WorldWideScience

Sample records for voltage contrast image

  1. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  2. CT angiography of intracranial arterial vessels: impact of tube voltage and contrast media concentration on image quality

    International Nuclear Information System (INIS)

    Ramgren, Birgitta; Holtaas, Stig; Siemund, Roger; Dept. of Radiology, Lund Univ., Lund

    2012-01-01

    Background Computed tomography angiography (CTA) of intracranial arteries has high demands on image quality. Important parameters influencing vessel enhancement are injection rate, concentration of contrast media and tube voltage. Purpose To evaluate the impact of an increase of contrast media concentration from 300 to 400 mg iodine/mL (mgI/mL) and the effect of a decrease of tube voltage from 120 to 90 kVp on vessel attenuation and image quality in CT angiography of intracranial arteries. Material and Methods Sixty-three patients were included into three protocol groups: Group I, 300 mgI/mL 120 kVp; Group II, 400 mgI/mL 120 kVp; Group III, 400 mgI/mL 90 kVp. Hounsfield units (HU) were measured in the internal carotid artery (ICA) and the M1 and M2 segments of the middle cerebral artery. Image quality grading was performed regarding M1 and M2 segments, volume rendering and general image impression. Results The difference in mean HU in ICA concerning the effect of contrast media concentration was statistically significant (P = 0.03) in favor of higher concentration. The difference in ICA enhancement due to the effect of tube voltage was statistically significant (P < 0.01) in favor of lower tube voltage. The increase of contrast medium concentration raised the mean enhancement in ICA with 18% and the decrease of tube voltage raised the mean enhancement with 37%. Image quality grading showed a trend towards improved grading for higher contrast concentration and lower tube voltage. Statistically significant better grading was found for the combined effect of both measures except for general impression (P 0.01-0.05). Conclusion The uses of highly concentrated contrast media and low tube voltage are easily performed measures to improve image quality in CTA of intracranial vessel

  3. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xing, E-mail: xmeng101@gmail.com

    2017-02-15

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages. - Highlights: • Cryo EM • Phase contrast • Extraction votage.

  4. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography.

    Science.gov (United States)

    Hwang, Inpyeong; Cho, Jeong Yeon; Kim, Sang Youn; Oh, Seung-June; Ku, Ja Hyeon; Lee, Joongyup; Kim, Seung Hyup

    2015-12-01

    The aim of the present study was to investigate the feasibility and image quality of excretory CT urography performed using low iodine-concentration contrast media and low tube voltage. This prospective study enrolled 63 patients who undergoing CT urography. The subjects were randomized into two groups of an excretory phase CT urography protocol and received either 240 mg I/mL of contrast media and 80 kVp of tube voltage (low-concentration protocol, n=32) or 350 mg I/mL and 120 kVp (conventional protocol, n=31). Two readers qualitatively evaluated images for sharpness of the urinary tract, image noise, streak artifact and overall diagnostic acceptability. The mean attenuation, signal-to-noise ratio, contrast-to-noise ratio and figure of merit were measured in the urinary tract. The non-inferiority test assessed the diagnostic acceptability between the two protocol groups. The low-concentration protocol showed a significantly lower effective radiation dose (3.44 vs. 5.70 mSv, Pcontrast-to-noise ratio and figure of merit were significantly higher in the low-concentration protocol along the entire urinary tract (Pcontrast media, 80 kVp tube voltage and an iterative reconstruction algorithm is beneficial to reduce radiation dose and iodine load, and its objective image quality and subjective diagnostic acceptability is not inferior to that of conventional CT urography. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    Science.gov (United States)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  6. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Ming; Chu, Sung-Yu; Hsu, Ming-Yi [Chang Gung University, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, College of Medicine, Taoyuan (China); Liao, Ying-Lan [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Tsai, Hui-Yu [Chang Gung University, Department of Medical Imaging and Radiological Sciences, College of Medicine, Taoyuan (China); Chang Gung University, Healthy Aging Research Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan (China)

    2014-02-15

    To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR). The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDI{sub vol}), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts. The low-tube-voltage protocol showed 23-31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDI{sub vol} and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01). Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality. (orig.)

  7. Experimental validation of the Wigner distributions theory of phase-contrast imaging

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2005-01-01

    Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model

  8. Study of abdominal CT angiography in low tube voltage setting combined with personalized contrast media application

    International Nuclear Information System (INIS)

    Cao Jianxin; Wang Yiming; Zhang Yu; Tao Wei; Zhang Xiaodong; Wang Aijun; Liu Li; Wang Peng

    2012-01-01

    Objective: To investigate the feasibility of decreasing radiation dose and contrast media dose of abdominal CTA using low tube voltage setting combined with personalized contrast media application. Methods: One hundred and twenty patients were randomly divided into 3 groups, and there were 40 patients in each group. 120 kV tube voltage was used in group A, and 100 kV tube voltage was used in group B and C. Personalized injection flow rate of contrast media which determined according to patient's body mass (injection flow rate =λ × body mass) was used for all groups, and the λ values for group A, B and C were 0.07, 0.07 and 0.06 ml · kg -1 · s -1 respectively. CT dose index volume (CTDIvol) effective dose (ED) and contrast media dose were evaluated,and these parameters were all analyzed using one-way ANOVA analysis. Image quality of abdominal aorta and branch arteries was rated using a three-point ordinal for all 3 groups, and image quality score was analyzed using Kruskal-Wallis test. Results: CTDIvol were (8.2±0.8), (6.0 ±1.0) and (6.1 ±1.1)mGy for group A, B and C, ED were (5.2 ±0.8), (3.5 ± 0.7) and (3.6 ± 0.6) mSv, and contrast media dose were (72.3 ± 10.3),(73.5 ± 11.3) and (61.6 ±9.4) ml, respectively. There were significant differences in CTDIvol, ED and contrast media dose among 3 groups (F=66.094, 77.812,15.919; P=0.000). Compare with group A, the ED of group B was decreased 32.7%, and the ED and contrast media dose of group C were decreased 30.8% and 14.8%, respectively. Image quality was rated as excellent, good, and general for 20, 19 and 1 patients in group A, 25, 15 and 0 patients in group B, and 23, 17 and 0 patients in group C, respectively. There was no significant difference in image quality score among 3 groups (χ 2 =1.492, P=0.474). Conclusions: The radiation dose and contrast media dose can be decreased in abdominal CTA using low tube voltage and personalized contrast media application while image quality can be preserved

  9. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    Science.gov (United States)

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P  .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  10. A prospective evaluation of the contrast, radiation dose and image quality of contrast-enhanced CT scans of paediatric abdomens using a low-concentration iodinated contrast agent and low tube voltage combined with 70% ASIR algorithm.

    Science.gov (United States)

    Wang, Xiaoxia; Zhong, Yumin; Hu, Liwei; Xue, Lianyan; Shi, Meihua; Qiu, Haisheng; Li, Jianying

    2016-09-01

    To quantitatively and subjectively assess the image quality of and radiation dose for an abdominal enhanced computed tomography (CT) scan with a low tube voltage and a low concentration of iodinated contrast agent in children. Forty-eight patients were randomised to one of the two following protocols: Group A (n=24, mean age 46.96±44.65 months, mean weight 15.71±9.11 kg, BMI 16.48±2.40 kg/m(2) ) and Group B (n=24, mean age 41.33±44.59 months, mean weight 18.15±17.67 kg, BMI 17.50±3.73 kg/m(2) ). Group A: 80 kVp tube voltage, 270 mg iodine (I)/mL contrast agent (Visipaque, GE Healthcare) and images were reconstructed using 70% adaptive statistical iterative reconstruction (ASIR). Group B: 100 kVp tube voltage, 370 mg I/mL contrast agent (Iopamiro, Bracco) and images were reconstructed using 50% ASIR. The volume of the contrast agent was 1.30 mL/kg in both Groups A and B. The degree of enhancement and noise in the abdominal aorta (AO) in the arterial phase (AP) and the portal vein (PV) in the portal venous phase (PVP) was measured; while the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for the AO and PV were calculated. A 5-point scale was used to subjectively evaluate the image quality and image noise by two radiologists with more than 10 years of experience. Dose-length product (DLP) (mGy-cm) and CTDIvol (mGy) were calculated. Objective measurements and subjective quality scores for the two groups were compared using paired t-tests and Mann-Whitney U tests, respectively. There was no significant difference in age, weight or body mass index (BMI) between the two groups (all P>.5). The iodine load in Group A (5517.3±3197.2 mg I) was 37% lower than that in Group B (8772.1±8474.6 mg I), although there was no significant difference between them (P=.111). The DLP and the CT dose index (CTDIvol ) for Group A were also lower than for Group B, but were not statistically significantly different (DLP, 104 mGy-cm±45.81 vs 224.5

  11. A prospective evaluation of contrast and radiation dose and image quality in cardiac CT in children with complex congenital heart disease using low-concentration iodinated contrast agent and low tube voltage and current.

    Science.gov (United States)

    Hou, Qiao-Ru; Gao, Wei; Sun, Ai-Min; Wang, Qian; Qiu, Hai-Sheng; Wang, Fang; Hu, Li-Wei; Li, Jian-Ying; Zhong, Yu-Min

    2017-02-01

    To the assess image quality, contrast dose and radiation dose in cardiac CT in children with congenital heart disease (CHD) using low-concentration iodinated contrast agent and low tube voltage and current in comparison with standard dose protocol. 110 patients with CHD were randomized to 1 of the 2 scan protocols: Group A (n = 45) with 120 mA tube current and contrast agent of 270 mgI/ml in concentration (Visipaque ™ ; GE Healthcare Ireland, Co., Cork, UK); and Group B (n = 65) with the conventional 160 mA and 370 mgI/ml concentration contrast (Iopamiro ® ; Shanghai Bracco Sine Pharmaceutical Corp Ltd, Shanghai, China). Both groups used 80 kVp tube voltage and were reconstructed with 70% adaptive statistical iterative reconstruction algorithm. The CT value and noise in aortic arch were measured and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate image quality. Contrast and radiation dose were recorded. There was no difference in age and weight between the two groups (all p > 0.05). The iodine load and radiation dose in Group A were statistically lower (3976 ± 747 mgI vs 5763 ± 1018 mgI in iodine load and 0.60 ± 0.08 mSv vs 0.77 ± 0.10 mSv in effective dose; p  0.05), and with good agreement between the two observers. Comparing the surgery results, the diagnostic accuracy for extracardiac and intracardiac defects for Group A was 96% and 92%, respectively, while the corresponding numbers for Group B were 95% and 93%. Compared with the standard dose protocol, the use of low tube voltage (80 kVp), low tube current (120 mA) and low-concentration iodinated contrast agent (270 mgI/ml) enables a reduction of 30% in iodine load and 22% in radiation dose while maintaining compatible image quality and diagnostic accuracy. Advances in knowledge: The new cardiac CT scanning protocol can largely reduce the adverse effects of

  12. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages

    Energy Technology Data Exchange (ETDEWEB)

    Euler, Andre; Stieltjes, Bram; Eichenberger, Reto; Reisinger, Clemens; Hirschmann, Anna; Zaehringer, Caroline; Kircher, Achim; Streif, Matthias; Bucher, Sabine; Buergler, David; D' Errico, Luigia; Kopp, Sebastien; Wilhelm, Markus [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Szucs-Farkas, Zsolt [Hospital Centre of Biel, Institute of Radiology, Biel (Switzerland); Schindera, Sebastian T. [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Cantonal Hospital Aarau, Institute of Radiology, Aarau (Switzerland)

    2017-12-15

    To evaluate the impact of model-based iterative reconstruction (MBIR) on image quality and low-contrast lesion detection compared with filtered back projection (FBP) in abdominal computed tomography (CT) of simulated medium and large patients at different tube voltages. A phantom with 45 hypoattenuating lesions was placed in two water containers and scanned at 70, 80, 100, and 120 kVp. The 120-kVp protocol served as reference, and the volume CT dose index (CTDI{sub vol}) was kept constant for all protocols. The datasets were reconstructed with MBIR and FBP. Image noise and contrast-to-noise-ratio (CNR) were assessed. Low-contrast lesion detectability was evaluated by 12 radiologists. MBIR decreased the image noise by 24% and 27%, and increased the CNR by 30% and 29% for the medium and large phantoms, respectively. Lower tube voltages increased the CNR by 58%, 46%, and 16% at 70, 80, and 100 kVp, respectively, compared with 120 kVp in the medium phantom and by 9%, 18% and 12% in the large phantom. No significant difference in lesion detection rate was observed (medium: 79-82%; large: 57-65%; P > 0.37). Although MBIR improved quantitative image quality compared with FBP, it did not result in increased low-contrast lesion detection in abdominal CT at different tube voltages in simulated medium and large patients. (orig.)

