) thin film devices

    Institute of Scientific and Technical Information of China (English)

    Hu Sheng-Dong; Zhang Bo; Li Zhao-Ji

    2009-01-01

    A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141 V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.

  12. Cooperative Effects of Noise and Coupling on Stochastic Dynamics of a Membrane-Bulk Coupling Model

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming

    2009-01-01

    Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated, For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.

  13. Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model

    Science.gov (United States)

    Suskis, P.; Rankis, I.

    2012-01-01

    The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.

  14. Modeling of dielectric barrier discharge excimer lamp excited by mono polar voltage pulses

    Science.gov (United States)

    Akashi, Haruaki; Oda, Akinori; Sakai, Yosuke

    2007-10-01

    Filametal discharges in Dielectric Barrier Discharge (DBD) excimer lamp excited by mono polar voltage pulses has been simulated using two dimensional fluid model. And the differences of the filament discharges formations between mono polar case and bipolar case [1] have been examined. Xe gas was used and its pressure is 300Torr. Simulated region is 1cm (gap length) x 3cm (radial length). Periodical boundary conditions are assumed for the radial direction boundaries. The both electrodes are covered with dielectrics and their thickness is 0.2cm. Applied voltage is 5kV trapezoid shape with 50% duty ratio waveform and its repetition rate is 200kpps. First a small amount of electron-ion pair is provided in the middle of the gap for initial condition. Then the voltage starts to apply. In the case of bipolar excitation, the discharge starts from one filament (streamer discharge), and finally, 5 filaments are obtained self-consistently. In the case of mono polar case, as first, similar to bipolar case, the discharge starts from one filament, however, only 3 filaments have been obtained. This result is similar to that of 100kHz bipolar voltage case. [1] H. Akashi et al, IEEE Trans. Plasma Science, Vol.33, No.2 (2005) pp.308-309

  15. Synchronous Generator Model with Fractional Order Voltage Regulator PIbDa

    Directory of Open Access Journals (Sweden)

    Dariusz Spałek

    2015-06-01

    Full Text Available Synchronous generator together with excitation circuit, voltage controller and system stabilizer constitute nonlinear ordinary differential equations set. The nonlinearity of differential equations set results from magnetic circuits saturation. One of the most important, from the electric energy distribution point of view, is the influence of voltage control applied on the generator voltage. There could be applied regulator either classical PID or fractional of type PIbDa which bases on the so-called fractional derivative idea. Numerical solutions of nonlinear differential equations set, that takes into account both magnetic circuits saturation and fractional regulator PIbDa, lead to decisions either to accept or to reject the chosen parameters. The sensibility of generator work on chosen fractional regulator parameters is the main aim of this paper. With the help of C++ program provided the most important states of work (short–circuit, setting voltage change, reactive power rejection can be analyzed basing on the accepted model of synchronous generator such as (1,1, (2,2 or (3,3.

  16. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit.

    Science.gov (United States)

    Keum, Dongil; Baek, Christina; Kim, Dong-Il; Kweon, Hae-Jin; Suh, Byung-Chang

    2014-10-01

    G protein-coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca(2+), and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca(2+) (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of

  17. Evaluation and Simulation of Black-box Arc Models for High-Voltage Circuit-Breakers

    OpenAIRE

    Gustavsson, Niklas

    2004-01-01

    The task for this Master thesis was to evaluate different black-box arc models for circuit-breakers with the purpose of finding criteria for the breaking ability. A black-box model is a model that requires no knowledge from the user of the underlying physical processes. Black-box arc models have been used in circuit-breaker development for many years. Arc voltages from tests made in the High Power Laboratory in Ludvika were used for validation, along with the resistance calculated at current ...

  18. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

    Directory of Open Access Journals (Sweden)

    John C Williams

    Full Text Available Channelrhodospin-2 (ChR2, a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1 accurate inward rectification in the current-voltage response across irradiances; 2 empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation; and 3 accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10 were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and

  19. Thawing model and symmetry breaking in a coupled quintessence model

    CERN Document Server

    Honardoost, M; Sepangi, H R

    2015-01-01

    We consider the thawing model in the framework of coupled quintessence scenario. The effective potential has $Z_2$ symmetry which is broken spontaneously when dark matter density becomes less than a critical value leading the quintessence equation of state parameter to deviate from -1. Conditions required for this procedure are obtained and analytical solution for the equation of state parameter is derived.

  20. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  1. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  2. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  3. An Economic Model of Coupled Exponential Maps

    CERN Document Server

    López-Ruiz, R; Cosenza, M G; Sánchez, J R

    2007-01-01

    In this work, an ensemble of economic interacting agents is considered. The agents are arranged in a linear array where only local couplings are allowed. The deterministic dynamics of each agent is given by a map. This map is expressed by two factors. The first one is a linear term that models the expansion of the agent's economy and that is controlled by the {\\it growth capacity parameter}. The second one is an inhibition exponential term that is regulated by the {\\it local environmental pressure}. Depending on the parameter setting, the system can display Pareto or Boltzmann-Gibbs behavior in the asymptotic dynamical regime. The regions of parameter space where the system exhibits one of these two statistical behaviors are delimited. Other properties of the system, such as the mean wealth, the standard deviation and the Gini coefficient, are also calculated.

  4. Teaching Couples Counseling: An Integrative Model

    Science.gov (United States)

    Long, Lynn L.; Burnett, Judith A.

    2005-01-01

    Traditionally, training in couples counseling has not received equal status as other counseling modalities. Recently, there is renewed interest in specific training for couples counseling as more emphasis is placed on the stability of couple relationships as an important factor for helping families and children function in a society of frequent…

  5. Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats.

    Directory of Open Access Journals (Sweden)

    Mohamed Farrag

    Full Text Available Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.

  6. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  7. Sensitivity-Based Model of Low Voltage Distribution Systems with Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Anna Rita Di Fazio

    2016-10-01

    Full Text Available A key issue in Low Voltage(LV distribution systems is to identify strategies for the optimal management and control in the presence of Distributed Energy Resources (DERs. To reduce the number of variables to be monitored and controlled, virtual levels of aggregation, called Virtual Microgrids (VMs, are introduced and identified by using new models of the distribution system. To this aim, this paper, revisiting and improving the approach outlined in a conference paper, presents a sensitivity-based model of an LV distribution system, supplied by a Medium/Low Voltage (MV/LV substation and composed by several feeders, which is suitable for the optimal management and control of the grid and for VM definition. The main features of the proposed method are: it evaluates the sensitivity coefficients in a closed form; it provides an overview of the sensitivity of the network to the variations of each DER connected to the grid; and it presents a limited computational burden. A comparison of the proposed method with both the exact load flow solutions and a perturb-and-observe method is discussed in a case study. Finally, the method is used to evaluate the impact of the DERs on the nodal voltages of the network.

  8. Modeling of a Silicon Nanowire pH Sensor with Nanoscale Side Gate Voltage

    Institute of Scientific and Technical Information of China (English)

    Alireza Kargar

    2009-01-01

    A silicon nanowire (Si-NW) sensor for pH detection is presented.The conductance of the device is analytically obtained,demonstrating that the conductance increases with decreasing oxide thickness.To calculate the electrical conductance of the sensor,the diffusion-drift model and nonlinear Poisson-Boltzmann equation are applied.To improve the conductance and sensitivity,a Si-NW sensor with nanoscale side gate voltage is offered and its characteristics are theoretically achieved.It is revealed that the conductance and sensor sensitivity can be enhanced by adding appropriate side gate voltages.This effect is compared to a similar fabricated structure in the literature,which has a wire with a rectangular cross section.Finally,the effect of NW length on sensor performance is investigated and an inverse relation between sensor sensitivity and NW length is achieved.

  9. Modeling and Simulation Research on Lightning Over-voltage of 500kV Hydroelectric Station

    Directory of Open Access Journals (Sweden)

    Huang Wang-jun

    2012-08-01

    Full Text Available Lightning over-voltage amplitude of equipments on different branch nodes of the arterials has been obtained after the modeling and simulation analysis based on the EMTP (electromagnetic transients program were done on the lightning over-voltage of a 500kV hydroelectric station was with the system’s worst working condition (single-line, single-transforming, and the line tower on the near side of 500kv hydroelectric station’s GIS was struck by lightning. Thus, precise data have been acquired to select suitable equipments and verify the resisting lightning performance of the station. Finally, reasonable measures (such as reducing pulse resistance of line tower are proposed to improve the comprehensive lightning resisting level of hydroelectric stations.

  10. Dynamic modeling and direct power control of wind turbine driven DFIG under unbalanced network voltage conditions

    Institute of Scientific and Technical Information of China (English)

    Jia-bing HU; Yi-kang HE; Lie XU

    2008-01-01

    This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed in-duction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.

  11. Analysis of the Light Propagation Model of the Optical Voltage Sensor for Suppressing Unreciprocal Errors.

    Science.gov (United States)

    Li, Hui; Fu, Zhida; Liu, Liying; Lin, Zhili; Deng, Wei; Feng, Lishuang

    2017-01-03

    An improved temperature-insensitive optical voltage sensor (OVS) with a reciprocal dual-crystal sensing method is proposed. The inducing principle of OVS reciprocity degradation is expounded by taking the different temperature fields of two crystals and the axis-errors of optical components into consideration. The key parameters pertaining to the system reciprocity degeneration in the dual-crystal sensing unit are investigated in order to optimize the optical sensing model based on the Maxwell's electromagnetic theory. The influencing principle of axis-angle errors on the system nonlinearity in the Pockels phase transfer unit is analyzed. Moreover, a novel axis-angle compensation method is proposed to improve the OVS measurement precision according to the simulation results. The experiment results show that the measurement precision of OVS is superior to ±0.2% in the temperature range from -40 °C to +60 °C, which demonstrates the excellent temperature stability of the designed voltage sensing system.

  12. A Mathematical Model to Predict Voltage Fluctuations in a Distribution System with Renewable Energy Sources

    Science.gov (United States)

    Iyer, Shivkumar Venkatraman; Wu, Bin; Li, Yunwei; Singh, Birendra

    2015-12-01

    This paper proposes a simplified mathematical model to predict the impact of connection of Distributed Generators (DGs) to the ac grid. The model allows the user to examine the fluctuations in the magnitude of voltages at different nodes in the distribution system. In order to use the model, the user does not require a commercial simulation software making it a handy tool for a practicing engineer. Analysis has been presented to describe how the detailed mathematical model of the system is reduced using elementary matrix manipulation techniques to obtain the final simplified mathematical model. Simulation results are presented to verify the mathematical model with a ring distribution system with three DGs connected to it and the results validate those attained from the mathematical model.

  13. A 2-D Analytical Threshold Voltage Model for Symmetric Double Gate MOSFET's Using Green’s Function

    Directory of Open Access Journals (Sweden)

    Anoop Garg

    2011-01-01

    Full Text Available We propose a new two dimensional (2D analytical solution of Threshold Voltage for undoped (or lightly doped Double Gate MOSFETs. We have used Green’s function technique to solve the 2D Poisson equation, and derived the threshold voltage model using minimum surface potential concept. This model is assumed uniform doping profile in Si region. The proposed model compared with existing literature and experimental data and we obtain excellent agreements with previous techniques.

  14. Admittance Modeling of Voltage and Current Controlled Inverter for Harmonic Instability Studies

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Bak, Claus Leth

    2016-01-01

    This paper proposes an impedance/admittance based model for voltage and current controlled inverters with passive elements suitable for harmonic instability study of grid connected inverters in frequency domain. This linearized model of inverters, significantly simplifies investigation of resonance...... instability and control loop interaction of wind turbines with each other and/or with the grid, while they are installed in wind farms. The derived impedance ratio at point of common connection demonstrates how the inverters participate in harmonic stability of the grid....

  15. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  16. A Coupled MHD and Thermal Model Including Electrostatic Sheath for Magnetoplasmadynamic Thruster Simulation

    Science.gov (United States)

    Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro

    2016-09-01

    Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.

  17. Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2013-02-01

    Full Text Available The partial discharge (PD process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events.

  18. Simulation and Modeling of 24-Pulse STATCOM in EMTDC/PSCAD Program in Order to Regulate Voltage and Dynamic Stability Improvement

    Directory of Open Access Journals (Sweden)

    Naser Parhizgar

    2012-02-01

    Full Text Available This study starts from the proof of Low Frequency Oscillation (LFO and then points out that there are many ways to study the LFO including its rejection measures. Also in this study one control system is planned in order to regulate voltage at common coupling point (PCC in where STATCOM is installed. This research present a single-machine infinite-bus system with one static synchronous compensator (STATCOM asymmetrically installed as a current source. Together with a classical generator model, the simplest power equation is obtained to give direct and clear physical concepts on synchronizing and damping torque factors. According to the primary equations, some basic issues, such as the relationship of voltage gain control and damping control, operating conditions, and the installation of STATCOM, are investigated in this research. Then, with assistance of proportional controller for voltage regulation and damp control, the digital simulation indicate the necessity of control of STATCOM in damping power system oscillations and supplying regulated voltage support.

  19. Improved Subseasonal Prediction with Advanced Coupled Models including the 30km FIM-HYCOM Coupled Model

    Science.gov (United States)

    Benjamin, Stan; Sun, Shan; Grell, Georg; Green, Benjamin; Bleck, Rainer; Li, Haiqin

    2017-04-01

    Extreme events for subseasonal duration have been linked to multi-week processes related to onset, duration, and cessation of blocking events or, more generally, quasi-stationary waves. Results will be shown from different sets of 32-day prediction experiments (3200 runs each) over a 16-year period for earth system processes key for subseasonal prediction for different resolution, numerics, and physics using the FIM-HYCOM coupled model. The coupled atmosphere (FIM) and ocean (HYCOM) modeling system is a relatively new coupled atmosphere-ocean model developed for subseasonal to seasonal prediction (Green et al. 2017 Mon.Wea.Rev. accepted, Bleck et al 2015 Mon. Wea. Rev.). Both component models operate on a common icosahedral horizontal grid and use an adaptive hybrid vertical coordinate (sigma-isentropic in FIM and sigma-isopycnic in HYCOM). FIM-HYCOM has been used to conduct 16 years of subseasonal retrospective forecasts following the NOAA Subseasonal (SubX) NMME protocol (32-day forward integrations), run with 4 ensemble members per week. Results from this multi-year FIM-HYCOM hindcast include successful forecasts out to 14-20 days for stratospheric warming events (from archived 10 hPa fields), improved MJO predictability (Green et al. 2017) using the Grell-Freitas (2014, ACP) scale-aware cumulus scheme instead of the Simplified Arakawa-Schubert scheme, and little sensitivity to resolution for blocking frequency. Forecast skill of metrics from FIM-HYCOM including 500 hPa heights and MJO index is at least comparable to that of the operational Climate Forecast System (CFSv2) used by the National Centers for Environmental Prediction. Subseasonal skill is improved with a limited multi-model (FIM-HYCOM and CFSv2), consistent with previous seasonal multi-model ensemble results. Ongoing work will also be reported on for adding inline aerosol/chemistry treatment to the coupled FIM-HYCOM model and for advanced approaches to subgrid-scale clouds to address regional biases

  20. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  1. Model for the ready definition and approximate comparison of alternative high voltage transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A model of generic overhead transmission systems in the range of 362 to 1200 kV ac, and +-400 to +-800 kV dc is developed. Such generic systems are to include (a) transmission from generation to load, and (b) interconnection of two large integrated systems, with and without the existence of an underlying, lower voltage network in either case. The model provides a means whereby an engineer with some experience in power systems planning can make a reconnaissance study of alternatives within a relatively short span of time and with fair accuracy. Given an amount of power to be transferred over a specified distance, the model can be used: to define the workable alternatives in terms of voltages, number of lines, series compensation, and certain other factors affecting transfer capability; to delineate other salient features of the selected alternatives, notably shunt compensation requirements; and to compare the alternatives in terms of potentially relevant benefits and costs. The significant properties of the model, the basis and assumptions necessary to its formulation, instructions for its use, and inherent limitations upon the accuracy to be expected are described.

  2. Modeling and analysis of secondary sources coupling for active sound field reduction in confined spaces

    Science.gov (United States)

    Montazeri, Allahyar; Taylor, C. James

    2017-10-01

    This article addresses the coupling of acoustic secondary sources in a confined space in a sound field reduction framework. By considering the coupling of sources in a rectangular enclosure, the set of coupled equations governing its acoustical behavior are solved. The model obtained in this way is used to analyze the behavior of multi-input multi-output (MIMO) active sound field control (ASC) systems, where the coupling of sources cannot be neglected. In particular, the article develops the analytical results to analyze the effect of coupling of an array of secondary sources on the sound pressure levels inside an enclosure, when an array of microphones is used to capture the acoustic characteristics of the enclosure. The results are supported by extensive numerical simulations showing how coupling of loudspeakers through acoustic modes of the enclosure will change the strength and hence the driving voltage signal applied to the secondary loudspeakers. The practical significance of this model is to provide a better insight on the performance of the sound reproduction/reduction systems in confined spaces when an array of loudspeakers and microphones are placed in a fraction of wavelength of the excitation signal to reduce/reproduce the sound field. This is of particular importance because the interaction of different sources affects their radiation impedance depending on the electromechanical properties of the loudspeakers.

  3. Fluid Model of Waveguide Transverse Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, optical fluid is firstly defined. By using the movement law of hydrodynamics, the transverse coupling of waveguides is discussed. The result fully coincides with the electromagnetic solution.

  4. Modeling and Optimal Operation of Distributed Battery Storage in Low Voltage Grids

    OpenAIRE

    Fortenbacher, Philipp; Mathieu, Johanna L.; Andersson, Göran

    2016-01-01

    Due to high power in-feed from photovoltaics, it can be expected that more battery systems will be installed in the distribution grid in near future to mitigate voltage violations and thermal line and transformer overloading. In this paper, we present a two-stage centralized model predictive control scheme for distributed battery storage that consists of a scheduling entity and a real-time control entity. To guarantee secure grid operation, we solve a robust multi-period optimal power flow (O...

  5. Modeling of the CIGRE Low Voltage Test Distribution Network and the Development of Appropriate Controllers

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    controller. The control system is tested in the distribution test network set up by CIGRE. The new approach of the PV controller is done in such a way that it can control AC and DC voltage of the PV converter during dynamic conditions. The battery controller is also developed in such a way that it can...... quality issues. The main focus of this paper is on development of controllers for a distribution system with different DG’s and especially development of a Photovoltaic (PV) controller using a Static Compensator (STATCOM) controller and on modeling of a Battery Storage System (BSS) also based on a STATCOM...

  6. Design of the robust synchronous generator stator voltage regulator based on the interval plant model

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2013-01-01

    Full Text Available In this paper a novel method for the stator voltage regulator of a synchronous generator based on the interval plant mode, is presented. Namely, it is shown in the literature that, in order to design a controller for the first-order compensator, the limited number of interval plants needs to be examined. Consequently, the intervals of the plant model parameter variations used to calculate the four extreme interval plants required for the sequential PI controller design are determined. The controller is designed using frequency-domain-based techniques, while its robust performance is examined using simulation tests.

  7. LEO high voltage solar array arcing response model. Interim report, February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.N.

