WorldWideScience

Sample records for voltage converting circuit

  1. A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Wang, Huai;

    2017-01-01

    A voltage doubler circuit is realized to extend the soft-switching range of Dual Active Bridge (DAB) converters. No extra hardware is added to the DAB to form this circuit, since it is composed of the dc blocking capacitor and the low side full bridge converter, which already exist in DAB. With t...

  2. Short-circuit protection of LLC resonant converter using voltages across resonant tank elements

    Directory of Open Access Journals (Sweden)

    Denys Igorovych Zaikin

    2015-06-01

    Full Text Available This paper describes two methods for the short-circuit protection of the LLC resonant converter. One of them uses the voltage across the capacitor and the other uses the voltage across the inductor of the resonant tank. These voltages can be processed (integrated or differentiated to recover the resonant tank current. The two circuits illustrated in the described methods make it possible to develop a robust LLC converter design and to avoid using lossy current measurement elements, such as a shunt resistor or current transformer. The methods also allow measuring resonant tank current without breaking high-current paths and connecting the measuring circuit in parallel with the inductor or capacitor of the resonant tank. Practical implementations of these indirect current measurements have been experimentally tested for the short-circuit protection of the 1600 W LLC converter.

  3. A Protection Circuit for DC-DC Converter with Voltage Doubler

    Directory of Open Access Journals (Sweden)

    D.Elangovan

    2012-12-01

    Full Text Available This paper proposes a method to obtain a protected voltage gain by employing a protection circuit for the voltage doubler or multiplier circuit in an isolated tyde DC-DC Converter. The entire set up consists of a phase shift converter with a protected bridge/voltage doubler rectifier on the output side. The operating frequency of the phase shift converter is 20-25kHz (depending on the requirement of the application which is high enough to improve the efficiency. Ferrite core transformer is used in place of ordinary air core transformer, which is small in size with number of turns of the transformer is reduced and the overall power density is increased. The doubler circuit consists of electrolytic capacitors, which are rated at 400V in order to comply with IEC65 requirements. This paper proposes an “electrolytic capacitor protection circuit”, which enables the voltage rating of the electrolytics to be reduced to 250V. This circuit results in cost savings of more than 50% in the price of the electrolytic filter capacitors. The circuits were simulated using PSPICE SOFTWARE and the following results were obtained. For an input voltage of 200V, an output of 200V and400V were obtained in bridge mode and doubler mode respectively.

  4. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  5. Control of a Two-Stage Direct Power Converter with a Single Voltage Sensor Mounted in the Intermediary Circuit

    DEFF Research Database (Denmark)

    Klumpner, Christian; Wheeler, P.; Blaabjerg, Frede

    2004-01-01

    Controlling a converter requires not only a powerful processors but also accurate voltage and current sensors and fast and precise analogue-digital converters, which increase the cost per kW of the assembly, especially in the low power range. A matrix converter requires less transducers than a ba...

  6. Circuit techniques for low-voltage and high-speed AD converters

    CERN Document Server

    Waltari, Mikko E

    2002-01-01

    The increasing digitalization in electronics applications requires analogue-to-digital converters (ADCs) with a higher sampling rate, higher resolution, and lower power consumption. This volume is devoted to the discussion of the practicalities of this.

  7. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  8. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  9. Voltage Regulator for a dc-to-dc Converter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    New voltage regulator isolates signals from power-switching converter without use of complex circuitry or optical couplers. Only addition is extra secondary winding on existing interstage transformer. Error signals shortcircuit new winding and inhibit converter action. Resistor in series with primary winding limits short-circuit current to prevent damage to circuit components. Extra transformer winding eliminates need for isolation components.

  10. Design & Implementation of Zero Voltage Switching Buck Converter

    Directory of Open Access Journals (Sweden)

    A.Suresh Kumar

    2014-09-01

    Full Text Available Zero voltage switching (ZVS buck converter is more preferable over hard switched buck converter for low power, high frequency DC-DC conversion applications. In Zero voltage switching converter, turn on & turn off of a switch occurs at zero voltage that results in lower switching losses. In this converter soft switching is achieved by using resonant components. The optimal values of resonant components are determined by using electric functions derived from circuit configuration. This type of soft switched resonant converter offers very low electromagnetic interference (EMI.This study presents the circuit configuration with least components to realize highly efficient zero voltage switching resonant converter. It’s feasibility is confirmed with the developed proto type model and experimental results are verified.

  11. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  12. Transformerless DC-DC Converter Using Cockcroft-Walton Voltage Multiplier to Obtain High DC Voltage

    Directory of Open Access Journals (Sweden)

    Meghana G Naik,

    2014-11-01

    Full Text Available In the present scenario the use of transformer for high voltages in converter circuit reduces the overall operating efficiency due to leakage inductance and use of transformer also increases the operational cost. . Therefore the proposed system is implemented with transformer less DC-DC converter so as to obtain high DC voltage with the use of nine stage Cockcroft-Walton (CW voltage multiplier. The proposed converter operates in CCM (continuous conduction mode, so that the converter switch stress, the switching losses are reduced. The DC voltage at the input of the proposed model is low and is boosted up by boost inductor (Ls in DC-DC converter stage and performs inverter operation. The number of stages in CW-voltage multiplier circuit is applied with low input pulsating DC (AC Voltage voltage where it is getting converted to high DC output voltage. The proposed converter switches operates at two independent frequencies, modulating (fsm andalternating (fsc frequency. The fsm operates at higher frequency of the output while the fsc operates at lower frequency of the desired output voltage ripple and the output ripples can be adjusted by the switch Sc1 and Sc2. The regulation of the output voltage is achieved by controlling the Duty ratio.The simulation is carried over by the MATLABSIMULINK.

  13. New zero voltage switching DC converter with flying capacitors

    Science.gov (United States)

    Lin, Bor-Ren; Shiau, Tung-Yuan

    2016-04-01

    A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal-oxide-semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.

  14. Zero-voltage switching technique in dc/dc converters

    Science.gov (United States)

    Liu, Kwang-Hwa; Lee, Fred C. Y.

    1990-07-01

    A novel resonant switch operating under the principle of zero-voltage switching is presented. In contrast to the zero-current switching, this technique eliminates the switching loss and dv/dt noise due to the discharging of MOSFET junction capacitances and the reverse recovery of diodes, and enables the converters to operate at high frequencies. A dc analysis of the converter is carried out. The duality relationship between the zero-current switching technique and the zero-voltage switching technique is derived. The two techniques are compared using an example showing the duality between a current-mode quasi-resonant Buck converter and a voltage-mode quasi-resonant boost converter. A 5-MHz 50 V to 5 V flyback converter employing the zero-voltage switching technique has been implemented. The circuit contains the smallest number of components possible, and yet maintains high efficiency at high switching frequency.

  15. Noise tolerant voltage-controlled LC oscillator circuits for deep submicron VLSI system-on-a-chip radio circuits

    OpenAIRE

    Typpö, Jukka

    2003-01-01

    This thesis studies the problems with maintaining the spectral purity of fully integrated VCO circuits for radio frequency synthesizers in single-chip system designs. LC tank circuit oscillator circuits are shown to convert amplitude variation in the tank circuit voltage into frequency modulation, if voltage dependent capacitances are present in the tank circuit. Since the parasitic capacitances of the gain transistors and the capacitance of the varactor device in a VCO circuit are voltage de...

  16. Hybrid Voltage-Multipliers Based Switching Power Converters

    Science.gov (United States)

    Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias

    2011-08-01

    This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.

  17. Frequency to Voltage Converter Analog Front-End Prototype

    Science.gov (United States)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  18. 多电平变换器直流侧电压平衡控制电路%DC Bus Capacitor Voltage Balancing Circuits in Diode-Clamped Multilevel Converter

    Institute of Scientific and Technical Information of China (English)

    丁娜; 舒泽亮

    2014-01-01

    为解决二极管箝位型多电平变换器直流侧电容电压不平衡的问题,设计了一种带二级辅助电感的平衡控制电路,通过简单控制可以平衡多电平变换器直流侧所有电容的电压。在分析电路结构和控制原理的基础上,从能量转换的角度出发,给出了辅助电感参数选择的范围。以五电平变换器为研究对象,建立了Matlab/Simulink仿真模型,搭建了实验样机,对比分析了本文平衡电路与传统一级平衡控制电路的电容电压平衡特性。实验结果表明,当二级辅助电路工作时,所有直流侧电容电压在20 ms内达到平衡,电容电压的纹波小于3%。%In order to solve the imbalance of DC bus capacitor voltages in the diode-clamped multilevel converter,a balancing circuit with two-layer auxiliary inductors was designed. With this circuit,the voltages of all the DC-side capacitors in the multilevel converter can be balanced by a simple control. On the basis of analysis of the circuit structure and control principle,the ranges of inductor parameters were analyzed from the viewpoint of energy conversion. Taking a five-level converter as an example,a Matlab/Simulink simulation model and an experimental prototype were built,and the balance characteristics of DC bus capacitor voltages were compared between the proposed two-layer auxiliary circuit and the traditional one-layer circuit. Experimental results verify that the proposed two-layer circuit could effectively balance all the DC bus capacitor voltages within 20 ms,and the capacitor voltage ripple was less than 3%.

  19. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  20. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  1. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  2. Capacitor-voltage converter circuit based on CMOS%基于CMOS的电容-电压转换电路的设计

    Institute of Scientific and Technical Information of China (English)

    曹俊杰; 邱成军

    2013-01-01

    在MEMS传感器的电容检测电路中,经常要采用电容—电压转换电路.本研究将两相不交叠时钟模块应用到设计中,使得该电路用单个时钟就能进行有效控制,并能够满足MEMS电容检测系统的要求.采用0.25 μm工艺库对电路进行优化并给定了电路仿真的相应结论.仿真结果表明,其CMOS运放部分的增益为77.76 dB,单位增益带宽为5.60 MHz,相位裕量为65.87°,输出摆幅为-2.0~1.89 V,输入共模范围为-1.0 ~1.93V,正摆率为+9.92 V·μs-1,负摆率为5.03 V·μs-,功耗为1.03 mW.该电路适合于pF量级范围内的电容变化,该变化范围为35~1 200 pF,且输出线性度良好.%In the MEMS sensor capacitance detection of circuit,capacitive-voltage conversion circuit is often used.Two phase non-overlapping clock module has been applied to the design,so the circuit can be effectively controlled by a single clock and also be satisfied to the requirements of MEMS capacitive detection system.Using 0.25 μm technology library to optimize the circuit,the appropriate conclusions have been given out to the circuit simulation.The results show that part of its CMOS opamp is gain of 77.76 dB,the bandwidth of unity gain is 5.60 MHz,the phase margin is 65.87°,the output swing is-2.0 ~ 1.89 V,the input common mode range is-1.0 ~ 1.93 V,the positive slew rate is 9.92 V · μ S-1,the negative slew rate is 5.03 V · μ s-1,the power consumption is 1.03 mW.The circuit is suitable for capacitance change in the order of pF within the range of 35 ~ 1 200 pF,and the output is in good linearity.

  3. High Voltage Power Converter for Large Wind Turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    performance has been achieved by the transformer-less turbine with a back-to-back modular multilevel converter (MMC) topology, which is single grounded only through its DC link common-mode point. It has also occurred that the results derived from losses and short circuit analyses have become advantageous over...... system operates at 20 kV level - identical as for the collector distribution network. Medium voltage operation allows the converter unit along with the filter to be installed on the base platform inside the tower. In this manner, more space in the nacelle can be flexibly accommodated by the mechanical...

  4. A New Zero Voltage Switching Buck-Boost Type DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Majid Delshad

    2010-03-01

    Full Text Available In this paper, a new zero voltage switching isolated buck-boost DC-DC converter with active clamp circuit is proposed. The active clamp circuit in this converter not only absorbs voltage spikes across the main switch but also provides soft switching conditions for all switches. All switches are PWM controlled which simplifies the control implementation. One of the main advantages of this converter is the that it operating can operate at high power levels while soft switching conditions exist in both buck and boost modes of converter operation. Since this converter can operate over a wide input voltage range, it can be employed in power factor correction. The experimental results obtained from a 150W prototype circuit operating at 100KHz are presented to confirm the integrity of the proposed circuit.

  5. Battery powered high output voltage bidirectional flyback converter for cylindrical DEAP actuator

    DEFF Research Database (Denmark)

    Huang, Lina; Thummala, Prasanth; Zhang, Zhe;

    2012-01-01

    DEAP (Dielectric Electro Active Polymer) actuator is essentially a capacitive load and can be applied in various actuation occasions. However, high voltage is needed to actuate it. In this paper, a high voltage bidirectional flyback converter with low input voltage is presented. The fundamental....... The design parameters for flyback transformer and snubber circuits are illustrated. Moreover, the experimental waveforms are provided....

  6. Novel Low Loss Active Voltage Clamp Circuit for Series Connection of RCGCT thyristors

    Science.gov (United States)

    Ito, Hiroshi; Suzuki, Akihiro; Iwata, Akihiko

    This paper describes novel low loss active voltage clamp circuits for the series connection of RCGCT thyristors. For high voltage converters the series connection of power semiconductor devices is an essential technique for direct switching of high voltages. Several protection circuits have been applied to the series connection of RCGCT thyristors such as CRD snubber circuits which suppress over-voltages across RCGCT thyristors, and voltage balancing resistors to equalize voltage sharing in steady states. However, significant losses in these protection circuits lower the converter’s efficiency. We propose novel low-loss protection circuits, which have active voltage clamp snubber circuits and static voltage balancing circuits. The clamp capacitor voltage of the active voltage clamp snubber circuits are designed to be higher than the equally divided DC-Link voltage. This method can reduce the loss of the clamp circuit to no more than 1/10 of that of the conventional CRD snubber. Also the static voltage balancing circuits compensate for the voltage imbalance generated by the difference in the leakage current between the series connection RCGCT thyristors.

  7. High Efficiency Interleaved Active Clamped Dc-Dc Converter with Fuel Cell for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Sona P

    2014-02-01

    Full Text Available A high efficiency interleaved ZVS active clamped current fed dc-dc converter is proposed in this paper specially used for fuel cell applications. As the fuel cell output is very low we are in need of a step up dc-dc converter. Here a current fed dc-dc converter is used. Two current fed dc-dc converters are interleaved by connecting their inputs in parallel and outputs in series. With this proposed methodology input current ripples in the fuel cell stacks can be reduced and a regulated output voltage ripples can be obtained. The active clamping circuit used in this model absorbs the turn off voltage spikes hence low voltage devices with low on state resistance can be used.Voltage doubler circuits will give double the output voltage than normal with smaller transformer turns ratio and flexibility. The proposed method is simulated in MATLAB for verifying the accuracy of the proposed design.

  8. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  9. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  10. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    Science.gov (United States)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  11. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  12. A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side...... and voltage doubler circuit in secondary side. Boost type converter can limit the output ripple current of the fuel cells; hybrid full-bridge structure can change operating modes according to the different input voltage; phase-shift with duty cycle control scheme is utilized to control the bidirectional power...

  13. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    Science.gov (United States)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  14. Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter

    Science.gov (United States)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  15. IGBT Fuses for Protection Against Explosion in Voltage Source Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Rasmussen, H.

    2004-01-01

    The consequences of electrical faults can be severe; not only to the equipment, but also in the worse case, to people if safety principles are not observed. Every year new applications based on DC-link Voltage Source Converters are added and the demand for protection of power electronics increases...... regarding the high-power IGBT modules. Due to the fact that the power level increases more energy is stored in the DC-link and even with an active protection, a high-power IGBT still has a risk of case rupture (explode) when a circuit failure condition occurs. A possible solution is a protection...... of the converter with standard High Speed Fuses or High Speed IGBT fuses. It is discussed that protection can be achieved by introduction of IGBT fuse located in the DC-link. Experiments show that explosion can be avoided by use of High Speed Fuse protection and the added inductance of standard High Speed...

  16. SOFT-SWITCHED HIGH STEP-UP DC-DC CONVERTER WITH HIGH VOLTAGE GAIN

    Directory of Open Access Journals (Sweden)

    J.C. PAUL IMMANUEL

    2013-04-01

    Full Text Available This paper presents a new design of soft switched high step-up dc-dc converter with high voltage gain which is suitable for high power applications such as Uninterruptible Power System (UPS, Photo Voltaic system and hybrid electric vehicles. The emergence of this front-end converter is to improve the shape of active input current given to the system. This converter proposes Soft-Switching technique to achieve ZVS turn on of active switches and ZCS turn off of diodes using Lr - Cr resonance in the auxiliary circuit. Therefore reduces the switching losses. Comparatively the voltage conversion ratio of this converter is higher when compared with the ordinary boost converter. Hence the voltage gain of this converter is also higher. A simulation platform is created using MATLAB which illustrates the ZVS and ZCS operation of the switches and diodes. Open loop and closed loop controlled converter systems are modelled and simulated.

  17. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  18. Fully Integrated Ultra-Low Voltage Step-up Converter with Voltage Doubling LC-Tank for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroğlu, Ali

    2015-12-01

    This paper reports the design, fabrication, and validation of a novel integrated interface circuit for ultra-low voltage step up converter in 0.18 μm CMOS technology. The circuit does not use off-chip components. Fully integrated centre-tap differential inductors are introduced in the proposed LC oscillator design to achieve 38% area reduction compared to the use of four separate inductors. The efficiency of the system is hence enhanced through the elimination of clock buffer circuits traditionally utilized to drive the step-up converter. The experimental results prove that the system can self-start, and step 0.25 V up to 1.7 V to supply a 46 μW load with 15.5% efficiency. The minimum validated input voltage is 0.15 V, which is boosted up to 1.2 V under open circuit conditions.

  19. High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

    Directory of Open Access Journals (Sweden)

    C. P. Sai Kiran

    2014-10-01

    Full Text Available This thesis presents High frequency Soft Switching DC-DC boost Converter. The circuit consists of a general Boost Converter with an additional resonant circuit which has a switch, inductor, capacitor and a diode.In general Boost Converter circuits have snubber circuits where switching losses are dissipated in external passive resistors; which is known as hard switching. As the switching frequency of PWM converters is increased its switching losses and conduction losses also increases. This restricts the use of PWM technique. New Zero Voltage Transition-Zero Current Transition (ZVT-ZCT PWM converter equipped with the snubber provides the most desirable features of both ZVT and ZCT converters presented previously. Moreover all semiconductors devices operate with soft switching and hence losses are reduced.

  20. Kirchhoff voltage law corrected for radiating circuits

    CERN Document Server

    Lara, Vitor

    2014-01-01

    When a circular loop composed by a RLC is put to oscillate, the oscillation will eventually vanish in an exponentially decaying current, even considering superconducting wires, due to the emission of electric and magnetic dipole radiation. In this work we propose a modification on the Kirchhoff voltage law by adding the radiative contributions to the energy loss as an effective resistance, whose value is relatively small when compared to typical resistance value, but fundamental to describe correctly real circuits. We have also analysed the change in the pattern of the radiation spectra emitted by the circuit as we vary both the effective and electrical resistance.

  1. Isolated Fast High-Voltage Switching Circuit

    Science.gov (United States)

    Rizzi, Anthony

    1992-01-01

    Electrically isolated switching circuit supplies pulses at potentials up to 6.5 kV and currents up to 6.5 A, lasting as long as few microseconds. Turn-on time about 40 ns; turn-off time about 3 microseconds. Electrically isolated from control circuitry by means of fiber-optic signal coupling and isolated power supply. Electrical isolation protects both technician and equipment. This and similar circuits useful in such industrial and scientific applications as high-voltage, high-frequency test equipment; electrostatic-discharge test equipment; plasma-laboratory instrumentation; spark chambers; and electromagnetic-interference test equipment.

  2. A New Asymmetrical Current-fed Converter with Voltage Lifting

    Directory of Open Access Journals (Sweden)

    DELSHAD, M.

    2011-05-01

    Full Text Available This paper presents a new zero voltage switching current-fed DC-DC converter with high voltage gain. In this converter all switches (main and auxiliary turn on under zero voltage switching and turn off under almost zero voltage switching due to snubber capacitor. Furthermore, the voltage spike across the main switch due to leakage inductance of forward transformer is absorbed. The flyback transformer which is connected to the output in series causes to high voltage gain and less voltage stress on the power devices. Considering high efficiency and voltage gain of this converter, it is suitable for green generated systems such as fuel cells or photovoltaic systems. The presented experimental results verify the integrity of the proposed converter.

  3. Analysis and performance of paralleling circuits for modular inverter-converter systems

    Science.gov (United States)

    Birchenough, A. G.; Gourash, F.

    1972-01-01

    As part of a modular inverter-converter development program, control techniques were developed to provide load sharing among paralleled inverters or converters. An analysis of the requirements of paralleling circuits and a discussion of the circuits developed and their performance are included in this report. The current sharing was within 5.6 percent of rated-load current for the ac modules and 7.4 percent for the dc modules for an initial output voltage unbalance of 5 volts.

  4. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  5. A Simple MPPT Algorithm for Novel PV Power Generation System by High Output Voltage DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick

    2015-01-01

    This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... of DC-DC converters for PV integration. Hence, to overcome these difficulties this paper investigates a DC-DC boost converter together with the additional parasitic component within the circuit to provide high output voltages for maximizing the PV power generation. The proposed power system circuit...... substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software...

  6. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents a high voltage DC-DC converter topology for bi-directional energy transfer between a low voltage DC source and a high voltage capacitive load. The topology is a bi-directional flyback converter with variable switching frequency control during the charge mode, and constant...... switching frequency control during the discharge mode. The converter is capable of charging the capacitive load from 24 V DC source to 2.5 kV, and discharges it to 0 V. The flyback converter has been analyzed in detail during both charge and discharge modes, by considering all the parasitic elements...... in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...

  7. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  8. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  9. A Survey on Voltage Boosting Techniques for Step-Up DC-DC Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Gorji, Saman Asghari;

    2016-01-01

    , researches on new voltage boosting techniques are inevitable for various power converter applications. This can be achieved either by additional magnetic or by electric field storage elements with switching elements (switch and/or diode) in different configurations. Such combination of primary voltage...... boosting techniques and topologies are large, which at times may be confusing and difficult to follow/adapt for different applications. Considering these aspects and in order to make a clear sketch of the general law and framework of various voltage boosting techniques, this paper comprehensively reviews...... different voltage boosting techniques and categorizes them according to their circuit performance....

  10. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...... determined by the performance at the system worst case operating point which is usually at minimum input voltage and maximum power. Except for the non-regulating V6 converters, all published solutions exhibit a very significant drop in conversion efficiency at minimum input voltage and maximum output power...

  11. Enhanced RF to DC converter with LC resonant circuit

    Science.gov (United States)

    Gabrillo, L. J.; Galesand, M. G.; Hora, J. A.

    2015-06-01

    Presented in this paper is an experimental comparison of the conventional and proposed design circuit of a radio frequency (RF) energy harvesting. RF to DC energy harvester simply consists of antenna and rectifier block for receiving electromagnetic radiation signal and to produce a DC voltage, respectively. In addition to this conventional circuit, the proposed design includes LC tank circuit as receiving block of a well-designed antenna radio frequency receiver. Proper choice of an antenna type, realizing of point contact Germanium diodes as rectifier and correct design values for the LC passive components, greatly improved the measurement of the maximum output power, giving approximately a 100% increase compared to the conventional method. Experimental results of the enhanced RF to DC converter measured a maximum output power of 1.80 mWat a distance of 77.84 meters from a TV signal tower operating at 165 MHz.Thus, the harvested signal was enough to supply a low power wireless device applications without battery maintenance.

  12. Dynamic Performance of Grid Converters using Adaptive DC Voltage Control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Sun, Bo; Guerrero, Josep M.;

    2014-01-01

    This paper investigates a controller that ensures minimum operating dc-link voltage of a back-to-back converter system. The dc-link voltage adapts its reference based on the system state, reference given by an outer loop to the dc-link voltage controller. The operating dc-link voltage should...... be kept as low as possible to increase the power conversion efficiency and increase the reliability of converters. The dynamic performance of the proposed controller is investigated by simulations and experiments....

  13. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  14. Low input voltage converter/regulator minimizes external disturbances

    Science.gov (United States)

    1966-01-01

    Low-input voltage converter/regulator constructed in a coaxial configuration minimizes external magnetic field disturbance, suppresses radio noise interference, and provides excellent heat transfer from power transistors. It converts the output of fuel and solar cells, thermionic diodes, thermoelectric generators, and electrochemical batteries to a 28 V dc output.

  15. A fast novel soft-start circuit for peak current-mode DC—DC buck converters

    Science.gov (United States)

    Jie, Li; Miao, Yang; Weifeng, Sun; Xiaoxia, Lu; Shen, Xu; Shengli, Lu

    2013-02-01

    A fully integrated soft-start circuit for DC—DC buck converters is presented. The proposed high speed soft-start circuit is made of two sections: an overshoot suppression circuit and an inrush current suppression circuit. The overshoot suppression circuit is presented to control the input of the error amplifier to make output voltage limit increase in steps without using an external capacitor. A variable clock signal is adopted in the inrush current suppression circuit to increase the duty cycle of the system and suppress the inrush current. The DC—DC converter with the proposed soft-start circuit has been fabricated with a standard 0.13 μm CMOS process. Experimental results show that the proposed high speed soft-start circuit has achieved less than 50 μs start-up time. The inductor current and the output voltage increase smoothly over the whole load range.

  16. A fast novel soft-start circuit for peak current-mode DC-DC buck converters

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Yang Miao; Sun Weifeng; Lu Xiaoxia; Xu Shen; Lu Shengli

    2013-01-01

    A fully integrated soft-start circuit for DC-DC buck converters is presented.The proposed high speed soft-start circuit is made of two sections:an overshoot suppression circuit and an inrush current suppression circuit.The overshoot suppression circuit is presented to control the input of the error amplifier to make output voltage limit increase in steps without using an external capacitor.A variable clock signal is adopted in the inrush current suppression circuit to increase the duty cycle of the system and suppress the inrush current.The DC-DC converter with the proposed soft-start circuit has been fabricated with a standard 0.13 μm CMOS process.Experimental results show that the proposed high speed soft-start circuit has achieved less than 50 μs start-up time.The inductor current and the output voltage increase smoothly over the whole load range.

  17. New series half-bridge converters with the balance input split capacitor voltages

    Science.gov (United States)

    Lin, Bor-Ren; Chiang, Huann-Keng; Wang, Shang-Lun

    2016-03-01

    This article presents a new dc/dc converter to perform the main functions of zero voltage switching (ZWS), low converter size, high switching frequency and low-voltage stress. Metal-oxide-semiconductor field-effect transistors (MOSFETs) with high switching frequency are used to reduce the converter size and increase circuit efficiency. To overcome low-voltage stress and high turn-on resistance of MOSFETs, the series half-bridge topology is adopted in the proposed converter. Hence, the low-voltage stress MOSFETs can be used for medium-input voltage applications. The asymmetric pulse-width modulation is used to generate the gating signals and achieve the ZWS. On the secondary side, the parallel connection of two diode rectifiers is adopted to reduce the current rating of passive components. On the primary side, the series connection of two transformers is used to balance two output inductor currents. Two flying capacitors are used to automatically balance the input split capacitor voltages. Finally, experiments with 1000 W rated power are performed to verify the theoretical analysis and the effectiveness of proposed converter.

  18. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  19. Highly-Efficient and Modular Medium-Voltage Converters

    Science.gov (United States)

    2015-09-28

    4. TITLE AND SUBTITLE Highly-Efficient and Modula Medium -Voltage Converters 6. AUTHOR(S) Maryam Saeedifard 7. PERFORMING ORGANIZATIC i NAME(S...realization of highly efficient, modular medium - voltage dc-ac and dc-dc energy conversion systems by development of new control strategies that improve the...Z39.18 a 01^ 100(0^5 Final Report for Grant N00014-14-1-0615 Highly-Efficient and Modular Medium -Voltage Converters Lead Organization: Georgia Tech

  20. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela;

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  1. Stability and bifurcation in a voltage controlled negative-output KY Boost converter

    Science.gov (United States)

    Wang, Fa-Qiang; Ma, Xi-Kui

    2011-03-01

    The stability and bifurcation in a voltage controlled negative-output KY Boost converter is studied in this Letter. A glimpse at the stability and bifurcation from the power electronics simulator (PSIM) software are given. And then, its mathematical model and corresponding discrete model are derived. The stability and bifurcation of the converter are determined with the help of the loci of eigenvalues of the Jacobian matrix. It is found that the Hopf bifurcation is easy to come in this converter when the value of its energy-transferring capacitor increases. Finally, the analytical results are confirmed by the circuit experiment.