  13. Adrenal and nephrogenic hypertension: an image quality study of low tube voltage, low-concentration contrast media combined with adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Li, Zhen; Li, Qiong; Shen, Yaqi; Li, Anqin; Li, Haojie; Liang, Lili; Hu, Yao; Hu, Xuemei; Hu, Daoyu

    2016-09-01

    The aim of this study was to investigate the effect of using low tube voltage, low-concentration contrast media and adaptive statistical iterative reconstruction (ASIR) for reducing the radiation and iodine contrast doses in adrenal and nephrogenic hypertension patients. A total of 148 hypertension patients who were suspected for adrenal lesions or renal artery stenoses were assigned to two groups and. Group A (n=74) underwent a low tube voltage, low molecular weight dextran enhanced multi-detector row spiral CT (MDCT) (80 kVp, 270 mg I/mL contrast agent), and the raw data were reconstructed with standard filtered back projection (FBP) and ASIR at four different levels of blending (20%, 40%, 60% and 80%, respectively). The control group (Group B, n=74) underwent conventional MDCT (120 kVp, 370 mg I/mL contrast agent), and the data were reconstructed with FBP. The CT values, standard deviation (SD), signal-noise-ratio (SNR) and contrast-noise-ratio (CNR) were measured in the renal vessels, normal adrenal tissue, adrenal neoplasms and subcutaneous fat. The volume CT dose index (CTDIvol ) and dose length product (DLP) were recorded, and an effective dose (ED) was obtained. Two-tailed independent t-tests, paired Chi-square tests and Kappa consistency tests were used for statistical analysis of the data. The CTDIvol , DLP and total iodine dose in group A were decreased by 47.8%, 49.0% and 26.07%, respectively, compared to group B (Pcontrast media and 60% ASIR provides similar enhancement and image quality with a reduced radiation dose and contrast iodine dose. © 2016 John Wiley & Sons Ltd.

  14. Coronary Computed Tomographic Angiography at Low Concentration of Contrast Agent and Low Tube Voltage in Patients with Obesity:: A Feasibility Study.

    Science.gov (United States)

    Pan, Yu-Ning; Li, Ai-Jing; Chen, Xiao-Min; Wang, Jian; Ren, Da-Wei; Huang, Qiu-Li

    2016-04-01

    Using lower tube voltage can reduce the exposure to radiation and the dose of contrast agent. However, lower tube voltage is often linked to more noise and poor image quality, which create a need for more effective technology to resolve this problem. To explore the feasibility of coronary computed tomographic angiography (CCTA) in patients with obesity at low tube voltage (100 kV) and low contrast agent concentration (270 mg/mL) using iterative reconstruction. A total of 48 patients with body mass index greater than 30 kg/m(2) were included and randomly divided into two groups. Group A received a traditional protocol (iopromide 370 mg/mL + 120 kV); group B received a protocol with low tube voltage (100 kV), low contrast agent concentration (270 mg/mL), and iterative reconstruction. The effective dose (ED), average attenuation values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the figure of merit (FOM), image quality scores, and the total iodine intake were compared. No significant differences in average CT attenuations, SNR, CNR, and subjective scores were noticed between the two groups (P > 0.05), whereas the FOM of group B was significantly higher than that of group A. Effective radiation dose, total iodine, and iodine injection rate in group B were lower than those of group A (P contrast agent with low iodine concentration and low-dose CCTA were feasible. Substantial reduction in radiation dose and the iodine intake could be achieved without compromising the image quality. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Use of Fourier domain filtering and dynamic programming in finding a titanium coil implant in high voltage x-ray images

    DEFF Research Database (Denmark)

    Nielsen, Henning; Hansen, Jesper Carl

    2006-01-01

    This paper deals with the problem of finding precise position and orientation of a titanium coil implant in humans. Analysis of high voltage X-rays stereo images are used to determine the true 3D position. High voltage images inherently presents with poor contrast. Various image processing techni...

  16. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  17. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  18. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  19. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    Science.gov (United States)

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  2. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jian-xin [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Wang, Yi-min, E-mail: wym6669@yahoo.com.cn [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Lu, Jin-guo [Department of Cardiology, Asia Heart Hospital, Wuhan (China); Zhang, Yu; Wang, Peng; Yang, Cheng [Department of Radiology, Wuhan 161th Hospital, Wuhan (China)

    2014-02-15

    Objective: To investigate the effects of 80-kilovoltage (kV) tube voltage coronary computed tomographic angiography (CCTA) with a reduced amount of contrast agent on qualitative and quantitative image quality parameters and on radiation dose in patients with a body mass index (BMI) <23.0 kg/m{sup 2}. Methods: One hundred and twenty consecutive patients with a BMI <23.0 kg/m{sup 2} and a low calcium load undergoing retrospective electrocardiogram (ECG)-gated dual-source CCTA were randomized into two groups [standard-tube voltage (120-kV) vs. low-tube voltage (80-kV)]. The injection flow rate of contrast agent (350 mg I/mL) was adjusted to body weight of each patient (4.5–5.5 mL/s in the 120-kV group and 2.8–3.8 mL/s in the 80-kV group). Radiation and contrast agent doses were evaluated. Quantitative image quality parameters and figure of merit (FOM) of coronary artery were evaluated. Each coronary segment was evaluated for image quality on a 4-point scale. Results: Compared with the 120-kV group, effective dose and amount of contrast agent in the 80-kV group were decreased by 57.8% and 30.5% (effective dose:2.7 ± 0.5vs. 6.4 ± 1.3 mSv; amount of contrast agent:57.1 ± 3.2 vs. 82.1 ± 6.1 mL; both p < 0.0001), respectively. Image noise was 22.7 ± 2.1 HU for 120-kV images and 33.2 ± 5.2 HU for 80-kV images (p < 0.0001). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the proximal right coronary artery (RCA) and left main coronary artery (LMA) were all lower in 80-kV than 120-kV images (SNR in the proximal RCA: 16.5 ± 1.8 vs. 19.4 ± 2.8; SNR in the LMA: 16.3 ± 2.0 vs.19.6 ± 2.7; CNR in the proximal RCA: 19.4 ± 2.3 vs.22.9 ± 3.0; CNR in the LMA: 18.8 ± 2.4 vs. 22.7 ± 2.9; all p < 0.0001). FOM were all significantly higher in 80-kV than 120-kV images (proximal RCA: 146.7 ± 45.1 vs. 93.4 ± 32.0; LMA: 139.1 ± 47.2 vs. 91.6 ± 31.1; all p < 0.0001). There was no significant difference in image quality score between the two groups (3.3 ± 0

  3. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study

    International Nuclear Information System (INIS)

    Cao, Jian-xin; Wang, Yi-min; Lu, Jin-guo; Zhang, Yu; Wang, Peng; Yang, Cheng

    2014-01-01

    Objective: To investigate the effects of 80-kilovoltage (kV) tube voltage coronary computed tomographic angiography (CCTA) with a reduced amount of contrast agent on qualitative and quantitative image quality parameters and on radiation dose in patients with a body mass index (BMI) <23.0 kg/m 2 . Methods: One hundred and twenty consecutive patients with a BMI <23.0 kg/m 2 and a low calcium load undergoing retrospective electrocardiogram (ECG)-gated dual-source CCTA were randomized into two groups [standard-tube voltage (120-kV) vs. low-tube voltage (80-kV)]. The injection flow rate of contrast agent (350 mg I/mL) was adjusted to body weight of each patient (4.5–5.5 mL/s in the 120-kV group and 2.8–3.8 mL/s in the 80-kV group). Radiation and contrast agent doses were evaluated. Quantitative image quality parameters and figure of merit (FOM) of coronary artery were evaluated. Each coronary segment was evaluated for image quality on a 4-point scale. Results: Compared with the 120-kV group, effective dose and amount of contrast agent in the 80-kV group were decreased by 57.8% and 30.5% (effective dose:2.7 ± 0.5vs. 6.4 ± 1.3 mSv; amount of contrast agent:57.1 ± 3.2 vs. 82.1 ± 6.1 mL; both p < 0.0001), respectively. Image noise was 22.7 ± 2.1 HU for 120-kV images and 33.2 ± 5.2 HU for 80-kV images (p < 0.0001). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the proximal right coronary artery (RCA) and left main coronary artery (LMA) were all lower in 80-kV than 120-kV images (SNR in the proximal RCA: 16.5 ± 1.8 vs. 19.4 ± 2.8; SNR in the LMA: 16.3 ± 2.0 vs.19.6 ± 2.7; CNR in the proximal RCA: 19.4 ± 2.3 vs.22.9 ± 3.0; CNR in the LMA: 18.8 ± 2.4 vs. 22.7 ± 2.9; all p < 0.0001). FOM were all significantly higher in 80-kV than 120-kV images (proximal RCA: 146.7 ± 45.1 vs. 93.4 ± 32.0; LMA: 139.1 ± 47.2 vs. 91.6 ± 31.1; all p < 0.0001). There was no significant difference in image quality score between the two groups (3.3 ± 0.8 vs. 3

  4. On the influence of the electron dose rate on the HRTEM image contrast

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Juri, E-mail: ju.barthel@fz-juelich.de [RWTH Aachen University, Ahornstraße 55, 52074 Aachen (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lentzen, Markus; Thust, Andreas [Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2017-05-15

    We investigate a possible dependence between the applied electron dose-rate and the magnitude of the resulting image contrast in HRTEM of inorganic crystalline objects. The present study is focussed on the question whether electron irradiation can induce excessively strong atom vibrations or displacements, which in turn could significantly reduce the resulting image contrast. For this purpose, high-resolution images of MgO, Ge, and Au samples were acquired with varying dose rates using a C{sub S}-corrected FEI Titan 80–300 microscope operated at 300 kV accelerating voltage. This investigation shows that the magnitude of the signal contrast is independent from the dose rates occurring in conventional HRTEM experiments and that excessively strong vibrations or displacements of bulk atoms are not induced by the applied electron irradiation. - Highlights: • No dependence between electron dose rate and HRTEM image contrast is found. • This finding is in full accordance with established solid-state physics theory. • Object-related causes for the previous Stobbs-factor phenomenon are ruled out.