    1987-02-01

    A series of mathematical models were developed that describe the electrical behavior of a large solar cell array floating electrically in the low Earth orbit (LEO) space plasma and struck by an arc at a point of negative bias. There are now three models in this series: ARCII, which is a fully analytical, linearized model; ARCIII, which is an extension of ARCIII that includes solar cell inductance as well as load reactance; Nonlinear ARC, which is a numerical model able to treat effects such as non-linearized, i.e., logarithmic solar cell I/V characteristics, conductance switching as a solar cell crosses plasma ground on a voltage excursion and non-ohmic plasma leakage current collection.

  8. Empirical Verification of Fault Models for FPGAs Operating in the Subcritical Voltage Region

    DEFF Research Database (Denmark)

    Birklykke, Alex Aaen; Koch, Peter; Prasad, Ramjee

    2013-01-01

    fault models might provide insight that would allow subcritical scaling by changing digital design practices or by simply accepting errors if possible. To facilitate further work in this direction, we present probabilistic error models that allow us to link error behavior with statistical properties...... of the binary signals, and based on a two-FPGA setup we experimentally verify the correctness of candidate models. For all experiments, the observed error rates exhibit a polynomial dependency on outcome probability of the binary inputs, which corresponds to the behavior predicted by the proposed timing error...... model. Furthermore, our results show that the fault mechanism is fully deterministic - mimicking temporary stuck-at errors. As a result, given knowledge about a given signal, errors are fully predictable in the subcritical voltage region....

  9. Modeling of discharges in a capacitively coupled dual frequency plasma reactor

    Directory of Open Access Journals (Sweden)

    Bojarov Aleksandar

    2009-01-01

    Full Text Available In this paper we have modeled a dual frequency coupled plasma reactor (DF-CCP by using a 1d3v PIC/MCC code. The obtained results apart from their theoretical relevance have practical applications especially for development of plasma reactors and for nanoelectronics. Dual frequency plasmas are used for etching of dielectric interconnect layers with high aspect ratios (contact holes. In the DF-CCP, the density of the plasma is controlled by the high frequency, while the ion energy depends mainly on the potential drop in the sheath, which is controlled by the low frequency. The results of our simulations show the dependence of the energy of the ions arriving at the inner electrode on the voltage of the low frequency generator and how the voltage of the high frequency generator affects the ion flux on the electrode.

  10. A Doping Dependent Threshold Voltage Model of Uniformly Doped Short-Channel Symmetric Double-Gate (DG MOSFET’s

    Directory of Open Access Journals (Sweden)

    P.K. Tiwari

    2011-01-01

    Full Text Available The paper presents a doping dependent threshold voltage model for the short-channel double-gate (DG MOSFETs. The channel potential has been determined by solving the two-dimensional (2D Poisson’s equation using the parabolic potential approximation in the vertical direction of channel. Threshold voltage sensitivity on acceptor doping and device parameters is discussed in detail. The threshold voltage expression has been modified by incorporating the effects of band gap narrowing for highly doped DG MOSFETs. Quantum mechanical corrections have also been employed in the threshold voltage model. The theoretical results have been compared with the ATLASTM simulation results. The present model is found to be valid for acceptor doping variation from 1014 cm–3 to 5 × 1018cm–3.

  11. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  12. Improved modeling of new three-phase high voltage transformer with magnetic shunts

    Directory of Open Access Journals (Sweden)

    Chraygane M.

    2015-03-01

    Full Text Available This original paper deals with a new approach for the study of behavior in nonlinear regime of a new three-phase high voltage power supply for magnetrons, used for the microwave generators in industrial applications. The design of this system is composed of a new three-phase leakage flux transformer supplying by phase a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. Each cell. in turn, supplies a single magnetron. An equivalent model of this transformer is developed taking into account the saturation phenomenon and the stabilization process of each magnetron. Each inductance of the model is characterized by a non linear relation between flux and current. This model was tested by EMTP software near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. Relative to the current device, the new systemprovides gains of size, volume, cost of implementation and maintenance which make it more economical.

  13. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  14. Low Voltage Ride Through for DFIG With Series Coupled Compensation%DFIG风电机组串联耦合补偿低压穿越研究

    Institute of Scientific and Technical Information of China (English)

    张建忠; 熊良根; 杭俊; 程明

    2014-01-01

    Flux variation of doubly fed induction generator (DFIG) under grid fault and fault recovery leads to rotor overcurrent or rotor overvoltage, and it hazards to the converter at rotor side. For this reason a new low voltage ride through scheme, in which a series coupled compensation (SCC) is connected in series to generator’s input terminal via coupling transformer, is proposed to overcome the affections on wind power system due to faults occurred in power grid. The superiorities of the proposed control strategy are as following:the transient current component in both rotor and stator of DFIG can be weakened, thus the unbalanced heating of both rotor and stator windings can be suppressed and the service life of DFIG can be prolonged;DFIG can still output active and reactive power steadily; the converter at DFIG’s rotor side is controllable all along during the whole accident operation, thus it is possible to provide reactive power support to faulty power grid. Under the condition of symmetrical and asymmetrical fault occurred in power grid, a simulation model of wind power generation system with capacity of 1 MW is established by PSCAD/EMTDC, and simulation results show that using the proposed control scheme the ride through capability of DFIG under fault occurred in power grid can be improved.%双馈风电机组(doubly fed induction generator,DFIG)在电网电压故障以及故障恢复作用下的磁链变化将导致转子过电压或过电流,威胁转子侧的变换器。采用串联耦合补偿(series coupled compensation,SCC)的新型电压穿越方案, SCC 通过耦合变压器串接在发电机输入端,它能克服电网多种故障对风电系统的影响。提出的控制策略有如下优势:能削弱故障下机组定子、转子电流暂态成分,克服了定、转子绕组不平衡发热的问题,延长了风电机组使用寿命;在电网故障下发电机组仍能平稳输出有功、无功功率;在整个故障运行过程

  15. Planar LTCC transformers for high voltage flyback converters.

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Daryl (NASCENT Technology Inc. , Watertown, SD); Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George (NASCENT Technology Inc. , Watertown, SD); Abel, Dave (NASCENT Technology Inc. , Watertown, SD)

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  16. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    , in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...

  17. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect...... immunogold labelling using a monoclonal antibody specific for phenylalkylamine and dihydropyridine sensitive Ca2+ channels. Using the same technique and a monoclonal antibody (bd-17) to the beta 2/beta 3-subunit of the GABAA-receptor, double labelling of Ca2+ channels and GABAA-receptors with gold particles...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  18. Experimental modeling of high-voltage corona discharge using design of experiments

    Institute of Scientific and Technical Information of China (English)

    Rezzouga M; Tilmatine A; Gouri R; Medics K; Dascalescu L

    2007-01-01

    Many studies,both experimental and numerical,were devoted to the electric current of corona discharge and some mathematical models were proposed to express it.As it depends on several parameters,it is difficult to find a theoretical or an experimental formula,which considers all the factors.So we opted for the methodology of experimental designs,also called Tagushi's methodology,which represents a powerful tool generally employed when the process has many factors to consider.The objective of this paper is to model current using this experimental methodology.The factors considered were geometrical factors (interelectrode interval,surface of the grounded plane electrode,curvature radius of the point electrode),climatic factors (temperature and relative humidity),and applied high voltage.Results of experiments made it possible to obtain mathematical models and to analyse the interactions between all factors.

  19. An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect

    Science.gov (United States)

    Fan-Yu, Liu; Heng-Zhu, Liu; Bi-Wei, Liu; Yu-Feng, Guo

    2016-04-01

    In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SOI FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted. Project supported by the Research Program of the National University of Defense Technology (Grant No. JC 13-06-04).

  20. Numerical Simulation of Optically-Induced Dielectrophoresis Using a Voltage-Transformation-Ratio Model

    Directory of Open Access Journals (Sweden)

    Sheng-Chieh Huang

    2013-02-01

    Full Text Available Optically-induced dielectrophoresis (ODEP has been extensively used for the manipulation and separation of cells, beads and micro-droplets in microfluidic devices. With this approach, non-uniform electric fields induced by light projected on a photoconductive layer can be used to generate attractive or repulsive forces on dielectric materials. Then, moving these light patterns can be used for the manipulation of particles in the microfluidic devices. This study reports on the results from numerical simulation of the ODEP platform using a new model based on a voltage transformation ratio, which takes the effective electrical voltage into consideration. Results showed that the numerical simulation was in reasonably agreement with experimental data for the manipulation of polystyrene beads and emulsion droplets, with a coefficient of variation less than 6.2% (n = 3. The proposed model can be applied to simulations of the ODEP force and may provide a reliable tool for estimating induced dielectrophoretic forces and electric fields, which is crucial for microfluidic applications.

  1. Modeling and Capacitors Voltage Balancing Control of STATCOM Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Milad Samady Shadlu

    2016-12-01

    Full Text Available Modular multilevel converter (MMC provides a new concept in a wide range of applications due to its simple topology and high reliability. In this paper, a three phase four legs modular multilevel converter is used as a compensator in a four-wire network which feeds an unbalanced and distorted custom load. The purpose is to compensate this unbalance load currents by injection suitable currents besides the capacitors voltage balancing control in individual legs. In this paper, designing of compensator current controller will be done based on a composite control model (CCM combined of average model and predictive control method. Also an independent controller has been proposed for capacitors voltage balancing whose task is to eliminate the circulating current oscillations in each leg. In order to control total energy stored in converter and also to remove the zero sequence current, two simple control schemes have been presented based on PI controller and closed loop controller, respectively. Finally simulation results have been presented in MATLAB/Simulink to confirm effectiveness and accuracy of proposed controller.

  2. Molecular Model of Anticonvulsant Drug Binding to the Voltage-Gated Sodium Channel Inner Pore

    Science.gov (United States)

    Lipkind, Gregory M.

    2010-01-01

    The tricyclic anticonvulsant drugs phenytoin, carbamazepine, and lamotrigine block neuronal voltage-gated Na+ channels, and their binding sites to domain IV-S6 in the channel's inner pore overlap with those of local anesthetic drugs. These anticonvulsants are neutral, in contrast to the mostly positively charged local anesthetics, but their open/inactivated-state blocking affinities are similar. Using a model of the open pore of the Na+ channel that we developed by homology with the crystal structures of potassium channels, we have docked these three anticonvulsants with residues identified by mutagenesis as important for their binding energy. The three drugs show a common pharmacophore, including an aromatic ring that has an aromatic-aromatic interaction with Tyr-1771 of NaV1.2 and a polar amide or imide that interacts with the aromatic ring of Phe-1764 by a low-energy amino-aromatic hydrogen bond. The second aromatic ring is nearly at a right angle to the pharmacophore and fills the pore lumen, probably interacting with the other S6 segments and physically occluding the inner pore to block Na+ permeation. Hydrophobic interactions with this second aromatic ring may contribute an important component to binding for anticonvulsants, which compensates energetically for the absence of positive charge in their structures. Voltage dependence of block, their important therapeutic property, results from their interaction with Phe-1764, which connects them to the voltage sensors. Their use dependence is modest and this results from being neutral, with a fast drug off-rate after repolarization, allowing a normal action potential rate in the presence of the drugs. PMID:20643904

  3. Analytical model of internally coupled ears

    DEFF Research Database (Denmark)

    Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J

    2010-01-01

    , data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical...... simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry....

  4. Tinamit: Making coupled system dynamics models accessible to stakeholders

    Science.gov (United States)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model

  5. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  6. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    Science.gov (United States)

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  7. Breakdown voltage model and structure realization of a thin silicon layer with linear variable doping on a silicon on insulator high voltage device with multiple step field plates

    Institute of Scientific and Technical Information of China (English)

    Qiao Ming; Zhuang Xiang; Wu Li-Juan; Zhang Wen-Tong; Wen Heng-Juan; Zhang Bo; Li Zhao-Ji

    2012-01-01

    Based on the theoretical and experimental investigation of a thin silicon layer (TSL) with linear variable doping (LVD) and further research on the TSL LVD with a multiple step field plate (MSFP),a breakdown voltage (BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator (SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field (ENDIF),from which the reduced surface field (RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect but the problem of the high voltage interconnection (HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET (nLDMOS) with MSFP is realized.The experimental breakdown voltage (BV) and specific on-resistance (Ron,sp) of the TSL LVD SOI device are 694 V and 21.3 Ω.mm2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.

  8. Improved Direct Deadbeat Voltage Control with an Actively Damped Inductor-Capacitor Plant Model in an Islanded AC Microgrid

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-11-01

    Full Text Available A direct deadbeat voltage control design method for inverter-based microgrid applications is proposed in this paper. When the inductor-capacitor (LC filter output voltage is directly controlled using voltage source inverters (VSIs, the plant dynamics exhibit second-order resonant characteristics with a load current disturbance. To effectively damp the resonance caused by the output LC filter, an active damping strategy that does not cause additional energy loss is utilized. The proposed direct deadbeat voltage control law is devised from a detailed, actively damped LC plant model. The proposed deadbeat control method enhances voltage control performance owing to its better disturbance rejection capability than the conventional deadbeat or proportional-integral-based control methods. The most important advantage of the proposed deadbeat control method is that it makes the deadbeat control more robust by bringing discrete closed-loop poles closer to the origin. Simulation and experimental results are shown to verify the enhanced voltage control performance and stability of the proposed voltage control method.

  9. Quantitative analysis of irreversibilities causes voltage drop in fuel cell (simulation and modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Ghadamian, Hossein [Azad Univ., Dept. of Energy Engineering, Tehran (Iran); Saboohi, Yadolah [Sharif Energy Research Inst. (SERI), Tehran (Iran)

    2004-11-30

    Power level of a fuel cell depends on its operating condition, which is product of voltage and current-density the highest level of voltage is identified as reversible open circuit voltage (ROCV), which represents an ideal theoretical case [J. Larmin, A. Dicks, Fuel Cell System Explained, Wiley, 2000 (ISBN)]. Compared to that is ideal operating voltage which is usually characterized as open circuit voltage (OCV). An evaluation of deviation of operating voltage level from ideal operational case may provide information on the extent of improving efficiency and energy efficiency of a fuel cell. Therefore, quantification of operation deviation from OCV is the main point that is discussed in the present paper. The analysis procedure of voltage drop is based on step-by-step review of voltage drops over activation, internal currents (fuel-cross-over), Ohmic and mass-transport or concentration losses. Accumulated total voltage drops would be estimated as a sum of aforementioned losses. The accumulated voltage drops will then be reduced from OCV to obtain the operating voltage level. The above numerical analysis has been applied to identify the extents of voltage drop. The possible reducing variables in voltage drops reviewed and concluded that the activation loss has considerable impact on total voltage drops and it explains the most part of total losses. It is also found that the following correspondence parameters cause decrease in voltage drops: 1. Temperature increasing; 2. Pressure increasing; 3. Hydrogen or oxygen concentration increasing; 4. Electrode effective surface increasing; 5. Electrode and electrolyte, conductivity modification; 6. Electrolyte thickness reducing up to possible limitation; 7. Connection modification. (Author)

  10. Modelling, stability and control of voltage behaviour in power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David J. [Sydney Univ., NSW (Australia). Dept. of Electrical Engineering; Hisken, Ian A. [Newcastle Univ., NSW (Australia). Dept. of Electrical and Computer Engineering

    1994-12-31

    This paper gives an overview of a line of work on mid to long term voltages stability analysis and control in power systems. The results are based on use of a novel approach to dynamic load modelling using aggregate nonlinear structures. In general, the model for the transmission network and supply end dynamics is of the hybrid differential - algebraic - discrete kind. Various stability questions are precisely formulated and analysed in terms of network and load characteristics (steady-state and transient). The results are shown to be a useful framework for deriving criteria of the where, when and how much kind for various control actions such as load Thedding and tap-blocking. (author) 47 refs., 15 figs., 1 tab.

  11. Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...

  12. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  13. Analytical models of on-resistance and breakdown voltage for 4H-SiC floating junction Schottky barrier diodes

    Science.gov (United States)

    Yuan, Hao; Tang, Xiaoyan; Song, Qingwen; Zhang, Yimen; Zhang, Yuming; Yang, Fei; Niu, Yingxi

    2015-01-01

    The analytical models of on-resistance and reverse breakdown voltage for 4H-SiC floating junction SBD are presented with the analysis of the transport path of the carriers and electric field distribution in the drift region. The calculation results from the analytical models well agree with the simulation results. The effects of the key structure parameters on specific on-resistance and breakdown voltage are described respectively by analytical models. Moreover, the relationship between BFOM and parameters of floating junction are investigated. It is proved that the analytical models are more convenient for the design of the floating junction SBDs.

  14. An analytical model for the drain-source breakdown voltage of RF LDMOS power transistors with a Faraday shield

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenmin; Zhang Wei; Fu Jun; Wang Yudong

    2012-01-01

    An analytical model for the drain-source breakdown voltage of an RF LDMOS power transistor with a Faraday shield is derived on the basis of the solution of the 2D Poisson equation in a p-type epitaxial layer,as well as an n-type drift region by means of parabolic approximation of electrostatic potential.The model captures the influence of the p-type epitaxial layer doping concentration on the breakdown voltage,compared with the previously reported model,as well as the effect of the other device parameters.The analytical model is validated by comparing with a numerical device simulation and the measured characteristics of LDMOS transistors.Based on the model,optimization of LDMOS device parameters to achieve proper trade-off between the breakdown voltage and other characteristic parameters such as on-resistance and feedback capacitance is analyzed.

  15. The Friedrichs-Model with fermion-boson couplings II

    CERN Document Server

    Civitarese, O; Pronko, G P

    2007-01-01

    In this work we present a formal solution of the extended version of the Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic states, which are coupled to fermions. The simultaneous treatment of the couplings of the fermions with the discrete and continuous sectors of the bosonic degrees of freedom leads to a system of coupled equations, whose solutions are found by applying standard methods of representation of bound and resonant states.

  16. Calculation Model for the Propagation of Audible Noise from High Voltage Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    LI Xuebao; CUI Xiang; LU Tiebing; HE Jiamei

    2013-01-01

    Audible noise from high voltage transmission lines' corona discharge has become one of the decisive factors affecting design of high voltage transmission lines,thus it is very important to study the spatial propagation characteristics of audible noise for its accurate prediction.A calculation model for the propagation of audible noise is presented in this paper,which is based on the basic equation of the sound wave and can involve the influences of the atmosphere absorption and ground effects.The effects of different ground impedances and the atmospheric attenuation on the distribution of sound pressure level are discussed in this paper.The results show that the atmospheric absorption may increase the attenuation of the audible noise,and the ground surface affects both the amplitude and phase of the sound.The spatial distribution fluctuates considering the ground effects.The atmospheric attenuation and the ground effect are closely related to the frequency of the noise.In the frequency range of the audible noise,the influence of atmospheric attenuation on the spatial propagation characteristics is more obvious in high frequency while ground has significant influences in low frequency.