  2. A High Voltage-lift Efficient Isolated Full Bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    A. Gopi

    2014-05-01

    Full Text Available The aim of this study is to propose a high voltage lift isolated full bridge dc-dc converter. The proposed converter consists of an isolation transformer a low turn ratio to obtain high step up voltage gain. The secondary of the transformer connected with two boosting capacitors which connects parallel when power switches switch on period and discharged in series during the switch off period. In addition full bridge converter on primary side consists of clamping diode and capacitor, leakage energy is recycled there by improving conversion efficiency. The proposed circuits simulated using PSIM software form input voltage of 48V, an output of 410 V obtained. These results and operations experimented and validated by implementing in hardware model at 20/40 Vdc, 20 Watts.

  3. A fully on-chip three-terminal switched-capacitor DC-DC converter for low-voltage CMOS LSIs

    Science.gov (United States)

    Kojima, Yuta; Hirose, Tetsuya; Tsubaki, Keishi; Ozaki, Toshihiro; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro

    2016-04-01

    In this paper, we present a fully on-chip switched-capacitor DC-DC converter for low-voltage CMOS LSIs. The converter has three terminals of input, ground, and output, by developing control circuits with fully on-chip configuration. We employ an ultra low-power nanoampere bias current and voltage reference circuit to achieve ultra low-power dissipation of control circuits. It enables us to realize a highly efficient power conversion circuit at light-load-current applications. The converter achieves highly efficient and robust voltage conversion using a pulse frequency modulation control circuit and a start-up/fail-safe circuit. Measurement results demonstrated that the converter can convert a 3.0 V input into 1.2 V output successfully. The start-up and fail-safe operations were confirmed through the measurement. The efficiency was more than 50% in the range of 2-6 µA load current.

  4. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  5. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  6. A control method for voltage balancing in modular multilevel converters

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2014-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The voltage balancing of the floating capacitors in the cascaded submodules of the MMC is a key issue. In this paper......, a voltage-balancing control method is proposed. This method uses the phase-shifted carrier-based pulsewidth modulation scheme to control high-frequency current components for capacitor voltage balancing in the MMC without measuring the arm currents. Simulations and experimental studies of the MMC were...... conducted, and the results confirm the effectiveness of the proposed capacitor voltage-balancing control method....

  7. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  8. Three Phase Two Leg Neutral Point Clamped Converter with output DC Voltage Regulation and Input Power Factor Correction

    Directory of Open Access Journals (Sweden)

    Bogimi Sirisha

    2012-03-01

    Full Text Available In this paper, a three-phase two leg neutral point clamped (NPC converter is presented for power factor correction and dc-link voltage regulation. The adopted converter has simpler circuit configuration and less number of power switches compared to three-level PWM converter. In this circuit configuration, only eight power switches and four clamping diodes with voltage stress of half the dc bus voltage are used. A simplified space vector pulse width modulation scheme (SVPWM is also adopted to track the line current commands. A reference voltage vector is generated on the ac terminal for drawing the sinusoidal line currents with unity power factor. This algorithm reduces the time required to calculate the switching time durations of voltage vectors. The simulation results have been presented to verify the validity and effectiveness of the proposed control strategy.

  9. Interface circuit with adjustable bias voltage enabling maximum power point tracking of capacitive energy harvesting devices

    Science.gov (United States)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2016-12-01

    The operation analysis of a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage is carried out in this paper. Two configurations determined by the open or closed states of an electronic switch are examined. The increase of the voltage across a biasing capacitor, occurring when the switch is open, is proved theoretically and experimentally. With the decrease of this biasing voltage which occurs naturally when the switch is closed due to imperfections of the circuit, the bias voltage can be maintained close to a target value by appropriate ON and OFF control of the switch. As the energy converted by the variable capacitor on each cycle depends on the bias voltage, this energy can be therefore accurately controlled. This feature opens up promising perspectives for optimization the power harvested by electrostatic devices. Simulation results with and without electromechanical coupling effect are presented. In experimental tests, a simple switch control enabling to stabilize the bias voltage is described.

  10. Zero-voltage switching converter absorbing parasitic parameters for super high frequency induction heating

    Institute of Scientific and Technical Information of China (English)

    Zheng-shi WANG; Hui-ming CHEN

    2008-01-01

    This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced, Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this converter is competent for super high frequency applications.

  11. Integrated Reconfigurable High-Voltage Transmitting Circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2014-01-01

    -out and measurements are performed on the integrated circuit. The transmitting circuit is reconfigurable externally making it able to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes, pulse voltages up to 100 V, maximum pulse range of 50 V and frequencies up to 5 MHz. The area...

  12. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne Johan; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1) con

  13. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  14. Planar LTCC transformers for high voltage flyback converters: Part II.

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Daryl (NASCENTechnology, Inc., Watertown, SD); Schare, Joshua M., Ph.D.; Slama, George (NASCENTechnology, Inc., Watertown, SD); Abel, David (NASCENTechnology, Inc., Watertown, SD)

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  15. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  16. A High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-12-01

    Full Text Available In this paper, a high step-down interleaved buck coupled-inductor converter (IBCC with active-clamp circuits for wind energy conversion has been studied. In high step-down voltage applications, an IBCC can extend duty ratio and reduce voltage stresses on active switches. In order to reduce switching losses of active switches to improve conversion efficiency, a IBCC with soft-switching techniques is usually required. Compared with passive-clamp circuits, the IBCC with active-clamp circuits have lower switching losses and minimum ringing voltage of the active switches. Thus, the proposed IBCC with active-clamp circuits for wind energy conversion can significantly increase conversion efficiency. Finally, a 240 W prototype of the proposed IBCC with active-clamp circuits was built and implemented. Experimental results have shown that efficiency can reach as high as 91%. The proposed IBCC with active-clamp circuits is presented in high step-down voltage applications to verify the performance and the feasibility for energy conversion of wind turbines.

  17. Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model

    Science.gov (United States)

    Suskis, P.; Rankis, I.

    2012-01-01

    The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.

  18. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  19. Thyristor voltage converter in induction electric drives with microprocessor control

    Energy Technology Data Exchange (ETDEWEB)

    Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation)

    1997-12-31

    The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in `locally` by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs.

  20. Advanced Energy Conversion System Using Sinusoidal Voltage Tracking Buck-Boost Converter Cascaded Polarity Changing Inverter

    Science.gov (United States)

    Ahmed, Nabil A.

    2011-06-01

    This paper presents an advanced power converter employs a sinusoidal voltage absolute value tracking buck-boost DC-DC converter in the first power processing stage and a polarity changing full-bridge inverter in the second stage. The proposed power conversion system has the capability of delivering sinusoidal output and input current with unity power factor and good output voltage regulation. Consequently, the complete voltage regulator system, which is mainly suitable for new energy generation systems as well as energy storage systems, can be constructed compactly and inexpensively without DC link electrolytic capacitor. Also, the paper presents an auxiliary passive resonant circuit for soft switching operation. Simulation results using PSIM software are presented to verify the operation principles and feasibility of the proposed power conversion system.

  1. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  2. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    The inherent double line ripple power in singlephase systems is adverse to the converter performance, e.g. limited lifetime due to the requirement of large electrolytic capacitors and low voltage control bandwidth due to harmonic disturbance. In this paper, an active converter topology based...... on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... is presented, and a dual voltage control strategy is then proposed, which comprises one voltage loop implemented in the synchronous reference frame for active power balancing, and another one implemented in the harmonic reference frame for ripple power compensation. Special attention is given to the bandwidth...

  3. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    converter topology based on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling......The inherent double line ripple power in single-phase systems is adverse to the performance of power electronics converters, e.g. limited lifetime due to the requirement of large electrolytic capacitors and low voltage control bandwidth due to harmonic disturbance. In this paper, an active...... of the proposed system is presented, and a dual voltage control strategy is then proposed, which comprises one voltage loop implemented in the synchronous reference frame for active power balancing, and another one implemented in the stationary reference frame for ripple power compensation. Special attention...

  4. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. In chapter 2, a review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning...

  5. Primary Paralleled Isolated Boost Converter with Extended Operating Voltage Range

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Sen, Gökhan; Mira Albert, Maria del Carmen

    2012-01-01

    Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...

  6. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  7. Architecture for a High-to-Medium-Voltage Power Converter

    Science.gov (United States)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  8. Design, Control, and Modeling of a New Voltage Source Converter for HVDC System

    Science.gov (United States)

    Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya

    2013-05-01

    Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.

  9. Parallel input parallel output high voltage bi-directional converters for driving dielectric electro active polymer actuators

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.;

    2014-01-01

    is to design and implement driving circuits for the DEAP actuators for their use in various applications. This paper presents implementation of parallel input, parallel output, high voltage (~2.5 kV) bi-directional DC-DC converters for driving the DEAP actuators. The topology is a bidirectional flyback DC......-DC converter incorporating commercially available high voltage MOSFETs (4 kV) and high voltage diodes (5 kV). Although the average current of the aforementioned devices is limited to 300 mA and 150 mA, respectively, connecting the outputs of multiple converters in parallel can provide a scalable design....... This enables operating the DEAP actuators in various static and dynamic applications e.g. positioning, vibration generation or damping, and pumps. The proposed idea is experimentally verified by connecting three high voltage converters in parallel to operate a single DEAP actuator. The experimental results...

  10. Renovating the excitation circuit of a conventional welding converter

    Indian Academy of Sciences (India)

    Gulderen Yildirmaz; M Hadi Sarul; Remzi Gulgun; Hulya Obdan

    2006-02-01

    This paper presents two different new excitation current supplies based on power electronics for an existing conventional welding converter. The proposed circuits are simulated using Lab-VIEW 1200 AI and a PC based system. In the expressions for winding currents the dynamic inductances are used to take into account the saturation in the core of the winding. The experimental circuits are implemented and tested. The percentage peak-to-peak ripple currents are calculated for both simulation and experimental results and for both circuit configurations. The results are summarized in two tables for comparison.

  11. Medium Voltage Three-level Converters for the Grid Connection of aMulti-MW Wind Turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... connection circuit (without capacitive switching ripple filters), the 3L-HB-VSC is expected to be superior with respect to power density and reliability over the 3L-NPC- and -FC-VSCs....

  12. Inverter-based circuit design techniques for low supply voltages

    CERN Document Server

    Palani, Rakesh Kumar

    2017-01-01

    This book describes intuitive analog design approaches using digital inverters, providing filter architectures and circuit techniques enabling high performance analog circuit design. The authors provide process, supply voltage and temperature (PVT) variation-tolerant design techniques for inverter based circuits. They also discuss various analog design techniques for lower technology nodes and lower power supply, which can be used for designing high performance systems-on-chip.    .

  13. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  14. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger;

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  15. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...

  16. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  17. A Positive Buck Boost Converter with Mode Select Circuit and Feed Forward Techniques Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Latha. S. C

    2014-11-01

    Full Text Available The portable devices development of semiconductor manufacturing technology, conversion efficiency, power consumption, and the size of devices have become the most important design criteria of switching power converters. For portable applications better conveniences extension of battery life and improves the conversion efficiency of power converters .It is essential to develop accurate switching power converters, which can reduce more wasted power energy. The proposed topology can achieve faster transient responses when the supply voltages are changed for the converter by making use of the feed forward network .With mode select circuit the conduction & switching losses are reduced the positive buck–boost converter operate in buck, buck–boost, or boost converter. By adding feed-forward techniques, the proposed converter can improve transient response when the supply voltages are changed. The designing, modeling & experimental results were verified in MATLAB/ Simulink. The fuzzy logic controller is used as controller.

  18. 用于加速度计接口电路的新型∑-Δ电压-频率转换器的设计%Design of a New ∑-Δ Voltage-to-Frequency Converter Used for Accelerometer Interface Circuit

    Institute of Scientific and Technical Information of China (English)

    施长治; 刘晓为; 谭晓昀

    2007-01-01

    设计了一种基于Σ-Δ调制器技术的新型电压.频率转换器,可用于加速度计接口电路将模拟电压信号转换成相应的频率输出信号,且其对于恒定输入电压具有稳定的输出频率,具有正负两种转换特性.采用中国电子科技集团二十四所的4μm阱标准CMOS工艺参数对电路进行了模拟仿真.在10V电源电压下,其时钟频率为1.04MHz,输入电压范围为1.5~8.5 V,输出频率范围为40-533 kHz,转换灵敏度约为134 kGz/V,非线性度小于0.08%.仿真结果表明,其可广泛应用于矢量传感器的模数转换接口电路.%A new voltage-to-frequency converter based on ∑-△ modulator technology was designed.It can convert the analog voltage signals to output signals with the corresponding frequency in micro-accelerometer interface circuit.For a constant input voltage,it can provide a stable output frequency.Furthermore,it has posifive and negative conversion characteristics.The circuit was simulated with 4 karl P-well standard CMOS process parameters provided by the 24th Institute of Electronics.The frequency of clock is 1.04 MHz.the range of input voltage detected is 1.5-8.5 V and the range of output frequency is 40-533 kHz under a 10 V power supply.The conversion sensifivity is about 134 kHz/V.nonlinearity is less than 0.08%.The simulation results show that the system Can be applied in ADC interface circuits for vector sensors.

  19. Improved Passive-Damped LCL Filter to Enhance Stability in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede;

    2015-01-01

    This paper proposes an improved passive-damped LCL filter to be used as interface between the grid-connected voltage-source converters and the utility grid. The proposed filter replaces the LCL filter capacitor with a traditional C-type filter with the resonant circuit tuned in such a way that sw...

  20. Optimal Design of a Push-Pull-Forward Half-Bridge (PPFHB) Bidirectional DC–DC Converter With Variable Input Voltage

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high-frequency tr...... by digital signal processor for comparison purpose. Detailed test results verify the theoretical analysis and demonstrate the validity of optimization design method....

  1. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    Science.gov (United States)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  2. An Optoelectronic High-voltage Probe for Measuring Impulse Voltage Distribution of HVDC Converter Valve

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌

    2007-01-01

    A high-voltage optoelectronic probe is developed for measuring impulse voltage distribution along thyristor units in the HVDC converter valve. The dimension of the resistive voltage divider is optimized by means of numerical compttation of electric field. A pulse frequency modulation (PFM) mode is adopted for the data transmission link because of its immunity to high-intensity electromagnetic interference. Experimental results indicate that the linearity deviation for the whole measuring system is within ± 0.15 %, and therefore it can meet requirements specified by IEC60700-1.

  3. Low Voltage Analog Circuit Design Based on the Flipped Voltage Follower

    Directory of Open Access Journals (Sweden)

    Neeraj Yadav

    2012-03-01

    Full Text Available The desire for portability of electronics equipment generated a need for low power system in battery products like hearing aids, implantable cardiac pacemakers, cell phones and hand held multimedia terminals. Low voltage analog circuit design differs considerably from those of high voltage analog circuit design. This paper present the basic cell knows as “flipped voltage follower” for low voltage/ low power operation. The detailed classification of basic topologies derived from the FVF cell is presented and there is a low voltage current mirror based on FVF cell has been presented. All the Circuit has been simulated using Hspice tool 0.18µm CMOS Technology. Different quality factors such as frequency response, power consumption are considered. A compression also made between previous current mirror and new designed current mirror. The layout of the current mirror has been also designed using Cadence tool.

  4. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jr., Edward I. (Albuquerque, NM)

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  5. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  6. Variation-aware adaptive voltage scaling for digital CMOS circuits

    CERN Document Server

    Wirnshofer, Martin

    2013-01-01

    Increasing performance demands in integrated circuits, together with limited energy budgets, force IC designers to find new ways of saving power. One innovative way is the presented adaptive voltage scaling scheme, which tunes the supply voltage according to the present process, voltage and temperature variations as well as aging. The voltage is adapted “on the fly” by means of in-situ delay monitors to exploit unused timing margin, produced by state-of-the-art worst-case designs. This book discusses the design of the enhanced in-situ delay monitors and the implementation of the complete control-loop comprising the monitors, a control-logic and an on-chip voltage regulator. An analytical Markov-based model of the control-loop is derived to analyze its robustness and stability. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits provides an in-depth assessment of the proposed voltage scaling scheme when applied to an arithmetic and an image processing circuit. This book is written for engine...

  7. Adaptive Voltage Management Enabling Energy Efficiency in Nanoscale Integrated Circuits

    Science.gov (United States)

    Shapiro, Alexander E.

    Battery powered devices emphasize energy efficiency in modern sub-22 nm CMOS microprocessors rendering classic power reduction solutions not sufficient. Classical solutions that reduce power consumption in high performance integrated circuits are superseded with novel and enhanced power reduction techniques to enable the greater energy efficiency desired in modern microprocessors and emerging mobile platforms. Dynamic power consumption is reduced by operating over a wide range of supply voltages. This region of operation is enabled by a high speed and power efficient level shifter which translates low voltage digital signals to higher voltages (and vice versa), a key component that enables communication among circuits operating at different voltage levels. Additionally, optimizing the wide supply voltage range of signals propagating across long interconnect enables greater energy savings. A closed-form delay model supporting wide voltage range is developed to enable this capability. The model supports an ultra-wide voltage range from nominal voltages to subthreshold voltages, and a wide range of repeater sizes. To mitigate the drawback of lower operating speed at reduced supply voltages, the high performance exhibited by MOS current mode logic technology is exploited. High performance and energy efficient circuits are enabled by combining this logic style with power efficient near threshold circuits. Many-core systems that operate at high frequencies and process highly parallel workloads benefit from this combination of MCML with NTC. Due to aggressive scaling, static power consumption can in some cases overshadow dynamic power. Techniques to lower leakage power have therefore become an important objective in modern microprocessors. To address this issue, an adaptive power gating technique is proposed. This technique utilizes high levels of granularity to save additional leakage power when a circuit is active as opposed to standard power gating that saves static

  8. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  9. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    with a uniform voltage level while eliminating the voltage imbalance. In addition, high step-down and step-up ratios with low component voltage stress can be achieved in the proposed converter. A bidirectional four-port dc-dc converter is presented to do theoretical analysis for the voltage equalization of three...

  10. Programmable Low-Voltage Circuit Breaker and Tester

    Science.gov (United States)

    Greenfield, Terry

    2008-01-01

    An instrumentation system that would comprise a remotely controllable and programmable low-voltage circuit breaker plus several electric-circuit-testing subsystems has been conceived, originally for use aboard a spacecraft during all phases of operation from pre-launch testing through launch, ascent, orbit, descent, and landing. The system could also be adapted to similar use aboard aircraft. In comparison with remotely controllable circuit breakers heretofore commercially available, this system would be smaller, less massive, and capable of performing more functions, as needed for aerospace applications.

  11. 30 CFR 75.902-1 - Maximum voltage ground check circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum voltage ground check circuits. 75.902-1... Alternating Current Circuits § 75.902-1 Maximum voltage ground check circuits. The maximum voltage used for such ground check circuits shall not exceed 40 volts....

  12. USING PHOTO-INDUCED OPEN-CIRCUIT VOLTAGE

    African Journals Online (AJOL)

    open-circuit voltage decay, silicon photovoltaic solar cells. ..... cells in series configuration encapsulated on a ceramic base with glass cover and has an effective .... silicon solar cells and should be used parallel to the common performance test ...

  13. 30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...

  14. 30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. Trailing cables for medium-voltage circuits shall include grounding conductors, a ground check...

  15. 30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.

    Science.gov (United States)

    2010-07-01

    ... voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under §...

  16. Design techniques for low-voltage analog integrated circuits

    Science.gov (United States)

    Rakús, Matej; Stopjaková, Viera; Arbet, Daniel

    2017-08-01

    In this paper, a review and analysis of different design techniques for (ultra) low-voltage integrated circuits (IC) are performed. This analysis shows that the most suitable design methods for low-voltage analog IC design in a standard CMOS process include techniques using bulk-driven MOS transistors, dynamic threshold MOS transistors and MOS transistors operating in weak or moderate inversion regions. The main advantage of such techniques is that there is no need for any modification of standard CMOS structure or process. Basic circuit building blocks like differential amplifiers or current mirrors designed using these approaches are able to operate with the power supply voltage of 600 mV (or even lower), which is the key feature towards integrated systems for modern portable applications.

  17. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  18. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  19. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed;

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  20. A New Low Voltage P-MOS Bulk Driven Current Mirror Circuit

    Directory of Open Access Journals (Sweden)

    Anuj Dugaya

    2013-08-01

    Full Text Available This work proposes a new low voltage current mirror circuit using bulk driven technique. Bulk driventechnique is used to reduce the threshold of PMOS used in low voltage current mirror circuits (LVCM.TheProposed circuit consist of 4 PMOS and 5 NMOS. The proposed circuit operated at +0.85 V supplyvoltage.The bandwidth of this circuit has also been enhanced using resistive compensation technique. Theproposed circuit has been simulated in Cadence Design Environment in UMC 180nm CMOS technology. Atransfer characteristic of the proposed circuit has been discussed. The proposed circuit find application inlow voltage and low power analog integrated circuits.

  1. Voltage-to-frequency converters CMOS design and implementation

    CERN Document Server

    Azcona Murillo, Cristina; Pueyo, Santiago Celma

    2013-01-01

    This book develops voltage-to-frequency converter (VFC) solutions integrated in standard CMOS technology to be used as a part of a microcontroller-based, multisensor interface in the environment of portable applications, particularly within a WSN node.  Coverage includes the total design flow of monolithic VFCs, according to the target application, as well as the analysis, design and implementation of the main VFC blocks, revealing the main challenges and solutions encountered during the design of such high performance cells. Four complete VFCs, each temperature compensated, are fully designed and evaluated: a programmable VFC that includes an offset frequency and a sleep/mode enable terminal; a low power rail-to-rail VFC; and two rail-to-rail differential VFCs.

  2. A miniature high-efficiency fully digital adaptive voltage scaling buck converter

    Science.gov (United States)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji

    2015-09-01

    A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.

  3. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  4. Five-Level Converter with Low Switching Frequency Applied as DC Voltage Supply

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    1999-01-01

    This paper describes the use of a multi-level converter as a DC supply. Equations for the converter will be deduced in the nondissipative case. The equations provide solutions to DC voltage and the angle of converter voltage. In addition the spectrum for the harmonics after the elimination...

  5. A novel full soft-switching resonant power converter for mid-feeder voltage regulation of low voltage distribution network

    OpenAIRE

    Ji, Chao; Watson, Alan James; Clare, Jon C.; Johnson, Christopher Mark

    2016-01-01

    This paper presents a novel resonant based, high power density power electronics converter solution for mid-feeder voltage regulation of a low voltage (LV) distribution network. Owing to the use of high switching frequency operation and a full soft-switching control strategy, the proposed converter is capable of superimposing LV compensation into the feeder voltage, to achieve a significant system effect with a compact system volume and correspondingly smaller absolute power loss.

  6. Silicon solar cells with high open-circuit voltage

    Science.gov (United States)

    Minnucci, J. A.; Matthei, K. W.; Kirkpatrick, A. R.; Mccrosky, A.

    1980-01-01

    Open-circuit voltages as high as 0.645 V (AM0-25 C) have been obtained by a new process developed for low-resistivity silicon. The method utilizes high-dose phosphorus implantation, followed by furnace annealing and simultaneous oxide growth to form high-efficiency, shallow junctions. The effect of the thermally grown oxide is a reduction of surface recombination velocity; the oxide also acts as a moderately efficient AR coating. Boron doped silicon with resistivities from 0.1 to 0.3 ohm-cm has been processed according to this sequence; results show highest open-circuit voltage is attained with 0.1-ohm-cm starting material. The effects of bandgap narrowing, caused by high doping concentrations in the junction, were also investigated by implanting phosphorus over a wide range of dose levels.

  7. Analysis and design of a high-efficiency zero-voltage-switching step-up DC–DC converter

    Indian Academy of Sciences (India)

    Jae-Won Yang; Hyun-Lark Do

    2013-08-01

    A high-efficiency zero-voltage-switching (ZVS) step-up DC–DC converter is proposed. The proposed ZVS DC–DC step-up converter has fixed switching frequency, simple control, and high efficiency. All power switches can operate with ZVS. The output diodes are under zero-current-switching (ZCS) during turn-off. Due to soft-switching operation of the power switches and output diodes, the proposed ZVS DC–DC converter shows high efficiency. Steady-state analysis of the converter is presented to determine the circuit parameters. A laboratory prototype of the proposed converter is developed, and its experimental results are presented for validation.

  8. High Output Voltage Based Multiphase Step-Up DC-DC Converter Topology with Voltage Doubler Rectifiers

    Directory of Open Access Journals (Sweden)

    Liao Xiaozhong

    2013-02-01

    Full Text Available High Output Voltage Based Multiphase Step-Up DC-DC Converter topology with voltage doubler rectifiers is presented in this paper. High output voltage is obtained due to the series combination of voltage doubler rectifiers on the secondary side of high frequency transformers. This topology is useful in the application where the output voltage is greater than the input. The two loop control strategy has been developed in order to analyze the stable and effective working of the converter topology. Therefore the working mode analysis of the converter topology has been described in detail. The multiphase step-up DC-DC converter topology is first simulated on MATLAB and then a prototype has been designed in order to verify the simulation and experimental results. Finally the simulation and experimental results are found to be satisfactory.

  9. Low start-up voltage dc–dc converter with negative voltage control for thermoelectric energy harvesting

    Directory of Open Access Journals (Sweden)

    Pui-Sun Lei

    2015-01-01

    Full Text Available This Letter presents a low start-up voltage dc–dc converter for low-power thermoelectric systems which uses a native n-type MOS transistor as the start-up switch. The start-up voltage of the proposed converter is 300 mV and the converter does not need batteries to start up. The negative voltage control is proposed to reduce the leakage current caused by native n-type transistor and increase the efficiency. The proposed converter was designed using standard 0.18 µm CMOS process with chip size of 0.388 mm^2. The peak efficiency is 63% at load current of 1.5 mA. The proposed converter provides output voltage >1 V at maximum load current of 3.2 mA.

  10. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  11. 30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. On or before September 30, 1970, low- and medium-voltage resistance grounded systems shall...

  12. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits; neutral... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.802 Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage...

  13. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Science.gov (United States)

    2010-07-01

    ... voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall...

  14. A Novel Method of Suppressing the Inrush Current of Transformers Using a Series-Connected Voltage-Source PWM Converter

    Science.gov (United States)

    Yamada, Hiroaki; Tanaka, Toshihiko; Funabiki, Shigeyuki

    This paper proposes a novel method of suppressing the inrush current of transformers. A small-rated voltage-source PWM converter is connected in series to the transformers through a matching transformer. As the connected PWM converter performs a resistor for the source current, no inrush phenomena occurs. The required-ratings of the PWM converter, which performs the damping resistor for the inrush phenomena, is one-four-hundredth as compared to that of the main transformers in single-phase circuits. In three-phase circuits, it is one-nine-hundredth. The basic principle of the proposed method is discussed. Digital computer simulation is implemented to confirm the validity and excellent practicability of the proposed method using the PSCAD/EMTDC. A prototype experimental-model is constructed and tested. The experimental results demonstrate that the proposed method can perfectly suppress the inrush phenomena.

  15. An interleaved five-level boost converter with voltage-balance control

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2016-01-01

    This paper proposes an interleaved five-level boost converter based on switched-capacitor network. Operating principle of the converter under CCM mode is analyzed. High voltage gain, low component stress, small input current ripple, and self-balance function for capacitor voltages in the switched......-capacitor networks are achieved. Besides, a three-loop control strategy including outer voltage loop, inner current loop and voltage-balance loop has been researched to achieve good performances and voltage-balance effect. Experimental study has been done to verify the correctness and feasibility of the proposed...... converter and control strategy....

  16. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...

  17. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    Science.gov (United States)

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  18. High-Efficiency Isolated Boost DCDC Converter for High-Power Low-Voltage Fuel-Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2010-01-01

    A new design approach achieving very high conversion efficiency in low-voltage high-power isolated boost dc-dc converters is presented. The transformer eddy-current and proximity effects are analyzed, demonstrating that an extensive interleaving of primary and secondary windings is needed to avoid...... high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing...

  19. A single-stage voltage sensorless power factor correction converter for LED lamp driver

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Abd El-Moniem

    2013-12-01

    Full Text Available Light-emitting diode (LED technology presents an effective and robust solution to decrease the energy demand. In this paper, a power factor correction (PFC converter is proposed to solve the problems that appear when using LED lamps, such as reducing harmonic currents and reshaping the input current to be a sinusoidal waveform without using line voltage sensor, so the total cost can be reduced and increasing the efficiency. Thus, this technique is considered a simple and easy method which reduces the number of sensors required and achieves the noise isolation between the power circuit and the controller. Also, the proposed method is implemented using a zero-crossing processing, which allows a greater accuracy than other methods. Simulation and experimental results demonstrate the effectiveness and feasibility of the proposed circuit which show that the proposed control method has low inrush input current, high power factor (near unity, and fast dynamic response under transient operation. Also, a sinusoidal current waveform under a non-sinusoidal input voltage condition can be achieved.