  5. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  6. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  7. Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study

    International Nuclear Information System (INIS)

    Li Fengtan; Li Dong; Zhang Yunting

    2013-01-01

    Objective: To assess the influence of tube current and tube voltage on the CT attenuation, radiation dose, and image quality. Methods: A total of 113 saline solutions with decreasing dilution of contrast medium (370 mg I/ml) was produced. MDCT scan was performed with 15 series of different settings of tube current and tube voltage. CT attenuations with 15 series of different settings were all measured, and influence of tube current and tube voltage on CT attenuations was analyzed. CT dose index (CTDIvol) was recorded. The CT attenuations with different tube voltage and current were compared with one-way ANOVA and Kruskal-Wallis rank sum test. The correlation of CT attenuation with different tube voltage and the influence of tube voltage and current on radiation dose and image quality were tested by correlation analysis. Results: Tube current (250, 200, 150, 100, and 50 mA) had no significant effect on CT attenuation (F = 0.001, 0.008, 0.075, P > 0.05), while tube voltage (120, 100, and 80 kV) had significant effect (H = 17.906, 17.906, 13.527, 20.124, 23.563, P < 0.05). The correlation between CT attenuation and tube voltage was determined with equation: CT attenuatio N_1_0_0 _k_V = 1.561 × CT attenuatio N_1_2_0 _k_v + 4.0818, CT attenuatio N_8_0 _k_v = 1.2131 × CT attenuatio N_1_2_0 _k_v + 0.9283. The influence of tube voltage on radiation dose and image quality was also analyzed, and equations were also obtained: N_1_2_0 -k_v = -5.9771 Ln (D_1_2_0 kv) + 25.412, N_1_0_0 _k_v = -10.544 Ln (D_1_0_0 _k_v) + 36.262, N_8_0 _k_v = -25.326 Ln (D_8_0 _k_v) + 62.816. According to the results of relationship among CT attenuation, radiation dose, and image quality, lower tube voltage with higher tube current can reduce the radiation dose. Conclusions: Lower tube voltage can reduce the radiation dose. However, CT attenuation was influenced, and correction should be done with the equations. (authors)

  8. Choice of operating voltage for a transmission electron microscope

    International Nuclear Information System (INIS)

    Egerton, R.F.

    2014-01-01

    An accelerating voltage of 100–300 kV remains a good choice for the majority of TEM or STEM specimens, avoiding the expense of high-voltage microscopy but providing the possibility of atomic resolution even in the absence of lens-aberration correction. For specimens thicker than a few tens of nm, the image intensity and scattering contrast are likely to be higher than at lower voltage, as is the visibility of ionization edges below 1000 eV (as required for EELS elemental analysis). In thick (>100 nm) specimens, higher voltage ensures less beam broadening and better spatial resolution for STEM imaging and EDX spectroscopy. Low-voltage (e.g. 30 kV) TEM or STEM is attractive for a very thin (e.g. 10 nm) specimen, as it provides higher scattering contrast and fewer problems for valence-excitation EELS. Specimens that are immune to radiolysis suffer knock-on damage at high current densities, and this form of radiation damage can be reduced or avoided by choosing a low accelerating voltage. Low-voltage STEM with an aberration-corrected objective lens (together with a high-angle dark-field detector and/or EELS) offers atomic resolution and elemental identification from very thin specimens. Conventional TEM can provide atomic resolution in low-voltage phase-contrast images but requires correction of chromatic aberration and preferably an electron-beam monochromator. Many non-conducting (e.g. organic) specimens damage easily by radiolysis and radiation damage then determines the TEM image resolution. For bright-field scattering contrast, low kV can provide slightly better dose-limited resolution if the specimen is very thin (a few nm) but considerably better resolution is possible from a thicker specimen, for which higher kV is required. Use of a phase plate in a conventional TEM offers the most dose-efficient way of achieving atomic resolution from beam-sensitive specimens. - Highlights: • 100–300 kV accelerating voltage is suitable for TEM specimens of typical

  9. The evaluation of the radiation dose and image quality through the change of the tube voltage in cerebral CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Won; Jung, Kang Kyo; Cho, Pyong Kon [Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2015-06-15

    To image diagnosis in neurovascular diseases using Multi-Detector Computed Tomography (MDCT), injected the same contrast material when inspecting Brain Computed Tomography Angiography (BCTA) to examine radiation dose and Image quality on changing Cerebral Artery CT number by tube voltage. Executed an examination with same condition[Beam Collimation 128 x 0.6 mm, Pitch 0.6, Rotation Time 0.5s, Slice Thickness 5.0 mm, Increment 5.0 mm, Delay Time 3.0 sec, Care Dose 4D (Demension ; D)] except for tube voltage on 50 call patients for BCTA and divided them into two groups (25 people for a group, group A: 80, group B: 120 kVp). From all the acquired images, set a ROI(Region of Interest) on four spots such as left cerebral artery, right cerebral artery, posterior cerebral artery and cerebral parenchyma to compare quantitative evaluation, qualitative evaluation and effective dose after measuring CT number value from Picture Archiving Communications System(PACS). Evaluating images with CT number acquired from BCTA examination, images with 80 kVp was 18 % higher in Signal to Noise Ratio and 19 % in Contrast to Noise Ratio than those with 120 kVp. It was seen that expose dose was decreased by over 50 % with tube voltage 80 kVp than with 120 kVp. Group A (25 patients) was examination with tube voltage 80 kVp while group B with 120 kVp to examine radiation dose and Image quality. It is considered effective to inspect with lower tube voltage than with conventional high kVp, which can reduce radiation dose without any affect on diagnosis.

  10. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  11. An Improved Image Contrast Assessment Method

    Directory of Open Access Journals (Sweden)

    Yuanyuan Fan

    2013-07-01

    Full Text Available Contrast is an important factor affecting the image quality. In order to overcome the problems of local band-limited contrast, a novel image contrast assessment method based on the property of HVS is proposed. Firstly, the image by low-pass filter is performed fast wavelet decomposition. Secondly, all levels of band-pass filtered image and its corresponding low-pass filtered image are obtained by processing wavelet coefficients. Thirdly, local band-limited contrast is calculated, and the local band-limited contrast entropy is calculated according to the definition of entropy, Finally, the contrast entropy of image is obtained by averaging the local band-limited contrast entropy weighed using CSF coefficient. The experiment results show that the best contrast image can be accurately identified in the sequence images obtained by adjusting the exposure time and stretching gray respectively, the assessment results accord with human visual characteristics and make up the lack of local band-limited contrast.

  12. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Kuhlman, Taylor S.; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Duguay, Taylor M. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Department of Cardiology, Heart Centre Munich-Bogenhausen, Munich (Germany); Vogl, Thomas J. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt (Germany); Nikolaou, Konstantin [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2017-01-15

    Highlights: • TAVR-planning CT was performed with automated tube voltage selection. • Automated tube voltage selection enables individual tube voltage adaptation. • Image quality was diagnostic while radiation exposure was significantly decreased. - Abstract: Purpose: To assess image quality and accuracy of CT angiography (CTA) for transcatheter aortic valve replacement (TAVR) planning performed with 3rd generation dual-source CT (DSCT). Material and methods: We evaluated 125 patients who underwent TAVR-planning CTA on 3rd generation DSCT. A two-part protocol was performed including retrospectively ECG-gated coronary CTA (CCTA) and prospectively ECG-triggered aortoiliac CTA using 60 mL of contrast medium. Automated tube voltage selection and advanced iterative reconstruction were applied. Effective dose (ED), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated. Five-point scales were used for subjective image quality analysis. In patients who underwent TAVR, sizing parameters were obtained. Results: Image quality was rated good to excellent in 97.6% of CCTA and 100% of aortoiliac CTAs. CTA studies at >100 kV showed decreased objective image quality compared to 70–100 kV (SNR, all p ≤ 0.0459; CNR, all p ≤ 0.0462). Mean ED increased continuously from 70 to >100 kV (CCTA: 4.5 ± 1.7 mSv–13.6 ± 2.9 mSv, all p ≤ 0.0233; aortoiliac CTA: 2.4 ± 0.9 mSv–6.8 ± 2.7 mSv, all p ≤ 0.0414). In 39 patients TAVR was performed and annulus diameter was within the recommended range in all patients. No severe cardiac or vascular complications were noted. Conclusion: 3rd generation DSCT provides diagnostic image quality in TAVR-planning CTA and facilitates reliable assessment of TAVR device and delivery option while reducing radiation dose.

  13. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure

    International Nuclear Information System (INIS)

    Mangold, Stefanie; De Cecco, Carlo N.; Schoepf, U. Joseph; Kuhlman, Taylor S.; Varga-Szemes, Akos; Caruso, Damiano; Duguay, Taylor M.; Tesche, Christian; Vogl, Thomas J.; Nikolaou, Konstantin

    2017-01-01

    Highlights: • TAVR-planning CT was performed with automated tube voltage selection. • Automated tube voltage selection enables individual tube voltage adaptation. • Image quality was diagnostic while radiation exposure was significantly decreased. - Abstract: Purpose: To assess image quality and accuracy of CT angiography (CTA) for transcatheter aortic valve replacement (TAVR) planning performed with 3rd generation dual-source CT (DSCT). Material and methods: We evaluated 125 patients who underwent TAVR-planning CTA on 3rd generation DSCT. A two-part protocol was performed including retrospectively ECG-gated coronary CTA (CCTA) and prospectively ECG-triggered aortoiliac CTA using 60 mL of contrast medium. Automated tube voltage selection and advanced iterative reconstruction were applied. Effective dose (ED), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated. Five-point scales were used for subjective image quality analysis. In patients who underwent TAVR, sizing parameters were obtained. Results: Image quality was rated good to excellent in 97.6% of CCTA and 100% of aortoiliac CTAs. CTA studies at >100 kV showed decreased objective image quality compared to 70–100 kV (SNR, all p ≤ 0.0459; CNR, all p ≤ 0.0462). Mean ED increased continuously from 70 to >100 kV (CCTA: 4.5 ± 1.7 mSv–13.6 ± 2.9 mSv, all p ≤ 0.0233; aortoiliac CTA: 2.4 ± 0.9 mSv–6.8 ± 2.7 mSv, all p ≤ 0.0414). In 39 patients TAVR was performed and annulus diameter was within the recommended range in all patients. No severe cardiac or vascular complications were noted. Conclusion: 3rd generation DSCT provides diagnostic image quality in TAVR-planning CTA and facilitates reliable assessment of TAVR device and delivery option while reducing radiation dose.

  14. Low concentration contrast medium for dual-source computed tomography coronary angiography by a combination of iterative reconstruction and low-tube-voltage technique: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Minwen, E-mail: zhengmw2007@163.com; Liu, Ying, E-mail: yingyinglyly@126.com; Wei, Mengqi, E-mail: weimengqi2008@163.com; Wu, Yongjie, E-mail: wu18291988526@163.com; Zhao, Hongliang, E-mail: zhaohl1980@163.com; Li, Jian, E-mail: xjyylj@yeah.net

    2014-02-15

    Objectives: To assess the impact of low-concentration contrast medium on vascular enhancement, image quality and radiation dose of coronary CT angiography (cCTA) by using a combination of iterative reconstruction (IR) and low-tube-voltage technique. Materials and methods: One hundred patients were prospectively randomized to two types of contrast medium and underwent prospective electrocardiogram-triggering cCTA (Definition Flash, Siemens Healthcare; collimation: 128 mm × 0.6 mm; tube current: 300 mA s). Fifty patients received Iopromide 370 were scanned using the conventional tube setting (100 kVp or 120 kVp if BMI ≥ 25 kg/m{sup 2}) and reconstructed with filtered back projection (FBP). Fifty patients received Iodixanol 270 were scanned using the low-tube-voltage (80 kVp or 100 kVp if BMI ≥ 25 kg/m{sup 2}) technique and reconstructed with IR. CT attenuation was measured in coronary artery and other anatomical regions. Noise, image quality and radiation dose were compared. Results: Compared with two Iopromide 370 subgroups, Iomeprol 270 subgroups showed no significant difference in CT attenuation (576.63 ± 95.50 vs. 569.51 ± 118.93 for BMI < 25 kg/m{sup 2}, p = 0.647 and 394.19 ± 68.09 vs. 383.72 ± 63.11 for BMI ≥ 25 kg/m{sup 2}, p = 0.212), noise (in various anatomical regions of interest) and image quality (3.5 vs. 4.0, p = 0.13), but significantly (0.41 ± 0.17 vs. 0.94 ± 0.45 for BMI < 25 kg/m{sup 2}, p < 0.001 and 1.14 ± 0.24 vs. 2.37 ± 0.69 for BMI ≥ 25 kg/m{sup 2}, p < 0.001) lower radiation dose, which reflects dose saving of 56.4% and 51.9%, respectively. Conclusions: Combined IR with low-tube-voltage technique, a low-concentration contrast medium of 270 mg I/ml can still maintain the contrast enhancement without impairing image quality, as well as significantly lower the radiation dose.