  17. Analysis of the Light Propagation Model of the Optical Voltage Sensor for Suppressing Unreciprocal Errors

    Science.gov (United States)

    Li, Hui; Fu, Zhida; Liu, Liying; Lin, Zhili; Deng, Wei; Feng, Lishuang

    2017-01-01

    An improved temperature-insensitive optical voltage sensor (OVS) with a reciprocal dual-crystal sensing method is proposed. The inducing principle of OVS reciprocity degradation is expounded by taking the different temperature fields of two crystals and the axis-errors of optical components into consideration. The key parameters pertaining to the system reciprocity degeneration in the dual-crystal sensing unit are investigated in order to optimize the optical sensing model based on the Maxwell's electromagnetic theory. The influencing principle of axis-angle errors on the system nonlinearity in the Pockels phase transfer unit is analyzed. Moreover, a novel axis-angle compensation method is proposed to improve the OVS measurement precision according to the simulation results. The experiment results show that the measurement precision of OVS is superior to ±0.2% in the temperature range from −40 °C to +60 °C, which demonstrates the excellent temperature stability of the designed voltage sensing system. PMID:28054951

  18. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    Science.gov (United States)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  19. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  20. Central Charge of the Parallelogram Lattice Strong Coupling Schwinger Model

    CERN Document Server

    Yee, K

    1993-01-01

    We put forth a Fierzed hopping expansion for strong coupling Wilson fermions. As an application, we show that the strong coupling Schwinger model on parallelogram lattices with nonbacktracking Wilson fermions span, as a function of the lattice skewness angle, the $\\Delta = -1$ critical line of $6$-vertex models. This Fierzed formulation also applies to backtracking Wilson fermions, which as we describe apparently correspond to richer systems. However, we have not been able to identify them with exactly solved models.

  1. The coupling of Poisson sigma models to topological backgrounds

    CERN Document Server

    Rosa, Dario

    2016-01-01

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical intrepretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  2. The coupling of Poisson sigma models to topological backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2016-12-13

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  3. Coupling entropy of co-processing model on social networks

    Science.gov (United States)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  4. The coupling of Poisson sigma models to topological backgrounds

    Science.gov (United States)

    Rosa, Dario

    2016-12-01

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  5. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Walwyn, Wendy; John, Scott; Maga, Matthew; Evans, Christopher J; Hales, Tim G

    2009-07-01

    Recombinant micro and delta opioid receptors expressed in cell lines can form heterodimers with distinctive properties and trafficking. However, a role for opioid receptor heterodimerization in neurons has yet to be identified. The inhibitory coupling of opioid receptors to voltage-dependent Ca(2+) channels (VDCCs) is a relatively inefficient process and therefore provides a sensitive assay of altered opioid receptor function and expression. We examined micro-receptor coupling to VDCCs in dorsal root ganglion neurons of delta(+/+), delta(+/-), and delta(-/-) mice. Neurons deficient in delta receptors exhibited reduced inhibition of VDCCs by morphine and [D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAMGO). An absence of delta receptors caused reduced efficacy of DAMGO without affecting potency. An absence of delta receptors reduced neither the density of VDCCs nor their inhibition by either the GABA(B) receptor agonist baclofen or intracellular guanosine 5'-O-(3-thio)triphosphate. Flow cytometry revealed a reduction in micro-receptor surface expression in delta(-/-) neurons without altered DAMGO-induced internalization. There was no change in micro-receptor mRNA levels. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)-sensitive mu-receptor-coupling efficacy was fully restored to delta(+/+) levels in delta(-/-) neurons by expression of recombinant delta receptors. However, the dimerization-deficient delta-15 construct expressed in delta(-/-) neurons failed to fully restore the inhibitory coupling of micro-receptors compared with that seen in delta(+/+) neurons, suggesting that, although not essential for micro-receptor function, micro-delta receptor dimerization contributes to full micro-agonist efficacy. Because DAMGO exhibited a similar potency in delta(+/+) and delta(-/-) neurons and caused similar levels of internalization, the role for heterodimerization is probably at the level of receptor biosynthesis.

  6. Voltage-gated potassium channel Kvl.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; ZHUO Ye-hong; BI Wei-na; BAI Yu-jing; LI Yan-na; WANG Zhi-jian

    2008-01-01

    Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance.Ion channels play an important role in these processes.The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium.Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle.Ciliary epithelium samples were isolated from the rabbits.We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium.Membrane potential change after adding of Kv1.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method.Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium,however it seemed to express more in the apical membrane of the nonpigmented epithelial cells.One nmol/L margatoxin,a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential.The cytosotic calcium increased after NPE cell depolarization,this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine.These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms.Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.

  7. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  8. Affine group formulation of the Standard Model coupled to gravity

    CERN Document Server

    Chou, Ching-Yi; Soo, Chopin

    2013-01-01

    Using the affine group formalism, we perform a nonperturbative quantization leading to the construction of elements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. This paper constitutes a first step toward understanding the phenomenology of quantum gravitational effects stemming from a consistent treatment of minimal couplings to matter.

  9. Gravity couplings in the standard model: CPT nonconservation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lay Nam [Physics Department, Virginia Tech, Blacksburg, Virginia 24061-0435 (United States)] Soo, Chopin [Center for Theoretical Science, National Tsinghua University, Hsinchu, Republic of (China)

    1998-10-01

    Chiral asymmetric couplings are a basic feature of the standard model. We show that gravity couplings which manifestly preserve this feature are necessarily complex, and that as a result parity nonconservation can take place in the gravity sector. Implications for breakdown of CPT symmetry are also discussed. {copyright} {ital 1998 American Institute of Physics.}

  10. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...

  11. Modelling and simulation of double chamber microbial fuel cell. Cell voltage, power density and temperature variation with process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Ravi; Mondal, Prasenjit; Chand, Shri [Indian Institute of Technology Roorkee, Uttaranchal (India). Dept. of Chemical Engineering

    2013-11-01

    In the present paper steady state models of a double chamber glucose glutamic acid microbial fuel cell (GGA-MFC) under continuous operation have been developed and solved using Matlab 2007 software. The experimental data reported in a recent literature has been used for the validation of the models. The present models give prediction on the cell voltage and cell power density with 19-44% errors, which is less (up to 20%) than the errors on the prediction of cell voltage made in some recent literature for the same MFC where the effects of the difference in pH and ionic conductivity between anodic and cathodic solutions on cell voltage were not incorporated in model equations. It also describes the changes in anodic and cathodic chamber temperature due to the increase in substrate concentration and cell current density. Temperature profile across the membrane thickness has also been studied. (orig.)

  12. Transfer function-based modelling for voltage oscillation phenomena in PWM motor drives with long feeding cables

    Science.gov (United States)

    Lee, Sang-Choel; Park, Ju H.

    2010-04-01

    In this article, a transfer function-based modelling is proposed to investigate voltage oscillation phenomena, i.e. over-voltage at the motor terminal, associated with pulse-width modulation (PWM) inverter-fed motor drives with long feeding cables. As such, the long feeding cable is assumed to be a distortionless transmission line; then, a bounce diagram and time-harmonic method are utilised to derive a simple model with a minimum computational burden that is easy to realise using the Matlab/Simulink software package. Furthermore, the model takes account of the inverter output and the motor terminal filters, which are commonly used to suppress the motor terminal over-voltage. The model accuracy is verified by a comparison with the circuit-oriented software, OrCAD/PSpice, simulation results.

  13. Finite difference methods for coupled flow interaction transport models

    Directory of Open Access Journals (Sweden)

    Shelly McGee

    2009-04-01

    Full Text Available Understanding chemical transport in blood flow involves coupling the chemical transport process with flow equations describing the blood and plasma in the membrane wall. In this work, we consider a coupled two-dimensional model with transient Navier-Stokes equation to model the blood flow in the vessel and Darcy's flow to model the plasma flow through the vessel wall. The advection-diffusion equation is coupled with the velocities from the flows in the vessel and wall, respectively to model the transport of the chemical. The coupled chemical transport equations are discretized by the finite difference method and the resulting system is solved using the additive Schwarz method. Development of the model and related analytical and numerical results are presented in this work.

  14. Low Voltage Ride-Through of Squirrel Cage Induction Generator With Series Coupled Compensation%笼型异步风电机组串联耦合补偿低电压穿越研究

    Institute of Scientific and Technical Information of China (English)

    熊良根; 张建忠; 程明; 任禹丞

    2013-01-01

    With ever-increasing of installed capacity of wind power generators in China, it becomes a necessary condition for wind farms to be grid-connected to exist the ability of low-voltage ride-through (LVRT). In view of the fact that traditional squirrel cage induction generator (SCIG) does not exist the LVRT ability, a new LVRT scheme using series coupled compensation (SCC) is proposed: the SCC is connected in series to the position between the stator of SCIG and the point of common coupling (PCC) via a transformer and is switched on/off in coordinating with bi-directional thyristor. By means of PSCAD/EMTDC a simulation model of SCC system for SCIG with capacity of 750 kW is established and simulation results show that in spite of various voltage faults, the SCC can improve the LVRT ability of SCIG unit effectively and suppress oscillation of electromagnetic torque by compensating the voltage drop at PCC.%随着我国风电装机容量不断扩大,风电场具备低电压穿越能力已成为其并网发电的必要条件。而传统笼型异步发电机组本身并不具备低电压穿越能力,因此提出了一种串联耦合补偿(series coupled compensation,SCC)新型低电压穿越方案,SCC 通过变压器串联接在发电机定子与公共连接点之间,配合双向晶闸管进行投切。在PSCAD/EMTDC建立了750 kW异步发电机组的串联补偿系统,仿真结果表明在各种电压故障下SCC能有效提高机组低电压穿越能力,同时减小电磁转矩振荡。

  15. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi

    2012-06-02

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  16. Perturbative unification of gauge couplings in supersymmetric E6 models

    Science.gov (United States)

    Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho

    2016-07-01

    We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.

  17. Overview of the Coupled Model Intercomparison Project (CMIP)

    Energy Technology Data Exchange (ETDEWEB)

    Meehl, G A; Covey, C; McAvaney, B; Latif, M; Stouffer, R J

    2004-08-05

    The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present

  18. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence.

    Science.gov (United States)

    Novoseletsky, V N; Volyntseva, A D; Shaitan, K V; Kirpichnikov, M P; Feofanov, A V

    2016-01-01

    Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application.

  19. Modeling and Analysis of a Low-Voltage DC Distribution System

    Directory of Open Access Journals (Sweden)

    Joon Han

    2015-09-01

    Full Text Available It is well known that the Low-Voltage DC (LVDC distribution system is a promising topology as a future smart distribution system due to its high efficiency and reliability. However, there are still some challenges in the construction and implementation of an LVDC system. For practical application of the LVDC system, therefore, it is necessary to perform any simulation in advance by considering various conditions that can occur in an LVDC system. In order to provide a foundation for analyzing a DC system, this paper presents an LVDC distribution system model including essential components such as power electronic devices, Distributed Energy Resource (DER, and Energy Storage System (ESS, which can be considered for implementation in an LVDC system using Electro-Magnetic Transient Program (EMTP software. Moreover, an analysis of the characteristic in both the steady state and the transient state is conducted in an LVDC distribution system.

  20. Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker

    Science.gov (United States)

    Lin, Xin; Wang, Feiming; Xu, Jianyuan; Xia, Yalong; Liu, Weidong

    2016-03-01

    According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic. supported by Science and Technology Project of State Grid Corporation of China (No. GY17201200063), National Natural Science Foundation of China (No. 51277123), Basic Research Project of Liaoning Key Laboratory of Education Department (LZ2015055)

  1. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    Science.gov (United States)

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  2. Spectral classification of coupling regimes in the quantum Rabi model

    Science.gov (United States)

    Rossatto, Daniel Z.; Villas-Bôas, Celso J.; Sanz, Mikel; Solano, Enrique

    2017-07-01

    The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress. Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open question. We propose a spectral classification dividing the coupling regimes into three regions based on the validity of perturbative criteria on the quantum Rabi model, which allows us the use of exactly solvable effective Hamiltonians. These coupling regimes are (i) the perturbative ultrastrong coupling regime which comprises the Jaynes-Cummings model, (ii) a region where nonperturbative ultrastrong and nonperturbative deep strong coupling regimes coexist, and (iii) the perturbative deep strong coupling regime. We show that this spectral classification depends not only on the ratio between the coupling strength and the natural frequencies of the unperturbed parts, but also on the energy to which the system can access. These regimes additionally discriminate the completely different behaviors of several static physical properties, namely the total number of excitations, the photon statistics of the field, and the cavity-qubit entanglement. Finally, we explain the dynamical properties which are traditionally associated with the deep strong coupling regime, such as the collapses and revivals of the state population, in the frame of the proposed spectral classification.

  3. Modeling Pancake Formation with a Coupled Wave-Ice Model

    Science.gov (United States)

    Veeramony, J.; Orzech, M.; Shi, F.; Bateman, S. P.; Calantoni, J.

    2016-12-01

    Recent results from the ONR-sponsored Arctic Sea State DRI cruise (Thomson et al., 2016, EOS, in press) suggest that small-scale pancake ice formation is an important process in the initial recovery and refreezing of the Arctic pack ice each autumn. Ocean surface waves and ambient temperature play significant roles in shaping and/or limiting the pancake growth patterns, which may either facilitate or delay the recovery of the ice pack. Here we apply a phase-resolving, coupled wave-ice system, consisting of a CFD wave model (NHWAVE) and a discrete-element ice model (LIGGGHTS), to investigate the formation processes of pancake ice under different conditions. A series of simulations is run, each beginning with a layer of disconnected ice particles floating on the ocean surface. Wave conditions and ice bonding properties are varied to examine the effects of mild versus stormy conditions, wind waves versus swell, and warmer versus colder temperatures. Model runs are limited to domains of O(1 sq km). Initial tests have shown some success in replicating qualitative results from the Sea State cruise, including the formation of irregularly shaped pancakes from the "frazil" ice layer, changes in formation processes caused by varying ambient temperature (represented through variations in ice bonding strength), occasional rafting of one pancake on top of another, and increased wave attenuation as pancakes grow larger.

  4. Escaping in couples facilitates evacuation: Experimental study and modeling

    CERN Document Server

    Guo, Ning; Hu, Mao-Bin; Ding, Jian-Xun; Ding, Zhong-Jun

    2015-01-01

    In this paper, the impact of escaping in couples on the evacuation dynamics has been investigated via experiments and modeling. Two sets of experiments have been implemented, in which pedestrians are asked to escape either in individual or in couples. The experiments show that escaping in couples can decrease the average evacuation time. Moreover, it is found that the average evacuation time gap is essentially constant, which means that the evacuation speed essentially does not depend on the number of pedestrians that have not yet escaped. To model the evacuation dynamics, an improved social force model has been proposed, in which it is assumed that the driving force of a pedestrian cannot be fulfilled when the composition of physical forces exceeds a threshold because the pedestrian cannot keep his/her body balance under this circumstance. To model the effect of escaping in couples, attraction force has been introduced between the partners. Simulation results are in good agreement with the experimental ones.

  5. Coupled thermomechanical modeling using dissimilar geometries in arpeggio.

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Timothy D.; Templeton, Jeremy Alan

    2010-11-01

    Performing coupled thermomechanical simulations is becoming an increasingly important aspect of nuclear weapon (NW) safety assessments in abnormal thermal environments. While such capabilities exist in SIERRA, they have thus far been used only in a limited sense to investigate NW safety themes. An important limiting factor is the difficulty associated with developing geometries and meshes appropriate for both thermal and mechanical finite element models, which has limited thermomechanical analysis to simplified configurations. This work addresses the issue of how to perform coupled analyses on models where the underlying geometries and associated meshes are different and tailored to their relevant physics. Such an approach will reduce the model building effort and enable previously developed single-physics models to be leveraged in future coupled simulations. A combined-environment approach is presented in this report using SIERRA tools, with quantitative comparisons made between different options in SIERRA. This report summarizes efforts on running a coupled thermomechanical analysis using the SIERRA Arpeggio code.

  6. Interpretation on Partial Discharge of Typical Insulation Model Under Oscillating Impulse Voltage

    Institute of Scientific and Technical Information of China (English)

    SUN Zhenquan; ZHAO Xuefeng; LI Jisheng; LI Yanming

    2012-01-01

    The aim of this paper was to give an overview on partial discharges under oscillating impulse voltage.Three models(void in solid,needle-plate in air and oil) were presented,which describe the stochastic discharge process and represent internal discharges in solids and corona in air or silicon oil.Moreover,an air cored Rogowski coil and a sampling resistor for partial discharge(PD) measurement were developed and introduced in this paper.PD inception and extinction voltages(PDIV,PDEV) under single oscillating impulse voltage and AC voltage were investigated with different test samples.Experimental results firstly revealed that the PD inception voltage(PDIV) decreased with increasing applied voltage;secondly the PD inception voltage for three different insulating materials,showed an escalating trend with increasing frequency of the applied voltage.It was proven that the characteristics of PD under oscillating impulse voltage were identical to the features under AC voltage,which could be measured with the phase resolved partial discharge analysis(PRPDA) technique.Based on the reorganization and analysis of PDs under oscillating impulse voltage,the information about insulation defects was extracted from the measured data and used for estimating the risk of insulation failure of the equipment.

  7. Coupled Oscillator Model for Nonlinear Gravitational Perturbations

    CERN Document Server

    Yang, Huan; Green, Stephen R; Lehner, Luis

    2015-01-01

    Motivated by the gravity/fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although borne out of the gravity/fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, w...

  8. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  9. Light weakly coupled axial forces: models, constraints, and projections

    Science.gov (United States)

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; Tait, Tim M. P.

    2017-05-01

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be∗ decay.

  10. Light Weakly Coupled Axial Forces: Models, Constraints, and Projections

    CERN Document Server

    Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P

    2016-01-01

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...

  11. Light Weakly Coupled Axial Forces: Models, Constraints, and Projections

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Mishra-Sharma, Siddharth [Princeton U.; Tait, Tim P. [UC, Irvine

    2016-09-28

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in pi^0 and 8-Be* decay.

  12. Modeling the oxidative coupling of methane:Heterogeneous chemistry coupled with 3D flow field simulation

    Institute of Scientific and Technical Information of China (English)

    Yaghobi Nakisa; Ghoreishy Mir Hamid Reza

    2009-01-01

    The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model.The reaction was assumed to take place both in the gas phase and on the catalytic surface.Kinetic rate constants were experimentally obtained using a ten step kinetic model.The simulation results agree quite well with the data of OCM experiments,which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process.The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K.The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.

  13. Medicanes in an ocean–atmosphere coupled regional climate model

    Directory of Open Access Journals (Sweden)

    N. Akhtar

    2014-03-01

    Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  14. Radiative corrections to the Higgs couplings in the triplet model

    CERN Document Server

    Kikuchi, Mariko

    2013-01-01

    The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson ($h$). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of $h$, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this talk, we give our comprehensive study for radiative corrections to various Higgs boson couplings of $h$ in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; $g\\gamma\\gamma, hWW, hZZ$ and $hhh$ at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are su...

  15. Model of orbital populations for voltage-controlled magnetic anisotropy in transition-metal thin films

    Science.gov (United States)

    Zhang, Jia; Lukashev, Pavel V.; Jaswal, Sitaram S.; Tsymbal, Evgeny Y.