  20. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    OpenAIRE

    2014-01-01

    The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT) evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and ...

  1. A New Control Method of a Resonant Switched-Capacitor Converter and the Application for Balancing of the Split DC Voltages in a Multilevel Inverter

    Science.gov (United States)

    Sano, Kenichiro; Fujita, Hideaki

    This paper proposes a new voltage-balancing circuit for the split dc voltages in a diode-clamped five-level inverter. The proposed circuit is based on a resonant switched-capacitor converter (RSCC), which consists of two half-bridge inverters, a resonant inductor and a resonant capacitor. A new phase-shift control of the RSCC is proposed to improve voltage balancing performance. Theoretical analysis reveals the rating of the RSCC and stored energy in the resonant inductor. Experimental results confirm the reduction of the inductor to one tenth in volume as compared to a conventional voltage-balancing circuit based on buck-boost topology. Moreover, the proposed phase-shift control has demonstrated that it is possible to eliminate the voltage deviation between the dc capacitors.

  2. Stabilizing Ferroresonance Oscillations in Voltage Transformers Using Limiter Circuit

    Directory of Open Access Journals (Sweden)

    Hamid Radmanesh

    2012-12-01

    Full Text Available This paper employs the multiple scales method and chaos theory for analyzing chaotic behavior of the voltage transformer (VT with linear core loss model. It is shown that ferroresonance phenomenon in VTs can be classified as chaotic dynamics, including a sequence of bifurcations such as period doubling bifurcation (PDB, saddle node bifurcation (SNB, Hopf Bifurcation (HB and chaos. Bifurcation diagrams and phase plane diagrams are drawn using a continuation method for linear core loss model and lyapunov exponents are obtained using the multiple scales method. At first an overview of the subject in the literature is provided. Then, ferroresonance phenomenon is introduced and its various types in a VT are simulated. Finally the effects of ferroresonance suppression circuit on stabilizing these oscillations are studied. The proposed approach is implemented using MATLAB, and simulation results are presented. The results show connecting the ferroresonance suppression circuit to the system configuration, causes great controlling effect on ferroresonance overvoltage.

  3. High frequency capacitor-diode voltage multiplier dc-dc converter development

    Science.gov (United States)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  4. An Integrated Inductor For Parallel Interleaved Three-Phase Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus;

    2016-01-01

    Three phase Voltage Source Converters (VSCs) are often connected in parallel to realize high current output converter system. The harmonic quality of the resultant switched output voltage can be improved by interleaving the carrier signals of these parallel connected VSCs. As a result, the line...

  5. Development of modulation strategies for NPC converter addressing DC link voltage balancing and CMV reduction

    DEFF Research Database (Denmark)

    Boian, D.; Biris, C.; Teodorescu, Remus

    2012-01-01

    in insulation breakdown and bearing failures. By the use of this type of converters, both Electromagnetic Interference (EMI) and harmonic distortions are improved. This paper proposes two modulation strategies for Three Level Neutral Point Clamped Converter (3L-NPC). The main focus of these modulation...... strategies is to reduce the Common Mode Voltage (CMV) and balance the DC Link Voltage....

  6. A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Pang, Ying; Wang, Huai;

    2016-01-01

    The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...

  7. Voltage-Sharing Converter to Supply Single-Phase Asymmetrical Four-Level Diode-Clamped Inverter With High Power Factor Loads

    DEFF Research Database (Denmark)

    Boora, Arash A.; Nami, Alireza; Zare, Firuz

    2010-01-01

    The output voltage quality of some of the single-phase multilevel inverters can be improved when their dc-link voltages are regulated asymmetrically. Symmetrical and asymmetrical multilevel diode-clamped inverters have the problem of dc-link capacitor voltage balancing, especially when power factor...... of the load is close to unity. In this paper, a new single-inductor multi-output dc/dc converter is proposed that can control the dc-link voltages of a single-phase diode-clamped inverter asymmetrically to achieve voltage quality enhancement. The circuit of the presented converter is explained and the main...... equations are developed. A control strategy is proposed and explained in details. To validate the versatility of the proposed combination of the suggested dc–dc converter and the asymmetrical four-level diode-clamped inverter (ADCI), simulations and experiments have been directed. It is concluded...

  8. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan;

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  9. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    Science.gov (United States)

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  10. A Design of High—precision High—Voltage Fiber—Optic Analog Signal Isolation Converter

    Institute of Scientific and Technical Information of China (English)

    李建伟; 许留伟; 等

    2002-01-01

    This paper introduces a design of high-precision high-voltage fiber-optic analog signal isolation converter based on the technology of Voltage-to-Frequency(V/F) and Frequency-to-Voltage(F/V) conversion.It describes the principle,system configuration and hardware desin.

  11. A design of High-precision High-Voltage Fiber-Optic Analog Signal Isolation Converter

    Institute of Scientific and Technical Information of China (English)

    李建伟; 许留伟; 刘小宁; 杨雷

    2002-01-01

    This paper introduces a design of high-prectison high-voltage fiber-optic analog sig-nal isoaltion converter based on the technology of Voltage-to-Fequency (V/F)and Frequency -to Voltage(F/V) conversion It describes the principle ,system configuration and hardware design

  12. Analysis of high voltage step-up nonisolated DC-DC boost converters

    Science.gov (United States)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  13. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Mostaan, Ali

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar v...

  14. Detailed Behavior Analysis for High Voltage Bidirectional Flyback Converter Driving DEAP Actuator

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    flyback based converter has been implemented. The parasitic elements have serious influence for the operation of the converter, especially in the high output voltage condition. The detailed behavior analysis has been performed considering the impact of the critical parasitic parameters. The converter has...

  15. 30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...

  16. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits or...

  17. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  18. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  19. 30 CFR 75.803-1 - Maximum voltage ground check circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum voltage ground check circuits. 75.803-1 Section 75.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... § 75.803-1 Maximum voltage ground check circuits. The maximum voltage used for ground check...

  20. A New Low Voltage P-MOS Bulk Driven Current Mirror Circuit

    Directory of Open Access Journals (Sweden)

    Anuj Dugaya

    2013-08-01

    Full Text Available This work proposes a new low voltage current mirror circuit using bulk driven technique. Bulk driven technique is used to reduce the threshold of PMOS u sed in low voltage current mirror circuits (LVCM.T he Proposed circuit consist of 4 PMOS and 5 NMOS. The proposed circuit operated at +0.85 V supply voltage.The bandwidth of this circuit has also been enhanced using resistive compensation technique. T he proposed circuit has been simulated in Cadence Desi gn Environment in UMC 180nm CMOS technology. A transfer characteristic of the proposed circuit has been discussed. The proposed circuit find applicat ion in low voltage and low power analog integrated circuit s.

  1. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    Science.gov (United States)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  2. A novel voltage output integrated circuit temperature sensor

    Institute of Scientific and Technical Information of China (English)

    吴晓波; 方志刚; 等

    2002-01-01

    The novel integrated circuit(IC) temperature sensor presented in this paper works similarly as a two-terminal Zener,has breakdown voltage directly proportional to Kelvin temperature at 10mV/℃,with typical error of less tha ±1.0℃ over a temperature range from-50℃to +120℃ .In addition to all the features that conventional IC temperature sensors have,the new device also has very low static power dissipation(0.5mW),low output impedance(less than 1Ω),execllent stability,high reproducibility,and high precision.The sensor's circuit design and layout are discussed in detail.Applications of the sensor include almost and type of temperature sensing over the range of -50℃-+125℃。The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy.Due to the excellent performance and low cost of this sensor.more application of the sensor over wide temperature range are expected.

  3. Planar LTCC transformers for high voltage flyback converters.

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Daryl (NASCENT Technology Inc. , Watertown, SD); Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George (NASCENT Technology Inc. , Watertown, SD); Abel, Dave (NASCENT Technology Inc. , Watertown, SD)

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  4. Flexible low-voltage organic integrated circuits with megahertz switching frequencies (Presentation Recording)

    Science.gov (United States)

    Zschieschang, Ute; Takimiya, Kazuo; Zaki, Tarek; Letzkus, Florian; Richter, Harald; Burghartz, Joachim N.; Klauk, Hagen

    2015-09-01

    A process for the fabrication of integrated circuits based on bottom-gate, top-contact organic thin-film transistors (TFTs) with channel lengths as short as 1 µm on flexible plastic substrates has been developed. In this process, all TFT layers (gate electrodes, organic semiconductors, source/drain contacts) are patterned with the help of high-resolution silicon stencil masks, thus eliminating the need for subtractive patterning and avoiding the exposure of the organic semiconductors to potentially harmful organic solvents or resists. The TFTs employ a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs and circuits to operate with voltages of about 3 V. Using the vacuum-deposited small-molecule organic semiconductor 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 DNTT), TFTs with an effective field-effect mobility of 1.2 cm2/Vs, an on/off current ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 nsec per stage at a supply voltage of 3 V have been obtained. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V. In addition to flexible ring oscillators, we have also demonstrated a 6-bit digital-to-analog converter (DAC) in a binary-weighted current-steering architecture, based on TFTs with a channel length of 4 µm and fabricated on a glass substrate. This DAC has a supply voltage of 3.3 V, a circuit area of 2.6 × 4.6 mm2, and a maximum sampling rate of 100 kS/s.

  5. High voltage generator circuit with low power and high efficiency applied in EEPROM

    Institute of Scientific and Technical Information of China (English)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  6. Optimization of Temperature Coefficient and Noise Analysis of MOSFET- Only Voltage Reference Circuit

    Directory of Open Access Journals (Sweden)

    Arathi.p

    2016-09-01

    Full Text Available The optimization of temperature coefficient and comparison of output noise of two MOSFET only voltage references are introduced. The circuit behavior is analytically described and the performance of the proposed circuits are confirmed through 180nm CMOS technology in virtuoso and the simulation results are presented. Both the circuits can be operated with supply voltage varies from 0.5-1.2V.The output voltage references varied over a temperature range of -25℃ to 50℃.

  7. Study on the instantaneous protection reliability of low voltage circuit breakers

    Institute of Scientific and Technical Information of China (English)

    LU Jian-guo; DU Tai-hang; LUO Yan-yan

    2007-01-01

    This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics Calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.

  8. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  9. A single leg switched PWM method for three-phase H-Bridge Voltage Source Converters

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig;

    2009-01-01

    This paper proposes a single leg switched or a hybrid PWM (HPWM) method for three-phase three-level H-Bridge Voltage Source Converters (3L-HB-VSCs). By means of the proposed modulation, a 3L-HB-VSC can generate the same output as a three-level neutral point clamped (3L-NPC) VSC with phase...... disposition (PD) PWM provided that the outputs of 3L-HBVSC are isolated by transformers or connected to open winding machines. Thus, the proposed method is called PD-HPWM. Moreover, it is emphasized that 3L-HB-VSC with HPWM utilizes its switches similar to 3L-NPC-VSC. Compared to 3L-NPC-VSCs, 3L......-HB-VSCs (without neutral point clamping diodes) have simpler, more modular, and more reliable 2L circuit structure. Therefore, this method encourages the use of 3L-HB-VSCs in the applications utilizing transformers such as grid-side converters of multi-MW wind turbines. The proposed PWM method's performance...

  10. Measurement of Parasitic Inductances in the Bus-Bar Assembly of a High Power Voltage Source Converter

    Science.gov (United States)

    Datta, Aniket; Narayanan, G.

    2016-12-01

    Insulated gate bipolar transistor (IGBT) based voltage source converters use copper plates with insulating sheets in between them (sandwich bus-bar arrangement) for connecting the different device terminals in the power circuit. In such converters, the parasitic inductances in the power circuit are crucial as they cause overvoltage spikes across the device. Also, the parasitics affect the current sharing between IGBTs when they are connected in parallel in high power converters. The conduction path through plates and fasteners in the bus-bar assembly is three-dimensional and quite complex, making analytical evaluation of the stray inductance quite challenging. The first objective here is to present a simple experimental setup and experimental procedure, which are convenient for power electronic engineers, to measure the bus-bar inductance. The next objective is to carry out experimental studies on the inductances offered by different components and sub-assemblies in a bus-bar assembly. This includes evaluation of inductances of the different conduction paths in typical bus-bar plates. The third objective is to experimentally evaluate the parasitic inductances in the bus-bar assembly of a commercial 250 kVA high power converter. Each leg of this converter consists of two 300 A/1200 V IGBTs connected in parallel. The effective inductance seen by the individual device modules are determined experimentally.

  11. Equivalent realisation circuit for a class of non-ideal voltage-controlled memristors

    Directory of Open Access Journals (Sweden)

    Saihu Pan

    2015-12-01

    Full Text Available In this study, an equivalent realisation circuit with off-the-shelf components and devices is proposed, which can be used to equivalently implement a class of non-ideal voltage-controlled memristors. The mathematical models of the equivalent realisation circuit with three function arithmetic circuits are built and their fingerprints are analysed by the pinched hysteresis loops with bipolar periodic voltage stimuli. The numerical simulations are easily verified by experimental measurements, which indicate that when three function arithmetic circuits are linked, the equivalent realisation circuit can realise three non-ideal voltage-controlled memristors with different non-linearities.

  12. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  13. New active load voltage clamp for HF-link converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, M.A.E.

    2005-07-01

    This paper proposes a new active clamp for HF-link converters, which features very high efficiency by returning the clamped energy back to the primary side through a small auxiliary converter. It also increases the reliability of HF-link converters by providing an alternative load current path during malfunctions of the secondary bidirectional bridge. The feasibility of the approach is shown on audio power amplifier prototype. New integrated magnetics design is presented that incorporates both the main power and auxiliary transformer on the same magnetic core. (au)

  14. New active load voltage clamp for HF-link converters

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper proposes a new active clamp for HF-link converters, which features very high efficiency by returning the clamped energy back to the primary side through a small auxiliary converter. It also increases the reliability of HF-link converters by providing an alternative load current path du...... during malfunctions of the secondary bidirectional bridge. The feasibility of the approach is shown on audio power amplifier prototype. New integrated magnetics design is presented that incorporates both the main power and auxiliary transformer on the same magnetic core....

  15. Optimal planning of series resistor to control time constant of test circuit for high-voltage AC circuit-breakers

    Directory of Open Access Journals (Sweden)

    Yoon-Ho Kim

    2016-01-01

    Full Text Available The equivalent test circuit that can deliver both short-circuit current and recovery voltage is used to verify the performance of high-voltage circuit breakers. Most of the parameters in this circuit can be obtained by using a simple calculation or a simulation program. The ratings of the circuit breaker include rated short-circuit breaking current, rated short-circuit making current, rated operating sequence of the circuit breaker and rated short-time current. Among these ratings, the short-circuit making capacity of the circuit breaker is expressed in peak value and not in RMS value similar to breaking capacity. A series resistor or super-excitation is used to control the peak value of the short-circuit current in the equivalent test circuit. When using a series resistor, a higher rating of circuit breakers leads to a higher thermal capacity, thereby requiring additional space. Therefore, an effective, optimal design of the series resistor is essential. This paper proposes a method for reducing thermal capacity and selecting the optimal resistance to limit the making current by controlling the DC time constant of the test circuit.

  16. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    Science.gov (United States)

    Lim, Sungkeun

    of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is

  17. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  18. A novel voltage output integrated circuit temperature sensor

    Institute of Scientific and Technical Information of China (English)

    吴晓波; 赵梦恋; 严晓浪; 方志刚

    2002-01-01

    The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two-terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.

  19. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  20. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  1. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  2. SEMICONDUCTOR DEVICES: A novel high voltage start up circuit for an integrated switched mode power supply

    Science.gov (United States)

    Hao, Hu; Xingbi, Chen

    2010-09-01

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions.

  3. Design of an Integrated Thermoelectric Generator Power Converter for Ultra-Low Power and Low Voltage Body Energy Harvesters aimed at EEG/ECG Active Electrodes

    Science.gov (United States)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2014-11-01

    This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.

  4. Modeling self-priming circuits for dielectric elastomer generators towards optimum voltage boost

    Science.gov (United States)

    Zanini, Plinio; Rossiter, Jonathan; Homer, Martin

    2016-04-01

    One of the main challenges for the practical implementation of dielectric elastomer generators (DEGs) is supplying high voltages. To address this issue, systems using self-priming circuits (SPCs) — which exploit the DEG voltage swing to increase its supplied voltage — have been used with success. A self-priming circuit consists of a charge pump implemented in parallel with the DEG circuit. At each energy harvesting cycle, the DEG receives a low voltage input and, through an almost constant charge cycle, generates a high voltage output. SPCs receive the high voltage output at the end of the energy harvesting cycle and supply it back as input for the following cycle, using the DEG as a voltage multiplier element. Although rules for designing self-priming circuits for dielectric elastomer generators exist, they have been obtained from intuitive observation of simulation results and lack a solid theoretical foundation. Here we report the development of a mathematical model to predict voltage boost using self-priming circuits. The voltage on the DEG attached to the SPC is described as a function of its initial conditions, circuit parameters/layout, and the DEG capacitance. Our mathematical model has been validated on an existing DEG implementation from the literature, and successfully predicts the voltage boost for each cycle. Furthermore, it allows us to understand the conditions for the boost to exist, and obtain the design rules that maximize the voltage boost.

  5. Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy

    Directory of Open Access Journals (Sweden)

    K. Rajambal

    2009-01-01

    Full Text Available This paper presents the topology of operating DC-DC buck converter in boost mode for extra-high-voltage applications. Traditional DC-DC boost converters are used in high-voltage applications, but they are not economical due to the limited output voltage, efficiency and they require two sensors with complex control algorithm. Moreover, due to the effect of parasitic elements the output voltage and power transfer efficiency of DC-DC converters are limited. These limitations are overcome by using the voltage lift technique, opens a good way to improve the performance characteristics of DC-DC converter. The technique is applied to DC-DC converter and a simplified control algorithm in this paper. The performance of the controller is studied for both line and load disturbances. These converters perform positive DC-DC voltage increasing conversion with high power density, high efficiency, low cost in simple structure, small ripples, and wide range of control. Simulation results along theoretical analysis are provided to verify its performance.

  6. Bidirectional current-voltage converters based on magnetostrictive/piezoelectric composites

    NARCIS (Netherlands)

    Jia, Y.; Or, S.W.; Chan, H.L.W.; Jiao, J.; Luo, H.; Van der Zwaag, S.

    2009-01-01

    We report a power supply-free, bidirectional electric current-voltage converter based on a coil-wound laminated composite of magnetostrictive alloy and piezoelectric crystal. An electric current applied to the coil induces a magnetic field, resulting in an electric voltage from the composite due to

  7. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  8. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study of us...

  9. Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Blaabjerg, Frede

    2009-01-01

    with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...

  10. Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Blaabjerg, Frede

    2009-01-01

    with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...

  11. A Survey on Voltage Boosting Techniques for Step-Up DC-DC Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Gorji, Saman Asghari;

    2016-01-01

    Step-up dc-dc converters are used to boost the voltage level of the input to a higher output level. Despite of its features such as simplicity of implementation, the fundamental boost dc-dc converter has shortcomings such as low boost ability and low power density. With these limitations, researc...

  12. State space analysis of boost DC/DC converter with voltage mode control

    Science.gov (United States)

    Shenoy, K. Latha; Nayak, C. Gurudas; Mandi, Rajashekar P.

    2017-07-01

    The boost converter belongs to the family of indirect energy transfer converters. The inductor stores energy during switch on and the output capacitor deliver power to the load. During switch off condition, the stored inductive energy appears in series with the input source and supply the output. The paper deals with the small signal analysis of dc-dc boost converter. It is used in modeling the closed loop converter parameters. The boost converter produces an undesirable Right-Half Plane Zero (RHPZ) in the small signal analysis due to which the implementation of voltage mode control needs attention. This requires compensating the regulator such that the crossover frequency occurs well below the frequency of the RHP zero. The paper describes modeling of voltage mode control boost converter operating in continuous conduction mode.

  13. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  14. High-Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS

    CERN Document Server

    Mak, Pui-In

    2012-01-01

    This book presents high-/mixed-voltage analog and radio frequency (RF) circuit techniques for developing low-cost multistandard wireless receivers in nm-length CMOS processes.  Key benefits of high-/mixed-voltage RF and analog CMOS circuits are explained, state-of-the-art examples are studied, and circuit solutions before and after voltage-conscious design are compared. Three real design examples are included, which demonstrate the feasibility of high-/mixed-voltage circuit techniques.    Provides a valuable summary and real case studies of the state-of-the-art in high-/mixed-voltage circuits and systems; Includes novel high-/mixed-voltage analog and RF circuit techniques – from concept to practice; Describes the first high-voltage-enabled mobile-TVRF front-end in 90nm CMOS and the first mixed-voltage full-band mobile-TV Receiver in 65nm CMOS; Demonstrates the feasibility of high-/mixed-voltage circuit techniques with real design examples.  

  15. A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2017-08-01

    Full Text Available High boost DC/DC voltage conversion is always indispensable in a power electronic interface of certain battery-powered electrical equipment. However, a conventional boost converter works for a wide duty cycle for such high voltage gain, which increases power consumption and has low reliability problems. In order to solve this issue, a new battery-powered combined boost converter with an interleaved structure consisting of two phases used in automotive audio amplifier is presented. The first phase uses a conventional boost converter; the second phase employs the inverted type. With this architecture, a higher boost voltage gain is able to be achieved. A derivation of the operating principles of the converter, analyses of its topology, as well as a closed-loop control designs are performed in this study. Furthermore, simulations and experiments are also performed using input voltage of 12 V for a 120 W circuit. A reasonable duty cycle is selected to reach output voltage of 60 V, which corresponds to static voltage gain of five. The converter achieves a maximum measured conversion efficiency of 98.7% and the full load efficiency of 89.1%.

  16. High-voltage boost quasi-Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A high-voltage gain two-switch quasi-Z-source isolated DC/DC converter has been presented in this study. It consists of a quasi-Z-source network at its input, a push-pull square-wave inverter at its middle, and a voltage-doubler rectifier at its output. When coordinated appropriately, the new...... converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...

  17. Dynamical model of series-resonant converter with peak capacitor voltage predictor and switching frequency control

    Science.gov (United States)

    Pietkiewicz, A.; Tollik, D.; Klaassens, J. B.

    1989-08-01

    A simple small-signal low-frequency model of an idealized series resonant converter employing peak capacitor voltage prediction and switching frequency control is proposed. Two different versions of the model describe all possible conversion modes. It is found that step down modes offer better dynamic characteristics over most important network functions than do the step-up modes. The dynamical model of the series resonant converter with peak capacitor voltage prediction and switching frequency programming is much simpler than such popular control stategies as frequency VCO (voltage controlled oscillators) based control, or diode conduction angle control.

  18. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  19. High voltage conversion ratio, switched C & L cells, step-down DC-DC converter

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Muntean, Nicolae; Cornea, Octavian;

    2013-01-01

    The paper presents a high voltage conversion ratio DC-DC step-down topology obtained from a classical buck converter associated with an input switched-capacitor cell and an output switched-inductor cell. Analytical descriptions, the voltage and current limits of the main components are synthesized...... in a comparative form, related to the classical buck structure, in order to emphasis the advantages of the proposed converter. Digital simulations and experimental results obtained with a built prototype are compared. From the first evaluation, the proposed converter is expected to be effectively used at input...

  20. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  1. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    Science.gov (United States)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  2. Analysis of Possibilities to Reduce the Voltages Induced in Multi-circuit and Multi-voltage Overhead Lines

    Directory of Open Access Journals (Sweden)

    Rafał Tarko

    2015-09-01

    Full Text Available This paper presents the issues of electromagnetic interactions in a four-circuit and dual-voltage power line. Such solutions are increasingly used in practice due to difficulties in land acquisition for the construction of new power lines. Lines of this type, however, have some disadvantages, incl. the electromagnetic interactions between the circuits and voltages induced as their consequence. These issues are considered in relation to an existing four-circuit, 110 kV and 15 kV line. Results of the studies of the interaction effects in a real system, and an analysis of selected ways to reduce the voltage induced in 15 kV line circuits are presented.

  3. A Simple Voltage Controlled Oscillator Using Bootstrap Circuits and NOR-RS Flip Flop

    Science.gov (United States)

    Chaikla, Amphawan; Pongswatd, Sawai; Sasaki, Hirofumi; Fujimoto, Kuniaki; Yahara, Mitsutoshi

    This paper presents a simple and successful design for a voltage controlled oscillator. The proposed circuit is based on the use of two identical bootstrap circuits and a NOR-RS Flip Flop to generate wide-tunable sawtooth and square waves. Increasing control voltage linearly increases the output oscillation frequency. Experimental results verifying the performances of the proposed circuit are in agreement with the calculated values.

  4. An Embedded Voltage Harmonic Compensation Strategy for Current Controlled DG Interfacing Converters

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    Harmonics have been considered as one of the major issues in future power grids. With the increasing demand in advanced control functions, power electronic converter interfaced Distributed Generators (DGs) are expected to perform harmonic compensation when necessary. It has been demonstrated in a...... voltage detection; 3) compared with conventional voltage detection based method, it offers better performance because of direct harmonic voltage regulation. Experimental results are presented to demonstrate the effectiveness of the method....... in a number of studies that DG converters operating in Voltage-Controlled Mode (VCM) can be easily configured to realize voltage harmonic suppression utilizing naturally embedded voltage control loop. While for DG converters operating in Current-Controlled Mode (CCM), such function was rarely studied....... Considering that CCM is commonly used in renewable energy based generators and energy storage systems, it has certain significance to achieve the same function with CCM operated converters. Aiming at such objective, this paper proposes a voltage detection based embedded Harmonic Compensator (HC) for CCM...

  5. Open circuit voltage characterization of lithium-ion batteries

    Science.gov (United States)

    Pattipati, B.; Balasingam, B.; Avvari, G. V.; Pattipati, K. R.; Bar-Shalom, Y.

    2014-12-01

    Several aspects of the open circuit voltage (OCV) characterization of Li-ion batteries as it applies to battery fuel gauging (BFG) in portable applications are considered in this paper. Accurate knowledge of the nonlinear relationship between the OCV and the state of charge (SOC) is required for adaptive SOC tracking during battery usage. BFG in portable applications requires this OCV-SOC characterization to meet additional constraints: (i) The OCV-SOC characterization has to be defined with a minimum number of parameters; (ii) It should be easily computable and invertible with few operations; and (iii) Computation of the model, its derivative and its inverse should be possible in a numerically stable way. With the help of OCV-SOC characterization data collected from 34 battery cells each at 16 different temperatures ranging from -25 °C to 50 °C, we present the following results in this paper: (a) A robust normalized OCV modeling approach that dramatically reduces the number of OCV-SOC parameters and as a result simplifies and generalizes the BFG across temperatures and aging, (b) Several novel functions for OCV modeling, (c) Efficient methods to simplify the computations of OCV functions, (d) Novel methods for OCV parameter estimation, and (e) A detailed performance analysis.

  6. An Impedance-Based Stability Analysis Method for Paralleled Voltage Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability...... is assessed based on a series of Nyquist diagrams drawn for the terminal impedance of each converter. Thus, the effect of the right half-plane zeros of terminal impedances in the derivation of impedance ratio for paralleled source-source converters is avoided. The interaction between the terminal impedance...... of converter and the passive network can also be predicted by the Nyquist diagrams. This method is applied to evaluate the current and voltage controller interactions of converters in both grid-connected and islanded operations. Simulations and experimental results verify the effectiveness of theoretical...

  7. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    Science.gov (United States)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  8. Voltage source ac-to-dc converters for high-power transmitters

    Science.gov (United States)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  9. A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. It generates a wide range of voltage reference ranging from sub- 1V to 1.221 7 V and has a low temperature coefficient of 2.3 × 10 - 5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1.221 685 ± 0.055 mV.