  15. Dynamic contrast-enhanced MR imaging of endometrial cancer. Optimizing the imaging delay for tumour-myometrium contrast

    International Nuclear Information System (INIS)

    Park, Sung Bin; Moon, Min Hoan; Sung, Chang Kyu; Oh, Sohee; Lee, Young Ho

    2014-01-01

    To investigate the optimal imaging delay time of dynamic contrast-enhanced magnetic resonance (MR) imaging in women with endometrial cancer. This prospective single-institution study was approved by the institutional review board, and informed consent was obtained from the participants. Thirty-five women (mean age, 54 years; age range, 29-66 years) underwent dynamic contrast-enhanced MR imaging with a temporal resolution of 25-40 seconds. The signal intensity difference ratios between the myometrium and endometrial cancer were analyzed to investigate the optimal imaging delay time using single change-point analysis. The optimal imaging delay time for appropriate tumour-myometrium contrast ranged from 31.7 to 268.1 seconds. The median optimal imaging delay time was 91.3 seconds, with an interquartile range of 46.2 to 119.5 seconds. The median signal intensity difference ratios between the myometrium and endometrial cancer were 0.03, with an interquartile range of -0.01 to 0.06, on the pre-contrast MR imaging and 0.20, with an interquartile range of 0.15 to 0.25, on the post-contrast MR imaging. An imaging delay of approximately 90 seconds after initiating contrast material injection may be optimal for obtaining appropriate tumour-myometrium contrast in women with endometrial cancer. (orig.)

  16. Contrast-guided image interpolation.

    Science.gov (United States)

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  17. Assessment of image quality and low-contrast detectability in abdominal CT of obese patients: comparison of a novel integrated circuit with a conventional discrete circuit detector at different tube voltages.

    Science.gov (United States)

    Euler, A; Heye, T; Kekelidze, M; Bongartz, G; Szucs-Farkas, Z; Sommer, C; Schmidt, B; Schindera, Sebastian T

    2015-03-01

    To compare image quality and low-contrast detectability of an integrated circuit (IC) detector in abdominal CT of obese patients with conventional detector technology at low tube voltages. A liver phantom with 45 lesions was placed in a water container to mimic an obese patient and examined on two different CT systems at 80, 100 and 120 kVp. The systems were equipped with either the IC or conventional detector. Image noise was measured, and the contrast-to-noise-ratio (CNR) was calculated. Low-contrast detectability was assessed independently by three radiologists. Radiation dose was estimated by the volume CT dose index (CTDIvol). The image noise was significantly lower, and the CNR was significantly higher with the IC detector at 80, 100 and 120 kVp, respectively (P = 0.023). The IC detector resulted in an increased lesion detection rate at 80 kVp (38.1 % vs. 17.2 %) and 100 kVp (57.0 % vs. 41.0 %). There was no difference in the detection rate between the IC detector at 100 kVp and the conventional detector at 120 kVp (57.0 % vs. 62.2 %). The CTDIvol at 80, 100 and 120 kVp measured 4.5-5.2, 7.3-7.9 and 9.8-10.2 mGy, respectively. The IC detector at 100 kVp resulted in similar low-contrast detectability compared to the conventional detector with a 120-kVp protocol at a radiation dose reduction of 37 %.

  18. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  19. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  20. Refraction-contrast bone imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Oka, Hiroshi

    2002-01-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  1. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  2. Assessment of image quality and low-contrast detectability in abdominal CT of obese patients: comparison of a novel integrated circuit with a conventional discrete circuit detector at different tube voltages

    Energy Technology Data Exchange (ETDEWEB)

    Euler, A.; Heye, T.; Kekelidze, M.; Bongartz, G.; Schindera, Sebastian T. [University of Basel Hospital, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Szucs-Farkas, Z. [Hospital Centre of Biel, Institute of Radiology, Biel (Switzerland); Sommer, C. [University Hospital, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Schmidt, B. [Siemens Healthcare Sector, Forchheim (Germany)

    2014-10-15

    To compare image quality and low-contrast detectability of an integrated circuit (IC) detector in abdominal CT of obese patients with conventional detector technology at low tube voltages. A liver phantom with 45 lesions was placed in a water container to mimic an obese patient and examined on two different CT systems at 80, 100 and 120 kVp. The systems were equipped with either the IC or conventional detector. Image noise was measured, and the contrast-to-noise-ratio (CNR) was calculated. Low-contrast detectability was assessed independently by three radiologists. Radiation dose was estimated by the volume CT dose index (CTDI{sub vol}). The image noise was significantly lower, and the CNR was significantly higher with the IC detector at 80, 100 and 120 kVp, respectively (P = 0.023). The IC detector resulted in an increased lesion detection rate at 80 kVp (38.1 % vs. 17.2 %) and 100 kVp (57.0 % vs. 41.0 %). There was no difference in the detection rate between the IC detector at 100 kVp and the conventional detector at 120 kVp (57.0 % vs. 62.2 %). The CTDI{sub vol} at 80, 100 and 120 kVp measured 4.5-5.2, 7.3-7.9 and 9.8-10.2 mGy, respectively. The IC detector at 100 kVp resulted in similar low-contrast detectability compared to the conventional detector with a 120-kVp protocol at a radiation dose reduction of 37 %. (orig.)

  3. Multiscale image contrast amplification (MUSICA)

    Science.gov (United States)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  4. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    International Nuclear Information System (INIS)

    Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin

    2017-01-01

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  5. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp.

    Science.gov (United States)

    Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin

    2017-05-01

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.

  6. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Kyung Hee University Hospital, Department of Radiology, Graduate School, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2017-05-15

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  7. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  8. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  9. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3{sup rd} generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Poole, Zachary B.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions, Malvern, PA (United States); Caruso, Damiano [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Bamberg, Fabian; Nikolaou, Konstantin [Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-10-15

    To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA). We evaluated 272 patients who underwent CCTA with 3{sup rd} generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis. Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥.0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p <.0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥.0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤.0414). Correlation analysis showed a moderate association between tube voltage and BMI (r =.639). ATVS allows individual tube voltage adaptation for CCTA performed with 3{sup rd} generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality. (orig.)

  10. Generation of low KV x-ray portal images with mega-voltage electron beams

    International Nuclear Information System (INIS)

    Kenny, J.; Ebert, M.

    2004-01-01

    Full text: The increasing complexity of radiation therapy plans and reduced target margins, have made accurate localization of patients at treatment a crucial quality assurance issue. Mega-voltage portal images, the standard for treatment localization, are inherently low in contrast because x-ray attenuation at these energies is similar for most body tissues. Thus anatomical features are difficult to distinguish and match to features on a reference diagnostic image. This project investigates the possibly of using x-rays created by an external target placed in the path of a clinical mega-voltage electron beam. This target is optimised to produce a higher proportion of useful imaging x-rays in the range of 50-200kV. It is thought that a high efficiency Varian aSi500 amorphous silicon EPID will be sufficient to compensate for the very low efficiency of x-ray production. The project was undertaken with concurrent theoretical and experimental components. The former involved Monte Carlo models of low Z target design while in the later, experimental data was gathered to validate the model and explore the practical issues associated with electron mode image acquisition. A 6 MeV electron beam model for a Varian Clinac 21EX was developed with EGS4/BEAMnrc User Code and compared to measured beam data. Phase space data scored at the secondary collimator then became the input for simulations of a target placed in the accessory tray. Target materials were predominately low atomic number (Z) because a) production of high energy x-rays is minimized and, b) fewer low energy x-rays produced will be absorbed within the target. Photon and electron energy spectrums of the modified beam were evaluated for a range of target geometries. Ultimately, several materials were used in combination to optimise an x-ray yield for energies <200kV while removing electrons and very low energy x-rays, that contribute to patient dose but not to image formation. Low energy images of a PIPs EPID QA

  11. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  12. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  13. Contrast to Noise Ratio and Contrast Detail Analysis in Mammography:A Monte Carlo Study

    International Nuclear Information System (INIS)

    Metaxas, V; Delis, H; Panayiotakis, G; Kalogeropoulou, C; Zampakis, P

    2015-01-01

    The mammographic spectrum is one of the major factors affecting image quality in mammography. In this study, a Monte Carlo (MC) simulation model was used to evaluate image quality characteristics of various mammographic spectra. The anode/filter combinations evaluated, were those traditionally used in mammography, for tube voltages between 26 and 30 kVp. The imaging performance was investigated in terms of Contrast to Noise Ratio (CNR) and Contrast Detail (CD) analysis, by involving human observers, utilizing a mathematical CD phantom. Soft spectra provided the best characteristics in terms of both CNR and CD scores, while tube voltage had a limited effect. W-anode spectra filtered with k-edge filters demonstrated an improved performance, that sometimes was better compared to softer x-ray spectra, produced by Mo or Rh anode. Regarding the filter material, k-edge filters showed superior performance compared to Al filters. (paper)

  14. Enhancement of image contrast in linacgram through image processing

    International Nuclear Information System (INIS)

    Suh, Hyun Suk; Shin, Hyun Kyo; Lee, Re Na

    2000-01-01

    Conventional radiation therapy portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low--cost image processing method. Chest linacgram was obtained by irradiating humanoid phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30% of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment performed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for

  15. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  16. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease

    International Nuclear Information System (INIS)

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Sakurai, Keita; Shimohira, Masashi; Shibamoto, Yuta; Ohashi, Kazuya; Asano, Miki; Yamaguchi, Sachiko

    2015-01-01

    Lower tube voltage has advantages for CT angiography, such as improved contrast To evaluate the image quality of low-voltage (70 kV) CT for congenital heart disease and the ability of sinogram-affirmed iterative reconstruction to improve image quality. Forty-six children with congenital heart disease (median age: 109 days) were examined using dual-source CT. Scans were performed at 80 kV and 70 kV in 21 and 25 children, respectively. A nonionic iodinated contrast medium (300 mg I/ml) was used for the 80-kV protocol. The contrast medium was diluted to 75% (225 mgI/mL) with saline for the 70-kV protocol. Image noise was measured in the two protocols for each group by extracting the standard deviations of a region of interest placed on the descending aorta. We then determined whether sinogram-affirmed iterative reconstruction reduced the image noise at 70 kV. There was more noise at 70 kV than at 80 kV (29 ± 12 vs 20 ± 4.8; P < 0.01). Sinogram-affirmed iterative reconstruction with grade 4 strength settings improved the noise (20 ± 5.9; P < 0.01) for the 70-kV group. Sinogram-affirmed iterative reconstruction improved the image quality of CT in congenital heart disease. (orig.)

  17. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Sakurai, Keita; Shimohira, Masashi; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, Nagoya (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Division of Central Radiology, Nagoya (Japan); Asano, Miki [Nagoya City University Graduate School of Medical Sciences, Department of Cardiovascular Surgery, Nagoya (Japan); Yamaguchi, Sachiko [Nagoya City University Graduate School of Medical Sciences, Department of Pediatrics and Neonatology, Nagoya (Japan)

    2015-09-15

    Lower tube voltage has advantages for CT angiography, such as improved contrast To evaluate the image quality of low-voltage (70 kV) CT for congenital heart disease and the ability of sinogram-affirmed iterative reconstruction to improve image quality. Forty-six children with congenital heart disease (median age: 109 days) were examined using dual-source CT. Scans were performed at 80 kV and 70 kV in 21 and 25 children, respectively. A nonionic iodinated contrast medium (300 mg I/ml) was used for the 80-kV protocol. The contrast medium was diluted to 75% (225 mgI/mL) with saline for the 70-kV protocol. Image noise was measured in the two protocols for each group by extracting the standard deviations of a region of interest placed on the descending aorta. We then determined whether sinogram-affirmed iterative reconstruction reduced the image noise at 70 kV. There was more noise at 70 kV than at 80 kV (29 ± 12 vs 20 ± 4.8; P < 0.01). Sinogram-affirmed iterative reconstruction with grade 4 strength settings improved the noise (20 ± 5.9; P < 0.01) for the 70-kV group. Sinogram-affirmed iterative reconstruction improved the image quality of CT in congenital heart disease. (orig.)