    2017-07-01

    Voltage-controlled magnetic anisotropy (VCMA) is an efficient way to manipulate the magnetization states in nanomagnets and is promising for low-power spintronic applications. The underlying physical mechanism for VCMA is known to involve a change in the d orbital occupation on the transition-metal interface atoms with an applied electric field. However, a simple qualitative picture of how this occupation controls the magnetocrystalline anisotropy (MCA) and even why in certain cases the MCA has the opposite sign remains elusive. In this paper, we exploit a simple model of orbital populations to elucidate a number of features typical for the interface MCA, and the effect of the electric field on it, for 3 d transition-metal thin films used in magnetic tunnel junctions. We find that in all considered cases, including the Fe(001) surface, clean F e1 -xC ox(001 ) /MgO interface, and oxidized Fe(001)/MgO interface, the effects of alloying and the electric field enhance the MCA energy with electron depletion, which is largely explained by the occupancy of the minority-spin dx z ,y z orbitals. However, the hole-doped Fe(001) exhibits an inverse VCMA in which the MCA enhancement is achieved when electrons are accumulated at the Fe (001)/MgO interface with the applied electric field. In this regime, we predict a significantly enhanced VCMA that exceeds 1 pJ/Vm. Realizing this regime experimentally may be favorable for the practical purpose of voltage-driven magnetization reversal.

  16. Quantitative Analysis Linking Inner Hair Cell Voltage Changes and Postsynaptic Conductance Change: A Modelling Study

    Directory of Open Access Journals (Sweden)

    Andreas N. Prokopiou

    2015-01-01

    Full Text Available This paper presents a computational model which estimates the postsynaptic conductance change of mammalian Type I afferent peripheral process when airborne acoustic waves impact on the tympanic membrane. A model of the human auditory periphery is used to estimate the inner hair cell potential change in response to airborne sound. A generic and tunable topology of the mammalian synaptic ribbon is generated and the voltage dependence of its substructures is used to calculate discrete and probabilistic neurotransmitter vesicle release. Results suggest an almost linear relationship between increasing sound level (in dB SPL and the postsynaptic conductance for frequencies considered too high for neurons to phase lock with (i.e., a few kHz. Furthermore coordinated vesicle release is shown for up to 300–400 Hz and a mechanism of phase shifting the subharmonic content of a stimulating signal is suggested. Model outputs suggest that strong onset response and highly synchronised multivesicular release rely on compound fusion of ribbon tethered vesicles.

  17. Modelling of the negative discharge in long air gaps under impulse voltages

    Energy Technology Data Exchange (ETDEWEB)

    Rakotonandrasana, J H; Beroual, A [Ecole Centrale de Lyon, Laboratoire AMPERE UMR CNRS 5005, 69134 Ecully Cedex (France); Fofana, I [Universite of Quebec at Chicoutimi, 555, Boulevard de l' Universite, G7H 2B1, Chicoutimi, QC (Canada)

    2008-05-21

    This paper presents a self-consistent model enabling the description of the whole negative discharge sequence, initiated in long air gaps under impulse voltage waves. This sequence includes the different phases of the propagation such as the initiation of the first corona, the pilot leader, the electrode and space leaders, and their junction. The model consists of using a RLC equivalent electrical network, the parameters of which vary with time according to the discharge characteristics and geometry (R, L and C being, respectively, the resistance, the inductance and the capacitance). This model provides the spatial and temporal evolution of the entire discharge, the current and the corresponding electrical charge, the power and energy injected into the gap and the velocity. It also allows us to simulate an image converter working in streak or frame mode and the leader propagation velocities as well as the trajectory of the discharge obtained from a probabilistic distribution. The computed results are compared with experimental data. Good agreement between computed and experimental results was obtained for various test configurations.

  18. An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liao's activation function.

    Science.gov (United States)

    Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad

    2015-01-01

    The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.

  19. Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes

    Science.gov (United States)

    Wilson, Jeffrey D.

    1987-01-01

    A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.

  20. Modelling and control of a seven level NPC voltage source inverter. Application to high power induction machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Gheraia, H.; Berkouk, E.M. [ENP, Alger (Algeria). Lab. de Commande des Processus; Manesse, G. [CNAM-Paris (France). Lab. d' Electricite Industrielle

    2001-08-01

    In this paper, we study a new kind of continuous-alternating converters: a seven-level neutral point clamping (NPC) voltage source inverter (VSI). We propose this inverter for applications in high voltage and high power fields. In the first part, we develop the knowledge and the control models of this inverter using the connections functions of the semi-conductors. After that, we present two pulse width modulation (PWM) algorithms to control this converter using its control model. We propose these algorithms for digital implementation. This multilevel inverter is associated to the induction machine. The performances obtained are full of promise to use it in the high voltage and high power fields of electrical traction. (orig.)

  1. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2011-01-01

    and discussed. Experimental results are provided to validate the performance and robustness of the VSIs functionality during Islanded and grid-connected operations, allowing a seamless transition between these modes through control hierarchies by regulating frequency and voltage, main-grid interactivity......Power electronics based microgrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of three-phase VSIs are derived. The proposed voltage and current inner control loops and the mathematical models...... the frequency and amplitude deviations produced by the primary control. And the tertiary control regulates the power flow between the grid and the microgrid. Also, a synchronization algorithm is presented in order to connect the microgrid to the grid. The evaluation of the hierarchical control is presented...

  2. Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    : off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize...

  3. New drain current model for nano-meter MOS transistors on-chip threshold voltage test

    NARCIS (Netherlands)

    Wan, Jinbo; Kerkhoff, Hans G.

    2015-01-01

    Traditional reliability tests use complicated equipment, like probe stations and semiconductor parameter analyzers, to measure changes in transistors' threshold voltages, which are both expensive and time consuming. This paper provides an idea to test the threshold voltage with existing low-to-moder

  4. Supervisory hybrid model predictive control for voltage stability of power networks

    NARCIS (Netherlands)

    Negenborn, R.R.; Beccuti, A.G.; Demiray, T.; Leirens, S.; Damm, G.; De Schutter, B.; Morari, M.

    2007-01-01

    Emergency voltage control problems in electric power networks have stimulated the interest for the implementation of online optimal control techniques. Briefly stated, voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capability of the transmission a

  5. Empirical Verification of Fault Models for FPGAs Operating in the Subcritical Voltage Region

    DEFF Research Database (Denmark)

    Birklykke, Alex Aaen; Koch, Peter; Prasad, Ramjee

    2013-01-01

    We present a rigorous empirical study of the bit-level error behavior of field programmable gate arrays operating in the subcricital voltage region. This region is of significant interest as voltage-scaling under normal circumstances is halted by the first occurrence of errors. However, accurate...

  6. Continuum model for dipolar coupled planar lattices

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel D.; Pogorelov, Yuri G. E-mail: ypogorel@fc.up.pt

    2003-03-01

    In an effective continuum approach alike the phenomenological Landau theory, we study low energy excitations in a square lattice of dipolar coupled magnetic moments {mu}, over continuously degenerate microvortex (MV) ground states defined by an arbitrary angle 0<{theta}<{pi}/2. We consider two vector order parameters: the MV vector v={mu} (cos {theta}, sin {theta}) and the ferromagnetic (FM) vector f=((1)/(2)) ({partial_derivative}{sub y}v{sub x}, -{partial_derivative}{sub x}v{sub y}). The excitation energy density {approx}f{sup 2} leads to a non-linear Euler equation. It allows, besides common linear waves of small amplitude, also non-linear excitations with unlimited (but slow) variation of {theta}(r). For plane wave excitations {theta}(r)={theta}(n{center_dot}r) propagating along n=(cos phi (cursive,open) Greek, sin phi (cursive,open) Greek), exact integrals of Euler equation are found. The density of excitation states turns anisotropic in {theta}, conforming to the enhanced occurrence of MV-like states with {theta} close to 0 or {pi}/2 in our Monte Carlo simulations of this system at low excitation energies.

  7. Multilongitudinal-mode model for cleaved coupled-cavity lasers

    Science.gov (United States)

    van de Capelle, J. P.; Baets, R.; Lagasse, P. E.

    1987-02-01

    The multilongitudinal-mode model for the analysis of cleaved coupled-cavity lasers proposed by Van de Capelle et al. (1984) is described in full detail. The model includes the optical interactions between the two cavities as well as the noise (spontaneous emission) in each of the resonators. It takes several longitudinal modes into account simultaneously and solves the nonlinear field equations self-consistently, together with a nonlinear resonance condition for each longitudinal mode. These conditions are coupled with each other through the nonlinearity of the laser medium. The results of this model are compared with those from an analytic model based on an effective mirror concept.

  8. The XY model coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-09-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.

  9. The XY Model Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F; 10.1016/0370-2693(92)91037-A

    2009-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.

  10. The Coupled Chemical and Physical Dynamics Model of MALDI

    Science.gov (United States)

    Knochenmuss, Richard

    2016-06-01

    The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.

  11. Branch structure of IV-characteristics in the capacitively coupled Josephson junctions model with the diffusion current

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Seidel, P. [Institut fuer Festkorperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2007-09-01

    We have solved numerically a system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of N intrinsic junctions and obtained a total branch structure in the current-voltage characteristics (IVC) of the stack. The coupling dependence of the branch's slopes is investigated and demonstrated that the equidistance of the branch structure in capacitively coupled Josephson junctions (CCJJ) model is broken at small values of coupling parameter. Changes in the parameters of the boundary conditions and the use of periodic boundary conditions do not affect this result. In the framework of the CCJJ model with the diffusion current we simulate an experiment and obtain the IV-characteristic with equidistant branch structure at different values of model parameters.

  12. Branch structure of IV-characteristics in the capacitively coupled Josephson junctions model with the diffusion current

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Seidel, P.

    2007-09-01

    We have solved numerically a system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of N intrinsic junctions and obtained a total branch structure in the current-voltage characteristics (IVC) of the stack. The coupling dependence of the branch’s slopes is investigated and demonstrated that the equidistance of the branch structure in capacitively coupled Josephson junctions (CCJJ) model is broken at small values of coupling parameter. Changes in the parameters of the boundary conditions and the use of periodic boundary conditions do not affect this result. In the framework of the CCJJ model with the diffusion current we simulate an experiment and obtain the IV-characteristic with equidistant branch structure at different values of model parameters.

  13. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.

    Science.gov (United States)

    Ferrer, Tania; Rupp, Jason; Piper, David R; Tristani-Firouzi, Martin

    2006-05-05

    A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the S4-S5 linker is the structural link between the voltage sensing and pore domains. In this study, we used chimeras constructed from hERG and ether-a'-go-go (EAG) channels to identify interactions between residues in the S4-S5 linker and S6 domain that were critical for stabilizing the channel in a closed state. To verify the spatial proximity of these regions, we introduced cysteines in the S4-S5 linker and at the C-terminal end of the S6 domain and then probed for the effect of oxidation. The D540C-L666C channel current decreased in an oxidizing environment in a state-dependent manner consistent with formation of a disulfide bond that locked the channel in a closed state. Disulfide bond formation also restricted movement of the voltage sensor, as measured by gating currents. Taken together, these data confirm that the S4-S5 linker directly couples voltage sensor movement to the activation gate. Moreover, rather than functioning simply as a mechanical lever, these findings imply that specific interactions between the S4-S5 linker and the activation gate stabilize the closed channel conformation.

  14. Unification of Gauge Couplings in Radiative Neutrino Mass Models

    CERN Document Server

    Hagedorn, Claudia; Riad, Stella; Schmidt, Michael A

    2016-01-01

    We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three different classes of neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 $\\Delta L=2$ operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino masses at one-loop level and (III) models with particles in the adjoint representation of $\\mathrm{SU}(3)$. In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admit gauge coupling unification. In class (III), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between $10...

  15. Coupled oscillator model of the dopaminergic neuron of the substantia nigra.

    Science.gov (United States)

    Wilson, C J; Callaway, J C

    2000-05-01

    Calcium imaging using fura-2 and whole cell recording revealed the effective location of the oscillator mechanism on dopaminergic neurons of the substantia nigra, pars compacta, in slices from rats aged 15-20 days. As previously reported, dopaminergic neurons fired in a slow rhythmic single spiking pattern. The underlying membrane potential oscillation survived blockade of sodium currents with TTX and was enhanced by blockade of voltage-sensitive potassium currents with TEA. Calcium levels increased during the subthreshold depolarizing phase of the membrane potential oscillation and peaked at the onset of the hyperpolarizing phase as expected if the pacemaker potential were due to a low-threshold calcium current and the hyperpolarizing phase to calcium-dependent potassium current. Calcium oscillations were synchronous in the dendrites and soma and were greater in the dendrites than in the soma. Average calcium levels in the dendrites overshot steady-state levels and decayed over the course of seconds after the oscillation was resumed after having been halted by hyperpolarizing currents. Average calcium levels in the soma increased slowly, taking many cycles to achieve steady state. Voltage clamp with calcium imaging revealed the voltage dependence of the somatic calcium current without the artifacts of incomplete spatial voltage control. This showed that the calcium current had little or no inactivation and was half-maximal at -40 to -30 mV. The time constant of calcium removal was measured by the return of calcium to resting levels and depended on diameter. The calcium sensitivity of the calcium-dependent potassium current was estimated by plotting the slow tail current against calcium concentration during the decay of calcium to resting levels at -60 mV. A single compartment model of the dopaminergic neuron consisting of a noninactivating low-threshold calcium current, a calcium-dependent potassium current, and a small leak current reproduced most features of the

  16. Modeling the dispersion in electromechanically coupled myocardium

    Science.gov (United States)

    Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.

    2014-01-01

    SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817

  17. Modeling the dispersion in electromechanically coupled myocardium.

    Science.gov (United States)

    Eriksson, Thomas S E; Prassl, Anton J; Plank, Gernot; Holzapfel, Gerhard A

    2013-11-01

    We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure-volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases.

  18. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    Science.gov (United States)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  19. Small Signal Modeling and Comprehensive Analysis of Magnetically Coupled Impedance Source Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    Magnetically coupled impedance-source (MCIS) networks are recently introduced impedance networks intended for various high-boost applications. It employs coupled magnetic in the circuit to achieve higher voltage gain. Various MCIS networks have been proposed in the literature for myriad applicati...

  20. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    Science.gov (United States)

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.

  1. Modelling of Spring Constant and Pull-down Voltage of Non-uniform RF MEMS Cantilever Incorporating Stress Gradient

    Directory of Open Access Journals (Sweden)

    Shimul Chandra SAHA

    2008-11-01

    Full Text Available We have presented a model for spring constant and pull-down voltage of a non-uniform radio frequency microelectromechanical systems (RF MEMS cantilever that works on electrostatic actuation. The residual stress gradient in the beam material that may arise during the fabrication process is also considered in the model. Using basic force deflection calculation of the suspended beam, a stand-alone model for the spring constant and pull-down voltage of the non-uniform cantilever is developed. To compare the model, simulation is performed using standard Finite Element Method (FEM analysis tolls from CoventorWare. The model matches very well with the FEM simulation results. The model will offer an efficient means of design, analysis, and optimization of RF MEMS cantilever switches.

  2. Testing coupled dark energy models with their cosmological background evolution

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover we show that, at the background level, a disformal interaction within the dark sector is preferred to both $\\Lambda$CDM and uncoupled quintessence, hence favouring interacting dark energy.

  3. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  4. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    Institute of Scientific and Technical Information of China (English)

    徐会静; 赵书霞; 高飞; 张钰如; 李雪春; 王友年

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to in-vestigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the cir-cuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determi-native role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency.

  5. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    Science.gov (United States)

    Xu, Hui-Jing; Zhao, Shu-Xia; Fei, Gao; Yu-Ru, Zhang; Xue-Chun, Li; You-Nian, Wang

    2015-11-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11205025, 11305023, and 11075029).

  6. The Kac Model Coupled to a Thermostat

    Science.gov (United States)

    Bonetto, Federico; Loss, Michael; Vaidyanathan, Ranjini

    2014-08-01

    In this paper we study a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature . The system admits the canonical distribution at inverse temperature as the unique equilibrium state. We prove that any initial distribution approaches the equilibrium distribution exponentially fast both by computing the gap of the generator of the evolution, in a proper function space, as well as by proving exponential decay in relative entropy. We also show that the evolution propagates chaos and that the one particle marginal, in the large system limit, satisfies an effective Boltzmann-type equation.

  7. Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

    Science.gov (United States)

    Patai, Zoltán; Guttman, András; Mikus, Endre G

    2016-12-01

    Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca(2+)- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca(2+) flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca(2+) refill model. In this model, the extracellular Ca(2+) enters the cells to replenish the emptied intracellular Ca(2+) stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca(2+) replenishment of Ca(2+)-depleted preparations detected by agonist-induced contractions in post-Ca(2+) replenishment Ca(2+)-free medium. Theophylline did not modify the Ca(2+) store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca(2+) flux. The addition of CaCl2 to Ca(2+)-free medium containing the agonist induced inward Ca(2+) flow and subsequent contraction of Ca(2+)-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca(2+) flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca(2+)-free medium with Ca(2+)-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.

  8. Voltage stability issues for a benchmark grid model including large scale wind power

    DEFF Research Database (Denmark)

    Eek, Jarle; Lund, Torsten; Di Marzio, Guiseppe

    2006-01-01

    The objective of the paper is to investigate how the voltage stability of a relatively weak network after a grid fault is affected by the connection of a large wind park. A theoretical discussion of the stationary and dynamic characteristics of the Short Circuit Induction Generator and the Doubly...... of the network and saturation of the external reactive power compensation units provides a good basis for evaluation of the voltage stability. For the DFIG it is concluded that the speed stability limit is mainly determined by the voltage limitation of the rotor converter...

  9. Modeling and Simulation of the Single Phase Voltage Source UPS Inverter With Fourth Order Output Filter

    Directory of Open Access Journals (Sweden)

    Javad Faiz

    2011-01-01

    Full Text Available A UPS inverter operates in wide load impedance ranges from resistive to capacitive or inductive load. At the same time, fast transient load response, good load regulation and good switching frequency suppression is required. The variation of the load impedance changes the filter transfer characteristic and thus the output voltage value. In this paper, an analysis and simulation of the single phase voltage source uninterruptible power supply (UPS with fourth order filter (multiple-filter in output inverter, based on the state space averaging and small signal linearization technique, is proposed. The simulation results show the high quality sinusoidal output voltage at different loads, with THD less than %5.

  10. Modeling and control of threshold voltage based on pull-in characteristic for micro self-locked switch

    Science.gov (United States)

    Deng, Jufeng; Hao, Yongping; Liu, Shuangjie

    2017-09-01

    Micro self-locked switches (MSS), where execution voltage corresponds to the output signal, are efficient and convenient platforms for sensor applications. The proper functioning of these sensing devices requires driving accurate displacement under execution voltage. In this work, we show how to control the actuating properties of MSSS. This switch comprises microstructures of various shapes with dimensions from 3.5 to 180 μm, which are optimized to encode a desired manufacture deviation by means of mathematical model of threshold voltage. Compared with pull-in voltage, threshold voltage is more easy to control the pull-in instability point by theoretical analysis. With the help of advanced manufacture technology, switch is processed in accordance with the proposed control method. Then, experimental results show that it is better, which have been validated by corresponding experiments. In addition, they can be known from experiments that the manufacturing technology is advanced and feasible, and its high resilience and stably self-locked function can achieve instantaneously sensing.

  11. Advances in the Coupled Soil Water and Groundwater Models

    Institute of Scientific and Technical Information of China (English)

    杨玉峥; 王志敏

    2014-01-01

    Models simulating the reciprocal transformation between the soil water and groundwater are of great practical importance to the development and utilization of water resources and prevention and remedy of water pollution. In this paper, popular coupled models of soil water and groundwater will be analyzed. Besides, advantages and disadvantages of different models will be summarized as a reference for the numerical model of soil water and groundwater.