  10. DC-link voltage balancing in cascaded H-Bridge converters

    Directory of Open Access Journals (Sweden)

    Lewicki Arkadiusz

    2014-09-01

    Full Text Available In this paper a DC-link voltage balancing strategy for multilevel Cascaded H-Bridge (CHB converter is proposed. Presented solution bases on optimal choice of active vector durations in Space-Vector Pulse Width Modulation (SV-PWM. It makes it possible to DC-link voltages control and to properly generate the output voltage vector in the case of DC-link voltage unbalance. Results of simulation and experimental researches on proposed control strategy are presented in the paper

  11. Comparative Studies of Different Control Strategies of a Dynamic Voltage Restorer Based on Matrix Converter

    Directory of Open Access Journals (Sweden)

    Amin Shabanpour

    2012-01-01

    Full Text Available A dynamic voltage restorer (DVR with no energy storage is studied. By using a matrix converter instead of the conventional AC/DC/AC converters, elimination of the DC-link capacitor is possible. The switching algorithm of matrix converter is the space vector modulation. There are different compensation algorithms to control the conventional DVR. These methods have been analyzed in this paper for the proposed matrix-converter-based DVR. A deep analysis through different diagrams would show the advantages or disadvantages of each compensation method. Equations for all methods are derived, and the characteristics of algorithms are compared with each other.

  12. A Power Conditioning Stage Based on Analog-Circuit MPPT Control and a Superbuck Converter for Thermoelectric Generators in Spacecraft Power Systems

    Science.gov (United States)

    Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan

    2014-06-01

    A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.

  13. Active energy recovery clamping circuit to improve the performance of power converters

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  14. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  15. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  16. Low Power, Reduced Dynamic Voltage Swing Domino Logic Circuits

    OpenAIRE

    Salendra.Govindarajulu; Dr.T.Jayachandra Prasad; Rangappa, P

    2010-01-01

    Dynamic domino logic circuits are widely used in modern digital VLSI circuits. These dynamic circuits are often favoured in high performance designs because of the speed advantage offered over static CMOS logic circuits. The main drawbacks of dynamic logic are a lack of design automation, a decreased tolerance to noise and increased power dissipation. In this work, new reduced – swing domino logic techniques which provide significant low power dissipation as compared to traditional domino cir...

  17. Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

    Directory of Open Access Journals (Sweden)

    Ruiping Cao

    2014-01-01

    Full Text Available In high-speed applications, MOS current mode logic (MCML is a good alternative. Scaling down supply voltage of the MCML circuits can achieve low power-delay product (PDP. However, the current almost all MCML circuits are realized with dual-rail scheme, where the NMOS configuration in series limits the minimum supply voltage. In this paper, single-rail MCML (SRMCML circuits are described, which can avoid the devices configuration in series, since their logic evaluation block can be realized by only using MOS devices in parallel. The relationship between the minimum supply voltage of the SRMCML circuits and the model parameters of MOS transistors is derived, so that the minimum supply voltage can be estimated before circuit designs. An MCML dynamic flop-flop based on SRMCML is also proposed. The optimization algorithm for near-threshold sequential circuits is presented. A near-threshold SRMCML mode-10 counter based on the optimization algorithm is verified. Scaling down the supply voltage of the SRMCML circuits is also investigated. The power dissipation, delay, and power-delay products of these circuits are carried out. The results show that the near-threshold SRMCML circuits can obtain low delay and small power-delay product.

  18. Loss Distribution and Thermal Behaviour of the Y-source Converter for a Wide Power and Voltage Range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    The Y-source converter is one of the recent proposed impedance source converters. It has some advantages as having a high voltage gain between the input and output voltage sides using very small duty cycle ratios. For many applications, the input voltage needs to be boosted to higher output volta...

  19. Loss of Synchronism of Wind Turbine Converters during Low Voltage Grid Faults

    DEFF Research Database (Denmark)

    Göksu, Ömer; Sørensen, Poul Ejnar; Iov, Florin;

    2014-01-01

    In the recent grid codes, wind power plants are required to stay connected and inject reactive and active currents during grid short-circuit faults, even when the grid voltage drops down to zero. However, the physical fact, Loss of Synchronism (LOS) of wind turbines during these very low voltage ...... as whole. Additionally, existing methods to solve the LOS problem are briefly reviewed, and a closed loop frequency based solution is implemented within PowerFactory simulations of a detailed generic wind power plant model.......In the recent grid codes, wind power plants are required to stay connected and inject reactive and active currents during grid short-circuit faults, even when the grid voltage drops down to zero. However, the physical fact, Loss of Synchronism (LOS) of wind turbines during these very low voltage...

  20. Medium voltage three-level converters for the grid connection of a multi-MW wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig;

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter topo...

  1. Distributed Low Voltage Ride-Through Operation of Power Converters in Grid-Connected Microgrids under Voltage Sags

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Dragicevic, Tomislav;

    2015-01-01

    the voltage in all phases at AC common bus. However, since the line admittances from each converter to point of common coupling (PCC) are not identical, the injected reactive power may not be equally shared. In order to achieve low voltage ride through (LVRT) capability along with a good power sharing...... accuracy, a hierarchical control strategy is proposed in this paper. Droop control and virtual impedance is applied in primary control loop while secondary control loop is based on dynamic consensus algorithm (DCA). Experiments are conducted to verify the effectiveness of the proposed control strategy....

  2. A Comparative Study of Ultra-Low Voltage Digital Circuit Design

    Directory of Open Access Journals (Sweden)

    Aaron Arthurs

    2012-07-01

    Full Text Available Ultra-low voltage digital circuit design is an active research area, especially for portable applications such as wearable electronics, intelligent remote sensors, implantable medical devices, and energy-harvesting systems. Due to their application scenarios and circuit components, two major goals for these systems are minimizing energy consumption and improving compatibility with low-voltage power supplies and analog components. The most effective solution to achieve these goals is to reduce the supply voltage, which,however, raises the issue of operability. At ultra-low supply voltages, the integrity of digital signals degrades dramatically due to the indifference between active and leakage currents. In addition, the system timing becomes more unpredictable as the impact of process and supply voltage variations being more significant at lower voltages. This paper presents a comparative study among three techniques for designing digital circuits operating at ultra-low voltages, i.e., Schmitt-triggered gate structure, delayinsensitive asynchronous logic, and Fully-Depleted Silicon-on-Insulator technology. Results show that despite the tradeoffs, all eight combinations of these techniques are viable for designing ultra-low voltage circuits. For a given application, the optimum circuit design can be selected from these combinations based on the lowest voltage, the dynamic range, the power budget, the performance requirement, and the available semiconductor process node.

  3. A Comparative Study of Ultra-Low Voltage Digital Circuit Design

    Directory of Open Access Journals (Sweden)

    Aaron Arthurs,

    2012-06-01

    Full Text Available Ultra-low voltage digital circuit design is an active research area, especially for portable applications such as wearable electronics, intelligent remote sensors, implantable medical devices, and energy-harvesting systems. Due to their application scenarios and circuit components, two major goals for these systems are minimizing energy consumption and improving compatibility with low-voltage power supplies and analog components. The most effective solution to achieve these goals is to reduce the supply voltage, which,however, raises the issue of operability. At ultra-low supply voltages, the integrity of digital signals degrades dramatically due to the indifference between active and leakage currents. In addition, the system timing becomes more unpredictable as the impact of process and supply voltage variations being more significant at lower voltages. This paper presents a comparative study among three techniques for designing digital circuits operating at ultra-low voltages, i.e., Schmitt-triggered gate structure, delay insensitive asynchronous logic, and Fully-Depleted Silicon-on-Insulator technology. Results show that despite the trade offs, all eight combinations of these techniques are viable for designing ultra-low voltage circuits. For a given application, the optimum circuit design can be selected from these combinations based on the lowest voltage, the dynamic range, the power budget, the performance requirement, and the available semiconductor process node.

  4. CFD Simulation of Transonic Flow in High-Voltage Circuit Breaker

    Directory of Open Access Journals (Sweden)

    Xiangyang Ye

    2012-01-01

    Full Text Available A high-voltage circuit breaker is an indispensable piece of equipment in the electric transmission and distribution systems. Transonic flow typically occurs inside breaking chamber during the current interruption, which determines the insulating characteristics of gas. Therefore, accurate compressible flow simulations are required to improve the prediction of the breakdown voltages in various test duties of high-voltage circuit breakers. In this work, investigation of the impact of the solvers on the prediction capability of the breakdown voltages in capacitive switching is presented. For this purpose, a number of compressible nozzle flow validation cases have been presented. The investigation is then further extended for a real high-voltage circuit breaker geometry. The correlation between the flow prediction accuracy and the breakdown voltage prediction capability is identified.

  5. CLOSED LOOP CONTROL OF THREE PORT CONVERTER WITH HIGH VOLTAGE GAIN

    Directory of Open Access Journals (Sweden)

    Santhi Mary Antony A

    2015-08-01

    Full Text Available Photovoltaic (PV system is one of the best renewable energy sources for power generation system due to their pollution free and low cost properties. The PV cells has less efficiency compared to other source of power generation. The system efficiency is improved by reducing components count, which reduces the losses. In this paper a new three port converter (TPC is proposed for stand-alone renewable power applications. The proposed converter has three switches to achieve the power flow control. Single inductor is used for common energy transfer element for two different sources. The coupled inductor is used to increase the voltage conversion ratio with reasonable duty cycle. Thus the proposed converter has high voltage gain with less components count. The output voltage is regulated through feedback network. The system performance is verified through simulation results.

  6. Voltage-Balancing Method for Modular Multilevel Converters Switched at Grid Frequency

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2015-01-01

    The modular multilevel converter (MMC) becomes attractive for high-voltage and high-power applications due to its high modularity, availability, and power quality. The voltage balance issue of capacitors is very important in the MMC, and the balancing of the capacitor voltage is increasingly...... difficult as the switching frequency is reduced. In this paper, a voltage-balancing method is proposed for the MMC switched at grid frequency with reduced losses and does not rely on the arm current. By assigning the low-frequency pulses with different pulse widths, the capacitor charge transfer in the MMC...... can be controlled for keeping the capacitor voltage balancing in the MMC. Simulations and experimental studies of the MMC are conducted, and the results confirm the effectiveness of the proposed capacitor voltage-balancing method....

  7. An on-die ultra-low voltage DC-DC step-up converter with voltage doubling LC-tank

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroğlu, Ali

    2016-12-01

    In this paper we report the design, characterization and verification of a novel on-die ultra-low voltage DC-DC converter circuit for energy harvester applications in 0.18 µm complementary metal oxide semiconductor technology. The circuit self-starts, does not use off-chip components, and is thus suitable for use in highly integrated low cost systems. The first version of the design has a five-stage charge-pump stimulated by an oscillator with two center-tap inductors. It is validated on a test chip that this converter can boost 0.25 V-1.7 V for a 60 kΩ load with 15.5% maximum efficiency. The center-tap implementation leads to a 38% area reduction compared to the conventional four planar inductors. The proposed second version of the DC-DC design has a modified LC-tank with center-tap and planar hybrid inductors, which leads to a simulated step up from 0.2 V input to 1.65 V output for a 45 kΩ load with 35% maximum efficiency. The new boost implementation is hence expected to improve both power efficiency and output power capacity significantly compared to the first design, at a cost of a 31% layout area growth. The second revision in addition provides a 15% chip area reduction compared to the conventional four planar-inductor approach.

  8. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...... that the performance of VSCs varies with their control strategies. Negative-sequence current control is necessary to restrict converter current in each phase under unbalanced faults. Among presented control strategies, the balanced current control strategy complies with the present voltage support requirement best...... converters (VSCs) under unbalanced faults. Conventional positive-sequence synchronous reference frame (SRF) control is presented first, followed by three different negative-sequence current control strategies considering reactive power injection and converter current limit. The simulation results indicate...

  9. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    This paper evaluates two different implementations of a bidirectional flyback converter for driving a capacitive electro active actuator, which must be charged and discharged from 0 V to 2.5 kV DC and vice versa, supplied from a 24 V battery. In one implementation, a high voltage MOSFET (4 k...... by lower voltage rating MOSFETs driven by a gate drive transformer. Simulation results to compare the operation of conventional and proposed converters are provided. The advantages of proposed implementation are improved energy efficiency and lower cost. Experimental results with two series connected...

  10. 30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of low- and medium-voltage three... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.901 Protection of low- and medium-voltage three-phase circuits used underground. (a) Low- and medium-voltage three-phase alternating-current...

  11. SOI-Based High-Voltage, High-Temperature Integrated Circuit Gate Driver for SiC-Based Power FETs

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Mohammad A [ORNL; Tolbert, Leon M [ORNL; Blalock, Benjamin [University of Tennessee, Knoxville (UTK); Islam, Syed K [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimizing system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8-m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  12. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    Science.gov (United States)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  13. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  14. High-voltage integrated transmitting circuit with differential driving for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Færch, Kjartan Ullitz

    2016-01-01

    In this paper, a high-voltage integrated differential transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is presented. Due to its application, area and power consumption are critical and need to be minimized. The circuitry...... is designed and implemented in AMS 0.35 μ m high-voltage process. Measurements are performed on the fabricated integrated circuit in order to assess its performance. The transmitting circuit consists of a low-voltage control logic, pulse-triggered level shifters and a differential output stage that generates...... pulses at differential voltage levels of 60, 80 and 100 V, a frequency up to 5 MHz and a measured driving strength of 2.03 V/ns with the CMUT electrical model connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption at the ultrasound scanner operation...

  15. Low-Voltage Process-Compensated VCO with On-Chip Process Monitoring and Body-Biasing Circuit Techniques

    OpenAIRE

    Ueno, Ken; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2009-01-01

    A voltage-controlled oscillator (VCO) tolerant to process variations at lower supply voltage was proposed. The circuit consists of an on-chip threshold-voltage-monitoring circuit, a current-source circuit, a body-biasing control circuit, and the delay cells of the VCO. Because variations in low-voltage VCO frequency are mainly determined by that of the current in delay cells. a current-compensation technique was adopted by using an on-chip threshold-voltage-monitoring circuit and body-biasing...

  16. A novel single phase buck PFC converter in discontinuous capacitor voltage mode operation

    Institute of Scientific and Technical Information of China (English)

    邓超平; 凌志斌; 叶芃生

    2003-01-01

    A novel single-phase Buck converter for power factor correction is proposed. It features simple control due to the constant duty ratio PWM used. It can obtain unity power factor by selecting a suitable LC filter at its input to force the voltage of capacitor to operate in discontinuous capacitor voltage mode. And by using another resonant LC filter at its output, it can not only eliminate the input current distortion at the vicinity of the zero crossing of the supply but also drastically reduce the 100 Hz output voltage ripple. The validity of analysis is confirmed by simulation results and experimental results.

  17. High Voltage Bidirectional Flyback Converter Driving DEAP Actuator for Automotive Applications

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.;

    2013-01-01

    DEAP (Dielectric Electro Active Polymer) is a new type of smart material. The actuator based on DEAP material tends to be applied in a variety of occasions. It will have prosperous future when employed in automotive field. This paper is focused on the design and implementation of a low input volt...... voltage and high output voltage bidirectional converter for driving the DEAP actuator. The detailed design and implemented parameters have been summarized, especially for the high voltage transformer. The experiments have been performed to validate the design and implementation....

  18. Loading Analysis of Modular Multi-level Converter for Offshore High-voltage DC Application under Various Grid Faults

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang;

    2016-01-01

    The modular multi-level converter has become an interesting candidate in high-voltage DC systems due to its higher voltage levels and modular construction. Low-voltage ride-through is an important grid requirement for modular multi-level converter–high-voltage DC since not only causes control cha...... be of importance for the design of the cooling system....

  19. Novel Step-Up DC/DC Converter with No Right Half Plane Zero and Reduced Switched Voltage Stress Characteristics

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen

    2014-01-01

    Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state and the v...

  20. Optimal condition of memristance enhancement circuit using external voltage source

    Directory of Open Access Journals (Sweden)

    Hiroya Tanaka

    2014-05-01

    Full Text Available Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

  1. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-08-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  2. Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron

    2016-01-26

    A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.

  3. DC-DC converter with a wide load range and a wide input-voltage range

    NARCIS (Netherlands)

    Ting, Y.

    2015-01-01

    This thesis investigated the possibility of increasing the efficiency of a DC-DC converter over a wide load range and a wide input-voltage range based on the Single Active Bridge (SAB) topology with two approaches. The first approach involved making changes to the topology whereas the second made us

  4. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...

  5. Characterization of diode valve in medium voltage dc/dc converter for wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    This paper proposes a methodology for characterization of medium voltage (MV), medium frequency (MF) rectifier diode valve. The intended application is for 10MW dc/dc converters used in DC offshore wind turbines. Sensitivity to semiconductor component parameter variation, snubber component...

  6. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe;

    2015-01-01

    This paper evaluates two different implementations of a bidirectional flyback converter for driving a capacitive electro active actuator, which must be charged and discharged from 0 V to 2.5 kV DC and vice versa, supplied from a 24 V battery. In one implementation, a high voltage MOSFET (4 kV) in...

  7. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...

  8. Virtual RC Damping of LCL-Filtered Voltage Source Converters with Extended Selective Harmonic Compensation

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Active damping and harmonic compensation are two common challenges faced by LCL-filtered voltage source converters. To manage them holistically, this paper begins by proposing a virtual RC damper in parallel with the passive filter capacitor. The virtual damper is actively inserted by feeding back...... in the laboratory with results obtained for demonstrating stability and harmonic compensation....

  9. DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2015-01-01

    PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number, an...

  10. Nyquist AD Converters, Sensor Interfaces, and Robustness Advances in Analog Circuit Design, 2012

    CERN Document Server

    Baschirotto, Andrea; Steyaert, Michiel

    2013-01-01

    This book is based on the presentations during the 21st workshop on Advances in Analog Circuit Design.  Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.  Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of Nyquist A/D converters, capacitive sensor interfaces, reliability, variability, and connectivity.

  11. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter......This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  12. Loading Analysis of Modular Multi-level Converter for Offshore High-voltage DC Application under Various Grid Faults

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang;

    2016-01-01

    The modular multi-level converter has become an interesting candidate in high-voltage DC systems due to its higher voltage levels and modular construction. Low-voltage ride-through is an important grid requirement for modular multi-level converter–high-voltage DC since not only causes control...... challenges but may also result in overstressed components for the modular multi-level converter. However, the thermal loading of the modular multi-level converter under various grid faults has not yet been clarified. In this article, the power loss and thermal performance of the modular multi-level converter...... during grid voltage dips are studied. The impacts of two typical grid faults to the modular multi-level converter in terms of operating and loading conditions are analytically researched and simulated. It has been found that the operating and loading conditions of the modular multi-level converter under...

  13. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Science.gov (United States)

    2010-07-01

    ... underground. 75.802 Section 75.802 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as...

  14. Overview of power converter designs feasible for high voltage transformer-less wind turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    2011-01-01

    voltage design enables low power losses and elimination of bulky step-up transformer from the wind turbine system. However, new challenges appear for such topology, which have to be properly identified and successfully overcome. This paper presents possible concept for transformer-less wind turbine......Many leading wind turbine manufacturers are pushing forward in variable-speed wind turbines, often exceeding 5 MW. Therefore, novel designs and concepts for optimal high power wind turbines appeared. One of the most promising concepts is the high voltage (10-35 kV) transformer-less topology. High...... topology along with an overview of most promising candidates for optimal full-scale power converter design. Study is carried with proposed and justified high voltage wind turbine application along with selection of existing and most promising multilevel power converter topologies, which could...

  15. SSP Technology Investigation of a High-Voltage DC-DC Converter

    Science.gov (United States)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  16. Enhanced DC-Link Capacitor Voltage Balancing Control of DC–AC Multilevel Multileg Converters

    DEFF Research Database (Denmark)

    Busquets-Monge, Sergio; Maheshwari, Ram Krishan; Nicolas-Apruzzese, Joan

    2015-01-01

    This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc......-link voltage levels and converter legs (for single-phase and multiphase systems), guaranteeing the capacitor voltage control for any modulation index value and load (from idle mode to full power). The associated control loop small-signal transfer function is presented, from which optimum compensator design...... guidelines are derived. The improvement in control performance is verified through simulation and experiments comparing with a previous balancing control strategy in a four-level three-phase dc–ac conversion system. The satisfactory control performance is also verified through simulation in a four-level five...

  17. Series-connected substrate-integrated lead-carbon hybrid ultracapacitors with voltage-management circuit

    Indian Academy of Sciences (India)

    A Banerjee; R Srinivasan; A K Shukla

    2015-02-01

    Cell voltage for a fully charged-substrate-integrated lead-carbon hybrid ultracapacitor is about 2.3 V. Therefore, for applications requiring higher DC voltage, several of these ultracapacitors need to be connected in series. However, voltage distribution across each series-connected ultracapacitor tends to be uneven due to tolerance in capacitance and parasitic parallel-resistance values. Accordingly, voltage-management circuit is required to protect constituent ultracapacitors from exceeding their rated voltage. In this study, the design and characterization of the substrate-integrated lead-carbon hybrid ultracapacitor with co-located terminals is discussed. Voltage-management circuit for the ultracapacitor is presented, and its effectiveness is validated experimentally.

  18. What is the Best Converter for Low Voltage Fuel Cell Applications- A Buck or Boost?

    DEFF Research Database (Denmark)

    Nymand, Morten; Tranberg, René; Madsen, Mark E.;

    2009-01-01

    Amongst many converter topologies that have been proposed and developed for low voltage fuel cell applications, isolated full-bridge Buck and Boost converters appear to be the most popular. Although the Buck topology is considered to be superior in performance, for particularly being more efficient....... Experimental results of two 1.5 kW prototype Buck and Boost converter units are presented with detailed discussions, and the paper explains why, in contrary to the popular belief, a properly designed Boost topology is superior in performance to Buck topology and more appropriate for low voltage fuel cell......, this claim has never been proved with a ‘proper’ comparison to the Boost topology. This paper presents a comprehensive comparison between Buck and Boost topologies, which are designed for the same specifications and tested under the same and stringent operating conditions using precision measuring equipment...

  19. Voltage Tracking of a DC-DC Flyback Converter Using Neural Network Control

    Directory of Open Access Journals (Sweden)

    Wahyu Mulyo Utomo

    2012-01-01

    Full Text Available This paper proposes a neural network control scheme of a DC-DC Flyback converter that will step up a 12V DC and applied it on brushless DC motor with 12 and 24V dc. In this technique, a back propagation learning algorithm is derived. The controller is designed to track the output voltage of the DC-DC converter and to improve performance of the Flyback converter during transient operations. Furthermore, to investigate the effectiveness of the proposed controller, some operations such as starting-up and reference voltage variations are verified. The numerical simulation results show that the proposed controller has a better performance compare to the conventional PI-Controller method.

  20. What is the Best Converter for Low Voltage Fuel Cell Applications- A Buck or Boost?

    DEFF Research Database (Denmark)

    Nymand, Morten; Tranberg, René; Madsen, Mark E.

    2009-01-01

    Amongst many converter topologies that have been proposed and developed for low voltage fuel cell applications, isolated full-bridge Buck and Boost converters appear to be the most popular. Although the Buck topology is considered to be superior in performance, for particularly being more efficient......, this claim has never been proved with a ‘proper’ comparison to the Boost topology. This paper presents a comprehensive comparison between Buck and Boost topologies, which are designed for the same specifications and tested under the same and stringent operating conditions using precision measuring equipment....... Experimental results of two 1.5 kW prototype Buck and Boost converter units are presented with detailed discussions, and the paper explains why, in contrary to the popular belief, a properly designed Boost topology is superior in performance to Buck topology and more appropriate for low voltage fuel cell...

  1. A DC-Link Voltage Self-Balance Method for a Diode-Clamped Modular Multilevel Converter With Minimum Number of Voltage Sensors

    DEFF Research Database (Denmark)

    Gao, Congzhe; Jiang, Xinjian; Li, Yongdong

    2013-01-01

    Voltage balance issue of dc-link capacitors is very important for applications of a cascade multilevel converter or a modular multilevel converter. In this paper, a novel diode-clamped modular multilevel converter (DCM2C) topology is proposed and a power feedback control method is developed...

  2. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies......This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... are conducted, and the results have verified the proposed converter and control strategies....

  3. Fast response double series resonant high-voltage DC-DC converter

    Science.gov (United States)

    Lee, S. S.; Iqbal, S.; Kamarol, M.

    2012-10-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  4. Voltage Mode-to-Current Mode Transformation

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-10-01

    Full Text Available This paper proposes a procedure for converting a class of Op Amp-, FTFN-, CC- and CFAbased voltage mode circuits to corresponding current mode circuits without requiring any additional circuit elements and finally from Op Amp-based voltage mode circuits to any of the FTFN, CC and CFA current mode circuits. The latter circuits perform better at high frequency than the former ones. The validity of the transformation has been checked on simulated circuits with PSPICE.

  5. Voltage-Mode All-Pass Filters Including Minimum Component Count Circuits

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2007-01-01

    Full Text Available This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.

  6. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    Science.gov (United States)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  7. High-voltage integrated transmitting circuit with differential driving for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Færch, Kjartan Ullitz;

    2016-01-01

    In this paper, a high-voltage integrated differential transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is presented. Due to its application, area and power consumption are critical and need to be minimized. The circuitry...... is designed and implemented in AMS 0.35 μ m high-voltage process. Measurements are performed on the fabricated integrated circuit in order to assess its performance. The transmitting circuit consists of a low-voltage control logic, pulse-triggered level shifters and a differential output stage that generates...... conditions is 0.936 mW including the load. The integrated circuits measured prove to be consistent and robust to local process variations by measurements....

  8. Maximum Output Power Control Using Short-Circuit Current and Open-Circuit Voltage of a Solar Panel

    Science.gov (United States)

    Kato, Takahiro; Miyake, Takuma; Tashima, Daisuke; Sakoda, Tatsuya; Otsubo, Masahisa; Hombu, Mitsuyuki

    2012-10-01

    A control method to optimize the output power of a solar cell is necessary because the output of a solar cell strongly depends on solar radiation. We here proposed two output power control methods using the short-circuit current and open-circuit voltage of a solar panel. One of them used a current ratio and a voltage ratio (αβ control), and the other used a current ratio and a short-circuit current-electric power characteristic coefficient (αγ control). The usefulness of the αβ and the αγ control methods was evaluated. The results showed that the output power controlled by our proposed methods was close to the maximum output power of a solar panel.

  9. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core......, baluns and combiners. Single ended and balanced configurations DC and AC coupled have been investigated. The instantaneous 3 dB bandwidth at both the RF and the IF port of the frequency converters is ∼ 20 GHz with excellent amplitude and phase linearity. The predicted conversion gain is around 10 d...

  10. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Ma

    2015-08-01

    Full Text Available We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  11. Improved direct power control of a grid-connected voltage source converter during network unbalance

    Institute of Scientific and Technical Information of China (English)

    Peng ZHOU; Wei ZHANG; Yi-kang HE; Rong ZENG

    2010-01-01

    This paper deals with an improved direct power control(DPC)strategy for the pulse width modulation(PWM)voltage source converter(VSC)under unbalanced grid voltage conditions.In order to provide enhanced control performance for the VSC,the resonant controllers tuned at the double grid frequency are applied in the DPC design to eliminate the power pulsations and dc link voltage ripples produced by the transient unbalanced grid faults.In this way,the output power and dc link voltage of the VSC can be directly regulated without positive and negative sequential decomposition.As a result,and as has been verified by experiment,the proposed method can provide fast dynamic response with easy implementation.

  12. A 5-bit time to digital converter using time to voltage conversion and integrating techniques for agricultural products analysis by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Mahdi Rezvanyvardom

    2014-12-01

    Full Text Available Time to digital converter (TDC is a key block for time-gated single photon avalanche diode (SPAD arrays for Raman spectroscopy that applicable in the agricultural products and food analysis. In this paper a new dual slope time to digital converter that employs the time to voltage conversion and integrating techniques for digitizing the time interval input signals is presented. The reference clock frequency of the TDC is 100 MHz and the input range is theoretically unlimited. The proposed converter features high accuracy, very small average error and high linear range. Also this converter has some advantages such as low circuit complexity, low power consumption and low sensitive to the temperature, power supply and process changes (PVT compared with the time to digital converters that used preceding conversion techniques. The proposed converter uses an indirect time to digital conversion method. Therefore, our converter has the appropriate linearity without extra elements. In order to evaluate the proposed idea, an integrating time to digital converter is designed in 0.18 μm CMOS technology and was simulated by Hspice. Comparison of the theoretical and simulation results confirms the proposed TDC operation; therefore, the proposed converter is very convenient for applications which have average speed and low variations in the signal amplitude such as biomedical signals.