  18. Assessment of image display of contrast enhanced T1W images with fat suppression

    International Nuclear Information System (INIS)

    Miyazaki, Isao; Ishizaki, Keiko; Kobayashi, Kuninori; Katou, Masanobu

    2006-01-01

    The effects of imaging conditions and measures for their improvement were examined with regard to recognition of the effects of contrast on images when T 1 -weighted imaging with selective fat suppression was applied. Luminance at the target region was examined before and after contrast imaging using phantoms assuming pre- and post-imaging conditions. A clinical examination was performed on tumors revealed by breast examination, including those surrounded by mammary gland and by fat tissue. When fat suppression was used and imaging contrast was enhanced, the luminance level of fat tumors with the same structure as the prepared phantoms appeared to be high both before and after contrast imaging, and the effects of contrast were not distinguishable. This observation is attributable to the fact that the imaging conditions before and after contrast imaging were substantially different. To make a comparison between pre- and post-contrast images, it is considered necessary to perform imaging with fixed receiver gain and to apply the same imaging method for pre- and post-contrast images by adjusting post-contrast imaging conditions to those of pre-contrast imaging. (author)

  19. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  20. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  1. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    International Nuclear Information System (INIS)

    Paul, Jijo; Bauer, Ralf W.; Maentele, Werner; Vogl, Thomas J.

    2011-01-01

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P ≤ 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 ± 12.8 Hounsfield Units (HU), 204.8 ± 14.4 HU, 267.5 ± 18.6 HU, 311.9 ± 22.3 HU, 347.3 ± 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the weighting factor 0

  2. Voltage imaging to understand connections and functions of neuronal circuits

    Science.gov (United States)

    Antic, Srdjan D.; Empson, Ruth M.

    2016-01-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539

  3. Contrast enhancement of mail piece images

    Science.gov (United States)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  4. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-01-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  5. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  6. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  7. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    Science.gov (United States)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  8. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  9. Recording membrane potential changes through photoacoustic voltage sensitive dye

    DEFF Research Database (Denmark)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping

    2017-01-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo...... systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching...... the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize...

  10. Perfusion imaging with magnetic-susceptibility contrast media

    International Nuclear Information System (INIS)

    Rosen, B.R.; Belliveau, J.W.; Betteridge, D.; Cohen, M.S.; Weisskoff, R.M.; Vevea, J.M.; Rzedzian, R.P.; Brady, T.J.

    1989-01-01

    In animal models, transient signal los on T2-weighted images has been well documented following intravenous injection of high-magnetic-susceptibility contrast agents that are compartmentalized within the brain intravascular space. These signal changes have been correlated with physiologic parameters, such as blood flow and volume. The advent of whole-body single-shot imaging capability, coupled with the approval of paramagnetic contrasts agents for human use, has enabled the authors to demonstrate susceptibility contrast in the human brain, allowing for generation of functional images. With use of a 1.5-T imaging system gradient-echo images (TE = 60 msec) were acquired in 75 msec. Sequential single-sections images were sampled every 1 second following bolus administration of 0.1 mmol/kg of Gd-DTPA

  11. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  12. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  13. Study of CT head scans using different voltages: image quality evaluation

    International Nuclear Information System (INIS)

    Pacheco de Freitas C, I.; Prata M, A.; Alonso, T. C.; Santana, P.

    2016-10-01

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  14. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio

    International Nuclear Information System (INIS)

    Hess, R.; Neitzel, U.

    2012-01-01

    Purpose: To investigate the influence of X-ray tube voltage and filtration on image quality in terms of contrast-to-noise ratio (CNR) and dose for digital radiography of distal pediatric extremities and to determine conditions that give the best balance of CNR and patient dose. Materials and Methods: In a phantom study simulating the absorption properties of distal extremities, the CNR and the related patient dose were determined as a function of tube voltage in the range 40 - 66 kV, both with and without additional filtration of 0.1 mm Cu/1 mm Al. The measured CNR was used as an indicator of image quality, while the mean absorbed dose (MAD) - determined by a combination of measurement and simulation - was used as an indicator of the patient dose. Results: The most favorable relation of CNR and dose was found for the lowest tube voltage investigated (40 kV) without additional filtration. Compared to a situation with 50 kV or 60 kV, the mean absorbed dose could be lowered by 24 % and 50 %, respectively, while keeping the image quality (CNR) at the same level. Conclusion: For digital radiography of distal pediatric extremities, further CNR and dose optimization appears to be possible using lower tube voltages. Further clinical investigation of the suggested parameters is necessary. (orig.)

  15. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Uder, Michael; Lell, Michael M. [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); University Erlangen, Imaging Science Institute, Erlangen (Germany); Kramer, Manuel R.; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Schmidt, Bernhard [Siemens Healthcare, Erlangen (Germany)

    2014-09-15

    Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDI{sub vol}. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8 %. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality. (orig.)

  16. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  17. Low tube voltage and low contrast material volume cerebral CT angiography

    International Nuclear Information System (INIS)

    Luo, Song; Zhang, Long Jiang; Lu, Guang Ming; Meinel, Felix G.; McQuiston, Andrew D.; Zhou, Chang Sheng; Qi, Li; Schoepf, U.J.

    2014-01-01

    To evaluate the image quality, radiation dose and diagnostic accuracy of low kVp and low contrast material volume cerebral CT angiography (CTA) in intracranial aneurysm detection. One hundred twenty patients were randomly divided into three groups (n = 40 for each): Group A, 70 ml iodinated contrast agent/120 kVp; group B, 30 ml/100 kVp; group C, 30 ml/80 kVp. The CT numbers, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Subjective image quality was evaluated. For patients undergoing DSA, diagnostic accuracy of CTA was calculated with DSA as reference standard and compared. CT numbers of ICA and MCA were higher in groups B and C than in group A (P < 0.01). SNR and CNR in groups A and B were higher than in group C (both P < 0.05). There was no difference in subjective image quality among the three groups (P = 0.939). Diagnostic accuracy for aneurysm detection among these groups had no statistical difference (P = 1.00). Compared with group A, the radiation dose of groups B and C was decreased by 45 % and 74 %. Cerebral CTA at 100 or 80 kVp using 30 ml contrast agent can obtain diagnostic image quality with a low radiation dose while maintaining the same diagnostic accuracy for aneurysm detection. (orig.)

  18. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  19. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons

    International Nuclear Information System (INIS)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. -- Highlights: ► Scanning electron (SE) images contain many kind of information on material surfaces. ► We investigate energy-filtered SE images for practical materials. ► The brightness of the images is divided into two parts by the bias voltage. ► Topographic and material contrasts are extracted by subtracting the filtered images.

  20. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose.

    Science.gov (United States)

    May, Matthias S; Kramer, Manuel R; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2014-09-01

    Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDIvol. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8%. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality.

  1. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  2. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  3. Optimization of contrast of MR images in imaging of knee joint

    International Nuclear Information System (INIS)

    Szyblinski, K.; Bacic, G.

    1994-01-01

    The work describes the method of contrast optimization in magnetic resonance imaging. Computer program presented in the report allows analysis of contrast in selected tissues as a function of experiment parameters. Application to imaging of knee joint is presented

  4. Image evaluation and exposure dose with the application of tube voltage and adaptive statistical iterative reconstruction of low dose computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Joon [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Kim, Ki Jeong [Dept. of Radiology, Wonkwang University Hospital, Iksan (Korea, Republic of); Lee, Hye Nam [Dept. of Radiology, Gimsangyeong Internal Medicine Clinic, Nonsan (Korea, Republic of)

    2017-06-15

    The study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying filter back projection (FBP), the existing test method, and adaptive statistical iterative reconstruction (ASIR) with different values of tube voltage during the low dose computed tomography (LDCT). With the image reconstruction method as basis, chest phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of tube voltage (100 kVp, 120 kVp). For image evaluation, back ground noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were measured, and, for dose assessment, CTDIvol and DLP were measured respectively. In terms of image evaluation, there was significant difference in ascending aorta (AA) SNR and inpraspinatus muscle (IM) SNR with the different amount of tube voltage (p < 0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120 kVp were 2.6 mGy with no-ASIR and 2.17 mGy with 20%-ASIR respectively, decreased by 0.43 mGy, and the values with 100 kVp were 1.61 mGy with no-ASIR and 1.34 mGy with 20%-ASIR, decreased by 0.27 mGy. In terms of DLP, the measured values with 120 kVp were 103.21 mGy‧cm with no-ASIR and 85.94 mGy‧cm with 20%-ASIR, decreased by 17.27mGy‧cm (about 16.7%), and the values with 100 kVp were 63.84 mGy‧cm with no-ASIR and 53.25 mGy‧cm with 20%-ASIR, a decrease by 10.62 mGy‧cm ( about 16.7%). At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise.

  5. Image evaluation and exposure dose with the application of tube voltage and adaptive statistical iterative reconstruction of low dose computed tomography

    International Nuclear Information System (INIS)

    Moon, Tae Joon; Kim, Ki Jeong; Lee, Hye Nam

    2017-01-01

    The study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying filter back projection (FBP), the existing test method, and adaptive statistical iterative reconstruction (ASIR) with different values of tube voltage during the low dose computed tomography (LDCT). With the image reconstruction method as basis, chest phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of tube voltage (100 kVp, 120 kVp). For image evaluation, back ground noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were measured, and, for dose assessment, CTDIvol and DLP were measured respectively. In terms of image evaluation, there was significant difference in ascending aorta (AA) SNR and inpraspinatus muscle (IM) SNR with the different amount of tube voltage (p < 0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120 kVp were 2.6 mGy with no-ASIR and 2.17 mGy with 20%-ASIR respectively, decreased by 0.43 mGy, and the values with 100 kVp were 1.61 mGy with no-ASIR and 1.34 mGy with 20%-ASIR, decreased by 0.27 mGy. In terms of DLP, the measured values with 120 kVp were 103.21 mGy‧cm with no-ASIR and 85.94 mGy‧cm with 20%-ASIR, decreased by 17.27mGy‧cm (about 16.7%), and the values with 100 kVp were 63.84 mGy‧cm with no-ASIR and 53.25 mGy‧cm with 20%-ASIR, a decrease by 10.62 mGy‧cm ( about 16.7%). At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise

  6. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  7. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  8. A Novel Contrast Enhancement Technique on Palm Bone Images

    Directory of Open Access Journals (Sweden)

    Yung-Tsang Chang

    2014-09-01

    Full Text Available Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance the contrast of the palm bone X-ray radiographs in this paper. For images, the mean-variance analysis method is employed to partition the histogram of the original grey scale image into multiple sub-histograms. These histograms are independently equalized. By using this mean-variance partition method, a proposed multi-histogram equalization technique is employed to achieve the contrast enhancement of the palm bone X-ray radiographs. Experimental results show that the multi-histogram equalization technique achieves a lower average absolute mean brightness error (AMBE value. The multi-histogram equalization technique simultaneously preserved the mean brightness and enhanced the local contrast of the original image.

  9. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  10. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  11. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  12. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  13. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.

    Science.gov (United States)

    Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François

    2017-07-27

    Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.