  12. Cosmological Models with Time Dependent G and A Coupling Scalars

    Institute of Scientific and Technical Information of China (English)

    N.Ibotombi Singh; S.Kiranmla Chanu; S.Surendra Singh

    2009-01-01

    A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered.A general method of solving the field equations is given.An exact solution for matter distribution in cosmological models satisfying G = Go(R/Ro)n is presented.Corresponding physical interpretations of the cosmological solutions are also discussed.

  13. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  14. Improving data transfer for model coupling

    Science.gov (United States)

    Zhang, C.; Liu, L.; Yang, G.; Li, R.; Wang, B.

    2015-10-01

    Data transfer, which means transferring data fields between two component models or rearranging data fields among processes of the same component model, is a fundamental operation of a coupler. Most of state-of-the-art coupler versions currently use an implementation based on the point-to-point (P2P) communication of the Message Passing Interface (MPI) (call such an implementation "P2P implementation" for short). In this paper, we reveal the drawbacks of the P2P implementation, including low communication bandwidth due to small message size, variable and big number of MPI messages, and jams during communication. To overcome these drawbacks, we propose a butterfly implementation for data transfer. Although the butterfly implementation can outperform the P2P implementation in many cases, it degrades the performance in some cases because the total message size transferred by the butterfly implementation is larger than that by the P2P implementation. To make the data transfer completely improved, we design and implement an adaptive data transfer library that combines the advantages of both butterfly implementation and P2P implementation. Performance evaluation shows that the adaptive data transfer library significantly improves the performance of data transfer in most cases and does not decrease the performance in any cases. Now the adaptive data transfer library is open to the public and has been imported into a coupler version C-Coupler1 for performance improvement of data transfer. We believe that it can also improve other coupler versions.

  15. Concepts and models of coupled systems

    Science.gov (United States)

    Ertsen, Maurits

    2017-04-01

    In this paper, I will especially focus on the question of the position of human agency, social networks and complex co-evolutionary interactions in socio-hydrological models. The long term perspective of complex systems' modeling typically focuses on regional or global spatial scales and century/millennium time scales. It is still a challenge to relate correlations in outcomes defined at those longer and larger scales to the causalities at the shorter and smaller scales. How do we move today to the next 1000 years in the same way that our ancestors did move from their today to our present, in the small steps that produce reality? Please note, I am not arguing long term work is not interesting or the like. I just pose the question how to deal with the problem that we employ relations with hindsight that matter to us, but not necessarily to the agents that produced the relations we think we have observed. I would like to push the socio-hydrological community a little into rethinking how to deal with complexity, with the aim to bring together the timescales of humans and complexity. I will provide one or two examples of how larger-scale and longer-term observations on water flows and environmental loads can be broken down into smaller-scale and shorter-term production processes of these same loads.

  16. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    Directory of Open Access Journals (Sweden)

    Yacine DJEGHADER

    2013-06-01

    Full Text Available In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length, electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of arc length. This study focuses on investigation of unbalanced voltage due to Electrics Arc Furnace operation mode. The simulation results show the major problem of unbalanced voltage affecting secondary of furnace transformer is caused by the different continues movement of electrodes.

  17. Contribution of the LHT Model to Zc-c Coupling

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-Bin; LI Xiang-Dong; HAN Jin-Zhong; YANG Bing-Fang

    2011-01-01

    In the littlest Higgs model with T-parity (LHT), some new particles, such as the T-odd mirror quarks and goldstone bosons, can contribute to various observables. We calculate their contribution to Ze(c) coupling. Some observables are related to Zc(c) coupling, for example, the effective vector and axial-vector Ze(c) coupling constants (9Vc,9Ac) and c-quark forward-backward asymmetry (AFBc). We give our predictions about 9Vc,9Ac in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of 9Vc-9Ac. Then, we present an explanation of AFBc.%In the littlest Higgs model with T-parity (LHT),some new particles,such as the T-odd mirror quarks and goldstone bosons,can contribute to various observables.We calculate their contribution to Zc-c coupling.Some observables are related to Zc-c coupling,for example,the effective vector and axial-vector Zc-c coupling constants (gVc,gAc) and c-quark forward-backward asymmetry (AcFB).We give our predictions about gVc,gAc in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of gVc - gAc.Then,we present an explanation of AcFB.The littlest Higgs (LH) model[1] is an economical implementation of the little Higgs model[2,3] which was proposed as a possible approach to solve the little hierarchy problem.[4] It was soon realized that such a model suffers severe constraints due to the precision electroweak measurements.[5-8] The most serious constraints resulted from the tree-level contributions to the precision electroweak observables by the exchange of additional heavy gauge bosons in the theory.

  18. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi;

    2013-01-01

    Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops and the mat......Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops...... and the mathematical models of the VSIs are based on the stationary reference frame. A hierarchical control scheme for the paralleled VSI system is developed comprising two levels. The primary control includes the droop method and the virtual impedance loops, in order to share active and reactive power. The secondary...... control restores the frequency and amplitude deviations produced by the primary control. Also, a synchronization algorithm is presented in order to connect the MicroGrid to the grid. Experimental results are provided to validate the performance and robustness of the parallel VSI system control...

  19. One-dimensional breakdown voltage model of SOI RESURF lateral power device based on lateral linearly graded approximation

    Institute of Scientific and Technical Information of China (English)

    张珺; 郭宇锋; 徐跃; 林宏; 杨慧; 洪洋; 姚佳飞

    2015-01-01

    A novel one-dimensional (1D) analytical model is proposed for quantifying the breakdown voltage of reduced surface field (RESURF) lateral power device fabricated on silicon on an insulator (SOI) substrate. We assume that the charges in the depletion region contribute to the lateral PN junctions along the diagonal of the area shared by the lateral and vertical depletion regions. Based on the assumption, the lateral PN junction behaves as a linearly graded junction, thus resulting in a reduced surface electric field and high breakdown voltage. Using the proposed model, the breakdown voltage as a function of device parameters is investigated and compared with the numerical simulation by the TCAD tools. The analytical results are shown to be in fair agreement with the numerical results. Finally, a new RESURF criterion is derived which offers a useful scheme to optimize the structure parameters. This simple 1D model provides a clear physical insight into the RESURF effect and a new explanation on the improvement in breakdown voltage in an SOI RESURF device.

  20. A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm.

    Directory of Open Access Journals (Sweden)

    Meron Gurkiewicz

    2007-08-01

    Full Text Available The activity of trans-membrane proteins such as ion channels is the essence of neuronal transmission. The currently most accurate method for determining ion channel kinetic mechanisms is single-channel recording and analysis. Yet, the limitations and complexities in interpreting single-channel recordings discourage many physiologists from using them. Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley-like and Markov chain models of voltage-gated potassium and sodium channels. Currents were also produced by simulating levels of noise expected from actual patch recordings. Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level.

  1. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  2. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea.

  3. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    OpenAIRE

    Yacine DJEGHADER; Hocine LABAR

    2013-01-01

    In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length), electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of ar...

  4. Integrative systems models of cardiac excitation-contraction coupling.

    Science.gov (United States)

    Greenstein, Joseph L; Winslow, Raimond L

    2011-01-07

    Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.

  5. Cosmological model with non-minimally coupled fermionic field

    CERN Document Server

    Ribas, M O; Kremer, G M

    2007-01-01

    A model for the Universe is proposed whose constituents are: (a) a dark energy field modeled by a fermionic field non-minimally coupled with the gravitational field, (b) a matter field which consists of pressureless baryonic and dark matter fields and (c) a field which represents the radiation and the neutrinos. The coupled system of Dirac's equations and Einstein field equations is solved numerically by considering a spatially flat homogeneous and isotropic Universe. It is shown that the proposed model can reproduce the expected red-shift behaviors of the deceleration parameter, of the density parameters of each constituent and of the luminosity distance. Furthermore, for small values of the red-shift the constant which couples the fermionic and gravitational fields has a remarkable influence on the density and deceleration parameters.

  6. Pre-reheating magnetogenesis in the kinetic coupling model

    Science.gov (United States)

    Fujita, Tomohiro; Namba, Ryo

    2016-08-01

    Recent blazar observations provide growing evidence for the presence of magnetic fields in the extragalactic regions. While natural speculation is to associate the production with inflationary physics, it is known that magnetogenesis solely from inflation is quite challenging. We therefore study a model in which a noninflaton field χ coupled to the electromagnetic field through its kinetic term, -I2(χ )F2/4 , continues to move after inflation until the completion of reheating. This leads to a postinflationary amplification of the electromagnetic field. We compute all the relevant contributions to the curvature perturbation, including gravitational interactions, and impose the constraints from the CMB scalar fluctuations on the strength of magnetic fields. We, for the first time, explicitly verify both the backreaction and CMB constraints in a simple yet successful magnetogenesis scenario without invoking a dedicated low-scale inflationary model in the weak-coupling regime of the kinetic coupling model.

  7. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...... with time and space that challenge the current coupled modeling system. The conventional approach of estimating the momentum exchange is through parameterizing the aerodynamic roughness length (z0) with wave parameters such as wave age, steepness, significant wave height, etc. However, it is found in storm...

  8. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

    Science.gov (United States)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.

    2016-10-01

    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  9. Time Delay in the Kuramoto Model of Coupled Oscillators

    CERN Document Server

    Yeung, M K S; Strogatz, Steven H.

    1999-01-01

    We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.

  10. String coupling and interactions in type IIB matrix model

    CERN Document Server

    Kitazawa, Yoshihisa

    2008-01-01

    We investigate the interactions of closed strings in IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in IIB matrix model via two dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g_s in IIB matrix model. We confirm that our identification is consistent with matrix string theory.

  11. Mathematical model for coupling a quasi-unidimensional perfect flow

    CERN Document Server

    Msallam, Régis

    2010-01-01

    Nonlinear acoustics of wind instruments conducts to study unidimensional fluid flows. From physically relevant approximations that are modelized with the thin layer Navier Stokes equations, we propose a coupled model where perfect fluid flow is described by the Euler equations of gas dynamics and viscous and thermal boundary layer is modelized by a linear equation. We describe numerical discretization, validate the associated software by comparison with analytical solutions and consider musical application of strongly nonlinear waves in the trombone.

  12. Modeling and Control of High-Voltage Direct-Current Transmission Systems: From Theory to Practice and Back

    OpenAIRE

    2014-01-01

    The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework - based on port-Hamiltonian representations - of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Cl...

  13. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices

    OpenAIRE

    Chen, Chong; Wu, Fan; Geng, Hongwei; Shen, Wei; Wang, Mingtai

    2011-01-01

    The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. B...

  14. Forced versus coupled dynamics in Earth system modelling and prediction

    Directory of Open Access Journals (Sweden)

    B. Knopf

    2005-01-01

    Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also

  15. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  16. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  17. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    Science.gov (United States)

    Zhang, Guangyi; Gao, Shiqiao; Liu, Haipeng

    2016-09-01

    In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester's three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz) with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation) is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  18. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2016-09-01

    Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  19. Ultrastrong-coupling phenomena beyond the Dicke model

    Science.gov (United States)

    Jaako, Tuomas; Xiang, Ze-Liang; Garcia-Ripoll, Juan José; Rabl, Peter

    2016-09-01

    We study effective light-matter interactions in a circuit QED system consisting of a single L C resonator, which is coupled symmetrically to multiple superconducting qubits. Starting from a minimal circuit model, we demonstrate that, in addition to the usual collective qubit-photon coupling, the resulting Hamiltonian contains direct qubit-qubit interactions, which have a drastic effect on the ground- and excited-state properties of such circuits in the ultrastrong-coupling regime. In contrast to the superradiant phase transition expected from the standard Dicke model, we find an opposite mechanism, which at very strong interactions completely decouples the photon mode and projects the qubits into a highly entangled ground state. These findings resolve previous controversies over the existence of superradiant phases in circuit QED, but they more generally show that the physics of two- or multiatom cavity QED settings can differ significantly from what is commonly assumed.

  20. Massless Boundary Sine-Gordon Model Coupled to External Fields

    CERN Document Server

    Kogetsu, H

    2005-01-01

    We investigate a generalization of the massless boundary sine-Gordon model with conformal invariance, which has been used to describe an array of D-branes (or rolling tachyon). We consider a similar action whose couplings are replaced with external fields depending on the boundary coordinate. Even in the presence of the external fields, this model is still solvable, though it does not maintain the whole conformal symmetry. We obtain, to all orders in perturbation theory in terms of the external fields, a simpler expression of the boundary state and the disc partition function. As a by-product, we fix the relation between the bare couplings and the renormalized couplings which has been appeared in papers on tachyon lump and rolling tachyon.

  1. Model for magnetostrictive performance in soft/hard coupled bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jianjun, Li, E-mail: ljj8081@gmail.com [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)

    2015-11-01

    A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.

  2. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    effects are described based on a hybrid State-to-State (StS) approach. A multi-temperature formulation is used to account for thermal non-equilibrium...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...usually obtained through quantum chemistry calculations51–56 or through phenomenological models providing a simplified descrip- tion of the kinetic

  3. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  4. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States); Cambier, J.-L., E-mail: jean-luc.cambier@us.af.mil [Edwards Air Force Base Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  5. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-Mei; SONG Yuan-Hong; WANG You-Nian

    2009-01-01

    A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanopar ticles, electron energy balance, and Poiaaon 's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.

  6. Modeling and experimental testing activity of the Voltage Optimization Unit

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Hu, Junjie; Marinelli, Mattia

    cost investments of to the system operator, thus a proactive tap algorithm is developed and tested in this project, relying on local measurements. In addition, we also compared the experimental result with the one simulated in the DigSilent PowerFactory software environment (the software used...... the voltage problems in presence of photovoltaic distributed generation, using Bistrup distribution grid (DONG Energy) as a test case. This second report presents the experimental results of the testing activity of the Voltage Optimization Unit (VOU), i.e., a distribution transformer with single-phase on......-load tap changers (OLTC) in an experimental low voltage grid. Both the transformer internal behavior and its effective operations under different unbalanced bidirectional power flow conditions have been investigated. Moreover, different control logics are analyzed based on their control objectives and control...

  7. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  8. Super-acceleration in non-minimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2010-01-01

    A scalar field model with non-minimal derivative coupling to gravity is considered. It is shown that although in the absence of matter and potential the phantom divide line crossing is forbidden, but for the power law potential and in the presence of matter this crossing is, in principle, possible.

  9. Temperature in warm inflation in non minimal kinetic coupling model

    CERN Document Server

    Goodarzi, Parviz

    2014-01-01

    Warm inflation in the non minimal derivative coupling model with a general dissipation coefficient is considered. We investigate conditions for the existence of the slow roll approximation and study cosmological perturbations. The spectral index, and the power spectrum are calculated and the temperature of the universe at the end of the slow roll warm inflation is obtained.

  10. Tensor Couplings of ω- and p-Mesons with Nucleons in a Derivative Scalar Coupling Model for Finite Nuclei

    Institute of Scientific and Technical Information of China (English)

    郭华; 胡翔

    2001-01-01

    The ω-and p-meson tensor couplings to nucleons in a derivative scalar coupling model for finite nuclei are investigated. The influences of the tensor couplings on the binding energies per nucleon, the root-mean-square charge radii, spin-orbit splittings and single particle energies are discussed. The obtained results show that the spin-orbit splittings for finite nuclei are more sensitive to the ω-meson tensor coupling.

  11. Analyzing of Dynamic Voltage Restorer in Series Compensation Voltage

    Directory of Open Access Journals (Sweden)

    Naser Parhizgar

    2012-02-01

    Full Text Available The Dynamic Voltage Restorer (DVR is a series-connected compensator to generate a controllable voltage to against the short-term voltage disturbances. The technique of DVR is an effective and cost competitive approach to improve voltage quality at the load side. This study presents a single-phase and threephase DVR system with reduced switch-count topology to protect the sensitive load against abnormal voltage conditions. Most basic function, the DVR configuration consist of a two level Voltage Source Converter (VSC, a dc energy storage device, a coupling transformer Connected in shunt with the ac system This study presents the application of Dynamic Voltage Restorer (DVR on power distribution systems for mitigation of voltage sag at critical loads. DVR is one of the compensating types of custom power devices. The DVR, which is based on forced-commutated Voltage Source Converter (VSC has been proved suitable for the task of compensating voltage sags/swells. Simulation results are presented to illustrate and understand the performances of DVR in supporting load voltages under voltage sags/swells conditions.

  12. Modelling and Simulation of SVM Based DVR System for Voltage Sag Mitigation

    Directory of Open Access Journals (Sweden)

    S. Leela

    2013-12-01

    Full Text Available The aim of this study is to design and simulate three phase DVR system using MATLAB simulink. SVM based DVR is proposed to reduce the sag on the transmission line. The SVM based DVR injects voltage into the line to compensate the voltage drop. Sag is created by connecting a heavy load in parallel with the existing system. This sag will be compensated by injecting the inverter output through an injection transformer. The results of simulation are compared with the theoretical results.

  13. Modeling and Stress Analysis of Doubly-Fed Induction Generator during Grid Voltage Swell

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    The Doubly-Fed Induction Generator (DFIG) based wind turbine system is presently dominant in the wind turbine market. Due to heavy load switch-off and faults in the power grid, voltage swells may occur and this phenomenon is currently given sufficient insights. This paper starts to describe...... the transient voltage swell and its recovery. It is concluded that although both higher swell level and higher rotor speed cause higher rotor electromotive force, the doubly-fed induction generator can successfully ride through the grid fault due to the relatively small swell level required by the modern grid...

  14. Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis

    CERN Document Server

    Borkowski, Luke; Chattopadhyay, Aditi

    2013-01-01

    Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...

  15. The strong coupling Kondo lattice model as a Fermi gas

    CERN Document Server

    Östlund, S

    2007-01-01

    The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.

  16. Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System

    Institute of Scientific and Technical Information of China (English)

    WEN Yuanqiao; HUANG Liwen; DENG Jian; ZHANG Jinfeng; WANG Sisi; WANG Lijun

    2006-01-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed.The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  17. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions

    Directory of Open Access Journals (Sweden)

    Khaled Sadek

    2009-10-01

    Full Text Available In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D coupled multiphysics finite element (FE analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz and large temperature variations are expected, such as in satellites and airplane condition monitoring.

  18. A fully coupled thermo-mechanical model for unsaturated soil

    OpenAIRE

    2007-01-01

    This paper addresses a new, unified thermomechanical constitutive model for unsaturated soils through a coupled study. In the context of elastoplasticity and the critical state theory, the model uses the concepts of multi-mechanism and bounding surface theory. This advanced constitutive approach involves thermo-plasticity of saturated and unsaturated soils. Bishop’s effective stress framework is adopted to represent the stress state in the soil. This stress is linked to the water retention...

  19. Electromagnetic couplings in a collective model of the nucleon

    CERN Document Server

    Bijker, R

    1995-01-01

    We study the electromagnetic properties of the nucleon and its excitations in a collective model. In the ensuing algebraic treatment all results for helicity amplitudes and form factors can be derived in closed form in the limit of a large model space. We discuss nucleon form factors and transverse electromagnetic couplings in photo- and electroproduction, including transition form factors that can be measured at new electron facilities.