  13. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  14. Design and Implementation of Voltage-Mode MIN/MAX Circuits

    Directory of Open Access Journals (Sweden)

    M. Soleimani

    2015-12-01

    Full Text Available In this paper, a general architecture for analog implementation of MIN/MAX and other rank order circuits is presented. Based on general architecture, proposed MIN/MAX circuits are implemented. The proposed circuits are composed of a differential amplifier with merged n-inputs and a MCSAL circuit to choose the desired input. The advantages of the proposed structure are simplicity, very high resolution, very low supply voltage requirements, very low output resistor, low power dissipation, low active area and simple expansion for multiple inputs by adding only three transistors for each extra input. The post-layout simulation results of proposed circuits are presented by HSPICE software in 0.35-µm CMOS process technology. The total power dissipation of proposed circuits is about 110-µW. Also, the total active area is about 550-µm2 for five-input proposed circuits, and would be negligibly increased for each extra input.

  15. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... is presented, and a dual voltage control strategy is then proposed, which comprises one voltage loop implemented in the synchronous reference frame for active power balancing, and another one implemented in the harmonic reference frame for ripple power compensation. Special attention is given to the bandwidth...

  16. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    Science.gov (United States)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  17. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all high-voltage, resistance grounded systems shall include a fail safe ground check circuit or other no less effective device... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on...

  18. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance...

  19. Effect of Circuit Breaker Shunt Resistance on Chaotic Ferroresonance in Voltage Transformer

    Directory of Open Access Journals (Sweden)

    RADMANESH, H.

    2010-08-01

    Full Text Available Ferroresonance or nonlinear resonance is a complex electrical phenomenon, which may cause over voltages and over currents in the electrical power system which endangers the system reliability and continuous safe operating. This paper studies the effect of circuit breaker shunt resistance on the control of chaotic ferroresonance in a voltage transformer. It is expected that this resistance generally can cause ferroresonance dropout. For confirmation this aspect Simulation has been done on a one phase voltage transformer rated 100VA, 275kV. The magnetization characteristic of the transformer is modeled by a single-value two-term polynomial with q=7. The simulation results reveal that considering the shunt resistance on the circuit breaker, exhibits a great mitigating effect on ferroresonance over voltages. Significant effect on the onset of chaos, the range of parameter values that may lead to chaos along with ferroresonance voltages has been obtained and presented.

  20. Dynamics of voltage source converter in a grid connected solar photovoltaic system

    DEFF Research Database (Denmark)

    Haribabu, Divyanagalakshmi; Vangari, Adithya; Sakamuri, Jayachandra N.

    2015-01-01

    This paper emphasises the modelling and control of a voltage source converter (VSC) for three phase grid connected PV system. The transfer functions for inner current control and outer DC link voltage control for VSC are derived. The controllers for VSC are designed based on PI and K factor contr...... conditions. The effectiveness of the proposed controller is illustrated by evaluating the response of PV system for power system voltage sag and swell conditions as well as grid faults.......This paper emphasises the modelling and control of a voltage source converter (VSC) for three phase grid connected PV system. The transfer functions for inner current control and outer DC link voltage control for VSC are derived. The controllers for VSC are designed based on PI and K factor control...... methods and the performance of VSC using both the methods are presented with the simulations performed using PSCAD/EMTDC. The design of LC filter to meet the specified THD requirement for grid connected VSC is presented and the corresponding harmonic analysis is performed for different solar radiation...

  1. On-chip frequency compensation with a dual signal path operational transconductance amplifier for a voltage mode control DC/DC converter

    Science.gov (United States)

    Qiang, Ye; Jie, Liu; Bing, Yuan; Xinquan, Lai; Ning, Liu

    2012-04-01

    A novel on-chip frequency compensation circuit for a voltage-mode control DC/DC converter is presented. By employing an RC network in the two signal paths of an operational transconductance amplifier (OTA), the proposed circuit generates two zeros to realize high closed-loop stability. Meanwhile, full on-chip integration is also achieved due to its simple structure. Hence, the number of off-chip components and the board space is greatly reduced. The structure of the dual signal path OTA is also optimized to help get a better transition response. Implemented in a 0.5 μm CMOS process, the voltage mode control DC/DC converter with the proposed frequency compensation circuit exhibits good stability. The test results show that both load and line regulations are less than 0.3%, and the output voltage can be recovered within 15 μs for a 400 mA load step. Moreover, the compensation components area is less than 2% of the die's area and the board space is also reduced by 11%. The efficiency of the whole chip can be up to 95%.

  2. Thermal Stress Analysis of Medium-Voltage Converters for Smart Transformers

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; De Carne, Giovanni

    2017-01-01

    . To address this concern, this work conducts thermal stress analysis for a modular multilevel converter (MMC), which is a promising solution for the medium voltage stage of the ST. The focus is put on the mission profiles of the transformer and the impact on the thermal stress of power semiconductor devices....... Normal operation at different power levels and medium voltage grid faults in a feeder fed by a traditional transformer are considered as well as the electrical and the thermal stress of the disconnection and the reconnection procedures. For the validation, the thermal stress of one MMC cell is reproduced...

  3. Estimation of the Plant Time Constant of Current-Controlled Voltage Source Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Malvar, Jano

    2014-01-01

    Precise knowledge of the plant time constant is essential to perform a thorough analysis of the current control loop in voltage source converters (VSCs). As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included...... of the VSC interface filter measured at rated conditions. This paper extends that method so that both parameters of the plant time constant (resistance and inductance) are estimated. Such enhancement is achieved through the evaluation of the closed-loop transient responses of both axes of the synchronous...

  4. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Li, YunWei; Blaabjerg, Frede;

    2015-01-01

    The virtual impedance concept is increasingly used for the control of power electronic systems. Generally, the virtual impedance loop can either be embedded as an additional degree of freedom for active stabilization and disturbance rejection, or be employed as a command reference generator...... for the converters to provide ancillary services. This paper presents an overview of the virtual-impedance-based control strategies for voltage-source and current-source converters. The control output impedance shaping attained by the virtual impedances is generalized first using the impedance-based models...

  5. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    Science.gov (United States)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  6. Inductor based switching DC-DC converter for low voltage power distribution in SLHC

    CERN Document Server

    Michelis, S; Marchioro, A; Kayal, M; PH-EP

    2007-01-01

    In view of a power distribution scheme compatible with the requirements of the SLHC environment, we are evaluating the feasibility of on-board inductor-based DC-DC step-down conversion. Such converter should be an integrated circuit and capable of operating in harsh radiation environments and in the high magnetic field of the experiments. In this paper we present results concerning the choice of the technology, the search for the magnetic components and the calculations of the expected efficiency.

  7. Integrated Circuit of CMOS DC-DC Buck Converter with Differential Active Inductor

    Directory of Open Access Journals (Sweden)

    Kaoutar Elbakkar

    2011-11-01

    Full Text Available In this paper, we propose a new design of DC-DC buck converter (BC, which the spiral inductor is replaced by a differential gyrator with capacitor load (gyrator-C implemented in 0.18um CMOS process. The gyrator-C transforms the capacitor load (which is the parasitic capacitor of MOSFETS to differential active inductor DAI. The low-Q value of DAI at switching frequency of converter (few hundred kHz is boosted by adding a negative impedance converter (NIC. The transistor parameters of DAI and NIC can be properly chosen to achieve the desirable value of equivalent inductance L (few tens H, and the maximum-Q value at the switching frequency, and thus the efficiency of converter is improved. Experimental results show that the converter supplied with an input voltage of 1V, provides an output voltage of 0.74V and output ripple voltage of 10mV at 155 kHz and Q-value is maximum (#8776;4226 at this frequency.

  8. On-line condition monitoring systems for high voltage circuit breakers : a collaborative research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A three year field project was initiated to review and evaluate the state of the art in on-line conditioning monitoring technology for a high voltage (240 kV SF6) circuit breaker located at Dorsey Converter Station. The ELF breaker is a three independent pole design which allows for three separate monitoring systems. This project involved the installation of a different type of monitoring system on each phase and incorporated many types of transducers. Each monitoring system measured the same basic parameters including contact travel, 'a' and 'b' auxiliary contacts, phase currents, coil currents, heater and pump current, plus SF6/CF4 pressure and temperature. Over the entire monitoring period the breaker was operated over 700 times at rated voltage and an additional 300 times during maintenance. Temperature conditions ranged from -35 to +30 degrees C. The use of on-line monitoring provided many valuable results and enhanced the knowledge base for the apparatus under the test. It was determined that on-line monitoring of HV circuit breakers has potential, but installation has to be considered carefully. Monitoring systems can offer improvement in the understanding of how circuit breakers work and provide input into RCM programs. However, monitoring systems themselves are subject to failure and require maintenance and attention. 2 refs., 2 tabs., 7 figs.

  9. Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    DEFF Research Database (Denmark)

    Hassanzadeh, Fattah; Sangrody, Hossein; Hajizadeh, Amin

    2017-01-01

    . In addition, the converter in PMSG operating wind turbine decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid...... side converter is organized to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected into the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its...

  10. ZVS Full-Bridge Based DC-DC Converter with Linear Voltage Gain According to Duty Cycle

    Science.gov (United States)

    Do, Hyun-Lark

    2013-09-01

    This paper presents a zero-voltage-switching (ZVS) full-bridge based DC-DC converter with linear voltage gain according to duty cycle. The proposed converter is based on an asymmetrical pulse-width-modulation (APWM) full-bridge converter which has various advantages over other converters. However, it has some drawbacks such as limited maximum duty cycle to 0.5 and narrow input range. The proposed converter overcomes these problems. The duty cycle is not limited and input voltage range is wide. Also, the ZVS operation of all power switches is achieved. Therefore, switching losses are significantly reduced and high-efficiency is obtained. Steady-state analysis and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter.

  11. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...

  12. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  13. A PAC Based Current Feedforward Control for Three-Phase PWM Voltage-Type Converter

    Institute of Scientific and Technical Information of China (English)

    屈克庆; 陈国呈; 孙承波

    2004-01-01

    This paper presents a novel current feedforward control strategy for a three-phase pulse-width modulation (PWM) DC voltage-type converter based on phase and amplitude control (PAC). With right-angle triangle relation of phasors and principle of conservation of energy, a phasor adjustment method and the relevant low-frequency mathematical model of the system are analyzed in detail, both in rectification and regeneration modes for the converter, are discussed. For improving the traditional PAC dynamic performance, variable load current is detected indirectly by the change of the DC voltage, which is fed to the control system as an additional control variable to generate modulation index and phase angle. Also, the algorithm is derived and the system principle is introduced. Experimental results from a 3 kw laboratory device are included to demonstrate the effectiveness of the proposed control strategy.

  14. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...

  15. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  16. Soft switching (ZVZCS) high current, low voltage modular power converter (13 kA, 16 V)

    CERN Document Server

    Bordry, Frederick; Thiesen, H

    2001-01-01

    The Large Hadron Collider (LHC) is the next accelerator being constructed at the European Laboratory for Particle Physics (CERN). The superconducting LHC particle accelerator requires high currents (13 kA) and relatively low voltages (16 V) for its magnets. This paper describes the development and the production of a (13 kA, 16 V) power converter. The converter is made with a modular concept with five current sources (3.25 kA, 16 V) in parallel. The 3.25 kA sources are built as plug-in modules: a diode rectifier on the AC mains, a zero voltage zero current switching (ZVZCS) inverter working at 25 k Hz and an output stage. The obtained performance is presented and discussed. (6 refs).

  17. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  18. Simulation Analysis for Opening Performance of Medium Voltage Vacuum Circuit Breaker Based on ADAMS and Maxwell

    Directory of Open Access Journals (Sweden)

    Ding Xianliang

    2017-01-01

    Full Text Available The circuit breakers play a important role in control and protect the power systemand the vacuum circuit breaker has beenwidely used in the field of medium voltage with its excellent opening performance.Virtual prototyping technology is alsobecamemore and more popularin design and optimization of the vacuum circuit breaker. In this paper, the electromagnetic simulation software Ansoft Maxwell is used to analyze the electric repulsion of the circuit breaker in the case of open the rated short circuit breaking current. The 3D model that wasbuilt by CREOis imported into ADAMS. Thenconstraints, contact force, and the electric repulsion forcethat was analysezed in Ansoft Maxwell is added into the 3D model.Therefore, we can carry on the multi-body dynamics simulation to the 3D model. Then We can get the openingperformance of the vacuum circuit breakerin the condition of open circuit rated short circuit breaking current. The simulation results show that the circuit breaker can still meet the performance requirements in the condition of open circuit rated short circuit breaking current.

  19. Voltage Control Scheme with Distributed Generation and Grid Connected Converter in a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Jong-Chan Choi

    2014-10-01

    Full Text Available Direct Current (DC microgrids are expected to become larger due to the rapid growth of DC energy sources and power loads. As the scale of the system expends, the importance of voltage control will be increased to operate power systems stably. Many studies have been performed on voltage control methods in a DC microgrid, but most of them focused only on a small scale microgrid, such as a building microgrid. Therefore, a new control method is needed for a middle or large scale DC microgrid. This paper analyzes voltage drop problems in a large DC microgrid and proposes a cooperative voltage control scheme with a distributed generator (DG and a grid connected converter (GCC. For the voltage control with DGs, their location and capacity should be considered for economic operation in the systems. Accordingly, an optimal DG allocation algorithm is proposed to minimize the capacity of a DG for voltage control in DC microgrids. The proposed methods are verified with typical load types by a simulation using MATLAB and PSCAD/EMTDC.

  20. A sensorless control method for capacitor voltage balance and circulating current suppression of modular multilevel converter

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    There are several problems in the Modular Multilevel Converter (MMC), such as the appearance of circulating current, capacitor voltage unbalance and the requirement for a high number of sensors. All these problems will decrease the reliability and raise the cost/uncertainty of using MMC solutions....... As a result, a sensorless control method is proposed in this paper, which targets to improve the performances of MMC in respect to the above mentioned disadvantages: To decrease the cost and simplify the physical implementation, a state observer is proposed and designed to estimate both the capacitor voltages...... and the circulating currents in order to replace the high numbers of sensors. Furthermore, a control method combining the circulating current suppression and the capacitor voltage balancing is conducted based on the proposed state observer. It is concluded that the proposed state observer and control method can...

  1. A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter

    Science.gov (United States)

    Xin, Tian; Xiangxin, Liu; Wenhong, Li

    2010-07-01

    This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 μm CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.

  2. A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Tian Xin; Liu Xiangxin; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-07-15

    This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 {mu}m CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.

  3. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  4. Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips

    Directory of Open Access Journals (Sweden)

    Fenglin Miao

    2015-10-01

    Full Text Available The impact of converter control strategies on the drive train of wind turbines during voltage dips is investigated in this paper using a full electromechanical model. Aerodynamics and tower vibration are taken into consideration by means of a simulation program, named FAST. Detailed gearbox and electrical subsystems are represented in MATLAB. The dynamic response of electromagnetic torque and its impact on the mechanical variables are the concern in this paper and the response of electrical variables is less discussed. From the mechanical aspects, the effect of rising power recovery speed and unsymmetrical voltage dips are analyzed on the basis of the dynamic response of the high-speed shaft (HSS. A comparison of the impact on the drive train is made for two converter control strategies during small voltage dips. Through the analysis of torque, speed and tower vibration, the results indicate that both power recovery speed and the sudden torque sag have a significant impact on drive trains, and the effects depend on the different control strategies. Moreover, resonance might be excited on the drive train by an unbalanced voltage.

  5. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Science.gov (United States)

    Hayashi, K.; Saitoh, K.; Shibayama, Y.; Shirahama, K.

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 106 V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  6. Low-power operation using self-timed circuits and adaptive scaling of the supply voltage

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Niessen, C.; Sparsø, Jens

    1994-01-01

    Recent research has demonstrated that for certain types of applications like sampled audio systems, self-timed circuits can achieve very low power consumption, because unused circuit parts automatically turn into a stand-by mode. Additional savings may be obtained by combining the self...... of voltage scaling has been used previously in synchronous circuits, and the contributions of the present paper are: 1) the combination of supply scaling and self-timed circuitry which has some unique advantages, and 2) the thorough analysis of the power savings that are possible using this technique.>......-timed circuits with a mechanism that adaptively adjusts the supply voltage to the smallest possible, while maintaining the performance requirements. This paper describes such a mechanism, analyzes the possible power savings, and presents a demonstrator chip that has been fabricated and tested. The idea...

  7. Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    R. Arulmurugan

    2012-10-01

    Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.

  8. Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    R. Arulmurugan

    2013-07-01

    Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.

  9. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  10. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  11. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  12. On-line Monitoring System based on Vibration Signal of High Voltage Circuit Breaker

    Directory of Open Access Journals (Sweden)

    Chao Fu

    2014-04-01

    Full Text Available High voltage circuit breaker is one of the most important switch apparatus in electrical power system. It play a role in the switch control, which can be used to switch the operating mode during normal operation (the equipment run or quit. In order to ensure the normal operation of the grid, it can be removed quickly when a malfunction on the device or circuit. Real-time online monitoring of high voltage circuit breaker can understand the running status, master the operation characteristics and its tend of development. As early as possible find the potential faults then take preventive measures timely, so as to ensure the reliable operation of power system. Online monitoring of high voltage circuit breakers can reduce the premature or unnecessary maintenance and maintenance cost, improve pertinence of the maintenance firstly. Secondly, it can improve the life of the switching device and improve the reliability of electric power system significantly. In this paper, on-line monitoring system based on vibration signal of high voltage circuit breaker is presented

  13. Design and optimization of LCL-VSC grid-tied converter having short circuit fault current limiting ability

    Science.gov (United States)

    Liu, Mengqi; Liu, Haijun; Wang, Zhikai

    2017-01-01

    Traditional LCL grid-tied converters haven't the ability to limit the short-circuit fault current and only remove grid-connected converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system is set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.

  14. Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V.

    Science.gov (United States)

    Liu, Wenqing; Li, Shuixing; Huang, Jiang; Yang, Shida; Chen, Jiehuan; Zuo, Lijian; Shi, Minmin; Zhan, Xiaowei; Li, Chang-Zhi; Chen, Hongzheng

    2016-11-01

    Small-molecule nonfullerene-based tandem organic solar cells (OSCs) are fabricated for the first time by utilizing P3HT:SF(DPPB)4 and PTB7-Th:IEIC bulk heterojunctions as the front and back subcells, respectively. A power conversion efficiency of 8.48% is achieved with an ultrahigh open-circuit voltage of 1.97 V, which is the highest voltage value reported to date among efficient tandem OSCs.

  15. Analog circuit design structured mixed-mode design, multi-bit sigma-delta converters, short range RF circuits

    CERN Document Server

    van Roermund, Arthur

    2007-01-01

    Preface. Part I: Structured Mixed-Mode Design. Introduction. Structured Oscillator Design; C. Verhoeven, A. van Staveren. Systematic Design of High-frequency gm-C Filters; E. Lauwers, G. Gielen. Structured LNA Design; E.H. Nordholt. High-Level Simulation and Modeling Tools for Mixed-Signal Front-ends of Wireless Systems; P. Wambacq, et al. Structured Simulation-Based Analog Design Synthesis; R.A. Rutenbar. Structured Analog layout Design; K. Lampaert. Part II: Multi-Bit Sigma Delta Converters. Introduction. Architecture Considerations for Multi-Bit SigmaDelta ADCs; T. Brooks. Multirate Sigma-Delta Modulators, an Alternative to Multibit; F. Colodro, A. Torralba. Circuit Design Aspects of Multi-Bit Delta-Sigma Converters; Y. Geerts, et al. High-speed Digital to Analog Converter Issues with Applications to Sigma Delta Modulators; K. Doris, et al. Correction-Free Multi-Bit Sigma-Delta Modulators for ADSL; R. del Rio, et al. Sigma Delta Converters in Wireline Communications; A. Wiesbauer, et al. Part III: Short Ra...

  16. Operating Circuit Fault Diagnosis of High Voltage Circuit Breaker%高压断路器操作回路的故障诊断

    Institute of Scientific and Technical Information of China (English)

    赵红宇; 龙树峰

    2015-01-01

    This paper analyzes and studies the fault diagnosis operation requirements of high voltage circuit breaker operation circuit and the fault diagnosis method of high voltage circuit breaker.%本文对高压断路器操作回路的故障诊断操作要求和高压断路器操作回路的故障诊断方法进行了分析和研究。

  17. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William;

    2014-01-01

    within a safe and pre-defined range. A theoretical treatment of the INEC algorithm and its implementation and integration within a conventional VSC control system are presented, and the impact on the total DC capacitance required within the MTDC network to ensure that DC voltages vary within...... an acceptable range are discussed. The proposed INEC scheme is validated using a Matlab/Simulink model under various changes in demand and in response to AC network faults. The model incorporates a multi-machine AC power system connected to a MTDC transmission system with multiple converter-interfaced nodes....... The effectiveness of the INEC in damping post-fault oscillations and in enhancing AC system frequency stability is also investigated. The system is shown to perform well and is attractive for providing a stable MTDC system that is capable of providing valuable support to the connected AC systems....

  18. Complemenary body driving - a low voltage analog circuit technique for SOI

    Science.gov (United States)

    Mojarradi, M. M.; Terry, S.; Blalock, B. J.; Yong, L.; Dufrene, B.

    2002-01-01

    This paper describes several analog circuit primitives that utilize the body terminal as a signal port. A cascode current mirror that can operate with an input and output voltage of 200 mV; and a rail-to-rail, constant transconductance gain block capable of 1 V operation are presented. These circuits have been implemented in a standard 0.351 partially-depleted Silicon-on-Insulator (PDSOI) CMOS process and should find wide application in next-generation analog circuit designs.

  19. Accelerated commutation for passive clamp isolated boost converters

    OpenAIRE

    2002-01-01

    An efficient and cost effective bidirectional DC/DC converter reduces switch voltage stress via accelerated commutation allowing use of a low-cost passive clamp circuit in boost mode. The converter includes a primary circuit, transformer and secondary circuit. The primary circuit takes the form of a “full bridge converter,” a “push-pull converter,” or an “L-type converter.”. The primary circuit may include a dissipator such as a snubber circuit or small buck converter. A secondary side of the...

  20. High performance dc-dc conversion with voltage multipliers. [using transformerless capacitor diode circuit

    Science.gov (United States)

    Harrigill, W. T., Jr.; Myers, I. T.

    1974-01-01

    An experimental 100W 1000V dc-dc converter using a capacitor diode voltage multipler (CDVM) with a nominal frequency of 100 kHz is studied. A component weight of about 1 kg/kW was obtained. Design equations for current, output -ripple and -power, efficiency and output voltage are derived. Agreement between experimental results and calculations is fairly good except for ripple.

  1. Ultra-low-voltage design of energy-efficient digital circuits

    CERN Document Server

    Reynders, Nele

    2015-01-01

    This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.

  2. Modeling and Capacitors Voltage Balancing Control of STATCOM Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Milad Samady Shadlu

    2016-12-01

    Full Text Available Modular multilevel converter (MMC provides a new concept in a wide range of applications due to its simple topology and high reliability. In this paper, a three phase four legs modular multilevel converter is used as a compensator in a four-wire network which feeds an unbalanced and distorted custom load. The purpose is to compensate this unbalance load currents by injection suitable currents besides the capacitors voltage balancing control in individual legs. In this paper, designing of compensator current controller will be done based on a composite control model (CCM combined of average model and predictive control method. Also an independent controller has been proposed for capacitors voltage balancing whose task is to eliminate the circulating current oscillations in each leg. In order to control total energy stored in converter and also to remove the zero sequence current, two simple control schemes have been presented based on PI controller and closed loop controller, respectively. Finally simulation results have been presented in MATLAB/Simulink to confirm effectiveness and accuracy of proposed controller.

  3. Short-circuit fault analysis and isolation strategy for matrix converters

    Institute of Scientific and Technical Information of China (English)

    王莉娜; L De Lillo; C Brunson; L Empringham; P Wheeler

    2015-01-01

    The behavior of matrix converter (MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses (HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.

  4. Battery open-circuit voltage estimation by a method of statistical analysis

    NARCIS (Netherlands)

    Snihir, Iryna; Rey, William; Verbitskiy, Evgeny; Belfadhel-Ayeb, Afifa; Notten, Peter H.L.

    2006-01-01

    The basic task of a battery management system (BMS) is the optimal utilization of the stored energy and minimization of degradation effects. It is critical for a BMS that the state-of-charge (SoC) be accurately determined. Open-circuit voltage (OCV) is directly related to the state-of-charge of the

  5. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    Science.gov (United States)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  6. Improvement of high-voltage staircase drive circuit waveform for high-intensity therapeutic ultrasound

    Science.gov (United States)

    Tamano, Satoshi; Jimbo, Hayato; Azuma, Takashi; Yoshizawa, Shin; Fujiwara, Keisuke; Itani, Kazunori; Umemura, Shin-Ichiro

    2016-07-01

    Recently, in the treatment of diseases such as cancer, noninvasive or low-invasive modality, such as high-intensity focused ultrasound (HIFU), has been put into practice as an alternative to open surgery. HIFU induces thermal ablation of the target tissue to be treated. To improve the efficiency of HIFU, we have proposed a “triggered-HIFU” technique, which uses the combination of a short-duration, high-voltage transmission and a long-duration, medium-voltage transmission. In this method, the transmission device must endure high peak voltage for the former and the high time-average power for the latter. The triggered-HIFU sequence requires electronic scanning of the HIFU focus to maximize its thermal efficiency. Therefore, the transmission device must drive an array transducer with the number of elements on the order of a hundred or more, which requires that each part of the device that drives each element must be compact. The purpose of this work is to propose and construct such a transmission device by improving the staircase drive circuit, which we previously proposed. The main point of improvement is that both N and P MOSFETs are provided for each staircase voltage level instead of only one of them. Compared with the previous ultrasonic transmission circuit, high-voltage spikes were significantly reduced, the power consumption was decreased by 26.7%, and the transmission circuit temperature rise was decreased by 14.5 °C in the triggered-HIFU heating mode.

  7. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    Institute of Scientific and Technical Information of China (English)

    CHENG Zai-Jun; SAN Hai-Sheng; CHEN Xu-Yuan; LIU Bo; FENG Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated.Under the irradiation of a 4× 4mm2 planar solid 63Ni source with an activity of 2mCi,the open-circuit voltage Voc of the fabricated single 2x2mm2 cell reaches as high as 1.62 V,the short-circuit current density Jsc is measured to be 16nA/cm2.The microbattery has a fill factor of 55%,and the energy conversion effciency of beta radiation into electricity reaches to 1.13%.The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices.

  8. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.

    Science.gov (United States)

    Li, G; Wu, S C; Zhou, Z B; Bai, Y Z; Hu, M; Luo, J

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10(-8) m/s(2)/Hz(1/2) at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  9. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries

    Science.gov (United States)

    Pavelka, Michal; Wandschneider, Frank; Mazur, Petr

    2015-10-01

    Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.

  10. Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters

    Science.gov (United States)

    Khatir, Mohamed; Zidi, Sid-Ahmed; Hadjeri, Samir; Fellah, Mohammed-Karim

    2010-01-01

    The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.

  11. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  12. Design of 6-Bit Flash Analog to Digital Converter Using Variable Switching Voltage CMOS Comparator

    Directory of Open Access Journals (Sweden)

    Gulrej Ahmed

    2014-04-01

    Full Text Available This paper presents the design of 6-bit flash analog to digital Converter (ADC using the new variable switching voltage (VSV comparator. In general, Flash ADCs attain the highest conversion speed at the cost of high power consumption. By using the new VSV comparator, the designed 6-bit Flash ADC exhibits significant improvement in terms of power and speed of previously reported Flash ADCs. The simulation result shows that the converter consumes peak power 2.1 mW from a 1.2 V supply and achieves the speed of 1 GHz in a 65nm standard CMOS process. The measurement of maximum differential and integral nonlinearities (DNL and INL of the Flash ADC are 0.3 LSB and 0.6 LSB respectively.

  13. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  14. Estimation of the Plant Time Constant of Current-Controlled Voltage Source Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Malvar, Jano;

    2014-01-01

    Precise knowledge of the plant time constant is essential to perform a thorough analysis of the current control loop in voltage source converters (VSCs). As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included...... of the VSC interface filter measured at rated conditions. This paper extends that method so that both parameters of the plant time constant (resistance and inductance) are estimated. Such enhancement is achieved through the evaluation of the closed-loop transient responses of both axes of the synchronous...... in the model, through an equivalent series resistance. In a recent work, an algorithm to identify this parameter was developed, considering the inductance value as known and practically constant. Nevertheless, the plant inductance can also present important uncertainties with respect to the inductance...

  15. NEMO medium voltage converter factory acceptance, operational and final integration tests

    Science.gov (United States)

    Cocimano, Rosanna; NEMO Collaboration

    2011-01-01

    The NEMO Collaboration, as part of the KM3NeT EU-funded consortium, is developing technical solutions for the construction of a cubic-kilometer scale neutrino telescope in the Mediterranean sea several kilometers below the sea level and far from the shore. In this framework, after years of design, development, assembly and testing the Alcatel deep sea medium voltage power converter (MVC) is ready for deployment at 100 km from the Capo Passero shore station. The MVC converts the 10 kV to an instrument-friendly 375 V for a 10 kW power. The MVC will be presented with focus on the factory acceptance, operational and final integration tests that recently have been carried out.