  14. Multidetector CT of pancreatic ductal adenocarcinoma: Effect of tube voltage and iodine load on tumour conspicuity and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Loizou, L.; Leidner, B.; Axelsson, E.; Fischer, M.A.; Grigoriadis, A.; Kartalis, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); C1-46 Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Albiin, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); Ersta Hospital, Department of Radiology, Stockholm (Sweden); Del Chiaro, M.; Segersvaerd, R. [Karolinska University Hospital Huddinge, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Stockholm (Sweden); Verbeke, C. [Karolinska Institutet and Karolinska University Hospital Huddinge, Division of Pathology, Department of Laboratory Medicine, Stockholm (Sweden); Sundin, A. [Uppsala University Hospital, Department of Surgical Sciences, Division of Radiology, Uppsala University and Department of Radiology, Uppsala (Sweden)

    2016-11-15

    To compare a low-tube-voltage with or without high-iodine-load multidetector CT (MDCT) protocol with a normal-tube-voltage, normal-iodine-load (standard) protocol in patients with pancreatic ductal adenocarcinoma (PDAC) with respect to tumour conspicuity and image quality. Thirty consecutive patients (mean age: 66 years, men/women: 14/16) preoperatively underwent triple-phase 64-channel MDCT examinations twice according to: (i) 120-kV standard protocol (PS; 0.75 g iodine (I)/kg body weight, n = 30) and (ii) 80-kV protocol A (PA; 0.75 g I/kg, n = 14) or protocol B (PB; 1 g I/kg, n = 16). Two independent readers evaluated tumour delineation and image quality blindly for all protocols. A third reader estimated the pancreas-to-tumour contrast-to-noise ratio (CNR). Statistical analysis was performed with the Chi-square test. Tumour delineation was significantly better in PB and PA compared with PS (P = 0.02). The evaluation of image quality was similar for the three protocols (all, P > 0.05). The highest CNR was observed with PB and was significantly better compared to PA (P = 0.02) and PS (P = 0.0002). In patients with PDAC, a low-tube-voltage, high-iodine-load protocol improves tumour delineation and CNR leading to higher tumour conspicuity compared to standard protocol MDCT. (orig.)

  15. Multidetector CT of pancreatic ductal adenocarcinoma: Effect of tube voltage and iodine load on tumour conspicuity and image quality

    International Nuclear Information System (INIS)

    Loizou, L.; Leidner, B.; Axelsson, E.; Fischer, M.A.; Grigoriadis, A.; Kartalis, N.; Albiin, N.; Del Chiaro, M.; Segersvaerd, R.; Verbeke, C.; Sundin, A.

    2016-01-01

    To compare a low-tube-voltage with or without high-iodine-load multidetector CT (MDCT) protocol with a normal-tube-voltage, normal-iodine-load (standard) protocol in patients with pancreatic ductal adenocarcinoma (PDAC) with respect to tumour conspicuity and image quality. Thirty consecutive patients (mean age: 66 years, men/women: 14/16) preoperatively underwent triple-phase 64-channel MDCT examinations twice according to: (i) 120-kV standard protocol (PS; 0.75 g iodine (I)/kg body weight, n = 30) and (ii) 80-kV protocol A (PA; 0.75 g I/kg, n = 14) or protocol B (PB; 1 g I/kg, n = 16). Two independent readers evaluated tumour delineation and image quality blindly for all protocols. A third reader estimated the pancreas-to-tumour contrast-to-noise ratio (CNR). Statistical analysis was performed with the Chi-square test. Tumour delineation was significantly better in PB and PA compared with PS (P = 0.02). The evaluation of image quality was similar for the three protocols (all, P > 0.05). The highest CNR was observed with PB and was significantly better compared to PA (P = 0.02) and PS (P = 0.0002). In patients with PDAC, a low-tube-voltage, high-iodine-load protocol improves tumour delineation and CNR leading to higher tumour conspicuity compared to standard protocol MDCT. (orig.)

  16. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  17. Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, J., E-mail: jacques.cazaux@univ-reims.fr [LISM, EA 4695 Faculty of Sciences, BP 1039, 51687 Reims Cedex 2 (France); Kuwano, N. [Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Sato, K. [Steel Research Laboratory, JFE Steel Corporation, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan)

    2013-12-15

    Due to the influence of refraction effects on the escape probability of the Back-Scattered Electrons (BSE), an expression of the fraction of these BSE is given as a function of the beam energy, E°, and emission angle (with respect to the normal) α. It has been shown that these effects are very sensitive to a local change of the work function in particular for low emerging angles. This sensitivity suggests a new type of contrast in Low Voltage Scanning Electron Microscopy (LVSEM for E°<2 keV): the work function contrast. Involving the change of ϕ with crystalline orientation, this possibility is supported by a new interpretation of a few published images. Some other correlated contrasts are also suggested. These are topographical contrasts or contrasts due to subsurface particles and cracks. Practical considerations of the detection system and its optimization are indicated. - Highlights: • Refraction effects experienced by Back-Scattered Electrons at sample/vacuum interfaces are evaluated as a function of energy and angles. • Sensitive to local work function changes with crystalline orientation these effects concern mainly keV-electrons at low emerging angles. • A new type of contrast in SEM is thus deduced and illustrated. • Some other correlated contrasts, topographical contrasts or contrasts due to subsurface particles and cracks are also suggested.

  18. Contrast-enhanced CISS imaging of cerebellopontine angle tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tozaki, Mitsuhiro; Toyoda, Keiko; Hata, Yuichi; Fukuda, Yasushi; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Katano, Shuichi

    1999-10-01

    Our purpose of this study was to evaluate the clinical usefulness of contrast-enhanced CISS-3DFT MR imaging for the diagnosis of CP angle tumors. CISS-3DFT MR imaging is expected for screening procedure of acoustic schwannoma because of excellent spatial resolution. Recently, we discovered contrast enhancement effect on CISS sequence in spite of heavily T{sub 2}-weighted images. Fourteen patients with CP angle tumors were performed on a 1.0 T MR unit. Transaxial CISS-3DFT MRI was obtained both before and after intravenous injections of Gd-DTPA. Multiplanar reconstructions (MPRs) were performed in all cases. Contrast enhancement effect of CP angle tumors, and the relationship between tumors and the adjacent cranial nerves were evaluated. Contrast enhancement effect of the tumors was present in all cases in spite of heavily T{sub 2}-weighted images of CISS sequences. In the internal auditory canal, relationship between the tumors and the cranial nerves was demonstrated in 6 cases (6/9). In the cerebellopontine cistern, all cases were demonstrated (11/11). Contrast-enhanced CISS-3DFT MR imaging with a good contrast resolution and an excellent spatial resolution is useful for the diagnosis of CP angle tumors. (author)

  19. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  20. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    International Nuclear Information System (INIS)

    Parmar, Hemant; Sitoh, Y.-Y.; Anand, Pooja; Chua, Violet; Hui, Francis

    2006-01-01

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis

  1. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Hemant [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore) and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada)]. E-mail: parurad@hotmail.com; Sitoh, Y.-Y. [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Anand, Pooja [Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng (Singapore); Chua, Violet [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Hui, Francis [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-04-15

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis.

  2. Breakdown voltage mapping through voltage dependent ReBEL intensity imaging of multi-crystalline Si solar cells

    Science.gov (United States)

    Dix-Peek, RM.; van Dyk, EE.; Vorster, FJ.; Pretorius, CJ.

    2018-04-01

    Device material quality affects both the efficiency and the longevity of photovoltaic (PV) cells. Therefore, identifying these defects can be beneficial in the development of more efficient and longer lasting PV cells. In this study, a combination of spatially-resolved, electroluminescence (EL), and light beam induced current (LBIC) measurements, were used to identify specific defects and features of a multi-crystalline Si PV cells. In this study, a novel approach is used to map the breakdown voltage of a PV cell through voltage dependent Reverse Bias EL (ReBEL) intensity imaging.

  3. SU-G-IeP2-12: The Effect of Iterative Reconstruction and CT Tube Voltage On Hounsfield Unit Values of Iodinated Contrast

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, K; Greene-Donnelly, K; Vallabhaneni, D; Scalzetti, E [SUNY Upstate Medical University, Syracuse, New York (United States)

    2016-06-15

    Purpose: To investigate the effects of changing iterative reconstruction strength and tube voltage on Hounsfield Unit (HU) values of varying concentrations of Iodinated contrast medium in a phantom. Method: Iodinated contrast (Omnipaque 300, GE Healthcare, Princeton NJ) was diluted with distilled water to concentrations of 0.6, 0.9, 1.8, 3.6, 7.2, and 10.8 mg/mL of Iodine. The solutions were scanned in a patient equivalent water phantom on two MDCT scanners: VCT 64 slice (GE Medical Systems, Waukesha, WI) and an Aquilion One 320 slice scanner (Toshiba America Medical Systems, Tustin CA). The phantom was scanned at 80, 100, 120, 140 kV using 400, 255, 180, and 130 mAs, respectively, for the VCT scanner, and 80, 100, 120, and 135 kV using 400, 250, 200, and 150 mAs, respectively, on the Aquilion One. Images were reconstructed at 2.5 mm (VCT) and 0.5 mm (Aquilion One). The VCT images were reconstructed using Advanced Statistical Iterative Reconstruction (ASIR) at 6 different strengths: 0%, 20%, 40%, 60%, 80%, and 100%. Aquilion One images were reconstructed using Adaptive Iterative Dose Reduction (AIDR) at 4 strengths: no AIDR, Weak AIDR, Standard AIDR, and Strong AIDR. Regions of interest (ROIs) were drawn on the images to measure the HU values and standard deviations of the diluted contrast. Second order polynomials were used to fit the HU values as a function of Iodine concentration. Results: For both scanners, there was no significant effect of changing the iterative reconstruction strength. The polynomial fits yielded goodness-of-fit (R2) values averaging 0.997. Conclusion: Changing the strength of the iterative reconstruction has no significant effect on the HU values of Iodinated contrast in a tissue-equivalent phantom. Fit values of HU vs Iodine concentration are useful in quantitative imaging protocols such as the determination of cardiac output from time-density curves in the main pulmonary artery.

  4. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  5. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  6. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  7. Accuracy of pre-contrast imaging in abdominal magnetic resonance imaging of pediatric oncology patients

    International Nuclear Information System (INIS)

    Mohd Zaki, Faizah; Moineddin, Rahim; Grant, Ronald; Chavhan, Govind B.

    2016-01-01

    Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging. To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients. We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard. The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P < 0.0001), but the interobserver agreement for the change in confidence was poor (kappa 0.12). Pre-contrast abdominal MR imaging has high accuracy in lesion detection in pediatric oncology patients and shows substantial agreement with the reference standard for characterization of lesions. Gadolinium-based contrast media administration cannot be completely eliminated but can be avoided in many cases, with the decision made on a case-by-case basis, taking into consideration location and type of tumor. (orig.)

  8. Accuracy of pre-contrast imaging in abdominal magnetic resonance imaging of pediatric oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaki, Faizah [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Universiti Kebangsaan Malaysia Medical Center, Department of Radiology, Kuala Lumpur (Malaysia); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto, ON (Canada); Grant, Ronald [University of Toronto, Department of Hematology and Oncology, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Chavhan, Govind B. [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada)

    2016-11-15

    Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging. To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients. We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard. The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P < 0.0001), but the interobserver agreement for the change in confidence was poor (kappa 0.12). Pre-contrast abdominal MR imaging has high accuracy in lesion detection in pediatric oncology patients and shows substantial agreement with the reference standard for characterization of lesions. Gadolinium-based contrast media administration cannot be completely eliminated but can be avoided in many cases, with the decision made on a case-by-case basis, taking into consideration location and type of tumor. (orig.)

  9. Pulse sequences for contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  10. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Yoon, Young Cheol; Choe, Bong Keun

    2014-01-01

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  11. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Yoon, Young Cheol [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Bong Keun [Department of Preventive Medicine, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2014-02-15

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  12. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  13. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    Science.gov (United States)

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P chest radiography. © RSNA, 2011.

  14. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  15. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  16. The Effect of Image Potential on the Current-Voltage Characteristics of a Ferritin-layer

    Directory of Open Access Journals (Sweden)

    Eunjung Bang

    2010-11-01

    Full Text Available Considering for the concept of power storage systems, such as those used to supply power to microelectronic devices, ferritins have aroused a lot of interests for applications in bioelectrochemical devices. And electron transfer rates from the proteins to electrode surface are key determinants of overall performance and efficiency of the ferritin-based devices. Here we have investigated the electron transport mechanism of ferritin layer which was immobilized on an Au electrode. The current-voltage (I-V curves are obtained by a conductive atomic force microscope (c-AFM as a function of contact area between AFM tip and the ferritin layer. In the low voltage region, I-V curves are affected by both Fowler-Nordheim tunneling and image force. On the other hand, the experimental results are consistent with a Simmons model in a high voltage region, indicating that, as the voltage increases, the image potential has a dominant effect on the electron transport mechanism. These results are attributed to the film-like character of the ferritin layer, which generates an image potential to lower the barrier height in proportion to the voltage increment.