  20. Anatomy, modelling and prediction of aeroservoelastic rotorcraft-pilot-coupling.

    OpenAIRE

    Gennaretti, M.; Collela, M.M.; Serafini, J.; Dang Vu, B.; Masarati, P.; Quaranta, G; Muscarello, V.; Jump, M.; M. Jones; Lu, L.(Bergische Universität Wuppertal, Wuppertal, Germany); Ionita, A.; Fuiorea, I.; Mihaila-Andres, M.; Stefan, R

    2013-01-01

    Research activity and results obtained within the European project ARISTOTEL (2010-2013) are presented. It deals with anatomy, modelling and prediction of Rotorcraft Pilot Coupling (RPC) phenomena, which are a really broad and wide category of events, ranging from discomfort to catastrophic crash. The main topics concerning piloted helicopter simulation that are of interest for designers are examined. These include comprehensive rotorcraft modelling suited for Pilot Assisted Oscillations (PAO...

  1. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  2. Modeling and discussion of threshold voltage for a multi-floating gate FET pH sensor

    Institute of Scientific and Technical Information of China (English)

    Shi Zhaoxia; Zhu Dazhong

    2009-01-01

    Research into new pH sensors fabricated by the standard CMOS process is currently a hot topic. The new pH sensing multi-floating gate field effect transistor is found to have a very large threshold voltage, which is different from the normal ion-sensitive field effect transistor. After analyzing all the interface layers of the structure, a new sensitive model based on the Gauss theorem and the charge neutrality principle is created in this paper. According to the model, the charge trapped on the multi-floating gate during the process and the thickness of the sensitive layer are the main causes of the large threshold voltage. From this model, it is also found that removing the charge on the multi-floating gate is an effective way to decrease the threshold voltage. The test results for three different standard pH buffer solutions show the correctness of the model and point the way to solve the large threshold problem.

  3. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The

  4. Ising Model Coupled to Three-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.

  5. Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina

    Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...

  6. Analysis and modeling of low voltage electrical network at power line carrier frequencies (3-148.5 kHz); Analyse et modelisation du reseau basse tension aux frequences courants porteurs (3 KHZ-148,5 KHZ)

    Energy Technology Data Exchange (ETDEWEB)

    Duval, G.

    1998-07-01

    Electricite de France (EdF) wishes to establish a physical communication link between his clients and the EdF centres. The final link, i.e. between the high/low voltage transformation substation and the residential clients, being ensured by carrier currents. With this aim, an analysis and a modeling of the low voltage network at the carrier frequencies (3 kHz - 148.5 kHz) has been performed. This work has been carried out in parallel with an experiment involving 3500 apparatuses that use carrier currents. The diversity of the French low voltage networks and the limitations imposed by the EN50065-1 standard about the use of carrier currents in Europe do not favour the development of such carrier current systems. Disturbing voltages and localized impedances represent the main difficulties to get round. Inside accommodations, domotic carrier currents have a reduced range but a higher disturbance amplitude because of the proximity of appliances. A differential mode to common mode conversion phenomenon has been evidenced which generates network couplings and important electromagnetic fields. Energy lines and cables have been analyzed using numerical models. Load peaks have been analyzed using statistical tools in order to take into account the daily fluctuations. The modeling of the network is made in two steps: a double-wire model is considered first. Then a three-phase model is developed which analyzes the inter-phases coupling and the effect of the distribution of clients' loads on each phase. The results of this model are conformable with measurements except for underground networks. As perspectives of future works and beyond todays standard framework, the techniques that allow a sensible increase of communication flow rates have been reviewed. (J.S.)

  7. Development of a Coupled WEPP-WQ model

    Science.gov (United States)

    WANG, L.; Flanagan, D. C.; Cherkauer, K. A.

    2013-12-01

    Non-point source (NPS) pollutants, especially from agriculture, continue to be a primary source of water quality degradation problems. Farmers need to take effective land managements at field scales for minimizing nutrient losses that could pollute streams. But existing NPS models cannot directly estimate the impacts of different land managements or testify the effectiveness of combined BMPs in a distributed way at farm scale with the application of USLE or its improved version in a lumped way. Here we developed the coupled WEPP-WQ model and evaluated simulations of hydrology, soil erosion and water quality from this coupled model. WEPP is a well-established process-based model that simulations runoff and erosion processes from a hill slope. The water quality components are based on the SPELL OUT (EPIC) model and the water quality algorithms within SPELL OUT (SWAT). Our test case uses a single Overland Flow Element (OFE) to represent land use on a hill slope, but in the next phase of development we will evaluate WEPP-WQ's ability to modify the transport of nutrients and sediment as runoff from the hill slope encounters multiple OFEs representing different land uses. WEPP-WQ was tested by comparing simulated values from the coupled model and observed nutrients and sediment concentrations in surface runoff following storm events at an experimental site near Waterloo, IN, U.S..

  8. Coupling model for waves propagating over a porous seabed

    Directory of Open Access Journals (Sweden)

    C.C. Liao

    2015-03-01

    Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.

  9. A two-dimensional threshold voltage analytical model for metal-gate/high-k/SiO2/Si stacked MOSFETs

    Institute of Scientific and Technical Information of China (English)

    Ma Fei; Liu Hong-Xia; Fan Ji-Bin; Wang Shu-Long

    2012-01-01

    In this paper the influences of the metal-gate and high-k/SiO2/Si stacked structure on the metal-oxidesemiconductor field-effect transistor (MOSFET) axe investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation. The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO2/Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO2/Si stacked MOSFETs.

  10. A new model analysis of the third harmonic voltage in inductive measurement for critical current density of superconducting films

    Institute of Scientific and Technical Information of China (English)

    Zhang Xu; Wu Zhi-Zhen; Zhou Tie-Ge; He Ming; Zhao Xin-Jie; Yan Shao-Lin; Fang Lan

    2011-01-01

    The critical current density Jc is one of the most important parameters of high temperature superconducting films in superconducting applications, such as superconducting filter and superconducting Josephson devices. This paper presents a new model to describe inhomogeneous current distribution throughout the thickness of superconducting films applying magnetic field by solving the differential equation derived from Maxwell equation and the second London equation. Using this model, it accurately calculates the inductive third-harmonic voltage when the film applying magnetic field with the inductive measurement for Jc. The theoretic curve is consistent with the experimental results about measuring superconducting film, especially when the third-harmonic voltage just exceeds zero. The Jc value of superconducting films determined by the inductive method is also compared with results measured by four-probe transport method. The agreements between inductive method and transport method are very good.

  11. Model reduction for optimization of structural-acoustic coupling problems

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas;

    2016-01-01

    , which becomes highly time consuming since many iterations may be required. The use of model reduction techniques to speed up the computations is studied in this work. The Component Mode Synthesis (CMS) method and the Multi-Model Reduction (MMR) method are adapted for problems with structure......Fully coupled structural-acoustic models of complex systems, such as those used in the hearing aid field, may have several hundreds of thousands of nodes. When there is a strong structure-acoustic interaction, performing optimization on one part requires the complete model to be taken into account...

  12. Model coupling friction and adhesion for steel-concrete interfaces

    CERN Document Server

    Raous, Michel

    2010-01-01

    The interface behaviour between steel and concrete, during pull-out tests, is numerically investigated using an interface model coupling adhesion and Coulomb friction. This model, first developed by Raous, Cang\\'emi, Cocou and Monerie (RCCM), is based on the adhesion intensity variable, introduced by Fr\\'emond, which is a surface damage variable. The RCCM model is here completed by taking a variable friction coefficient to simulate the slip weakening of the interface when sliding occurs. Identification of the parameters and validation of the model are carried on pull out experiments conducted at the INSA of Toulouse on steel-concrete interface of reinforced concrete.

  13. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  14. Design, Control, and Modeling of a New Voltage Source Converter for HVDC System

    Science.gov (United States)

    Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya

    2013-05-01

    Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.

  15. PowerFactory model for multi-terminal HVDC network with DC voltage droop control

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    Nowadays, most of the installed HVDC systems are based on line commutated converters (LCC), since this technology offers a series of advantages, mainly low costs and losses. However, voltage source converters (VSCs) have recently drawn more and more attention, due to their high controllability...

  16. An aggregation model for households connected in the low-voltage grid using a VPP interface

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2013-01-01

    To secure the stability in power systems with a high penetration from renewable energy sources, the demand side has to become more flexible than today. If the flexibility from the numerous units connected in the low-voltage grid is to be utilised, aggregation methods have to be developed...

  17. Large Scale Solar Power Integration in Distribution Grids: PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  18. Coupled-channel optical model potential for rare earth nuclei

    CERN Document Server

    Herman, M; Palumbo, A; Dietrich, F S; Brown, D; Hoblit, S

    2013-01-01

    Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved a...

  19. Modeling Chemical Mechanical Polishing with Couple Stress Fluids

    Institute of Scientific and Technical Information of China (English)

    张朝辉; 雒建斌; 温诗铸

    2004-01-01

    Chemical mechanical polishing (CMP) is a manufacturing process used to achieve high levels of global and local planarity.Currently, the slurries used in CMP usually contain nanoscale particles to accelerate the removal ratio and to optimize the planarity, whose rheological properties can no longer be accurately modeled with Newtonian fluids.The Reynolds equation, including the couple stress effects, was derived in this paper.The equation describes the mechanism to solve the CMP lubrication equation with the couple stress effects.The effects on load and moments resulting from the various parameters, such as pivot height, roll angle, and pitch angle, were subsequently simulated.The results show that the couple stress can provide higher load and angular moments.This study sheds some lights into the mechanism of the CMP process.

  20. A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.

    Science.gov (United States)

    Kuprat, A P; Kabilan, S; Carson, J P; Corley, R A; Einstein, D R

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets

  1. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Science.gov (United States)

    Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  2. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery

    Science.gov (United States)

    Ren, Dongsheng; Feng, Xuning; Lu, Languang; Ouyang, Minggao; Zheng, Siqi; Li, Jianqiu; He, Xiangming

    2017-10-01

    This paper presents an electrochemical-thermal coupled overcharge-to-thermal-runaway (TR) model to predict the highly interactive electrochemical and thermal behaviors of lithium ion battery under the overcharge conditions. In this model, the battery voltage equals the difference between the cathode potential and the anode potential, whereas the temperature is predicted by modeling the combined heat generations, including joule heat, thermal runaway reactions and internal short circuit. The model can fit well with the adiabatic overcharge tests results at 0.33C, 0.5C and 1C, indicating a good capture of the overcharge-to-TR mechanism. The modeling analysis based on the validated model helps to quantify the heat generation rates of each heat sources during the overcharge-to-TR process. And the two thermal runaway reactions including the electrolyte oxidation reaction and the reaction between deposited lithium and electrolyte are found to contribute most to the heat generations during the overcharge process. Further modeling analysis on the critical parameters is performed to find possible solutions for the overcharge problem of lithium ion battery. The result shows that increasing the oxidation potential of the electrolyte, and increasing the onset temperature of thermal runaway are the two effective ways to improve the overcharge performance of lithium ion battery.

  3. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    , and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...... of the literature and on modeling studies, a new modeling concept is proposed which fulfills the need for integrated models coupling distributed urban drainage with groundwater. The suggested solution consists of a base equation for soakaway infiltration and additional components for clogging, upscaling......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality...

  4. Coupled continuum and molecular model of flow through fibrous filter

    Science.gov (United States)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  5. Coupling modeling and analysis of a wind energy converter

    Directory of Open Access Journals (Sweden)

    Jie-jie Li

    2016-06-01

    Full Text Available In this article, the numerical simulation of a 2.0-MW wind energy converter coupling is achieved by three-dimensional computer-aided design modeling technique and finite element method. The static performances and the buckling characteristics of the diaphragm coupling are investigated. The diaphragm coupling is divided into three substructures, namely, torque input end, the middle section, and the torque output end. Considering the assembly and contact conditions, the simulation analysis for stress responses of the diaphragm coupling is carried out. The buckling factor and buckling mode of the diaphragms are obtained, and the geometric parameters of the diaphragms are optimized according to their buckling characteristics. The relationship between the pretightening force of the bolts, which tighten the friction flange and the friction plate, and the sliding torque is given by an empirical formula. The reasonable ranges of the pretightening force and tighten torque of the bolts are recommended. The fatigue analysis of the diaphragms is completed, and the results show that the diaphragms are competent to the designed life of the diaphragm coupling.

  6. The running coupling of the minimal sextet composite Higgs model

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2015-01-01

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the beta-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop beta-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop beta-functions in ...

  7. Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-01-01

    The electro-diffusion of ions is often described by the Poisson-Nernst-Planck (PNP) equations, which couple nonlinearly the charge concentration and the electric potential. This model is used, among others, to describe the motion of ions in neuronal micro-compartments. It remains at this time an open question how to determine the relaxation and the steady state distribution of voltage when an initial charge of ions is injected into a domain bounded by an impermeable dielectric membrane. The purpose of this paper is to construct an asymptotic approximation to the solution of the stationary PNP equations in a d-dimensional ball (d = 1 , 2 , 3) in the limit of large total charge. In this geometry the PNP system reduces to the Liouville-Gelfand-Bratú (LGB) equation, with the difference that the boundary condition is Neumann, not Dirichlet, and there is a minus sign in the exponent of the exponential term. The entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. These differences replace attraction by repulsion in the LGB equation, thus completely changing the solution. We find that the voltage is maximal in the center and decreases toward the boundary. We also find that the potential drop between the center and the surface increases logarithmically in the total number of charges and not linearly, as in classical capacitance theory. This logarithmic singularity is obtained for d = 3 from an asymptotic argument and cannot be derived from the analysis of the phase portrait. These results are used to derive the relation between the outward current and the voltage in a dendritic spine, which is idealized as a dielectric sphere connected smoothly to the nerve axon by a narrow neck. This is a fundamental microdomain involved in neuronal communication. We compute the escape rate of an ion from the steady density in a ball, which models a neuronal spine head, to a small absorbing window in the sphere. We

  8. Modeling sediment mobilization using a distributed hydrological model coupled with a bank stability model

    Science.gov (United States)

    Stryker, J.; Wemple, B.; Bomblies, A.

    2017-03-01

    In addition to surface erosion, stream bank erosion and failure contributes significant sediment and sediment-bound nutrients to receiving waters during high flow events. However, distributed and mechanistic simulation of stream bank sediment contribution to sediment loads in a watershed has not been achieved. Here we present a full coupling of existing distributed watershed and bank stability models and apply the resulting model to the Mad River in central Vermont. We fully coupled the Bank Stability and Toe Erosion Model (BSTEM) with the Distributed Hydrology Soil Vegetation Model (DHSVM) to allow the simulation of stream bank erosion and potential failure in a spatially explicit environment. We demonstrate the model's ability to simulate the impacts of unstable streams on sediment mobilization and transport within a watershed and discuss the model's capability to simulate watershed sediment loading under climate change. The calibrated model simulates total suspended sediment loads and reproduces variability in suspended sediment concentrations at watershed and subbasin outlets. In addition, characteristics such as land use and road-to-stream ratio of subbasins are shown to impact the relative proportions of sediment mobilized by overland erosion, erosion of roads, and stream bank erosion and failure in the subbasins and watershed. This coupled model will advance mechanistic simulation of suspended sediment mobilization and transport from watersheds, which will be particularly valuable for investigating the potential impacts of climate and land use changes, as well as extreme events.

  9. Pathological gambling and couple: towards an integrative systemic model.

    Science.gov (United States)

    Cunha, Diana; Relvas, Ana Paula

    2014-06-01

    This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling.

  10. Modeling Image Structure with Factorized Phase-Coupled Boltzmann Machines

    CERN Document Server

    Cadieu, Charles F

    2010-01-01

    We describe a model for capturing the statistical structure of local amplitude and local spatial phase in natural images. The model is based on a recently developed, factorized third-order Boltzmann machine that was shown to be effective at capturing higher-order structure in images by modeling dependencies among squared filter outputs (Ranzato and Hinton, 2010). Here, we extend this model to $L_p$-spherically symmetric subspaces. In order to model local amplitude and phase structure in images, we focus on the case of two dimensional subspaces, and the $L_2$-norm. When trained on natural images the model learns subspaces resembling quadrature-pair Gabor filters. We then introduce an additional set of hidden units that model the dependencies among subspace phases. These hidden units form a combinatorial mixture of phase coupling distributions, concentrated in the sum and difference of phase pairs. When adapted to natural images, these distributions capture local spatial phase structure in natural images.

  11. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  12. A Liquid-Solid Coupling Hemodynamic Model with Microcirculation Load

    Directory of Open Access Journals (Sweden)

    Bai Li

    2016-01-01

    Full Text Available From the aspect of human circulation system structure, a complete hemodynamic model requires consideration of the influence of microcirculation load effect. This paper selected the seepage in porous media as the simulant of microcirculation load. On the basis of a bi-directional liquid-solid coupling tube model, we built a liquid-solid-porous media seepage coupling model. The simulation parameters accorded with the physiological reality. Inlet condition was set as transient single-pulse velocity, and outlet as free outlet. The pressure in the tube was kept at the state of dynamic stability in the range of 80–120 mmHg. The model was able to simulate the entire propagating process of pulse wave. The pulse wave velocity simulated was 6.25 m/s, which accorded with the physiological reality. The complex pressure wave shape produced by reflections of pressure wave was also observed. After the model changed the cardiac cycle length, the pressure change according with actual human physiology was simulated successfully. The model in this paper is well-developed and reliable. It demonstrates the importance of microcirculation load in hemodynamic model. Moreover the properties of the model provide a possibility for the simulation of dynamic adjustment process of human circulation system, which indicates a promising prospect in clinical application.

  13. Development of a coupled wave-flow-vegetation interaction model

    Science.gov (United States)

    Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil Kamal; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  14. Development of a coupled wave-flow-vegetation interaction model

    Science.gov (United States)

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-03-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  15. Coupled vibro-acoustic model updating using frequency response functions

    Science.gov (United States)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  16. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  17. Coupling lattice Boltzmann and molecular dynamics models for dense fluids

    Science.gov (United States)

    Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  18. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  19. Coupled Inverted Pendula Model of Competition and Cooperation

    Science.gov (United States)

    Yoshida, Katsutoshi; Ohta, Hiroki

    A coupled inverted pendula model of competition and cooperation is proposed to develop a purely mechanical implementation comparable to the Lotka-Volterra competition model. It is shown numerically that the proposed model can produce the four stable equilibriums analogous to ecological coexistence, two states of dominance, and scramble. The authors also propose two types of open-loop strategies to switch the equilibriums. The proposed strategies can be associated with an attack and a counter attack of agents through a metaphor of martial arts.

  20. A COUPLED MORPHODYNAMIC MODEL FOR APPLICATIONS INVOLVING WETTING AND DRYING*

    Institute of Scientific and Technical Information of China (English)

    LIANG Qiuhua

    2011-01-01

    This work presents a new finite volume Godunov-type model for predicting morphological changes under the rapidly varying flood conditions with wetting and drying. The model solves the coupled shallow water and Exner equations, with the interface fluxes evaluated by an Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver. Well-balanced solution is achieved using the surface gradient method and wetting and drying are handled by a non-negative reconstruction approach. The new model is validated against several theoretical benchmark tests and promising results are obtained.