  16. NEMO medium voltage converter factory acceptance, operational and final integration tests

    Energy Technology Data Exchange (ETDEWEB)

    Cocimano, Rosanna, E-mail: cocimano@lns.infn.i [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2011-01-21

    The NEMO Collaboration, as part of the KM3NeT EU-funded consortium, is developing technical solutions for the construction of a cubic-kilometer scale neutrino telescope in the Mediterranean sea several kilometers below the sea level and far from the shore. In this framework, after years of design, development, assembly and testing the Alcatel deep sea medium voltage power converter (MVC) is ready for deployment at 100 km from the Capo Passero shore station. The MVC converts the 10 kV to an instrument-friendly 375 V for a 10 kW power. The MVC will be presented with focus on the factory acceptance, operational and final integration tests that recently have been carried out.

  17. A Unified Impedance Model of Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2017-01-01

    This paper proposes a unified impedance model of grid-connected voltage-source converters for analyzing dynamic influences of the Phase-Locked Loop (PLL) and current control. The mathematical relations between the impedance models in the different domains are first explicitly revealed by means...... of complex transfer functions and complex space vectors. A stationary (αβ-) frame impedance model is then proposed, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect explicitly. Furthermore, the impedance shaping effect of the PLL on the current control...

  18. High-performance feedback-type active damping of LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Active damping of LCL-filter resonance based on single-state feedback control is widely used with voltage source converters. Its robustness against grid impedance variation has always been a major concern with its controller design. To deal with this issue, this paper begins by developing......, but ensures also a robust stabilization against the grid parameters variations. For illustration, the approach is applied to design three single-state feedback-damping schemes, and their damping robustness are compared under both inductive and resonant grid impedances. Experimental results validate...

  19. Analytical Method to Calculate the DC Link Current Stress in Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus;

    2014-01-01

    The dc-link capacitor is one of the critical components, which influences the lifetime of the whole voltage source converter unit. For reliable design, the operating temperature of the dc-link capacitor should be known, which is primarily determined by the ambient temperature and the rms value...... of the current flowing through the dc-link capacitor. A simple analytical method to calculate the rms value of the dc-link capacitor current is presented in this paper. The effect of the line current ripple on the rms value of the dc-link capacitor current is considered. This yields accurate results, especially...

  20. Improvement of Voltage Quality of Micro Turbine Generator With Matrix Converter & Venturini Technique’s

    Directory of Open Access Journals (Sweden)

    C.Himabindu

    2014-07-01

    Full Text Available In recent years, application of Distributed Generation (DG sources has increased significantly. Micro turbine-Generator (MTG is well suitable for different distributed generation applications, because it can be connected in parallel to serve larger loads, can provide reliable power and has low-emission. The main characteristics of MTG can be summarized in low maintenance, capacity of operation with liquid and gas fuels (including natural gas and small area required for installation [1]. MTGs have the rated power from 30 to 250 kW, generating electricity in ac, and they can be installed in isolated conditions or synchronized with the electrical utility.MTGs are available as single-shaft or split-shaft units. Single-shaft unit is a high-speed synchronous machine with the compressor and turbine mounted on the same shaft. While, the split-shaft design uses a power turbine rotating at 3000 rpm and a conventional generator connected via a synchronous generator-PMSG, frequency converters (interface converters, and protection and control systems (Fig. 1[1] . The interface converter is used to convert PMSG output voltage frequency (high frequency to power system (50/60 Hz frequency.

  1. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    Science.gov (United States)

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  2. Improved averaged mo del and stability analysis of voltage-mo de controlled p ositive output sup er-lift Luo converter%电压控制正极性输出罗变换器的改进平均模型建模及稳定性分析∗

    Institute of Scientific and Technical Information of China (English)

    王发强; 李晶; 马西奎

    2015-01-01

    Positive output super-lift (POSL) Luo converter, which has some particular good features: such as its power switch being grounded, high voltage gain and positive polarity output, is a good topology for overcoming the drawbacks of the conventional Buck and Boost converters to obtain high output voltage and power for satisfying the requirements in practical engineering. In this paper, based on the averaging method and taking into account the abrupt changing of the voltage across the energy-transferring capacitor, the improved reduced order averaged model and the corresponding small signal model of the POSL Luo converter are established, and its transfer function from the duty cycle to the output voltage is derived and analyzed. By combining the derived transfer function from the duty cycle to the output voltage of the POSL Luo converter, with that for the voltage compensator and that for the pulse width modalation (PWM) generator, the transfer function from the reference voltage to the output voltage of the voltage-mode controlled POSL Luo converter is also derived. And then, the stability of the voltage-mode controlled POSL Luo converter is identified by calculating the poles of its transfer function from the reference voltage to the output voltage, so the corresponding stability boundaries are obtained. The power electronic simulator (PSIM) software is applied to simulate the POSL Luo converter in time domain and frequency domain to preliminarily confirm the effectiveness of the established transfer function from the duty cycle to the output voltage of the POSL Luo converter, and to simulate the voltage-mode controlled POSL Luo converter to preliminarily verify the theoretical analysis about its stability. Finally, the hardware circuits for the POSL Luo converter and the voltage-mode controlled POSL Luo converter are designed, and the circuit experimental results in time domain from the digital oscilloscope and in frequency domain from the impedance

  3. Distance protection of multiple-circuit shared tower transmission lines with different voltages. Part II: Fault loop impedance

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. In this paper, the fault loop impedance of combined faults is compared with the fault loop impedance...... of single-phase-to-ground faults at the higher voltage level of the multiple-circuit line and it is demonstrated that they are similar for high short-circuit powers; however, the fault loop impedance of a combined fault may increase substantially as the short-circuit power of the system decreases......-phase-to-ground faults are also capable of protecting the line against combined faults, being only advisable to increase the resistive limit of the protection zone if the network has lower short-circuit power. If the length of the line at lower voltage level is less than of the lien at higher voltage level...

  4. 超宽工作电压DC/DC变换器设计%Design of wide operating voltage DC/DC converter

    Institute of Scientific and Technical Information of China (English)

    王大为; 赵瑞杰; 陶学军; 田素立; 李朝锋

    2012-01-01

    Based on the situation of the wide output voltage range of solar photovoltaic power generation systems, a wide operating voltage of the DC / DC converter was designed. To solve the shortcoming of high voltage stress of the power when the switch was off, the voltage regulator tube was Introduced in order to clamp the voltage. To ensure the saturation switch conduction of the MOSFET, a rational circuit was designed to induce the current from the secondary circuit as the MOSFET gate driver. Based on the theoretical analysis, simulation and optimization, a 15 W, 1 000 V /200 V input prototype was designed.The test results show that the converter can work stably tor a long time.%针对太阳能光伏发电系统输出电压较宽的情况,设计了一种超宽工作电压的DC/DC变换器.利用稳压管在开关关断时对电路进行电压钳位,解决了单管反激变换器在高电压输入时电力MOSFET电压应力过高的缺陷.通过合理设计电路并从电路副边引入电流作为MOSFET栅极驱动,可以保证开关管的饱和导通.在理论分析、仿真优化、反复调试的基础上,设计了一款15W、1 000 V/200 V输入的样机.经过测试,此变换器可以长时间稳定工作且转换效率比较高.

  5. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output v...

  6. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  7. Loss mapping distribution and thermal behaviour of the Y-source converter for a wide power and voltage range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Blaabjerg, Frede

    2016-01-01

    higher than input voltage, e.g. in fuel cell, battery electric vehicles and renewable energy applications. Loss mapping and thermal behaviour of the converter are important to be investigated in order to design a realistic converter for a reliable long term usage. In this paper the loss distribution...

  8. Design and implementation of a bidirectional current-controlled voltage-regulated DC-DC switched-mode converter

    CSIR Research Space (South Africa)

    Coetzer, A

    2016-01-01

    Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...

  9. Passivity-Based Control by Series/Parallel Damping of Single-Phase PWM Voltage Source Converter

    NARCIS (Netherlands)

    del Puerto Flores, Dunstano; Scherpen, Jacqueline; Liserre, Marco; de Vries, Martijn M. J.; Kransse, Marco J.; Monopoli, Vito Giuseppe

    2014-01-01

    This paper describes a detailed design procedure for passivity-based controllers developed using the Brayton-Moser (BM) framework. Several passivity-based feedback designs are presented for the voltage-source converter, specifically for the H-bridge converter, since nowadays it is one of the preferr

  10. A band-gap voltage reference for interface circuit of microsensor

    Institute of Scientific and Technical Information of China (English)

    CAO Yi-jiang; XIAO Fei; ZHANG Er-dong

    2010-01-01

    A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsenser and compatible with 0.6 μm (double poly) mix process is proposed in this paper.The circuit can be employed in the range of 1.8-8 V and carry out the first-order PTAT (proportional to absolute temperature) temperature compensation.Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR (power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased.Results from HSPICE simulation show that the PSRR is -72.76 dB in the condition of low-frequency,the temperature coefficient is 2.4×10-6 in the temperature range from-10 ℃ to 90℃ and the power dissipation is only 14 μW when the supply voltage is 1.8 V.

  11. Regeneration of ZVS converter with Resonant inductor

    Directory of Open Access Journals (Sweden)

    J.Sivavara Prasad

    2011-09-01

    Full Text Available This paper presents an analysis of the regeneration of zero-voltage-switching converter with resonant inductor, quasi-resonant converters, and full-bridge zero-voltage-switched PWM Converter. The design of a clamping circuit considering a saturable resonant inductor is presented and compared with the design of a clamping circuit with a linear resonant inductor. A diode model with reverse recovery is employed to simulate the effects.

  12. Fault Characteristics and Control Strategies of Multiterminal High Voltage Direct Current Transmission Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2015-01-01

    Full Text Available The modular multilevel converter (MMC is an emerging voltage source converter topology suitable for multiterminal high voltage direct current transmission based on modular multilevel converter (MMC-MTDC. This paper presents fault characteristics of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by establishing a three-terminal MMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.

  13. A Reduced-Part, Triple-Voltage DC-DC Converter for EV/HEV Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2009-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets: 14 V, 42 V, and high voltage (>200 V) buses. A soft-switched, bidirectional dc-dc converter that uses only four switches was proposed for interconnecting the three nets. This paper presents a reduced-part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Experimental data are included to verify a simple power flow control scheme.

  14. Improving Output Performance of a Z-Source Sparse Matrix Converter Under Unbalanced Input-Voltage Conditions

    DEFF Research Database (Denmark)

    Park, Kiwoo; Lee, Kyo Beum; Blaabjerg, Frede

    2011-01-01

    In this paper, we present a novel Z-source sparse matrix converter (ZSMC) and a compensation method based on a fuzzy logic controller to compensate unbalanced input voltages. The ZSMC is developed based on the structure of an SMC to reduce the number of unipolar power semiconductor switches...... and employs a Z-source network to overcome the inherent limitation of the low voltage transfer ratio of conventional matrix converters. Although the ZSMC is a two-stage converter, it directly connects between a source and a load through a Z-source network, which is designed to have smaller passive components...

  15. High-Voltage 1-kW dc/dc Converter Developed for Low-Temperature Operation

    Science.gov (United States)

    Patterson, Richard L.

    1998-01-01

    Recently, Lewis developed and demonstrated a high-voltage, 1-kW dc/dc converter that operates from room temperature to -184 C. A power supply designed for use in a NASA ion beam propulsion system was utilized as a starting point for the design of a low- (wide-) temperature dc/dc converter. For safety, we decided to halve the output voltage and power level, so the converter was designed for an 80-Vdc input and a 550-Vdc output at 1 kW.

  16. Anomalous open-circuit voltage from a high-Tc superconducting dynamo

    Science.gov (United States)

    Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.

    2016-03-01

    We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.

  17. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  18. A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2008-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus. A low-cost DC-DC converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge on the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents.

  19. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  20. Effect of embedded voltage source converter on power system oscillation damping

    Institute of Scientific and Technical Information of China (English)

    R; DUNN

    2010-01-01

    This paper presents the damping torque analysis of power system oscillation stability as affected by the dynamic and control functions of an embedded voltage source converter(VSC).The objective of the study is to explain why and how the dynamic and basic control functions of the embedded VSC,ac and dc voltage regulation,provide damping to power system oscillations.The most important conclusion obtained in the paper is that both the dynamics and the dc voltage control of the VSC contribute a variable damping torque,which can be positive or negative,at different levels of system load conditions.More positive damping torque can be provided by the VSC at a heavier load condition.There exists a point of system load condition where the VSC provides no damping torque to power system oscillation hence dose not impose any influence on power system oscillation stability.The VSC studied in the paper can be the power-electronics-based interface of various FACTS(flexible ac transmission systems) devices,energy storage systems and renewable power generation units,although the focus of the discussion presented in this paper is the effect of the dynamics and basic control functions of the VSC themselves on power system oscillation damping.To demonstrate the analytical conclusions obtained in the paper,results of eigenvalue computation and nonlinear simulation of an example power system with STATCOM(static synchronous compensator) are given.

  1. Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    ZHONG Jianying; GUO Yujing; ZHANG Hao

    2016-01-01

    The pressure distribution in an arcing chamber is critically important for the SF6 puffer circuit breaker design.In this paper,the pressure variation of four locations in the nozzle was measured by piezoresistive and fiber optical pressure sensors at two current levels of 10 kA and 50 kA.An arc voltage measurement was also taken.The results demonstrate that using either type of sensor with a connecting tube is able to detect the fast pressure variation in circuit breakers,however the possible distortion and delay to the pressure transient caused by the tube need further study.

  2. FEA identification of high order generalized equivalent circuits for MF high voltage transformers

    CERN Document Server

    Candolfi, Sylvain; Cros, Jérôme; Aguglia, Davide

    2015-01-01

    This paper presents a specific methodology to derive high order generalized equivalent circuits from electromagnetic finite element analysis for high voltage medium frequency and pulse transformers by splitting the main windings in an arbitrary number of elementary windings. With this modeling approach, the dynamic model of the transformer over a large bandwidth is improved and the order of the generalized equivalent circuit can be adapted to a specified bandwidth. This efficient tool can be used by the designer to quantify the influence of the local structure of transformers on their dynamic behavior. The influence of different topologies and winding configurations is investigated. Several application examples and an experimental validation are also presented.

  3. Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker

    Science.gov (United States)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-05-01

    The pressure distribution in an arcing chamber is critically important for the SF6 puffer circuit breaker design. In this paper, the pressure variation of four locations in the nozzle was measured by piezoresistive and fiber optical pressure sensors at two current levels of 10 kA and 50 kA. An arc voltage measurement was also taken. The results demonstrate that using either type of sensor with a connecting tube is able to detect the fast pressure variation in circuit breakers, however the possible distortion and delay to the pressure transient caused by the tube need further study.

  4. Evaluation and Simulation of Black-box Arc Models for High-Voltage Circuit-Breakers

    OpenAIRE

    Gustavsson, Niklas

    2004-01-01

    The task for this Master thesis was to evaluate different black-box arc models for circuit-breakers with the purpose of finding criteria for the breaking ability. A black-box model is a model that requires no knowledge from the user of the underlying physical processes. Black-box arc models have been used in circuit-breaker development for many years. Arc voltages from tests made in the High Power Laboratory in Ludvika were used for validation, along with the resistance calculated at current ...

  5. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Saitoh, K; Shibayama, Y; Shirahama, K [Department of Physics, Keio University, Yokohama 223-8522 (Japan)], E-mail: khayashi@a2.keio.jp

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 10{sup 6} V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  6. Simulation of the Effects of Several Factors on Arc Plasma Behavior in Low Voltage Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Taking into account the properties of the arc plasma and the electromagnetic, heat and radiative phenomena, commercial computational fluid dynamics software PHOENICS has been adapted and modified to develop the three-dimensional magneto-hydrodynamic (MHD)model of arc in a low voltage circuit breaker. The effects of the arc ignition location, venting size and gassing material on arc behavior have been investigated. The analysis of the results show that the arc velocity accelerates with the increase in the distance between arc ignition location and of the venting size, and the existence of the gassing material is beneficial to improving the arc voltage and reducing the arc temperature.

  7. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    Science.gov (United States)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  8. Design to conditioning circuits of dynamic compensation of reactive power in the intelligence voltage controller

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.

  9. 高耐压重叠式反激DC-DC变换器设计%The Design of High Input-bus Voltage Flyback DC-DC Converters

    Institute of Scientific and Technical Information of China (English)

    赵伟光

    2001-01-01

    提出了一种高耐压重叠式反激DC-DC变换器拓扑,成功地解决了高输入母线电 压下低功率开关电源的设计问题。讨论了该拓扑的优点,给出了应用电路。%A topology of overlapping flyback DC-DC converter is proposed in this paper. By using this topology, the problem of designing the switched power converter in high input-bus voltage has been solved successfully. The advantages of this topology are discussed and some useful circuits are given as well.

  10. Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: Role of the reduced bimolecular recombination

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-03-01

    The high open circuit voltage is an attractive feature for the currently popular organic-inorganic hybrid perovskite solar cells. In this paper, by employing the macroscopic device model simulation, we investigate its origin for the planar heterojunction perovskite solar cells. Based on the calculated current density-voltage characteristics, it is revealed that compared to the excitonic solar cells, the fast thermal-activated exciton dissociation in the bulk due to the small exciton binding energy may improve the short circuit current and the fill factor, but its beneficial role on the open circuit voltage is marginal. The most significant contribution for the open circuit voltage comes from the reduced bimolecular recombination. In the perovskites, with the recombination prefactor many orders of magnitude smaller than that based on the Langevin's theory, the internal charge density level is significantly enhanced and the density gradient is removed, leading to the high quasi-Fermi level splitting and thus the small open circuit voltage loss. For the nonradiative recombination pathway due to the deep trap states, it may induce significant loss of open circuit voltage as the trap density is high, while for the moderately low density its effect on the open circuit voltage is small and negligible.

  11. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.; Cho, Gvan Chun [National Research University “Moscow Power Engineering Institute,” (Russian Federation)

    2016-01-15

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.

  12. A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    Institute of Scientific and Technical Information of China (English)

    Liu Jizhi; Chen Xingbi

    2009-01-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  13. Research on The Mechanical State Parameter Extraction Method of High Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Yang Tianxu

    2013-05-01

    Full Text Available High voltage circuit breakers play an important role in the power system. So it is necessary to implement the state detection of breakers in order to ensure stable and reliable running of the grid. The purpose of state detection is to provide reliable basis of maintenance by extracting mechanical state parameters accurately. This paper mainly focuses on the coil current signal feature extraction algorithm. To settle the problem of too much noise mixed with the current signal and signal distortion, the discrete wavelet transform algorithm is used to extract the coil current signal parameters. This paper also designs the FIR filter to extract stroke and speed parameters from travel-time waveform. The experiments show that the difference between the theoretical results and test results processed by the method in this paper is very small and the test results are able to accurately reflect operation states and mechanical features of high voltage circuit breakers.

  14. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources

    CERN Document Server

    Shen, Hui; Ji, Hongli; Zhu, Kongjun; Balsi, Marco; Giorgio, Ivan; dell'Isola, Francesco

    2010-01-01

    In the paper, a vibration damping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch damping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results.

  15. Distance protection of multiple-circuit shared tower transmission lines with different voltages. Part I: Fault current magnitude

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This paper presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...... at the lower voltage level sees the fault in the reverse direction. The opposite happens if the lower voltage level leads the higher voltage level. It is also demonstrated that the magnitude of fault currents of combined faults is normally slightly larger than of equivalent single-phase-to-ground fault...

  16. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao;

    2015-01-01

    phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system......It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...

  17. Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, Joel N.; Burst, James M.; Albin, David S.; Reese, Matthew O.; Jensen, Soren A.; Johnston, Steven W.; Kuciauskas, Darius; Swain, Santosh K.; Ablekim, Tursun; Lynn, Kelvin G.; Fahrenbruch, Alan L.; Metzger, Wyatt K.

    2016-11-01

    We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.

  18. Driving CZTS to the SQ Limit: Solving the Open Circuit Voltage Problem

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard A. [IBM Research, Yorktown, NY (United States). Thomas J. Watson Research Center; McCandless, Brian E. [Univ. of Delaware, Newark, DE (United States); Kummel, Andrew C. [Univ. of California, San Diego, CA (United States); Gordon, Roy G. [Harvard Univ., Cambridge, MA (United States)

    2016-12-15

    A key objective of this 3 year research effort was to reduce the open circuit voltage (Voc) deficit, defined as the difference between the absorber band gap and the measured Voc to below 475mV from values at the beginning of this work of 630-730mV. To achieve this reduction, along with the attendant goals of higher Voc and efficiency, detailed studies into the fundamental understanding of existing limitations were undertaken.

  19. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Science.gov (United States)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  20. Proportional integral plus multi-frequency resonant current controller for grid-connected voltage source converter under imbalanced and distorted supply voltage conditions

    Institute of Scientific and Technical Information of China (English)

    Jia-bing HU; Wei ZHANG; Hong-sheng WANG; Yi-kang HE; Lie XU

    2009-01-01

    This paper proposes a current control scheme for a grid-connected pulse width modulator (PWM) voltage source converter (GC-VSC) under imbalanced and distorted supply voltage conditions. The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral (PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω, respectively. The experimental results, with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system, validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.

  1. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Science.gov (United States)

    Hernández-Rosales, E.; Cedeño, E.; Hernandez-Wong, J.; Rojas-Trigos, J. B.; Marin, E.; Gandra, F. C. G.; Mansanares, A. M.

    2016-07-01

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  2. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rosales, E.; Cedeño, E. [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil); Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Hernandez-Wong, J. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); CONACYT, México, DF, México (Mexico); Rojas-Trigos, J. B.; Marin, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Gandra, F. C. G.; Mansanares, A. M., E-mail: manoel@ifi.unicamp.br [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil)

    2016-07-25

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  3. An iterative approach for symmetrical and asymmetrical Short-circuit calculations with converter-based connected renewable energy sources

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak-Jensen, Birgitte;

    2012-01-01

    As more renewable energy sources, especially more wind turbines are installed in the power system, analysis of the power system with the renewable energy sources becomes more important. Short-circuit calculation is a well known fault analysis method which is widely used for early stage analysis...... and design purposes and tuning of the network protection equipments. However, due to current controlled power converter-based grid connection of the wind turbines, short-circuit calculation cannot be performed with its current form for networks with power converter-based wind turbines. In this paper......, an iterative approach for short-circuit calculation of networks with power converter-based wind turbines is developed for both symmetrical and asymmetrical short-circuit grid faults. As a contribution to existing solutions, negative sequence current injection from the wind turbines is also taken into account...

  4. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Guillermo Royo

    2016-12-01

    Full Text Available In this work, we present a capacitance-to-voltage converter (CVC for capacitive accelerometers based on microelectromechanical systems (MEMS. Based on a fully-differential transimpedance amplifier (TIA, it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  5. SiC heat pump converters with support for voltage unbalance in distribution grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Maheshwari, Ramkrishan

    2015-01-01

    This paper studies the impact of involving the demand side of the LV grid into the grid conditioning process. Heat pumps are distribution loads with a substation capacity increase in the last years, with expectancy of growth in the coming years. Controlling the loads is the first step...... in the transition to smart grids, and heat pumps are to be the first promising smart loads. They can be used for load shedding but also for unbalance compensation purposes. When they are equipped with a back to back compressor drive and a proper control strategy, grid support can be provided to reduce the negative...... sequence component in the voltage at the installation point. Two control strategies are proposed and investigated experimentally on a SiC heat pump converter prototype....

  6. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    Science.gov (United States)

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  7. Line-to-line voltage based modulation scheme for single-phase reduced switch ac-dc-ac converters to achieve improved performance

    DEFF Research Database (Denmark)

    Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    . With the SVPWM or DPWM proposed in literatures, the generation of the references is phase voltage based. But the phase voltages actually cannot be controlled directly by the PWM converter, since they can be influenced by both of terminal voltages and the load network while the PWM converter can only control...

  8. Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer.

    Science.gov (United States)

    Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki

    2016-07-20

    We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter.

  9. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1995-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  10. Voltage Source Inverter/Converter for the Improvement of Power Quality Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    T Jagan Mohan Rao

    2014-05-01

    Full Text Available In recent years, the applications of power electronics have grown tremendously. These power electronic systems offer highly nonlinear characteristics. To overcome those non linearities active power filters are preferred. This paper presents and compares the performance of two controllers namely Fuzzy Logic and Proportional Integral (PI applied to a voltage source inverter / converter which operates as an active power filter. The active power filter is operated to compensate harmonics generated by the non-linear load . This work is done to make an accurate comparison of the performance of fuzzy logic controller and classical control technique such as PI controller in compensating harmonics in the ac mains current. Fuzzy control rule design is based on the general dynamic behavior of the process. A novel control method is implemented for suppressing the harmonics. The compensation process is instantaneous, which is achieved without employing any complicated control logic. The control scheme is based on sensing line currents only; an approach different from convention ones, which are based on sensing harmonics of the nonlinear load. In the control scheme a hysteresis controller based on current control is employed to generate switching signals to the PWM converter.

  11. Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Leon M [ORNL; Huque, Mohammad A [ORNL; Blalock, Benjamin J [ORNL; Islam, Syed K [ORNL

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimising system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8--m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  12. 交-交矩阵变换器等效电路的分析%The analysis of AC-AC matrix converter equivalent circuit

    Institute of Scientific and Technical Information of China (English)

    郑雪钦; 汤宁平

    2001-01-01

    基于PARK变换技术,把矩阵变换器等效成不含开关元件的线形定常等效电路,运用线性系统的方法分析输入功率因数、输出电压增益、输入功率的特性,所得结果对矩阵变换器研究具有一定的指导意义.%Matrix converter can be transferred into a linear time-invariantequivalent circuit without switch component by using PARK transformation. By the way of linear system,input power factor,output voltage gain and the property of input power are analyzed. This way is helpful for the device of matrix converter.

  13. Transient Voltage Recorder

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    2002-01-01

    A voltage transient recorder can detect lightning induced transient voltages. The recorder detects a lightning induced transient voltage and adjusts input amplifiers to accurately record transient voltage magnitudes. The recorder stores voltage data from numerous monitored channels, or devices. The data is time stamped and can be output in real time, or stored for later retrieval. The transient recorder, in one embodiment, includes an analog-to-digital converter and a voltage threshold detector. When an input voltage exceeds a pre-determined voltage threshold, the recorder stores the incoming voltage magnitude and time of arrival. The recorder also determines if its input amplifier circuits clip the incoming signal or if the incoming signal is too low. If the input data is clipped or too low, the recorder adjusts the gain of the amplifier circuits to accurately acquire subsequent components of the lightning induced transients.

  14. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth;

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  15. Analysis of a Three-Level LLC Series Resonant Converter for High- and Wide-Input-Voltage Applications

    Directory of Open Access Journals (Sweden)

    S.Saravanan

    2014-04-01

    Full Text Available In this paper, the analysis of a three-level LLC series resonant converter (TL LLC SRC for high- and wide input-voltage applications is presented. It consists of two half-bridge LLC SRCs in series, sharing a resonant inductor and a transformer. Its main advantages are that the voltage across each switch is clamped at half of the input voltage and that voltage balance is achieved and simple driving signals . Thus it is suitable for high-inputvoltage applications. Based on the results of these analyses, a design example is provided and its validity is confirmed by an experiment involving a prototype converter with an input of 600V and an output of 48 V/20 A.

  16. Novel high voltage converter%新型高压变频器设计

    Institute of Scientific and Technical Information of China (English)

    张亮; 陈国栋; 蔡旭

    2011-01-01

    An energy-regenerative cascaded high voltage converter is designed. The three-phase PWM rectifier is used in grid converter,instead of the traditional diode uncontrollable rectifier,to supply isolated DC for each H-bridge of the cascaded inverter at motor side, which makes its rectifier and inverter both operating with unity power factor and the grid-side current totally sinusoidal with few harmonics,though the multi-pulse rectifier technique is not applied. The startup and load sudden increase of high voltage asynchronous induction motor under rotor flux oriented vector control is simulated on Matlab/Simulink platform and results show the designed converter is suitable for HV AC speed adjustment system.%开发了一款可能量反馈的级联型高压变频器,其电网侧变换器摒弃了传统的二极管不可控整流器,而采用三相PWM整流器为电机侧级联型逆变器各H桥单元提供独立的直流电源,使得在不引入多脉波整流技术的情况下,就能够实现单位功率因数的整流和逆变,且网侧电流呈正弦,谐波含量小.为验证该结构变频器适合应用于高压大功率交流变频调速领域,以高压异步电动机为典型负载,采用基于转子磁链定向的矢量控制策略,对异步电动机的启动和突加负载特性进行了研究,并在Matlab/Simulink下进行了仿真实验,实验结果证明了设计的有效性.