  17. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  18. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  19. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  20. Sequential contrast-enhanced MR imaging of the penis.

    Science.gov (United States)

    Kaneko, K; De Mouy, E H; Lee, B E

    1994-04-01

    To determine the enhancement patterns of the penis at magnetic resonance (MR) imaging. Sequential contrast material-enhanced MR images of the penis in a flaccid state were obtained in 16 volunteers (12 with normal penile function and four with erectile dysfunction). Subjects with normal erectile function showed gradual and centrifugal enhancement of the corpora cavernosa, while those with erectile dysfunction showed poor enhancement with abnormal progression. Sequential contrast-enhanced MR imaging provides additional morphologic information for the evaluation of erectile dysfunction.

  1. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  2. The influence of body temperature on image contrast in post mortem MRI

    International Nuclear Information System (INIS)

    Ruder, Thomas D.; Hatch, Gary M.; Siegenthaler, Lea; Ampanozi, Garyfalia; Mathier, Sandra; Thali, Michael J.; Weber, Oliver M.

    2012-01-01

    Objective: To assess the temperature dependency of tissue contrast on post mortem magnetic resonance (PMMR) images both objectively and subjectively; and to visually demonstrate the changes of image contrast at various temperatures. Materials and methods: The study was approved by the responsible justice department and the ethics committee. The contrast of water, fat, and muscle was measured using regions of interest (ROI) in the orbit of 41 human corpses to assess how body temperature (range 2.1–39.8 °C) relates to image contrast of T1-weighted (T1W) and T2-weighted (T2W) sequences on PMMR. Regressions were calculated using the method of least squares. Three readers judged visible changes of image contrast subjectively by consensus. Results: There was a positive relationship between temperature and contrast on T1-weighted (T1W) images and between temperature and the contrast of fat/muscle on T2-weighted (T2W) images. There was a negative relationship between temperature and the contrast of water/fat and water/muscle on T2W images. Subjectively, the influence of temperature became visible below 20 °C on T2W images, and below 10 °C on T1W images. Conclusion: Image contrast on PMMR depends on the temperature of a corpse. Radiologists involved in post mortem imaging must be aware of temperature-related changes in MR image contrast. To preserve technical quality, scanning corpses below 10 °C should be avoided.

  3. CT pulmonary angiography using 64-row multi-slice spiral CT: a comparative study in low tube voltage setting combined with personalized contrast agent application

    International Nuclear Information System (INIS)

    Zhou Xuhui; Peng Zhenpeng; Zheng Lili; Li Shurong; Yang Zhiyun; Meng Quanfei; Chen Xing

    2009-01-01

    Objective: To investigate the feasibility of the low tube voltage setting and personalized contrast agent application in 64-row multi-slice spiral CT pulmonary angiography. Methods: Ninety patients with high risk of pulmonary artery embolism were sequentially enrolled in the study and divided into 3 groups employing completely randomized design: (l)Regular group included 30 patients using 120 kV and fixed dose of 70 ml contrast agent, (2)Another 30 patients were in 120 kV group, using 120 kV and the contrast amount was determined according to the patient weight (1.0 ml/kg), (3) The remaining 30 patients were included in 100 kV group, using 100 kV and the contrast amount was also determined according to the patient weight(1.0 ml/kg). Administration of contrast agent was completed within 20 seconds for all the patients, followed by 20 ml of saline. The objective and subjective indexes for assessing CT image quality, CT dose index volume (CTDIvol) and effective received dose (ERD) were compared between 120 kV group and 100 kV group; then the contrast media volume, injection rate, objective CT image indexes and subjective indexes for image quality was compared between the 100 kV group and regular group. The variance analysis and post hoc test were employed for the statistical analysis. Results: Compared with 120 kV group (3.4±0.7), the image quality of 100 kV group (5.2±1.8) had higher noise (52.9%), but subjective index for the image quality demonstrated no differences (q=0.272, P=0.063) in mediastinum window while CTDIvol and ERD decreased for 34.9% [(9.5±0.0) vs (14.6±0.0) mGy] and 36.8% [(3.8±0.6) vs (2.4±0.4) mSv]. The mean CT values on pulmonary artery of 100 kV group[ (269.2±54.7) HU] were 13.4% (31.8/237.4) higher than the 120 kV group [(237.4±62.9)HU], but there was no statistical differences compared to normal group (q=0.172,P=0.260). Conclusion: Using low kV setting (100 kV) to reduce radiation dose is proved to be effective and feasible in 64-MSCT

  4. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  5. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  6. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  7. Microcomputer simulation of nuclear magnetic resonance imaging contrasts

    International Nuclear Information System (INIS)

    Le Bihan, D.

    1985-01-01

    The high information content of magnetic resonance images is due to the multiplicity of its parameters. However, this advantage introduces a difficulty in the interpretation of the contrast: an image is strongly modified according to the visualised parameters. The author proposes a micro-computer simulation program. After recalling the main intrinsic and extrinsic parameters, he shows how the program works and its interest as a pedagogic tool and as an aid for contrast optimisation of images as a function of the suspected pathology [fr

  8. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  9. The experimental study of oxygen contrast MR ventilation imaging

    International Nuclear Information System (INIS)

    Yang Jian; Guo Youmin; Wu Xiaoming; Xi Nong; Wang Jianguo; Zhu Li; Lei Xiaoyan; Xie Enyi

    2003-01-01

    Objective: To study the feasibility and basic technology of the oxygen contrast MR ventilation imaging in lung. Methods: Six canine lungs were scanned by using inversion recovery pulse sequence with turbo spin echo acquisition before and after inhalation of the 100% oxygen as T 1 contrast agent, and the T 1 values were measured. The contrast-to-noise ratio (CNR) for each inversion recovery time was compared and the relationship between arterial blood oxygen pressure (PaO 2 ) and T 1 relaxation rate was observed. Subtraction technique was employed in the postprocessing of pre- and post-oxygen conditions. Results: Molecular oxygen could shorten the pulmonary T 1 value (average 13.37%, t=2.683, P 1 value of pre- and post-oxygen conditions. The relaxtivity of T 1 resulted in excellent linear correlation (r 2 =0.9974) with PaO 2 . Through the subtraction of pre- and post-oxygen image, the oxygen contrast MR ventilation -image was obtained. Conclusion: The oxygen contrast MR ventilation imaging has the feasibility and clinical potential for the assessment of regional pulmonary function

  10. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    Science.gov (United States)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  11. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  12. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  13. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  14. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  15. Contrast-enhanced MR imaging monitoring of acute tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Ranney, D.F.; Cohen, J.M.; Antich, P.P.; Endman, W.A.; Kulkarni, P.; Weinreb, J.C.; Giovanella, B.

    1987-01-01

    Treatment responses of human malignant melanomas were monitored at millimeter resolution in athymic mice by injecting a new polymeric contrast agent, Gd-DTPA-dextran (0.1 mmol Gd/kg, intravenously). Proton MR imaging (0.35 T, spin-echo, repetition time = 0.5 second, echo time = 50 msec) was performed 30 hours after administering diphtheria toxin. Pre-contrast medium images revealed only homogeneous intermediate-intensity tumor masses. Post-contrast medium images of untreated (viable) tumors demonstrated 32% enhancement throughout the entire mass. Post-contrast medium images of toxin-treated tumors revealed marked enhancement (65%) of the histologically viable outer rims, lesser enhancement (38%) of heavily damaged subregions, and no enhancement of dead tumor. These acute, contrast medium-enhanced MR images accurately identified tumor subregions that survived for longer than one week

  16. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  17. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  18. Successful application of Low Voltage Electron Microscopy to practical materials problems

    International Nuclear Information System (INIS)

    Bell, David C.; Mankin, Max; Day, Robert W.; Erdman, Natasha

    2014-01-01

    Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40 kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40 kV the damage is mainly radiolitic, whereas at incident energies above 200 kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40 kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40 keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely

  19. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  20. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  1. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  2. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  3. Overall evaluability of low dose protocol for computed tomography angiography of thoracic aorta using 80 kV and iterative reconstruction algorithm using different concentration contrast media.

    Science.gov (United States)

    Annoni, Andrea Daniele; Mancini, Maria E; Andreini, Daniele; Formenti, Alberto; Mushtaq, Saima; Nobili, Enrica; Guglielmo, Marco; Baggiano, Andrea; Conte, Edoardo; Pepi, Mauro

    2017-10-01

    Multidetector Computed Tomography Angiography (MDCTA) is presently the imaging modality of choice for aortic disease. However, the effective radiation dose and the risk related to the use of contrast agents associated with MDCTA is an issue of concern. Aim of this study was to assess image quality of a low dose ECG-gated MDCTA of thoracic aorta using different concentration contrast media without tailored injection protocol. Two-hundred patients were randomised into four different scan protocols: Group A (Iodixanol 320 and 80 Kvp tube voltage), Group B (Iodixanol 320 and 100 Kvp tube voltage), Group C (Iomeprol 400 and 80 Kvp tube voltage) and Group D (Iomeprol 400 and 100 Kvp tube voltage). Image quality, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and effective dose (ED) were compared among groups. No significant differences in image noise, SNR and CNR between groups with the same tube voltage. Significant differences in SNR and CNR were found among groups with 80 kV versus groups using 100 kV but without differences in terms of image quality. ED was significantly lower in groups with 80 kV. Multidetector Computed Tomography Angiography protocols using 80 kV and low concentration contrast media are feasible without need of tailored injection protocols. © 2017 The Royal Australian and New Zealand College of Radiologists.

  4. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  5. Hepatocellular carcinoma on MR diffusion weighted imaging and dynamic contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Dong Aisheng; Zuo Changjing; Tian Jianming; Lu Jianping; Wang Jian; Wang Li; Wang Fei

    2009-01-01

    Objective: To evaluate the findings of hepatocellular carcinoma (HCC) on DWI and dynamic Gd-DTPA-enhanced MR imaging. Methods: Eighty one patients with chronic hepatitis or liver cirrhosis underwent both DWI and dynamic Gd-DTPA-enhanced MRI studies of the liver for HCC detection. MR data of were retrospectively analyzed. Two observers determined in consensus the location and the number of focal lesions. The signal manifestation of the lesions on DWI and dynamic Gd-DTPA-enhanced MR imaging were analyzed. Results: DWI and Gd-DTPA-enhanced MR images detected 122 HCCs and 14 benign lesions. One hundred and sixteen HCCs (95.1%) showed hyperintensity on DWI and 6 HCCs in patients with severe cirrhosis showed isointensity. One hundred and five HCCs (86.1%) revealed hypointensity, 11 HCCs (9.0%) showed isointensity and 6 HCCs (4.9%) exhibited hyperintensity on T 1 weighted images. On Gd-DTPA-enhanced MR images, 101 HCCs(82.8%) were significantly enhanced on arterial phase and 99 HCCs showed hypointensity on portal and equilibrium phases. Twenty HCCs (16.4%), 18 of 20 less than 20 mm in diameter, showed isointensity on arterial phase and hyperintensity on DWI. Eight of 14 benign lesions showed hyperintensity and 6 isointensity on DWI. Five benign lesions with hypointensity on T 1 weighted images without contrast and hyperintensity on DWI showed no enhancement on Gd-DTPA-enhanced MR images; 6 benign lesions with isointensity on both T 1 weighted imaging without contrast and DWI exhibited avid enhancement on arterial phase and isointensty on portal and equilibrium phases; one of the two benign lesions, with isointensity before and after contrast images and hyperintentiy on DWI, was a regenerative nodule; another regenerative nodule with hyperintensity on both T 1 weighted images without contrast and DWI was greatly enhanced on arterial phase and showed isointensity on portal and equilibrium phases. Conclusions: Most of the HCCs were greatly enhanced on arterial phase on Gd

  6. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    Science.gov (United States)

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  7. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  8. Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

    International Nuclear Information System (INIS)

    Menke, Jan; Larsen, Joerg

    2009-01-01

    Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive imaging alternative to digital subtraction angiography (DSA) for patients with carotid artery disease. In DSA, image quality can be improved by shifting the mask image if the patient has moved during angiography. This study investigated whether such image registration may also help to improve the image quality of carotid MRA. Data from 370 carotid MRA examinations of patients likely to have carotid artery disease were prospectively collected. The standard nonregistered MRAs were compared to automatically linear, affine and warp registered MRA by using three image quality parameters: the vessel detection probability (VDP) in maximum intensity projection (MIP) images, contrast-to-noise ratio (CNR) in MIP images, and contrast-to-noise ratio in three-dimensional image volumes. A body shift of less than 1 mm occurred in 96.2% of cases. Analysis of variance revealed no significant influence of image registration and body shift on image quality (p > 0.05). In conclusion, standard contrast-enhanced carotid MRA usually requires no image registration to improve image quality and is generally robust against any naturally occurring body shift. (orig.)