  1. A coupled model for intragranular deformation and chemical diffusion

    Science.gov (United States)

    Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajčmanová, Lucie

    2017-09-01

    A coupled model for chemical diffusion and mechanical deformation is developed in analogy to the studies of poroelasticity and thermoelasticity. Nondimensionalization of the governing equations yields a controlling dimensionless parameter, the Deborah number, given by the ratio of the characteristic time for pressure relaxation and concentration homogenization. Using the Deborah number two types of plausible chemical zonation are distinguished, i.e. diffusion controlled, and mechanically controlled. The transition between these two types of chemical zonation is determined at the conditions where the Deborah number equals one. We apply our model to a chemically zoned plagioclase rim in a spherical coordinate frame assuming homogeneous initial pressure. Using thermodynamic data, an experimentally derived diffusion coefficient and a viscous flow law for plagioclase, our numerical simulations show that up to ∼0.6 GPa grain-scale pressure variation is generated during the diffusion-deformation process. Due to the mechanical-chemical coupling, the pressure variations maintain the chemical zonation longer than predicted by the classical diffusion model. The fully coupled mechanical-chemical model provides an alternative explanation for the preservation of chemically zoned minerals, and may contribute to a better understanding of metamorphic processes in the deep Earth interior.

  2. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  3. Deployment of low-voltage regulator considering existing voltage control in medium-voltage distribution systems

    Directory of Open Access Journals (Sweden)

    Hiroshi Kikusato

    2016-01-01

    Full Text Available Many photovoltaic (PV systems have been installed in distribution systems. This installation complicates the maintenance of all voltages within the appropriate range in all low-voltage distribution systems (LVDSs because the trends in voltage fluctuation differ in each LVDS. The installation of a low-voltage regulator (LVR that can accordingly control the voltage in each LVDS has been studied as a solution to this problem. Voltage control in a medium-voltage distribution system must be considered to study the deployment of LVRs. In this study, we installed LVRs in the LVDSs in which the existing voltage-control scheme cannot prevent voltage deviation and performed a numerical simulation by using a distribution system model with PV to evaluate the deployment of the LVRs.

  4. Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN /GaN MOSHEMT

    Science.gov (United States)

    Swain, R.; Jena, K.; Lenka, T. R.

    2017-01-01

    A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al0.25Ga0.75N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage have been derived. The gate capacitance behaviour is studied in terms of capacitance-voltage (CV) characteristics. Similarly, the predicted threshold voltage ( V T) is analysed by varying barrier thickness and oxide thickness. The positive V T obtained for a very thin 3 nm AlGaN barrier layer enables the enhancement mode operation of the MOSHEMT. These devices, along with depletion mode devices, are basic constituents of cascode configuration in power electronic circuits. The expressions developed are used in conventional long-channel HEMT drain current equation and evaluated to obtain different DC characteristics. The obtained results are compared with experimental data taken from literature which show good agreement and hence endorse the proposed model.

  5. Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN/GaN MOSHEMT

    Indian Academy of Sciences (India)

    R SWAIN; K JENA; T R LENKA

    2017-01-01

    A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al$_{0.25}$Ga$_{0.75}$N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage have been derived. The gate capacitance behaviour is studied in terms of capacitance–voltage (CV) characteristics. Similarly, the predicted threshold voltage ($V_T$) is analysed by varying barrier thickness and oxide thickness. The positive $V_T$ obtained for a very thin 3 nm AlGaN barrier layer enables the enhancement mode operation of the MOSHEMT. These devices, along with depletion mode devices, are basic constituents of cascode configuration in power electronic circuits. The expressions developed are used in conventional long-channel HEMT drain current equation and evaluated to obtain different DC characteristics. The obtained results are compared withexperimental data taken from literature which show good agreement and hence endorse the proposed model.

  6. COUPLED PHYSICAL-ECOLOGICAL MODELLING IN THE CENTRAL PART OF JIAOZHOU BAY Ⅱ. COUPLED WITH AN ECOLOGICAL MODEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sharples' 1-D physical model employing tide-wind driven turbulence closure and surface heating-cooling physics, was coupled with an ecological model with 9-biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.

  7. Modelling Nephron Autoregulation and Synchronization in Coupled Nephron Systems

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund

    A successful mathematical description of the renal processes requires an understanding of the mechanisms through which these pressures take place. Part of the present thesis addresses the hypothesis that increased coupling between neighboring nephrons and increased strength of the tubuloglomerular...... feedback process can explain the experimentally observed irregular oscillations in the nephron pressures and flows. The hypothesis is put to test by calculating Lyapunov exponents of a high level mechanism-based model of a nephron and a similar model of two vascular coupled nephrons. Synchronization...... along the edge of the resonance tongue and appear also to be related to the formation of multilayered tori and torus-doubling bifurcations. A cyclic behavior of sub- and supercriticality of the period doublings in the neighborhood of the contact between period doubling and saddle-node bifurcations cause...

  8. Conformal Loop quantization of gravity coupled to the standard model

    Science.gov (United States)

    Pullin, Jorge; Gambini, Rodolfo

    2016-03-01

    We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.

  9. Conformal loop quantum gravity coupled to the standard model

    Science.gov (United States)

    Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge

    2017-01-01

    We argue that a conformally invariant extension of general relativity coupled to the standard model is the fundamental theory that needs to be quantized. We show that it can be treated by loop quantum gravity techniques. Through a gauge fixing and a modified Higgs mechanism particles acquire mass and one recovers general relativity coupled to the standard model. The theory suggests new views with respect to the definition of the Hamiltonian constraint in loop quantum gravity, the semi-classical limit and the issue of finite renormalization in quantum field theory in quantum space-time. It also gives hints about the elimination of ambiguities that arise in quantum field theory in quantum space-time in the calculation of back-reaction.

  10. Evaluation of Coupled Model Forecasts of Ethiopian Highlands Summer Climate

    Directory of Open Access Journals (Sweden)

    Mark R. Jury

    2014-01-01

    Full Text Available This study evaluates seasonal forecasts of rainfall and maximum temperature across the Ethiopian highlands from coupled ensemble models in the period 1981–2006, by comparison with gridded observational products (NMA + GPCC/CRU3. Early season forecasts from the coupled forecast system (CFS are steadier than European community medium range forecast (ECMWF. CFS and ECMWF April forecasts of June–August (JJA rainfall achieve significant fit (r2=0.27, 0.25, resp., but ECMWF forecasts tend to have a narrow range with drought underpredicted. Early season forecasts of JJA maximum temperature are weak in both models; hence ability to predict water resource gains may be better than losses. One aim of seasonal climate forecasting is to ensure that crop yields keep pace with Ethiopia’s growing population. Farmers using prediction technology are better informed to avoid risk in dry years and generate surplus in wet years.

  11. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....

  12. Partial Discharge Simulation for a High Voltage Transformer Winding using a Model based on Geometrical Dimensions

    OpenAIRE

    Abd Rahman, M S; L. Hao; Rapisarda, P.; Lewin, P L

    2012-01-01

    In high voltage plant, ageing processes can occur in the dielectric and insulation system which are totally unavoidable and ultimately limit the operational life of the plant. For example, these unwanted processes can cause partial discharge (PD) activity inside a transformer and the presence of this activity will lead to further ageing and degradation processes until eventually there is catastrophic failure. Therefore, partial discharge condition monitoring inside a transformer and along a t...

  13. Coupled spin models for magnetic variation of planets and stars

    CERN Document Server

    Nakamichi, A; Schmitt, D; Ferriz-Mas, A; Wicht, J; Morikawa, M

    2011-01-01

    Geomagnetism is characterized by intermittent polarity reversals and rapid fluctuations. We have recently proposed a coupled macro-spin model to describe these dynamics based on the idea that the whole dynamo mechanism is described by the coherent interactions of many small dynamo elements. In this paper, we further develop this idea and construct a minimal model for magnetic variations. This simple model naturally yields many of the observed features of geomagnetism: its time evolution, the power spectrum, the frequency distribution of stable polarity periods, etc. This model has coexistent two phases; i.e. the cluster phase which determines the global dipole magnetic moment and the expanded phase which gives random perpetual perturbations that yield intermittent polarity flip of the dipole moment. This model can also describe the synchronization of the spin oscillation. This corresponds to the case of sun and the model well describes the quasi-regular cycles of the solar magnetism. Furthermore, by analyzing...

  14. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    . An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  15. Some remarks about non-minimally coupled scalar field models

    CERN Document Server

    Fadragas, Carlos R

    2014-01-01

    Are extended several results related to flat FRW models in the conformal (Einstein) frame of scalar-tensor gravity theories. Are considered scalar fields with arbitrary (positive) potentials and arbitrary coupling functions. Are straightforwardly introduced mild assumptions under such functions (differentiable class, number of singular points, asymptotes, etc.) in order to characterize the asymptotic structure on a phase-space. We pay special attention to the possible scaling solutions. Are presented several numerical evidences that confirm some of these results.

  16. Embankment deformation analyzed by elastoplastic damage model coupling consolidation theory

    Institute of Scientific and Technical Information of China (English)

    Hong SUN; Xihong ZHAO

    2006-01-01

    The deformation of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Biot's consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.

  17. Eikonal solutions to optical model coupled-channel equations

    Science.gov (United States)

    Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.

    1988-01-01

    Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.

  18. Reheating temperature in non-minimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2013-01-01

    We consider the inflaton as a scalar field described by a non-minimal derivative coupling model with a power law potential. We study the slow roll inflation, the rapid oscillation phase, the radiation dominated and the recombination eras respectively, and estimate e-folds numbers during these epochs. Using these results we determine the reheating temperature in terms of the spectral index and the amplitude of the power spectrum of scalar perturbations.

  19. Coupled modified baker's transformations for the Ising model.

    Science.gov (United States)

    Sakaguchi, H

    1999-12-01

    An invertible coupled map lattice is proposed for the Ising model. Each elemental map is a modified baker's transformation, which is a two-dimensional map of X and Y. The time evolution of the spin variable is memorized in the binary representation of the Y variable. The temporal entropy and time correlation of the spin variable are calculated from the snapshot configuration of the Y variables.

  20. Strongly Coupled Models with a Higgs-like Boson*

    Directory of Open Access Journals (Sweden)

    Pich Antonio

    2013-11-01

    Full Text Available Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale, the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule.

  1. Strongly Coupled Models with a Higgs-like Boson

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan

    2013-11-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].

  2. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation

  3. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  4. Voltage-clamp predictions by gompertz kinetics model relating squid-axon Na+-gating and ionic currents.

    Science.gov (United States)

    Easton, Dexter M

    2005-10-01

    Gompertz kinetics is a simple, realistic, accurate, and computationally parsimonious alternative for prediction of macroscopic changes in Na+ conductance during voltage clamp. Conductance delay and time course depend on initial amplitudes and decay rates of surrogates for the macroscopic gating currents. The model is tested by the fit to published data of other authors. The proposed physical basis for the model is that membrane potential perturbation triggers motion of charged "gating" components of the axon membrane at rapid (activating) and at slow (inactivating) rates. The resulting distortion increases and more slowly diminishes the probability that conduction channels will be open.

  5. Coupled elasto-plasticity damage constitutive models for concrete

    Institute of Scientific and Technical Information of China (English)

    Qiang XU; Jian-yun CHEN; Jing LI; Gang XU

    2013-01-01

    The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.

  6. Examination of a Theoretical Model of Streaming Potential Coupling Coefficient

    Directory of Open Access Journals (Sweden)

    D. T. Luong

    2014-01-01

    Full Text Available Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.

  7. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  8. A Fully Coupled Computational Model of the Silylation Process

    Energy Technology Data Exchange (ETDEWEB)

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  9. Gauge coupling unification in a classically scale invariant model

    Science.gov (United States)

    Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya

    2016-02-01

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  10. Gauge coupling unification in a classically scale invariant model

    CERN Document Server

    Haba, Naoyuki; Takahashi, Ryo; Yamaguchi, Yuya

    2015-01-01

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under $SU(3)_C$ with masses lower than $1\\,{\\rm TeV}$, and the SM singlet Majorana dark matter with mass lower than $2.6\\,{\\rm TeV}$.

  11. Warm stellar matter within the quark-meson-coupling model

    Science.gov (United States)

    Panda, P. K.; Providência, C.; Menezes, D. P.

    2010-10-01

    In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.

  12. Shaken, but not stirred - Potts model coupled to quantum gravity

    CERN Document Server

    Ambjørn, Jan; Loll, R; Pushkina, I

    2008-01-01

    We investigate the critical behaviour of both matter and geometry of the three-state Potts model coupled to two-dimensional Lorentzian quantum gravity in the framework of causal dynamical triangulations. Contrary to what general arguments of the effects of disorder suggest, we find strong numerical evidence that the critical exponents of the matter are not changed under the influence of quantum fluctuations in the geometry, compared to their values on fixed, regular lattices. This lends further support to previous findings that quantum gravity models based on causal dynamical triangulations are in many ways better behaved than their Euclidean counterparts.

  13. Standard model-like D-brane models and gauge couplings

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kobayashi, Tatsuo [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Uemura, Shohei, E-mail: uemura@gauge.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2015-08-15

    We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study the gauge coupling constants of these models. The tree level gauge coupling is a function of the compactification moduli, the string scale, the string coupling and the winding numbers of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than 10{sup 14–15} GeV if the compactification scale and the string scale are of the same order.

  14. Modeling the Voltage Dependence of Electrochemical Reactions at Solid-Solid and Solid-Liquid Interfaces in Batteries

    Science.gov (United States)

    Leung, Kevin

    2015-03-01

    Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Melke A. [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Nagao, Raphael [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Eiswirth, Markus [Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Ertl Center for Electrochemistry and Catalysis, GIST, Cheomdan-gwagiro 261, Buk-gu, Gwangju 500-712 (Korea, Republic of); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Ertl Center for Electrochemistry and Catalysis, GIST, Cheomdan-gwagiro 261, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-12-21

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  16. Hybrid modelling of near-field coupling onto grounded wire under ultra-short duration perturbation

    Science.gov (United States)

    Ravelo, B.; Liu, Y.

    2014-10-01

    A time-frequency (TF) hybrid model (HM) for investigating the interaction between EM near-field (NF) aggression and grounded wire is addressed. The HM is based on the combination of techniques for extracting the EM NF radiated by electronic structures and the calculation of electrical disturbances across the wire due to EM coupling. The computation method is fundamentally inspired from transmission line (TL) theory under EM illumination. The methodology including flow chart interpreting the routine algorithm based on the combination of frequency and time domain approaches is featured. An experimental result showing the EM coupling between patch antenna-wire from 1.5-3.5GHz reveals the efficiency of the HM in frequency domain. The relevance of this HM was illustrated with a structure comprised of 20cm aggressor and 5cm victim I-shaped wires placed above a planar ground plane. The aggressor was excited with 40ns duration perturbation signal. After Matlab implementation of the HM, the disturbance voltages across the extremity of the victim wire were extracted. This simple and fast HM is useful for the EMC engineering during the design and fabrication phases of electrical and electronic systems.

  17. Safer Batteries through Coupled Multiscale Modeling (ICCS 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A [ORNL; Allu, Srikanth [ORNL; Berrill, Mark A [ORNL; Elwasif, Wael R [ORNL; Kalnaus, Sergiy [ORNL; Kumar, Abhishek [ORNL; Lebrun-Grandie, Damien T [ORNL; Pannala, Dr. Sreekanth [Saudi Basic Industries Coropration (SABIC); Simunovic, Srdjan [ORNL

    2015-01-01

    Batteries are highly complex electrochemical systems, with performance and safety governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. We describe a new, open source computational environment for battery simulation known as VIBE - the Virtual Integrated Battery Environment. VIBE includes homogenized and pseudo-2D electrochemistry models such as those by Newman-Tiedemann-Gu (NTG) and Doyle- Fuller-Newman (DFN, a.k.a. DualFoil) as well as a new advanced capability known as AMPERES (Advanced MultiPhysics for Electrochemical and Renewable Energy Storage). AMPERES provides a 3D model for electrochemistry and full coupling with 3D electrical and thermal models on the same grid. VIBE/AMPERES has been used to create three-dimensional battery cell and pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical response under adverse conditions.

  18. The dynamics of a coupled soilscape-landscape evolution model

    Science.gov (United States)

    Welivitiya, Dimuth; Willgoose, Garry; Hancock, Greg

    2016-04-01

    In this study we present results obtained from a landform evolution model coupled with SSSPAM5D soilscape evolution model. This presentation will show a number of computer animations with this coupled model using a range of widely accepted soil profile weathering models, and erosion/armouring models. The animations clearly show that subtle changes in process can result in dramatic changes in long-term equilibrium hillslope and soilscape form. We will discuss the reasons for these differences, arguing from the various mathematical and physical assumptions modelled, and infer how observed hillslope form may provide identifiable (and perhaps quantifiable) landform and soilscape signatures of landscape and soilscape process, and in particular the coupling between the landscape and the soilscape. Specifically we have simulated soilscapes using 3 depth dependent weathering functions: 1) Exponential, 2) Humped and 3) Reversed exponential. The Exponential weathering function simulates physical weathering due to thermal effects, and the weathering rate exponentially decreases with depth. The Humped function simulates chemical and/or physical weathering with moisture feedbacks, where the highest weathering rate is at a finite depth below the surface and exponentially declines with depth. The Reversed exponential function simulates chemical weathering, and the highest weathering rate is at the soil-saprolite interface and exponentially decreases both above and below the interface. Both the Humped and Reversed exponential functions can be used as approximations to chemical weathering as they can be derived analytically by solving widely accepted geochemical weathering equations. The Humped function can arise where the weathering fluid is introduced at the top of the soil profile (e.g. rainfall equilibrated with carbon dioxide in the atmosphere), while the Reversed exponential can be derived when carbon dioxide is generated within the profile (e.g. by biodegradation of soil

  19. The unified minimal supersymmetric model with large Yukawa couplings

    CERN Document Server

    Rattazzi, Riccardo

    1996-01-01

    The consequences of assuming the third-generation Yukawa couplings are all large and comparable are studied in the context of the minimal supersymmetric extension of the standard model. General aspects of the RG evolution of the parameters, theoretical constraints needed to ensure proper electroweak symmetry breaking, and experimental and cosmological bounds on low-energy parameters are presented. We also present complete and exact semi-analytic solutions to the 1-loop RG equations. Focusing on SU(5) or SO(10) unification, we analyze the relationship between the top and bottom masses and the superspectrum, and the phenomenological implications of the GUT conditions on scalar masses. Future experimental measurements of the superspectrum and of the strong coupling will distinguish between various GUT-scale scenarios. And if present experimental knowledge is to be accounted for most naturally, a particular set of predictions is singled out.

  20. Nuclear symmetry energy in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2015-01-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.

  1. Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

    OpenAIRE

    Narimen Aouzellag LAHAÇANI; Boubekeur MENDIL

    2008-01-01

    The goal of any Flexible AC Transmission Systems (FACTS) devices study is to measure their impact on the state of the electrical networks into which they are introduced. Their principal function is to improve the static and dynamic properties of the electrical networks and that by increasing the margins of static and dynamic stability and to allow the power transit to the thermal limits of the lines.To study this impact, it is necessary to establish the state of the network (bus voltages and ...