  17. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    Science.gov (United States)

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  18. Diagnosis of inverter switch open circuit faults based on neutral point voltage signal analysis

    Directory of Open Access Journals (Sweden)

    Liwei GUO

    Full Text Available Using the current signal to diagnose inverter faults information is apt to be affected by the load, noise and other factors; besides, it requires long diagnosis period with special algorithms and the diagnosis result is easily to be incorrect with no-load or light-load. Focusing on this issue, the logical analysis method is proposed for correlation logical analysis of leg neutral-point voltage and pulse signal to realize the diagnosis of the open circuit faults of inverter switches. The logical expressions of output signals of inverter power tube open-circuit faults is put forward and interrelated hardware circuit design is also elaborated. Delaying the rising edge of inverter power tube's pulse signal can effectively avoid the diagnosis error caused by the power tube's switching on/off. The experiment results show that the method can effectively diagnose the open-circuit faults of single-phase single power tube inverter in real-time and the hardware circuit cost is low, which shows it is effective and feasible.

  19. A Dynamic Consensus Algorithm based Low-Voltage Ride-Through Operation of Power Converters in Grid-Interactive Microgrids

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Savaghebi, Mehdi

    2016-01-01

    of the converters cannot be equally shared if no extra current balancing loop is added. Accordingly, a dynamic consensus algorithm (DCA) based negative/positive sequence current sharing scheme is proposed in this paper. Finally, a lab-scale AC microgrid was designed and tested in the lab to validate the feasibility...... control based voltage support strategy has been proposed to aid MGs riding through three phase asymmetrical voltage sags. However, since the line impedance from each converter to the point of common coupling (PCC) is not identical, both positive sequence and negative sequence output current...

  20. Wind Farm Stabilization by using DFIG with Current Controlled Voltage Source Converters Taking Grid Codes into Consideration

    Science.gov (United States)

    Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.

  1. Simplified dc to dc converter

    Science.gov (United States)

    Gruber, R. P. (Inventor)

    1984-01-01

    A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided.

  2. Four-Switch Three-Phase PMSM Converter with Output Voltage Balance and DC-Link Voltage Offset Suppression

    Directory of Open Access Journals (Sweden)

    Fadil Hicham

    2017-01-01

    Full Text Available High power quality, efficiency, complexity, size, cost effectiveness and switching losses of the direct current to alternating current (DC–AC conversion system are crucial aspects in industrial applications. Therefore, the four-switch three-phase inverter (4S3P has been proposed as an innovative inverter design. However, this topology has been known to have many performance limitations in the low-frequency region, because of the generation of an unbalanced voltage leading to an unbalanced current due to the fluctuation and offset of the centre tap voltage of the DC-link capacitors. Those drawbacks are investigated and solved in this paper in order to provide pure sinusoidal output voltages. The generated output voltages are controlled using proportional-integral (PI controllers to follow the desired voltages. Furthermore, the DC-link capacitor voltage offset is mitigated by subtracting the direct component from the control reference voltage using low pass filters, where this direct voltage component provides the direct current component which leads to DC-link capacitor voltage divergence. A simulation model and experimental setup are used to validate the proposed concept. Many simulation and experimental results are carried out to show the effectiveness of the proposed control scheme.

  3. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.

    Science.gov (United States)

    Potscavage, William J; Sharma, Asha; Kippelen, Bernard

    2009-11-17

    Organic photovoltaics, which convert sunlight into electricity with thin films of organic semiconductors, have been the subject of active research over the past 20 years. The global energy challenge has greatly increased interest in this technology in recent years. Low-temperature processing of organic small molecules from the vapor phase or of polymers from solution can confer organic semiconductors with a critical advantage over inorganic photovoltaic materials since the high-temperature processing requirements of the latter limit the range of substrates on which they can be deposited. Unfortunately, despite significant advances, the power conversion efficiency of organic solar cells remains low, with maximum values in the range of 6%. A better understanding of the physical processes that determine the efficiency of organic photovoltaic cells is crucial to enhancing their competitiveness with other thin-film technologies. Maximum values for the photocurrent can be estimated from the light-harvesting capability of the individual molecules or polymers in the device. However, a better understanding of the materials-level processes, particularly those in layer-to-layer interfaces, that determine the open-circuit voltage (V(OC)) in organic solar cells is critical and remains the subject of active research. The conventional wisdom is to use organic semiconductors with smaller band gaps to harvest a larger portion of the solar spectrum. This method is not always an effective prescription for increasing efficiency: it ignores the fact that the value of V(OC) is generally decreased in devices employing materials with smaller band gaps, as is the case with inorganic semiconductors. In this Account, we discuss the influence of the different interfaces formed in organic multilayer photovoltaic devices on the value of V(OC); we use pentacene-C(60) solar cells as a model. In particular, we use top and bottom electrodes with different work function values, finding that V(OC) is

  4. Automatic System for the D.C. High Voltage Qualification of the Superconducting Electrical Circuits of the LHC Machine

    CERN Document Server

    Bozzini, D; Russenschuck, Stephan; Bednarek, M; Jurkiewicz, P; Kotarba, A; Ludwin, J; Olek, S

    2008-01-01

    A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the res...

  5. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  6. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  7. A novel on-chip high to low voltage power conversion circuit

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Wang Songlin; Lai Xinquan; Ye Qiang; Mou Zaixin; Li Xianrui; Guo Baolong

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/℃. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  8. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.

    Science.gov (United States)

    An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo

    2015-02-18

    We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.

  9. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    INTRODUCTIONHistorical ReviewMultiple Quadrant ChoppersPump CircuitsDevelopment of DC/DC Conversion TechniqueCategorize Prototypes and DC/DC Converters Family TreeVOLTAGE-LIFT CONVERTERSIntroductionSeven Self-Lift ConvertersPositive Output Luo-ConvertersNegative Output Luo-ConvertersModified Positive Output Luo-Converters Double Output Luo-ConvertersPOSITIVE OUTPUT SUPER-LIFT LUO-CONVERTERS IntroductionMain SeriesAdditional SeriesEnhanced Series Re-Enhanced Series Multiple-Enhanced Series Summary of Positive Output

  10. High-Precision Multi-Wave Rectifier Circuit Operating in Low Voltage + 1.5 Volt Current Mode

    Directory of Open Access Journals (Sweden)

    Bancha Burapattanasiri

    2009-12-01

    Full Text Available This article is present high-precision multi-wave rectifier circuit operating in low voltage +/- 1.5 Volt current modes by CMOS technology 0.5 μm, receive input and give output in current mode, respond at high frequency period. The structure compound with high-speed current comparator circuit, current mirror circuit, and CMOS inverter circuit. PSpice program used for confirmation the performance of testing. The PSpice program shows operating of circuit is able to working at maximum input current 400 μAp-p, maximum frequency responding 200 MHz, high precision and low power losses, and non-precision zero crossing output signal.Keywords-component; rectifier circuit; high-precision; low voltage; current mode;

  11. A Review of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Liserre, Marco;

    2016-01-01

    with the utility grid are reviewed, and evaluated in terms of damping capability, stored energy in the passive components and power loss in the damping circuit. Additionally, the influences of different switching frequencies of power converters on the passive filter design are also discussed in the range of 1-15 k...

  12. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick

    2011-01-01

    A short series of alkyl substituted perylenediimides (PDIs) with varying steric bulk are used to demonstrate the relationship between molecular structure, materials properties, and performance characteristics in organic photovoltaics. Devices were made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC\\'s) despite the donor acceptor interface gap (Δ EDA) remaining unchanged. Additionally, series resistance was increased simultaneously with VOC the effect of reducing short circuit current, making the addition of steric bulk a tradeoff that needs to be balanced to optimize power conversion efficiency. © 2011 American Institute of Physics.

  13. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guofeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yi, E-mail: y.zhang@fz-juelich.de [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Zhang Shulin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); and others

    2012-10-15

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm {radical}Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  14. Three-phase AC-AC power converters based on matrix converter topology matrix-reactance frequency converters concept

    CERN Document Server

    Szczesniak, Pawel

    2013-01-01

    AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial app

  15. Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2014-01-01

    This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applications....... By paralleling modular converters, the power and current ratings of each modular converter can be lowered and by interleaving the switching patterns, the input and output current ripples can be significantly reduced without increasing switching losses or device stresses. Apart from these, the PCSAB converter...... of the converter unaffected or to improve the quality of the output current under the fault condition. The feasibility of the proposed fault detection and fault-tolerant methods are verified by simulations and experiments....

  16. Thermal Analysis of Multilevel Grid-side Converters for 10-MW Wind turbines under Low-Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2013-01-01

    designed as case study. The operation status, as well as the reliability-related performances, is investigated aimed at various low-voltage ride through (LVRT) conditions. It is found that all of the proposed converter topologies will suffer from higher junction temperature in some heavily loaded power...

  17. Investigation of Efficiency and Thermal Performance of the Y-source Converters for a Wide Voltage Range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2015-01-01

    The Y-source topology has a unique advantage of having high voltages gain with small shoot through duty cycles. Furthermore, having the advantage of high modulation index increases the power density and improves the performance of the converter. In this paper, a collective thermal and efficiency ...

  18. Ultra-Low-Voltage Self-Body Biasing Scheme and Its Application to Basic Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Ramiro Taco

    2015-01-01

    Full Text Available The gate level body biasing (GLBB is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold voltage MOSFET (DTMOS circuits under different running conditions. Postlayout simulations demonstrate that, at the parity of leakage power consumption, the GLBB technique exhibits a significant concurrent reduction of the energy per operation and the delay in comparison to the conventional CMOS and DTMOS approaches. The silicon area required by the GLBB full adder is halved with respect to the equivalent DTMOS implementation, but it is higher in comparison to conventional CMOS design. Performed analysis also proves that the GLBB solution exhibits a high level of robustness against temperature fluctuations and process variations.

  19. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    OpenAIRE

    Ali Asghar Memon; Imtiaz Hussain; Muhammad Aslam Uqaili

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is al...

  20. Design of Buck Converter With Ultra Wide Input Voltage Range%超宽范围输人电压Buck变换器设计

    Institute of Scientific and Technical Information of China (English)

    熊才伟; 朱永亮

    2011-01-01

    针对风力发电中DC/DC模块电源高可靠性、超宽输入电压范围、高效率、高功率密度的要求,设计了单级Buck变换器,采用UC2843芯片为控制核心及峰值电流控制模式,并加入斜坡补偿技术,满足超宽输入电压范围内电源的稳定;改进了保护电路,使电源能具备长时间短路并可自动恢复及过温、输入过/欠压等保护功能,提高了电源可靠性.最后通过样机的设计,满足了各种指标要求,验证了此电源模块设计的正确性.%As to the requirement of high reliability,ultra wide input voltage range,high power density and high efficiency in the DC/DC power module used in wind power system,a single stage Buck converter which using the UC2843, peak current control mode and slope compensation to ensure the stable state of the power is designed in the ultra wide input voltage range.Meanwhile,the design raises the reliability of this power module by improving the protect circuits, like longer time short circuit, ability of self-recovery, over temperature protection and input over voltage/ under voltage protection.At last,the test of sample module meets all needs of the power supply,proving the correctness of this design.

  1. Surge protective device response to steep front transient in low voltage circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcuz, J.; Binczak, S.; Bilbault, J.M. [Universite de Bourgogne, Dijon (France)], Emails: jerome.marcuz@ laposte.net, stbinc@u-bourgogne.fr, bilbault@u-bourgogne.fr; Girard, F. [ADEE Electronic, Pont de Pany (France)

    2007-07-01

    Surge propagation on cables of electrical or data lines leads to a major protection problem as the number of equipment based on solid-state circuits or microprocessors increases. Sub-microsecond components of real surge waveform has to be taken into account for a proper protection even in the case of surges caused by indirect lightning effects. The response of a model of transient voltage suppressor diode based surge protection device (SPD) to fast front transient is analytically studied, then compared to simulations, including the lines connected to the SPD and to the protected equipment. (author)

  2. Voltage Recovery of Grid-Connected Wind Turbines with DFIG After a Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    recovery of variable speed wind turbines with doubly fed induction generators (DFIG). A simulation model of a MW-level variable speed wind turbine with a DFIG developed in PSCAD/EMTDC is presented, and the control and protection schemes are described. A new control strategy is proposed to re......-establish the wind turbine terminal voltage after the clearance of an external short-circuit fault, and the restore the normal operation of the variable speed wind turbine with DFIG, which has been demonstrated by simulation results....

  3. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    Science.gov (United States)

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  4. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  5. Carbon nanotube-polybithiophene photovoltaic devices with high open-circuit voltage

    Energy Technology Data Exchange (ETDEWEB)

    Patyk, Rodolfo L.; Huemmelgen, Ivo A. [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990 Curitiba PR (Brazil); Lomba, Bruno S.; Nogueira, Ana Flavia [Laboratorio de Nanotechnologia e Energia Solar, Instituto de Quimica, Unicamp, C.P. 6154, 13084-971 Campinas, Sao Paulo (Brazil); Furtado, Clascidia A.; Santos, Adelina Pinheiro [Laboratorio de Quimica de Nanoestruturas, CDTN/CNEN, Belo Horizonte, MG (Brazil); Mello, Regina M.Q.; Micaroni, Liliana [Departamento de Quimica, Universidade Federal do Parana, Caixa Postal 19081, 81531-990 Curitiba PR (Brazil)

    2007-01-15

    We report the preparation of photovoltaic devices using modified single wall carbon nanotubes, SWNTs. Devices are produced stacking on top of fluorine-doped tin-oxide, an electrochemically deposited polybithiophene layer, a layer of SWNT blended with poly(3-octylthiophene) and an evaporated top metal contact, Ca/Al or Al. Ca/Al-top-electrode devices achieve open-circuit voltages of 1.81 V and average power conversion efficiency of 1.48% at irradiance of 15.5 W m{sup -2}, spectrally distributed following AM1.5. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Numerical Electric Field Analysis of Power Status Sensor Observing Power Distribution System Taking into Account Voltage Divider Measurement Circuit

    Science.gov (United States)

    Kubo, Takuro; Furukawa, Tatsuya; Itoh, Hideaki; Fukumoto, Hisao; Wakuya, Hiroshi; Ohchi, Masashi

    We have proposed and preproducted the voltage-current waveform sensor of resin molded type for measuring the power factor and harmonics in power distribution systems. We have executed numerical electromagnetic analyses using the finite element method to estimate the characteristics and behaviours of the sensor. Although the magnetic field analyses for the current sensor have involved the measurement circuit, the electric field analyses have not included the measurement circuit for measuring voltage waveforms of power lines. In this paper, we describe the electric field analyses with the measurement circuit and prove the insulating strength of the proposed sensor permissible to the use in 22kV power distribution systems.

  7. A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter

    DEFF Research Database (Denmark)

    Shang, Yunlong; Zhang, Chenghui; Cui, Naxin

    2015-01-01

    voltage gap for large balancing current and ZVG between cells. Instead of a dedicated equalizer for each cell, only one balancing converter is employed and shared by all cells, reducing the size and implementation cost. Moreover, the equalization current can be regulated as needed by controlling the duty...... cycle of the BDDC, which not only prevents efficiently over-equalization but also abridges the balancing time. Simulation and experimental results show the proposed scheme exhibits outstanding balancing performance, and the energy conversion efficiency is higher than 98%. The validity of the proposed...... these difficulties, an innovative direct cell-to-cell battery equalizer based on quasi-resonant LC converter (QRLCC) and boost DC-DC converter (BDDC) is proposed. The QRLCC is employed to gain zero-current switching (ZCS), leading to a reduction of power losses. The BDDC is employed to enhance the equalization...

  8. Testing to Investigate Stress-LifetimeCharacteristics of High Voltage Printed Circuit Boards

    Science.gov (United States)

    El Korashy, Oliver; Franke, Andreas; Gollor, Matthias

    2014-08-01

    Printed circuit boards (PCBs) are typically used in all electronic equipment, including those conditioning or controlling high voltage (HV) for space satellite applications. With the use of new subsystems that require higher voltages (generally several hundred volts up to tens of kV), stress-lifetime issues are becoming more complex. In order to allow compact design and cost efficient production of HV modules, there is an increasing demand to improve the design of PCBs with encapsulation or conformal coating at higher voltages.Within a PCB there are a number of electrical field interfaces each of which can have individual stress- lifetime characteristics, and the influence of environmental aging should also be considered, which means a large number of sample types should be tested to gain experimental evidence to define the margin for each interface. This paper demonstrates a method to test multiple samples at a fixed DC voltage stress until the event of a breakdown, and presents test results from 6 single-sided encapsulated PCB samples.

  9. Control strategy for three-phase four-wire PWM converter of integrated voltage compensation type active SFCL

    Science.gov (United States)

    Chen, Lei; Tang, Yuejin; Shi, Jing; Li, Zhi; Ren, Li; Cheng, Shijie

    2010-02-01

    The integrated voltage compensation type active superconducting fault current limiter (SFCL) is composed of three air-core superconducting transformers and a three-phase four-wire PWM converter. In order to realize the current-limiting characteristics of the integrated active SFCL, it is needed to control the three-phase four-wire PWM converter flexibly and reasonably. Thereby, the control strategy for the converter is analyzed in this paper. In dq0 reference frame, the mathematical model of the converter is founded. The double-loop control strategy, consisting of voltage outer loop and current inner loop, is presented. Moreover, the voltage balance control for the split DC link capacitors is also considered. Using MATLAB, the simulation model of the integrated active SFCL is built. According to the simulation results, it is known that, the presented control strategy is feasible and valid, and the converter can work well under unsymmetrical and symmetrical fault conditions, and then the fault current can be limited quickly and effectively.

  10. Switching Arithmetic for DC to DC Converters Using Delta Sigma Modulator Based Control Circuit

    Directory of Open Access Journals (Sweden)

    K.Diwakar

    2016-02-01

    Full Text Available In the proposed arithmetic unit for dc to dc converters using delta sigma modulator, a new technique is proposed for addition and multiplication of sampled analog signals. The output is in digital form to drive the converters. The conventional method has input signal limitation whereas in the proposed method the inputs can vary to full-scale. The addition of two discrete signals is done by sampling the two signals at a period called update period and feeding each signal to the input of signal dependant delta sigma modulator for half of the update period and combining the outputs for the update period. The extension of three discrete data addition can be carried out by using the same technique. For the multiplication of two discrete signals different method is adopted. One analog signal is fed to the input of first delta-sigma modulator (DSM1 after sampling. The sampled output of the second analog signal is negated or not negated depending on the bit state at the output of DSM1 and is fed to the input of second DSM(DSM2. The resulting bit stream at the output of DSM2 is the digital representation of the product of the sampled data of the two analog signals. In order to multiply three discrete data, the sampled output of third data is negated or not negated depending on the bit state at the output of DSM2 and is fed to the input of third DSM(DSM3. The resulting bit stream at the output of DSM3 is the digital representation of the product of the sampled data of the three analog signals. Using the proposed adder and multiplier circuits any expressions can be evaluated such that the average value of the digital output of the arithmetic unit over the update period gives the value of expressions during that period. The digital output of the arithmetic unit is used to drive the dc-dc converters.

  11. Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS

    Directory of Open Access Journals (Sweden)

    David Bol

    2011-01-01

    Full Text Available Ultra-low-voltage operation improves energy efficiency of logic circuits by a factor of 10×, at the expense of speed, which is acceptable for applications with low-to-medium performance requirements such as RFID, biomedical devices and wireless sensors. However, in 65/45 nm CMOS, variability and short-channel effects significantly harm robustness and timing closure of ultra-low-voltage circuits by reducing noise margins and jeopardizing gate delays. The consequent guardband on the supply voltage to meet a reasonable manufacturing yield potentially ruins energy efficiency. Moreover, high leakage currents in these technologies degrade energy efficiency in case of long stand-by periods. In this paper, we review recently published techniques to design robust and energy-efficient ultra-low-voltage circuits in 65/45 nm CMOS under relaxed yet strict timing constraints.

  12. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  13. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages

    KAUST Repository

    Baran, D.

    2016-11-09

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q - Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized. © The Royal Society of Chemistry 2016.

  14. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages.

    Science.gov (United States)

    Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I

    2016-12-01

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q - Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.

  15. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  16. Research on the Influence of Switching Frequency on Low-Frequency Oscillation in the Voltage-Controlled Buck-Boost Converter

    Directory of Open Access Journals (Sweden)

    Faqiang Wang

    2011-01-01

    Full Text Available The influence of switching frequency on the low-frequency oscillation in the voltage-controlled buck-boost converter is studied in this paper. Firstly, the mathematical model of this system is derived. And then, a glimpse at the influence of switching frequency on the low-frequency oscillation in this system by MATLAB/Simulink is given. The improved averaged model of the system is established, and the corresponding theoretical analysis is presented. It is found that the switching frequency has an important influence on the low-frequency oscillation in the system, that is, the low-frequency oscillation is easy to occur when the switching frequency is low. Finally, the effectiveness of the improved averaged model and the theoretical analysis are confirmed by circuit experiment.

  17. Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells

    Science.gov (United States)

    Yoon, Woojun; Boercker, Janice E.; Lumb, Matthew P.; Placencia, Diogenes; Foos, Edward E.; Tischler, Joseph G.

    2013-07-01

    Nanocrystal quantum dots (QD) show great promise toward improving solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum and enable multi-exciton generation. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. Here we report the highest open-circuit voltages to date for colloidal QD based solar cells under one sun illumination. This Voc of 692 +/- 7 mV for 1.4 eV PbS QDs is a result of improved passivation of the defective QD surface, demonstrating as a function of the QD bandgap (Eg). Comparing experimental Voc variation with the theoretical upper-limit obtained from one diode modeling of the cells with different Eg, these results clearly demonstrate that there is a tremendous opportunity for improvement of Voc to values greater than 1 V by using smaller QDs in QD solar cells.

  18. Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications

    Science.gov (United States)

    Zhuge, Jing; Verhulst, Anne S.; Vandenberghe, William G.; Dehaene, Wim; Huang, Ru; Wang, Yangyuan; Groeseneken, Guido

    2011-08-01

    This paper investigates the potential of tunnel field-effect transistors (TFETs), with emphasis on short-gate TFETs, by simulation for low-power digital applications having a supply voltage lower than 0.5 V. A transient study shows that the tunneling current has a negligible contribution in charging and discharging the gate capacitance of TFETs. In spite of a higher resistance region in the short-gate TFET, the gate (dis)charging speed still meets low-voltage application requirements. A circuit analysis is performed on short-gate TFETs with different materials, such as Si, Ge and heterostructures in terms of voltage overshoot, delay, static power, energy consumption and energy delay product (EDP). These results are compared to MOSFET and full-gate TFET performance. It is concluded that short-gate heterostructure TFETs (Ge-source for nTFET, In0.6Ga0.4As-source for pTFET) are promising candidates to extend the supply voltage to lower than 0.5 V because they combine the advantage of a low Miller capacitance, due to the short-gate structures, and strong drive current in TFETs, due to the narrow bandgap material in the source. At a supply voltage of 0.4 V and for an EOT and channel length of 0.6 nm and 40 nm, respectively, a three-stage inverter chain based on short-gate heterostructure TFETs saves 40% energy consumption per cycle at the same delay and shows 60%-75% improvement of EDP at the same static power, compared to its full-gate counterpart. When compared to the MOSFET, better EDP can be achieved in the heterostructure TFET especially at low static power consumption.

  19. Voltage-Balancing Method for Modular Multilevel Converters Under Phase-Shifted Carrier-Based Pulsewidth Modulation

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2015-01-01

    The modular multilevel converter (MMC) becomes attractive for medium- or high-power applications because of the advantages of high modularity, availability, and power quality. One of the technical challenges associated with an MMC is the balancing of the capacitors' voltages. In this paper......, a voltage-balancing control method is proposed for the MMC under phase-shifted carrier-based pulsewidth modulation. The proposed voltage-balancing method uses the linearization method for pulse sorting without arm current measurement, which can control the capacitor charge transfer to balance the capacitor....../EMTDC are conducted, and a downscale MMC prototype is also tested with the proposed method. The study results show the effectiveness of the proposed voltage-balancing method....

  20. Digital Control of a High Voltage (2.5 kV) Bidirectional Flyback DC-DC Converter for Driving a Capacitive Incremental Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Maksimovic, Dragan; Zhang, Zhe;

    2016-01-01

    on the output high-voltage (HV) side. Experimental results verifying the bidirectional operation of a high voltage flyback converter are presented, using a 3 kV polypropylene film capacitor as the load. The energy loss distributions of the converter when 4 kV and 4.5 kV HV MOSFETs are used on HV side...

  1. Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different imped...

  2. Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different imped...

  3. AC Small Signal Modeling of PWM Y-Source Converter by Circuit Averaging and Averaged Switch Modeling Technique

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    Magnetically coupled Y-source impedance network is a newly proposed structure with versatile features intended for various power converter applications e.g. in the renewable energy technologies. The voltage gain of the Y-source impedance network rises exponentially as a function of turns ratio......, which is inherited from a special coupled inductor with three windings. Due to the importance of modeling in the converter design procedure, this paper is dedicated to dc and ac small signal modeling of the PWM Y-source converter. The derived transfer functions are presented in detail and have been...

  4. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    Science.gov (United States)

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  5. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations

    Science.gov (United States)

    Seoane, F.; Macías, R.; Bragós, R.; Lindecrantz, K.

    2011-11-01

    In this work, the single Op-Amp with load-in-the-loop topology as a current source is revisited. This circuit topology was already used as a voltage-controlled current source (VCCS) in the 1960s but was left unused when the requirements for higher frequency arose among the applications of electrical bioimpedance (EBI). The aim of the authors is not only limited to show that with the currently available electronic devices it is perfectly viable to use this simple VCCS topology as a working current source for wideband spectroscopy applications of EBI, but also to identify the limitations and the role of each of the circuit components in the most important parameter of a current for wideband applications: the output impedance. The study includes the eventual presence of a stray capacitance and also an original enhancement, driving with current the VCCS. Based on the theoretical analysis and experimental measurements, an accurate model of the output impedance is provided, explaining the role of the main constitutive elements of the circuit in the source's output impedance. Using the topologies presented in this work and the proposed model, any electronic designer can easily implement a simple and efficient current source for wideband EBI spectroscopy applications, e.g. in this study, values above 150 kΩ at 1 MHz have been obtained, which to the knowledge of the authors are the largest values experimentally measured and reported for a current source in EBI at this frequency.

  6. Modeling and Simulation of Flexible Transmission Mechanism with Multiclearance Joints for Ultrahigh Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Fangang Meng

    2015-01-01

    Full Text Available The transmission mechanism, of which the dynamic characteristics determine the reliability of the circuit breaker, is the principal component of the ultrahigh voltage (UHV circuit breaker. The characteristics of transmission mechanism are quick motion, high sensibility, and high reliability. The transmission mechanism with multiclearance joints present strong no-linear vibration feature which strongly affects the reliability of the UHV circuit breaker. In this investigation, a planar rigid-flexible coupling model of the transmission mechanism considering the clearance joints and the flexibility of components is established by using ADAMS software. The dynamic contact model in clearance joints is performed, based on clearance vector model of clearance joint. Then, the reliability of the model is proved by means of comparing the results of experiments. The simulation results show that the dynamic response of the mechanism is greatly influenced by the clearance and the flexibility of components has a role of suspension for the mechanism. Moreover, the influence of the clearance size, input speed, and number of clearance joints on the dynamic characteristics of the mechanism are also investigated.

  7. Factors limiting the open-circuit voltage in microcrystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Chatterjee P.