  2. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    CERN Document Server

    Cordova, Clay; Popolitov, Alexandr; Shakirov, Shamil

    2016-01-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarthmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  3. A coupled elasto-plastic-damage mechanical model for marble

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A profound understanding of the mechanical behaviors of marble is very important for the design and construction of deep diversion tunnels in Jinping II hydropower station.In this paper,a coupled elasto-plastic-damage mechanical model is presented for Jinping marble.Firstly,the experimental investigations on Jinping marble are summarized.Then,based on the framework of continuum damage and plastic theories,a general mechanical model is proposed to predict the mechanical responses of Jinping marble.The proposed model is used to simulate the triaxial compressive tests,and there is a general good agreement between experimental data and numerical predictions in a qualitative manner.The proposed model is able to capture the main features of Jinping marble observed in experiments,such as progressive yielding process,damage induced by plastic distortion,dilation,elastic degradation and stress sensitivity.

  4. Thermodynamics of the BMN matrix model at strong coupling

    Science.gov (United States)

    Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.

    2015-03-01

    We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.

  5. Thermodynamics of the BMN matrix model at strong coupling

    CERN Document Server

    Costa, Miguel S; Penedones, Joao; Santos, Jorge

    2014-01-01

    We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical $S^8$ horizon. This geometry preserves the $SO(9)$ symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the $SO(9)$ to the $SO(6)\\times SO(3)$ symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.

  6. The Madden-Julian Oscillation in NCEP Coupled Model Simulation

    Directory of Open Access Journals (Sweden)

    Wanqiu Wang Kyong-Hwan Seo

    2009-01-01

    Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.

  7. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  8. Modelization of coupled heat transfer inside a cylindrical glass block

    Energy Technology Data Exchange (ETDEWEB)

    Tanguier, J.L.; Kheiri, A.; Kleinclauss, J. [Faculte des Sciences, 54 - Vandoeuvre-les-Nancy (France)

    1995-01-01

    Modelization of coupled heat transfer inside a cylindrical glass block. In crystal industry, the furnaces used to warm up glass before forming are supplied with 4 bar pressure gas. They are noisy, polluting and high consumers of energy. To limit these effects and improve the energetic performances, an electrical infrared furnace is studied. To perfect it, it is necessary to identify the mechanisms of heat transfer which govern the evolution of the temperature into a cylindrical semitransparent media. After a long and thorough bibliography relative to the thermo-optical properties of crystal, the measurement of the field of temperature into the cylindrical block during the phases of working is led into the factory. To do this, it was necessary to adapt a reliable technical measurement device adjusted to industrial surrounding. A fundamental analysis of the results allows us to propose a model of the coupled heat transfer (radiation, conduction and convection) inside glass and between glass and its surroundings. The model is built on brightness and it is based on a triple discretization: temporal, spectral and zonal. This model provides the spectral distribution of the infrared radiation and the electrical power necessary to obtain a good heating of the crystal according to the manufactory charges. The first tests made with the experimental furnace, built by us, show that it is possible to warm up glass with infrared radiation and that this proceeding reduces the energy consumption and the nuisances. (authors). 19 refs., 7 figs.

  9. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  10. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  11. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    Directory of Open Access Journals (Sweden)

    Mindaugas Snipas

    2015-01-01

    Full Text Available The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC of voltage gating of gap junction (GJ channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs, which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times.

  12. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    Science.gov (United States)

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.

  13. Linear Sigma Models With Strongly Coupled Phases -- One Parameter Models

    CERN Document Server

    Hori, Kentaro

    2013-01-01

    We systematically construct a class of two-dimensional $(2,2)$ supersymmetric gauged linear sigma models with phases in which a continuous subgroup of the gauge group is totally unbroken. We study some of their properties by employing a recently developed technique. The focus of the present work is on models with one K\\"ahler parameter. The models include those corresponding to Calabi-Yau threefolds, extending three examples found earlier by a few more, as well as Calabi-Yau manifolds of other dimensions and non-Calabi-Yau manifolds. The construction leads to predictions of equivalences of D-brane categories, systematically extending earlier examples. There is another type of surprise. Two distinct superconformal field theories corresponding to Calabi-Yau threefolds with different Hodge numbers, $h^{2,1}=23$ versus $h^{2,1}=59$, have exactly the same quantum K\\"ahler moduli space. The strong-weak duality plays a crucial r\\^ole in confirming this, and also is useful in the actual computation of the metric on t...

  14. Status of the seamless coupled modelling system ICON-ART

    Science.gov (United States)

    Vogel, Bernhard; Rieger, Daniel; Schroeter, Jenniffer; Bischoff-Gauss, Inge; Deetz, Konrad; Eckstein, Johannes; Foerstner, Jochen; Gasch, Philipp; Ruhnke, Roland; Vogel, Heike; Walter, Carolin; Weimer, Michael

    2016-04-01

    The integrated modelling framework ICON-ART [1] (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases) extends the numerical weather prediction modelling system ICON by modules for gas phase chemistry, aerosol dynamics and related feedback processes. The nonhydrostatic global modelling system ICON [2] is a joint development of German Weather Service (DWD) and Max Planck Institute for Meteorology (MPI-M) with local grid refinement down to grid sizes of a few kilometers. It will be used for numerical weather prediction, climate projections and for research purposes. Since January 2016 ICON runs operationally at DWD for weather forecast on the global scale with a grid size of 13 km. Analogous to its predecessor COSMO-ART [3], ICON-ART is designed to account for feedback processes between meteorological variables and atmospheric trace substances. Up to now, ICON-ART contains the dispersion of volcanic ash, radioactive tracers, sea salt aerosol, as well as ozone-depleting stratospheric trace substances [1]. Recently, we have extended ICON-ART by a mineral dust emission scheme with global applicability and nucleation parameterizations which allow the cloud microphysics to explicitly account for prognostic aerosol distributions. Also very recently an emission scheme for volatile organic compounds was included. We present first results of the impact of natural aerosol (i.e. sea salt aerosol and mineral dust) on cloud properties and precipitation as well as the interaction of primary emitted particles with radiation. Ongoing developments are the coupling with a radiation scheme to calculate the photolysis frequencies, a coupling with the RADMKA (1) chemistry and first steps to include isotopologues of water. Examples showing the capabilities of the model system will be presented. This includes a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. [1] Rieger, D., et al

  15. Hyperon stars in a modified quark meson coupling model

    Science.gov (United States)

    Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.

    2016-09-01

    We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.

  16. Hyperon star in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2016-01-01

    We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a Modified Quark Meson Coupling Model (MQMC) where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. The effect of a nonlinear $\\omega$-$\\rho$ term on the equation of state is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of $2$~M$_{\\odot}$ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear $\\omega$-$\\rho$ term in the context of obtaining the star mass constraint in the present...

  17. ENSO Amplitude Change in Observation and Coupled Models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiong; GUAN Yue; YANG Haijun

    2008-01-01

    Observations show that the tropical El Nino-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.

  18. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  19. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  20. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  1. Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2007-02-01

    Full Text Available We consider sheared flows in magnetospheric boundary layers of tangential discontinuity type, forming a structure that is embedded in a large-scale convergent perpendicular electric field. We construct a kinetic model that couples the magnetospheric structure with the topside ionosphere. The contribution of magnetospheric electrons and ionospheric electrons and ions is taken into account into the current-voltage relationship derived for an electric potential monotonically decreasing with the altitude. The solution of the current continuity equation gives the distribution of the ionospheric potential consistent with the given magnetospheric electric potential. The model shows that a sheared magnetospheric flow generates current sheets corresponding to upward field-aligned currents, field-aligned potential drops and narrow bands of precipitating energy, as in discrete auroral arcs. Higher velocity magnetospheric sheared flows have the tendency to produce brighter and slightly broader arcs. An increase in arc luminosity is also associated with enhancements of magnetospheric plasma density, in which case the structures are narrower. Finally, the model predicts that an increase of the electron temperature of the magnetospheric flowing plasma corresponds to slightly wider arcs but does not modify their luminosity.

  2. Observational constraints on non-minimally coupled Galileon model

    CERN Document Server

    Jamil, Mubasher; Myrzakulov, Ratbay; 10.1140/epjc/s10052-013-2300-6

    2013-01-01

    As an extension of Dvali-Gabadadze-Porrati (DGP) model, the Galileon theory has been proposed to explain the "self-accelerating problem" and "ghost instability problem". In this Paper, we extend the Galileon theory by considering a non-minimally coupled Galileon scalar with gravity. We find that crossing of phantom divide line is possible for such model. Moreover we perform the statefinder analysis and $Om(z)$ diagnostic and constraint the model parameters from the latest Union 2 type Ia Supernova (SNe Ia) set and the baryonic acoustic oscillation (BAO). Using these data sets, we obtain the constraints $\\Omega_\\text{m0}=0.263_{-0.031}^{+0.031}$, $n=1.53_{-0.37}^{+0.21}$ (at the 95% confidence level) with $\\chi^2_{\\text{min}}=473.376$. Further we study the evolution of the equation of state parameter for the effective dark energy and observe that SNe Ia + BAO prefers a phantom-like dark energy.

  3. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics.

    Science.gov (United States)

    Moure, Adrian; Gomez, Hector

    2016-10-01

    A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.

  4. Coupled mode parametric resonance in a vibrating screen model

    CERN Document Server

    Slepyan, Leonid I

    2013-01-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...

  5. S(3) flavoured Higgs model trilinear self-couplings

    CERN Document Server

    Barradas-Guevara, E; Jáuregui, E Rodríguez

    2014-01-01

    In this work a detailed analysis of the Higgs sector of the minimal $S(3)$-invariant extension of the Standard Model is performed. Considering three Higgs fields, which are SU(2) doublets, and CP invariant, we compute the exact and analytical physical Higgs boson masses in terms of the Higgs potential parameters and the scalar Higgs matrix rotation angle $\\theta_S$ and $w_3$ ($\\tan\\theta_P=\\tan\\theta_C=\\tan^{-1}\\omega_3$), related to the pseudoscalar and charged Higgs matrix rotation angles $\\theta_P$ and $\\theta_C$ respectively. Furthermore, within this model we can also write down in an explicit form the trilinear self-couplings $\\lambda_{ijk}$ in terms of the Higgs masses and two free parameters,$\\theta_S$ and $w_3$. Moreover, we show that the Higgs masses and trilinear Higgs bosons self-couplings are closely linked to the Higgs potential structure given by the discrete symmetry $S(3)$, which can be helpful to distinguish this model from other extensions. In our analysis the lightest Higgs boson mass is ta...

  6. Modelling small-patterned neuronal networks coupled to microelectrode arrays

    Science.gov (United States)

    Massobrio, Paolo; Martinoia, Sergio

    2008-09-01

    Cultured neurons coupled to planar substrates which exhibit 'well-defined' two-dimensional network architectures can provide valuable insights into cell-to-cell communication, network dynamics versus topology, and basic mechanisms of synaptic plasticity and learning. In the literature several approaches were presented to drive neuronal growth, such as surface modification by silane chemistry, photolithographic techniques, microcontact printing, microfluidic channel flow patterning, microdrop patterning, etc. This work presents a computational model fit for reproducing and explaining the dynamics exhibited by small-patterned neuronal networks coupled to microelectrode arrays (MEAs). The model is based on the concept of meta-neuron, i.e., a small spatially confined number of actual neurons which perform single macroscopic functions. Each meta-neuron is characterized by a detailed morphology, and the membrane channels are modelled by simple Hodgkin-Huxley and passive kinetics. The two main findings that emerge from the simulations can be summarized as follows: (i) the increasing complexity of meta-neuron morphology reflects the variations of the network dynamics as a function of network development; (ii) the dynamics displayed by the patterned neuronal networks considered can be explained by hypothesizing the presence of several short- and a few long-term distance interactions among small assemblies of neurons (i.e., meta-neurons).

  7. Noise controlled synchronization in potassium coupled neural models

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Zhirin, Roman A;

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we...... show that potassium induced depolarization underlies the formation of noise-induced patterns such as delayed firing and synchronization. These phenomena are associated with the appearance of new time scales in the distribution of interspike intervals that may be significant for the spatio...

  8. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  9. One-loop Yukawa couplings in local models

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-07-15

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  10. Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode

    Science.gov (United States)

    Resfa, A.; Menezla, Brahimi. R.; Benchhima, M.

    2014-08-01

    This work aims to determine the characteristic I (breakdown voltage) of the inverse current in a GaAs PN junction diode, subject to a reverse polarization, while specifying the parameters that influence the breakdown voltage of the diode. In this work, we simulated the behavior of the ionization phenomenon by impact breakdown by avalanche of the PN junctions, subject to an inverse polarization. We will take into account both the trapping model in a stationary regime in the P+N structure using like material of basis the III-V compounds and mainly the GaAs semi-insulating in which the deep centers have in important densities. We are talking about the model of trapping in the space charge region (SCR) and that is the trap density donor and acceptor states. The carrier crossing the space charge region (SCR) of W thickness creates N electron—hole pairs: for every created pair, the electron and the hole are swept quickly by the electric field, each in an opposite direction, which comes back, according to an already accepted reasoning, to the crossing of the space charge region (SCR) by an electron or a hole. So the even N pair created by the initial particle provoke N2 ionizations and so forth. The study of the physical and electrical behaviour of semiconductors is based on the influence of the presence of deep centers on the characteristic I(V) current-tension, which requires the calculation of the electrostatic potential, the electric field, the integral of ionization, the density of the states traps, the diffusion current of minority in the regions (1) and (3), the current thermal generation in the region (2), the leakage current in the surface, and the breakdown voltage.

  11. Voltage tunable dielectric properties of oxides at nanoscale: TiO2 and CeO2 as model systems

    Science.gov (United States)

    Prakash, T.; Tamil Selvan, A.; Suraiya Begum, S. N.

    2016-03-01

    Carrier transport through electrically active grain boundaries has been studied under biased condition using Solartron 1260 impedance/gain phase analyzer with an applied AC potential of 250 mV in the frequency range 1 Hz-1 MHz for nanocrystalline TiO2 and CeO2 as the model systems. Prior to the measurement both the materials were converted into cylindrical pellets with (8 mm diameter and 1 mm thick) by applying uni-axial pressure of 4 ton using a hydraulic press, then sintered at 300, 450 and 600 °C for 30 min for TiO2 sample and for the case of CeO2 it was done at 300, 600 and 900 °C for 30 min. Further, they were characterized using powder X-ray diffractometer (XRD) and transmission electron microscopy (TEM) to know the crystal structure, average crystallite size and morphology. The impedance measurements were performed at room temperature under applied DC bias voltages from 0 to 3 V in the periodic increment of 0.2 V. The observed applied bias voltage effect on dielectric constant of both the systems was analyzed with 'grain boundary double Schottky potential barrier height model' for different grain sizes. The percentage of voltage tunable dielectric constant (T%) as a function of frequency was estimated for all the grain sizes and it was found to be increase with reduction of grain size. Our experimental findings reveal the possibilities of utilizing these nanocrystals as a potential active material for phased array antenna since both the samples exhibits T% = 85% at 100 Hz frequency.

  12. A modeling strategy for G-protein coupled receptors

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    2016-03-01

    Full Text Available Cell responses can be triggered via G-protein coupled receptors (GPCRs that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.

  13. Drift dynamics in a coupled model initialized for decadal forecasts

    Science.gov (United States)

    Sanchez-Gomez, Emilia; Cassou, Christophe; Ruprich-Robert, Yohan; Fernandez, Elodie; Terray, Laurent

    2016-03-01

    Drifts are always present in models when initialized from observed conditions because of intrinsic model errors; those potentially affect any type of climate predictions based on numerical experiments. Model drifts are usually removed through more or less sophisticated techniques for skill assessment, but they are rarely analysed. In this study, we provide a detailed physical and dynamical description of the drifts in the CNRM-CM5 coupled model using a set of decadal retrospective forecasts produced within CMIP5. The scope of the paper is to give some physical insights and lines of approach to, on one hand, implement more appropriate techniques of initialisation that minimize the drift in forecast mode, and on the other hand, eventually reduce the systematic biases of the models. We first document a novel protocol for ocean initialization adopted by the CNRM-CERFACS group for forecasting purpose in CMIP5. Initial states for starting dates of the predictions are obtained from a preliminary integration of the coupled model where full-field ocean surface temperature and salinity are restored everywhere to observations through flux derivative terms and full-field subsurface fields (below the prognostic ocean mixed layer) are nudged towards NEMOVAR reanalyses. Nudging is applied only outside the 15°S-15°N band allowing for dynamical balance between the depth and tilt of the tropical thermocline and the model intrinsic biased wind. A sensitivity experiment to the latitudinal extension of no-nudging zone (1°S-1°N instead of 15°, hereafter referred to as NOEQ) has been carried out. In this paper, we concentrate our analyses on two specific regions: the tropical Pacific and the North Atlantic basins. In the Pacific, we show that the first year of the forecasts is characterized by a quasi-systematic excitation of El Niño-Southern Oscillation (ENSO) warm events whatever the starting dates. This, through ocean-to-atmosphere heat transfer materialized by diabatic heating

  14. Physical Modeling and Reliability Mechanisms in High Voltage AIGaN/GaN HFETs

    Science.gov (United States)

    2013-02-01

    substrates with low-pressure custom- designed organometallic vapor phase epitaxy (OMVPE). Standard fabrication methods were applied to produce approximately...coupled plasma etcher based on Cl chemistry . Finally, the standard liftoff procedure was used to form the gate electrodes of Pt/Au (thickness 30/50

  15. An evaporation duct prediction model coupled with the MM5

    Institute of Scientific and Technical Information of China (English)

    JIAO Lin; ZHANG Yonggang

    2015-01-01

    Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factorav and the gust wind itemwg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MM5). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25–26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.

  16. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  17. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Science.gov (United States)

    Barthel, R.

    2006-09-01

    Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models - in particular on the regional scale - it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge") in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  18. Estimation of the light output power and efficiency of Xe barrier discharge excimer lamps using a one-dimensional fluid model for various voltage waveforms

    Science.gov (United States)

    Oda, Akinori; Sugawara, Hirotake; Sakai, Yosuke; Akashi, Haruaki

    2000-06-01

    Xe dielectric barrier discharges at different gap lengths under applied pulse voltages with trapezoidal and sinusoidal waveforms were simulated using a self-consistent one-dimensional fluid model. In both waveforms, the light output power depended not only on the amplitude of voltage waveforms but also on the discharge gap length. At the narrower discharge gap, the light output efficiency was improved by increasing the time gradient of the applied voltage when the trapezoidal pulse is applied, and by decreasing the duty ratio in the sinusoidal case. In the present simulation, we adopted a fast numerical method for calculation of electric field introducing an exact expression of the discharge current.

  19. Transient recovery voltage analysis for various current breaking mathematical models: shunt reactor and capacitor bank de-energization study

    Directory of Open Access Journals (Sweden)

    Oramus Piotr

    2015-09-01

    Full Text Available Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.

  20. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model

    Science.gov (United States)

    Simpson Chen, Abraham; Bergbreiter, Sarah

    2017-02-01

    Elastomer-based electroadhesion can be an effective method to provide tunable adhesion between robots and grasped objects or surfaces. However, there has been little work to develop models of electroadhesion and characterization of adhesive performance relative to these models. In this paper, a basic friction model is proposed to describe the critical shear force for a single electrode electroadhesive fabricated from conductive PDMS encased in parylene. The use of parylene results in thin dielectrics that require only tens of Volts to achieve shear pressures greater than 100 kPa. The experimental results gathered by characterizing voltage, dielectric thickness, adhesive area, and adhesive thickness follow the trends predicted by theory with some important deviations that are studied using high speed video capture of the soft adhesive failure.