    2011-11-01

    Full Text Available In studying photovoltaic devices made with silicon thin films and considering them according to their grain size, it is curious that as the crystalline fraction increases, the open-circuit voltage (Voc – rather than approaching that of the single-crystal case – shows a decline. To gain an insight into this behavior, observed in hydrogenated microcrystalline silicon (μc-Si:H solar cells prepared under a variety of deposition conditions, we have used a detailed electrical-optical computer modeling program, ASDMP. Two typical μc-Si:H cells with low (~79% and higher (~93% crystalline volume fractions (Fc, deposited in our laboratory and showing this general trend, were modeled. From the parameters extracted by simulation of their experimental current density – voltage and quantum efficiency characteristics, it was inferred that the higher Fc cell has both a higher band gap defect density as well as a lower band gap energy. Our calculations reveal that the proximity of the quasi-Fermi levels to the energy bands in cells based on highly crystallized μc-Si:H (assumed to have a lower band gap, results in both higher free and trapped carrier densities. The trapped hole population, that is particularly high near the P/I interface, results in a strong interface field, a collapse of the field in the volume, and hence a lower open-circuit voltage. Interestingly enough, we were able to fabricate fluorinated μc-Si:H:F cells having 100% crystalline fraction as well as very large grains, that violate the general trend and show a higher Voc. Modeling indicates that this is possible for the latter case, as also for a crystalline silicon PN cell, in spite of a sharply reduced band gap, because the lower effective density of states at the band edges and a sharply reduced gap defect density overcome the effect of the lower band gap.

  8. Development of High-Voltage Vacuum Circuit Breaker%高电压真空断路器的发展

    Institute of Scientific and Technical Information of China (English)

    吴红亚; 李建基

    2011-01-01

    六氟化硫断路器在高压断路器中居主导地位,而真空断路器在中压领域占绝对优势,并在高电压领域崭露头角。阐述了开发高电压真空断路器的必要性,介绍了现有产品的结构与特点,并提出了研发高电压真空断路器需解决的技术问题及相关的应对措施。%Sulfur hexafluoride circuit breakers take a leading position in high-voltage circuit breakers and vacuum circuit breakers hold all the trumps in medium voltage field,making a figure in high-voltage field.Description was made to the necessity of development of high-voltage vacuum circuit breakers.Introduction was made to structure and features of the existing products.This paper raised technical issues to be solved in RD of high-voltage vacuum circuit breakers and their related countermeasures.

  9. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    Science.gov (United States)

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (Voc) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local Voc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the Voc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  10. A SVPWM based on fluctuate capacitor voltage in 3L-NPC back-to-back converter applied to wind energy

    DEFF Research Database (Denmark)

    Chen, Quan; Wang, Qunjing; Chen, Zhe

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) converters are becoming a realistic alternative to the conventional converters in high-power wind-energy applications. But the unbalance in the supported capacitors' voltage of back-to-back 3L-NPC converters, including the dynamics of the capacitors...... between the fluctuate voltage of upper and lower capacitors is extracted. Based on this error factor the duty-time of every active voltage vector is calculated. In order to validate the model and the control strategy proposed in this paper, a 2MW 3L-NPC converter used in wind energy has been simulated....

  11. 4Nx Non-Isolated and Non-Inverting Hybrid Interleaved Multilevel Boost Converter Based on VLCIm Cell and Cockroft Walton Voltage Multiplier for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2016-01-01

    In this treatise, 4Nx hybrid Non Inverting & Non Isolated (NI-NI) DC-DC interleaved multi-level boost converter (4Nx IMBC) for renewable energy applications is proposed. The proposed 4Nx IMBC is derived by coalescing the feature of 2Nx DC-DC Interleaved Multi-level Boost Converter (2Nx IMBC......), voltage-lift-switched-inductor-modified (VLSlm Cell) and Cockcroft Walton (CW) voltage multipliers. The 4Nx converter provides 4N times more conversion voltage ratio compared to conventional boost converter where N denotes the number of output stages of the 4Nx IMBC. To make renewable energy sources...

  12. Radiation effects on DC-DC Converters

    Science.gov (United States)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  13. SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....

  14. Voltage and Current Regulators Design of Power Converters in Islanded Microgrids based on State Feedback Decoupling

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    In stand-alone microgrids based on voltage source inverters state feedback coupling between the capacitor voltage and inductor current degrades significantly the dynamics performance of voltage and current regulators. The decoupling of the controlled states is proposed, considering the limitations...... introduced by system delays. Moreover, a proportional resonant voltage controller is designed according to Nyquist criterion taking into account application requirements. Experimental tests performed in compliance with the UPS standards verify the theoretical analysis....

  15. Analysis of three-phase rectifiers with AC-side switches and interleaved three-phase voltage-source converters

    Science.gov (United States)

    Miller, Stephanie Katherine Teixeira

    Of all the alternative and renewable energy sources, wind power is the fastest growing alternative energy source with a total worldwide capacity of over 93 GW as of the end of 2007. However, making wind energy a sustainable and reliable source of electricity doesn't come without its set of challenges. As the wind turbines increase in size and turbine technology moves towards off-shore wind farms and direct drive transmission, the need for a reliable and efficient power electronics interface to convert the variable-frequency variable-magnitude output of the wind turbine's generator into the fixed-frequency fixed-magnitude voltage of the utility grid is critical. This dissertation investigates a power electronics interface envisioned to operate with an induction generator-based variable-speed wind turbine. The research conclusions and the interface itself are applicable to a variety of applications, including uninterruptible power supplies, industrial drives, and power quality applications, among others. The three-phase PWM rectifiers with ac-side bidirectional switches are proposed as the rectification stage of the power electronics interface. Modulation strategies are proposed for the rectifiers and the operation of the rectifiers in conjunction with an induction generator is demonstrated. The viability of using these rectifiers in place of the standard three-phase voltage-source converter is analyzed by comparing losses and common-mode voltage generation of the two topologies. Parallel three-phase voltage-source converter modules operated in an interleaved fashion are proposed for the inversion stage of the power electronics interface. The interleaved three-phase voltage-source converters are analyzed by deriving analytical models for the common-mode voltage, ac phase current, and dc-link current to reveal their spectra and the harmonic cancellation effects of interleaving. The practical problem of low frequency circulating current in parallel voltage

  16. Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    Directory of Open Access Journals (Sweden)

    Borzou Yousefi

    2017-09-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSM have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software.

  17. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  18. Constant Common Mode Voltage Modulation Strategy for the FB10 power converter

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Vázquez, Gerardo; Teodorescu, Remus;

    2011-01-01

    In this paper a modulation strategy based on the classical space vector modulation is applied to the FB10 converter, a new converter topology for PV applications. Firstly, the FB10 converter is presented and the natural modulation is computed. Secondly, the simulation and experimental results are...

  19. Constant Common Mode Voltage Modulation Strategy for the FB10 power converter

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Vázquez, Gerardo; Teodorescu, Remus

    2011-01-01

    In this paper a modulation strategy based on the classical space vector modulation is applied to the FB10 converter, a new converter topology for PV applications. Firstly, the FB10 converter is presented and the natural modulation is computed. Secondly, the simulation and experimental results are...

  20. Hybrid Impedance Network-Based Converter With High Voltage Gain and No Commutation Problem

    DEFF Research Database (Denmark)

    Mostaan, Ali; N. Soltani, Mohsen; A. Gorji, Saman

    2016-01-01

    In this paper, a new hybrid converter based on Z-source DC/DC converter with common ground is introduced. The proposed converter can supply ac and dc loads simultaneously or individually (stand- alone ac or dc loads). Also, the commutation problem of its counterpart has been solved in this topolo...

  1. Study on circuit of double-input switching converters%基于双电源开关变换器电路的研究

    Institute of Scientific and Technical Information of China (English)

    王玉; 郭颖

    2011-01-01

    针对燃料电池输出电压易受负载变化的影响以及光伏电池输出电压随入射光的强弱和温度而变化的特点,提出了燃料电池与太阳电池双能源并联运行的新型拓扑电路.用燃料电池与交错并联Boost开关变换器连接,可以有效减小燃料电池输出电流的纹波;用太阳电池与双向Buck-Boost开关变换器拓扑联接,不仅可以向负载提供电能,还可以对蓄电池充电,实现能量的双向流动;同时用交错并联Boost电路与双向Buck-Boost电路并联为负载提供电能,既提高了电能质量又为负载提供了稳定可靠的电能.详细分析了该新型拓扑电路的工作原理,理论分析和实验验证了本设计的可行性.%The output voltage of fuel cell was susceptible to the load change, and the output voltage of photovoltaic cells changed with the incident light intensity and the temperature. A kind of new topological circuit with fuel cell and solar cell in parallel was proposed. The connection of fuel cell with parallel interlacing Boost converter could effectively reduce the ripple of output current of fuel cell. The connection of solar cell with bi-directional Buck-Boost converter could not only supply power to load but also charge the battery to implement the bidirectional flow of energy. Meanwhile, with the parallel interlacing Boost circuit and bidirectional Buck-Boost circuit in parallel to provide energy to load, not only the energy quality was increased, but also the stale and reliable energy was supplied to load. The working principle of the circuit topology was analyzed in detail. The theoretical analysis and the experimental results verify the feasibility of this new type circuit design.

  2. Design and Control for the Buck-Boost Converter Combining 1-Plus-D Converter and Synchronous Rectified Buck Converters

    Directory of Open Access Journals (Sweden)

    Jeevan Naik

    2015-06-01

    Full Text Available In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Above all, both the 1-plus-D converter and the SR buck converter, combined into a buck–boost converter with no right-half plane zero, use the same power switches, thereby causing the required circuit to be compact and the corresponding cost to be down. Furthermore, during the magnetization period, the input voltage of the 1-plus-D converter comes from the input voltage source, whereas during the demagnetization period, the input voltage of the 1-plus-D converter comes from the output voltage of the SR buck converter.

  3. Open-circuit voltage analysis of p-i-n type amorphous silicon solar cells deposited at low temperature

    Institute of Scientific and Technical Information of China (English)

    Ni Jian; Zhang Jian-Jun; Cao Yu; Wang Xian-Bao; Li Chao; Chen Xin-Liang; Geng Xin-Hua; Zhao Ying

    2011-01-01

    This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125 ℃.We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely.A significant improvement in open circuit voltage has been obtained by using high quality p-a-SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.

  4. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    Science.gov (United States)

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  5. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental...... is measured in a wind power converter at a low fundamental frequency. To illustrate more, the test method as well as the performance of the measurement circuit are also presented. This measurement is also useful to indicate failure mechanisms such as bond wire lift-off and solder layer degradation...

  6. Super-Twisting Differentiator-Based High Order Sliding Mode Voltage Control Design for DC-DC Buck Converters

    Directory of Open Access Journals (Sweden)

    Yigeng Huangfu

    2016-06-01

    Full Text Available This paper aims to focus on the smooth output of DC-DC buck converters in wireless power transfer systems under input perturbations and load disturbances using the high-order sliding mode controller (HOSM and HOSM with super-twisting differentiator (HOSM + STD. The proposed control approach needs only measurement of converter output voltage. Theoretical analysis and design procedures, as well as the super-twisting differentiator of the proposed controller are presented in detail with the prescribed convergence law of high-order sliding modes. Comparisons of both simulation and experimental results among conventional proportional-integral (PI control, traditional sliding mode control (SMC, HOSM and HOSM + STD under various test conditions such as steady state, input voltage perturbations and output load disturbances, are presented and discussed. The results demonstrate and validate the effectiveness and robustness of the proposed control method.

  7. Three-phase Resonant DC-link Converter

    DEFF Research Database (Denmark)

    Munk-Nielsen, Stig

    no additional power electric components is eliminating the high voltage peaks associated with the resonant circuit. The resonant link voltage peaks are limited below 2.1 times the DC link voltages. A new principle eliminating former resonant converter stability problems are proposed, implemented and tested......The purpose of the project is to develop a three-phase resonant converter suitable for standard speed drives. The motivation for working with resonant converters is found in the problem of the standard converter type used today. In standard converter type Pulse Width Modulated-Voltage Source....... The high speed of the switches cannot be fully utilizied. By using a parallel resonant converter the switching happens at low or zero voltage which reduses switch losses. The dv/dt is controlled by the resonant circuit, and it is therefore reduced significantly. The perspective using a resonant converter...

  8. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    Science.gov (United States)

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  9. Discussion on Selectivity of Low Voltage Circuit Breakers%低压断路器的选择性探讨

    Institute of Scientific and Technical Information of China (English)

    何国标

    2014-01-01

    This paper introduces the principle of selectivity for low voltage circuit breakers in distribution line. Focus on the coordinate of several circuit breakers and selectivity of overload and short circuit. This paper describes the latest selectivity technology of low voltage circuit breakers at home and abroad.%本文介绍了在配电线路中对不同低压断路器进行选择的原则。着重阐述了几种断路器之间的配合,过载情况、短路情况下的选择性。并阐述了国内外现阶段最新的低压断路器的选择性技术。

  10. Frequency-controlled voltage regulator

    Science.gov (United States)

    Mclyman, W. T.

    1980-01-01

    Converting input ac to higher frequency reduce size and weight and makes possible unique kind of regulation. Since conversion frequency is above range of human hearing, supply generated on audible noise. It also exploits highfrequency conversion features to regulate its output voltage in novel way. Circuit is inherently short-circuit proof.

  11. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...... capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...

  12. The correlation of open-circuit voltage with bandgap in amorphous silicon-based pin solar cells

    Science.gov (United States)

    Crandall, R. S.; Schiff, E. A.

    1996-01-01

    We briefly review the correlation of open-circuit voltages VOC with the bandgap of the intrinsic layer in amorphous silicon based pin solar cells. We discuss two mechanisms which limit VOC: intrinsic layer recombination, and the built-in potential VBI. In particular we discuss Li's proposal that the open-circuit voltages in higher bandgap cells (EG>1.9 eV) are VBI-limited. Based on computer simulations of pin solar cells we propose that VBI limitation occurs when the recombination limit to VOC exceeds the cell's field-reversal voltage VR. For a-Si:H based cells this field-reversal voltage occurs at about VBI-0.3 V. This proposal would account for the observation that VBI limitation occurs for VOC significantly smaller than VBI.

  13. Voltage sags due to the short-circuits on transmission lines; Afundamentos de tensao provocados por curto-circuitos em linhas de transmissao

    Energy Technology Data Exchange (ETDEWEB)

    Klock Junior, Odemar Solano [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)

    2001-07-01

    This paper analyses the voltage sags influence on the buses, including the ones where consumers of the COPEL transmission electric system, determining the sags number and the approximate values for short-circuits on transmission lines. The voltage values, during the the short-circuit regime are obtained from the data for the short-circuit program. The short-circuits are simulated by the assembly of the electric system impedance matrix, from where the voltage values for short-circuits on any point of the electric system can be determined using simply calculations.

  14. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  15. CMOS circuits for electromagnetic vibration transducers interfaces for ultra-low voltage energy harvesting

    CERN Document Server

    Maurath, Dominic

    2015-01-01

    Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100µW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over...

  16. The use of radial integrated circuits for the design of voltage-controlled oscillators

    Science.gov (United States)

    de Jaeger, M.

    A theoretical model for the behavior of voltage-controlled oscillators (VCO) used in millimeter-wave applications is presented, with attention concentrated on multi-diode structures. A radial structure is considered, featuring the VCOs operating in the Q band with ICs. The model developed examines the electromagnetic behavior of the circuit, taking into account multimodal functioning. Experimental results are presented for the frequency evolution with impedance. The design of a VCO, through integration of a Gunn diode and a varactor into a radial system, is described, including an analysis of the series resistance of the varactor. Optimum operational conditions are defined, as are device dimensions. Finally, the technique is extended to the design of power combiners.

  17. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (VOC) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of VOC to discuss the difference in the primary loss mechanism of VOC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of VOC in both solar cells are further discussed on the basis of the experimental data.

  18. The Cu2ZnSnS4 solar cell with high open circuit voltage

    Science.gov (United States)

    Yang, Min; Ma, Xun; Jiang, Zhi; Li, Zhishan; Liu, Sijia; Lu, Yilei; Wang, Shurong

    2017-03-01

    In this paper, the effects of two different sulfurization processes on the CZTS films were investigated, and the results indicated that a rapid high-temperature crystallization process after sulfurization was beneficial for CZTS thin films to obtain a compact and flat surface with large grains. However, a common sulfurization without rapid high-temperature crystallization process would easily lead to undesirable properties of films, such as rough surface with pin holes, which degenerate the performance of devices. Cu2ZnSnS4 (CZTS) solar cell based on a rapid high-temperature process after sulfurization achieved a high open circuit voltage of 722 mV and the best efficiency 3.32% was obtained.

  19. A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2013-06-01

    Full Text Available Designing integrated circuits able to work under low-voltage (LV low-power (LP condition is currently undergoing a very considerable boom. Reducing voltage supply and power consumption of integrated circuits is crucial factor since in general it ensures the device reliability, prevents overheating of the circuits and in particular prolongs the operation period for battery powered devices. Recently, non-conventional techniques i.e. bulk-driven (BD, floating-gate (FG and quasi-floating-gate (QFG techniques have been proposed as powerful ways to reduce the design complexity and push the voltage supply towards threshold voltage of the MOS transistors (MOST. Therefore, this paper presents the operation principle, the advantages and disadvantages of each of these techniques, enabling circuit designers to choose the proper design technique based on application requirements. As an example of application three operational transconductance amplifiers (OTA base on these non-conventional techniques are presented, the voltage supply is only ±0.4 V and the power consumption is 23.5 µW. PSpice simulation results using the 0.18 µm CMOS technology from TSMC are included to verify the design functionality and correspondence with theory.

  20. Protection of ± 500 kV HVDC Double-circuit Converter Station from Lightning Induced Overvoltage

    Institute of Scientific and Technical Information of China (English)

    DONG Manling; YUAN Zhiyong; LI Tianwei; ZHAO Xiangen; ZHANG Jiaxin; HE Junjia

    2013-01-01

    In order to obtain reasonable schemes of arrester in converter stations,the arrester scheme of"Xiluodu-Guangdong HVDC ±500 kV double circuit transmission" project against lighting induced overvoltage,which was designed according to the main principle of lightning protection in converter station,is discussed.A calculation of the lighting induced overvoltage in Zhaotong converter station under various operation modes is performed with ATP-EMTP software,then the surge arrester configuration of the converter station is decided,and the arrester protection schemes of smoothing reactor and neutral line are studied.It is concluded that additional protection is necessary because of the relatively large gap between protected disconnecting switch and arrester of metallic return transfer bus.Plus,the smoothing reactor (SR) arrester near the valve hall could be removed to improve the scheme's economic performance.

  1. Study on Factors for Accurate Open Circuit Voltage Characterizations in Mn-Type Li-Ion Batteries

    OpenAIRE

    Natthawuth Somakettarin; Tsuyoshi Funaki

    2017-01-01

    Open circuit voltage (OCV) of lithium batteries has been of interest since the battery management system (BMS) requires an accurate knowledge of the voltage characteristics of any Li-ion batteries. This article presents an OCV characteristic for lithium manganese oxide (LMO) batteries under several experimental operating conditions, and discusses factors for accurate OCV determination. A test system is developed for OCV characterization based on the OCV pulse test method. Various factors for ...

  2. Active Power and DC-link Voltage Coordinative Control for Cascaded DC-AC Converter with Bidirectional Power Application

    DEFF Research Database (Denmark)

    Tian, Yanjun; Chen, Zhe; Deng, Fujin;

    2015-01-01

    Two stage cascaded converters are widely used in DC/AC hybrid systems to achieve the bidirectional power transmission. The topology of dual active bridge cascaded with inverter (DABCI) is commonly used in this application. This paper proposes a coordinative control method for DABCI and it’s able...... to reduce the DC-link voltage fluctuation between the DAB and inverter, then reduce the stress on the switching devices, as well as improve the system dynamic performance. In the proposed control method, the DAB and inverter are coordinated to control the DC-link voltage and the power......, and this responsibility sharing control can effectively suppress the impact of the power variation on the DC-link voltage, without sacrificing stability. The proposed control method is also effective for DABCI in unidirectional power transmission. The effectiveness of the propose control has been validated by both...

  3. A three-port direct current converter

    DEFF Research Database (Denmark)

    2016-01-01

    The three-port direct current converter comprising: at least one input direct current source; at least one storage battery; a primary side circuit; a secondary side circuit; a first single magnetic component shared by the primary side circuit and the secondary side circuit, wherein the primary side...... circuit comprises a connection between the at least one input direct current source and the at least one storage battery, the primary side circuit configured for operating as a buck converter; a second magnetic component serially coupled to the first single magnetic component, wherein the first and second...... magnetic components are configured to perform a voltage step-up, wherein the secondary side circuit comprises a connection between the at least one storage battery and at least one load, the secondary side configured for operating as a tapped boost converter; wherein the three-port direct current converter...

  4. Thermal analysis of multilevel grid side converters for 10 MW wind turbines under Low Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2011-01-01

    As the power level of a single wind turbine is continuously pushed up even to 7 MW, the wind power generation system are required to be more reliable, and able to withstand extreme grid disturbances. Moreover, it is becoming a need that the wind power generation system should be more active......-scale power converters, especially during grid faults may compromise the reliability performance and further increase the cost of the system. In this paper, three promising grid side multilevel converter topologies for the next generation 10 MW wind turbines are proposed and basically designed as case study....... The operation status, as well as loss and thermal distributions of power devices are investigated, simulated and compared aimed at various Low Voltage Ride Through (LVRT) conditions. It is found that the all of the proposed converter topologies will suffer from higher junction temperature in some heavy loaded...

  5. Modeling and Simulation of Buck-Boost Converter with Voltage Feedback Control

    OpenAIRE

    2015-01-01

    In order to design the control system, it is necessary to have an exact model of buck-boost converter. This paper put forward the transfer function model of buck-boost converter by the state-space average method. The open-loop transfer function model of uncompensated system is deduced according to the mathematic model of the buck-boost converter, the controller is designed according to frequency domain. The phase and magnitude margin of the open-loop system of the buck-boost converter with co...

  6. Empiric analysis of zero voltage switching in piezoelectric transformer based resonant converters

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Andersen, Michael A. E.

    2012-01-01

    Research and development within piezoelectric transformer (PT) based converters are rapidly increasing, as the technology is maturing and starts to prove its capabilities. High power density and high efficiencies are reported and recently several inductor-less converters have emerged [1][2][7][10......Research and development within piezoelectric transformer (PT) based converters are rapidly increasing, as the technology is maturing and starts to prove its capabilities. High power density and high efficiencies are reported and recently several inductor-less converters have emerged [1...

  7. Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker

    Science.gov (United States)

    Lin, Xin; Wang, Feiming; Xu, Jianyuan; Xia, Yalong; Liu, Weidong

    2016-03-01

    According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic. supported by Science and Technology Project of State Grid Corporation of China (No. GY17201200063), National Natural Science Foundation of China (No. 51277123), Basic Research Project of Liaoning Key Laboratory of Education Department (LZ2015055)

  8. Fuzzy diagnostic system for oleo-pneumatic drive mechanism of high-voltage circuit breakers.

    Science.gov (United States)

    Nicolau, Viorel

    2013-01-01

    Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP), presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies.

  9. Fuzzy Diagnostic System for Oleo-Pneumatic Drive Mechanism of High-Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Viorel Nicolau

    2013-01-01

    Full Text Available Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP, presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies.

  10. Influence of Copper Vapor on Low-Voltage Circuit Breaker Arcs During Stationary and Moving States

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a "double vortex" near the electrodes.

  11. Determining interface properties limiting open-circuit voltage in heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Riley E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Mangan, Niall M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Li, Jian V. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Lee, Yun Seog [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    2017-05-09

    The development of new thin-film photovoltaic (PV) absorbers is often hindered by the search for an optimal heterojunction contact; an unoptimized contact may be mistaken for poor quality of the underlying absorber, making it difficult to assess the reasons for poor performance. Therefore, quantifying the loss in device efficiency and open-circuit voltage (VOC) as a result of the interface is a critical step in evaluating a new material. In the present work, we fabricate thin-film PV devices using cuprous oxide (Cu2O), with several different n-type heterojunction contacts. Their current-voltage characteristics are measured over a range of temperatures and illumination intensities (JVTi). We quantify the loss in VOC due to the interface and determine the effective energy gap at the interface. The effective interface gap measured by JVTi matches the gap measured by X-ray photoelectron spectroscopy, albeit with higher energy resolution and an order of magnitude faster. We discuss potential artifacts in JVTi measurements and areas where analytical models are insufficient. Applying JVTi to complete devices, rather than incomplete material stacks, suggests that it can be a quick, accurate method to assess the loss due to unoptimized interface band offsets in thin-film PV devices.

  12. Effects of Armature Winding Segmentation with Multiple Converters on the Short Circuit Torque of 10-MW Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech;

    2017-01-01

    Superconducting synchronous generators (SCSGs) are drawing more attention in large direct-drive wind turbine applications. Despite low weight and compactness, the short circuit torque of an SCSG may be too high for wind turbine constructions due to a large magnetic air gap of an SCSG. This paper...... aims at assessing the effects of armature winding segmentation on reducing the short circuit torque of 10-MW SCSGs. A concept of armature winding segmentation with multiple power electronic converters is presented. Four SCSG designs using different topologies are examined. Results show that armature...

  13. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...... to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same...

  14. A flexible low-voltage ride-through operation for the distributed generation converters

    DEFF Research Database (Denmark)

    Chen, Hsin-Chih; Lee, Chia-Tse; Cheng, Po-Tai;

    2013-01-01

    -sequence current injection method is proposed to meet the low-voltage ride through (LVRT) requirement. The proposed method predefined a current constraint to avoid the overcurrent during the LVRT operation and adjust the positive-sequence reactive current to reduce the DC-bus voltage ripple. Comparisons...

  15. An improved control method of power electronic converters in low voltage micro-grid

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Qingqiu, Lv; Yanjun, Tian

    2011-01-01

    control of the voltage and frequency deviation added to power references could achieve secondary regulation of the voltage and frequency. In this paper, the authors take the steady and transient transition of grid connecting and disconnecting of the micro-grid as an example, and demonstrate...... the place. The conventional droop control can perform the energy management in grid-connected mode, but may not so effective when micro-grid transferring between grid-connected mode and island mode. The paper analysis the micro-grid in different modes (Conventional droop control, Voltage reference...... compensation, Constant power output mode, Phase adjustment mode), and then proposes an overall control strategy for the micro-grid. The voltage reference compensation would minimize the steady-state error on the nominated operation point; the coordinate control of voltage and frequency with a feed forward...

  16. Transient Recovery Voltages at the Main 132kV Line Bay GIS Circuit Breaker in a Windfarm

    OpenAIRE

    Arana Aristi, Iván; Okholm, J.; Holbøll, Joachim

    2011-01-01

    This paper presents the results of investigations of the Transient Recovery Voltage (TRV) across the terminals of the main 132kV Line Bay GIS circuit breaker (GIS CB) for Walney 2, second phase of the Walney Offshore Wind Farm. Several simulations were performed where the influence of different parameters in the network was evaluated during a fault in the onshore substation. The rate of rise of recovery voltage (RRRV) and the maximum crest voltage (Uc) of the TRV across the GIS CB were compar...

  17. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  18. Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage

    KAUST Repository

    Li, Xin

    2009-01-01

    Pivalic acid (PVA) was used as a new coadsorbent to dye-sensitized solar cells (DSCs) to modify the interface between the TiO2 films and electrolyte. The addition of PVA improved the light-to-electricity conversion efficiency of devices by 8% by enhancing the open-circuit voltage. Copyright © 2009 The Chemical Society of Japan.

  19. Design and Implementation of a Power Converter to Process Renewable Energy for Step-down Voltage Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-04-01

    Full Text Available In this study a power converter to process renewable energy is proposed, which can not only process solar energy but deal with wind power. The proposed converter is derived from two series modified forwards to step down voltage for charger system or dc distribution application, so as called Modified-Forward Dual-Input Converter (MFDIC. The MFDIC mainly contains an upper Modified Forward (MF, a lower MF, a common output inductor and a DSP-based system controller. The upper and lower MFs can operate individually or simultaneously to accommodate the variation of atmospheric conditions. Since the MFDIC can process renewable power with interleaved operation, the ripple of output current is suppressed significantly and thus better performance is achieved. In the MFDIC only a common output inductor is needed, instead of two separated inductors, so that the volume of the converter is reduced significantly. To draw maximum power from PV panel and wind turbine, perturb-and-observe method is adopted to achieve the feature of Maximum Power Point Tracking (MPPT. The MFDIC is constructed, designed, analyzed, simulated and tested. Simulations and practical measurements have demonstrated the validity and the feasibility of the proposed dual-input converter.

  20. Highly Accurate Derivatives for LCL-Filtered Grid Converter with Capacitor Voltage Active Damping

    DEFF Research Database (Denmark)

    Xin, Zhen; Loh, Poh Chiang; Wang, Xiongfei

    2016-01-01

    The middle capacitor voltage of an LCL-filter, if fed back for synchronization, can be used for active damping. An extra sensor for measuring the capacitor current is then avoided. Relating the capacitor voltage to existing popular damping techniques designed with capacitor current feedback would...... are then proposed, based on either second-order or non-ideal generalized integrator. Performances of these derivatives have been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately. Experimental results presented have verified...