  9. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    Science.gov (United States)

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  10. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2007-01-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues

  11. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  12. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    Science.gov (United States)

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    Science.gov (United States)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  14. Value of MR contrast media in image-guided body interventions.

    Science.gov (United States)

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  15. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  16. Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages

    International Nuclear Information System (INIS)

    Sandborg, Michael; Tingberg, Anders; Ullman, Gustaf; Dance, David R.; Alm Carlsson, Gudrun

    2006-01-01

    The aim of this work was to study the dependence of image quality in digital chest and pelvis radiography on tube voltage, and to explore correlations between clinical and physical measures of image quality. The effect on image quality of tube voltage in these two examinations was assessed using two methods. The first method relies on radiologists' observations of images of an anthropomorphic phantom, and the second method was based on computer modeling of the imaging system using an anthropomorphic voxel phantom. The tube voltage was varied within a broad range (50-150 kV), including those values typically used with screen-film radiography. The tube charge was altered so that the same effective dose was achieved for each projection. Two x-ray units were employed using a computed radiography (CR) image detector with standard tube filtration and antiscatter device. Clinical image quality was assessed by a group of radiologists using a visual grading analysis (VGA) technique based on the revised CEC image criteria. Physical image quality was derived from a Monte Carlo computer model in terms of the signal-to-noise ratio, SNR, of anatomical structures corresponding to the image criteria. Both the VGAS (visual grading analysis score) and SNR decrease with increasing tube voltage in both chest PA and pelvis AP examinations, indicating superior performance if lower tube voltages are employed. Hence, a positive correlation between clinical and physical measures of image quality was found. The pros and cons of using lower tube voltages with CR digital radiography than typically used in analog screen-film radiography are discussed, as well as the relevance of using VGAS and quantum-noise SNR as measures of image quality in pelvis and chest radiography

  17. Magnetic resonance imaging of urinary bladder carcinoma: tumor staging and gadolinium contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Doringer, E.; Joos, H.; Forstner, R.; Schmoller, H.

    1992-01-01

    Forty-nine patients with urinary bladder carcinomas underwent pre-operative examinations using magnetic resonance (MR) imaging. The results of the MR examinations were correlated with the clinical-pathological findings following transurethral resection (TUR) and bimanual palpation (n = 47) or radical cystectomy (n = 2). The results of pre-contrast MR tumor staging (T1, T2), viewing stages Tis-T2 collectively, and subsequent to separate assessments of stages T3b-T4b, were correct 76.6% of the time. Gadolinium-DTPA (Gd-DTPA) contrast-enhanced examinations (pre-contrast T1 and after Gd-DTPA) showed a staging accuracy rate of 85.7%. T2-weighted images did not indicate any advantage when compared to T1-weighted images following Gd-DTPA. The signal intensity ratios of tumor/fat and tumor/muscle tissue were measured on T1-weighted pre-contrast images and following Gd-DTPA and then evaluated statistically, whereby the increased tumor signal intensity was statistically significant (Wilcoxon test, P < 0.01). Due to the relatively short examination time needed for T1-weighted images and the specific tumor enhancement, the administration of Gd-DTPA proves valuable in the diagnosis of bladder carcinomas. T2-weighted images are not necessary. (orig.)

  18. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  19. Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun

    2000-01-01

    To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)

  20. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  1. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  2. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  3. Investigation of Pockels Cells Crystal Contrast Ratio Distribution

    Directory of Open Access Journals (Sweden)

    Giedrius Sinkevičius

    2017-07-01

    Full Text Available The BBO Pockel’s cell has been investigated. The investigation results of optimal operating area on the surface of the crystal dependent of intrinsic contrast ratio (ICR and voltage contrast ratio (VCR for Pockel’s cell are presented. The block diagram of Pockel’s cells contrast measurement stand and measurement methodology are introduced and discussed. The graphs of intrinsic contrast ratio distribution on crystal surface, contrast ratio with voltage dependency and voltage contrast ratio distribution on crystal surface with half-wave voltage are presented.

  4. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  5. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    Science.gov (United States)

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  6. Study of the tomographic image quality provided by a conical beam system kilo voltage

    International Nuclear Information System (INIS)

    Garayoa Roca, J.; Castro Tejero, P.

    2011-01-01

    Imaging systems play an increasingly important role in radiotherapy, and to ensure the quality of the process, you must know the characteristics and limitations of available imaging systems. In this study we sought to evaluate the image quality of an IGRT system based on a kilo voltage cone beam.

  7. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  8. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    International Nuclear Information System (INIS)

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  9. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  10. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  11. Diffraction contrast STEM of dislocations: Imaging and simulations

    International Nuclear Information System (INIS)

    Phillips, P.J.; Brandes, M.C.; Mills, M.J.; De Graef, M.

    2011-01-01

    The application of scanning transmission electron microscopy (STEM) to crystalline defect analysis has been extended to dislocations. The present contribution highlights the use of STEM on two oppositely signed sets of near-screw dislocations in hcp α-Ti with 6 wt% Al in solid solution. In addition to common systematic row diffraction conditions, other configurations such as zone axis and 3g imaging are explored, and appear to be very useful not only for defect analysis, but for general defect observation. It is demonstrated that conventional TEM rules for diffraction contrast such as g.b and g.R are applicable in STEM. Experimental and computational micrographs of dislocations imaged in the aforementioned modes are presented. -- Highlights: → STEM defect analysis has been extended to include dislocations. → Systematic row, zone axis and 3g diffraction conditions are all found to be useful for general defect observations in STEM mode. → Conventional contrast visibility rules for diffraction contrast are found to remain valid for STEM observations. → Multi-beam dynamical scattering matrix simulations provide excellent agreement with experimental images.

  12. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myung-Geun, E-mail: mghan@bnl.gov [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Garlow, Joseph A. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States); Marshall, Matthew S.J.; Tiano, Amanda L. [Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Wong, Stanislaus S. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854 (United States); Walker, Frederick J.; Ahn, Charles H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520 (United States); Zhu, Yimei [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2017-05-15

    Highlights: • Electron-beam-induced-current (EBIC) and active secondary-electron voltage-contrast (SE-VC) are demonstrated in STEM mode combined with in situ electrical biasing in a TEM. • Electrostatic potential maps in ferroelectric thin films, multiferroic nanowires, and single crystals obtained by off-axis electron holography were compared with EBIC and SE-VC data. • Simultaneous EBIC and active SE-VC performed with atomic resolution STEM are demonstrated. - Abstract: The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fields and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.

  13. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  14. Enhancing contrast of magnetic resonance imaging in patients with ...

    African Journals Online (AJOL)

    DTPA), a recent magnetic resonance imaging (MRI) contrast agent, in hepatobiliary system of patients with liver cirrhosis. Methods: Liver cirrhosis patients that underwent contrast MRI examination at Renai Hospital, Taipei City, Taiwan were ...

  15. Magnetization transfer contrast MR imaging of the knee at 0.3 T

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Onaya, Hiroaki; Niitsu, Mamoru; Anno, Izumi; Itai, Yuji; Nishimura, Hiroshi; Kajiyama, Koji; Masuda, Tomonori; Nakajima, Kotaro.

    1994-01-01

    It has been reported that magnetization transfer contrast (MTC) images were effective in evaluating the articular cartilage. However, only one in vivo study of the articular cartilage in the knee has been demonstrated at 1.5T. The purpose of this study was to evaluate the optimal off-resonance MTC pulse at 0.3T MR imager and assess its clinical usefulness. Five normal volunteers and eleven patients with suspected knee injuries were investigated using off-resonance sinc, gaussian, constant shaped irradiation pulses. All MTC images revealed higher contrast and contrast-to-noise (C/N) ratio between articular cartilage and external reference (saline) in the normal volunteers' knee than conventional gradient recalled echo images. MTC images with the gaussian or sinc shaped pulse were judged superior to those with constant wave pulse because the former images showed a fewer artifact with lower specific absorption rate than the latter images. The sinc MTC images were performed with the lowest SAR. The gaussian MTC images revealed better contrast and C/N between articular cartilage and joint fluid than the sinc MTC images in patients. 3D MTC images using Guassian pulse were also performed within a clinically tolerable imaging time (13 min 39 sec). Thus, MTC images in the knee at 0.3T using off-resonance pulse may be effective to assess knee injury due to better contrast between articular cartilage and joint fluid. (author)

  16. Avascular necrosis of femoral head: findings of contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Shin, Yong Moon; Kang, Heung Sik; Kim, Chu Wan; Kim, Hee Joong; Kim, Young Min

    1995-01-01

    To evaluate the findings and the role of contrast enhanced magnetic resonance imaging in avascular necrosis of femoral head. Sixteen patients with avascular necorsis of femoral head were examined with MRI. T1-weighted and T2-weighted image and contrast-enhanced T1-weighted images were obtained. Enhancing characteristics of the necrotic area and synovium were determined. Also a change of the disease extent after enhancement was assessed. Twenty seven avascular necrosis of the femoral head including 11 cases of bilateral lesion were detected. Fifteen cases revealed collapse of the femoral head. The portions of the lesion with low signal intensity on T1-weighted images and high signal intensity on T2-weighted images showed contrast enhancement in 15 cases. However, the potions with low signal intensities both on T1 and T2-weighted images showed enhancement in one case. There was no significant change of the disease extent after enhancement. Synovium showed enhancement in 18 cases, and joint effusion was detected in 23 cases. Contrast enhanced MR images may be helpful in predicting histopathologic findings of avascular necrosis of the femoral head, but not useful for evaluating the extent of disease

  17. Avascular necrosis of femoral head: findings of contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong Moon; Kang, Heung Sik; Kim, Chu Wan; Kim, Hee Joong; Kim, Young Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1995-06-15

    To evaluate the findings and the role of contrast enhanced magnetic resonance imaging in avascular necrosis of femoral head. Sixteen patients with avascular necorsis of femoral head were examined with MRI. T1-weighted and T2-weighted image and contrast-enhanced T1-weighted images were obtained. Enhancing characteristics of the necrotic area and synovium were determined. Also a change of the disease extent after enhancement was assessed. Twenty seven avascular necrosis of the femoral head including 11 cases of bilateral lesion were detected. Fifteen cases revealed collapse of the femoral head. The portions of the lesion with low signal intensity on T1-weighted images and high signal intensity on T2-weighted images showed contrast enhancement in 15 cases. However, the potions with low signal intensities both on T1 and T2-weighted images showed enhancement in one case. There was no significant change of the disease extent after enhancement. Synovium showed enhancement in 18 cases, and joint effusion was detected in 23 cases. Contrast enhanced MR images may be helpful in predicting histopathologic findings of avascular necrosis of the femoral head, but not useful for evaluating the extent of disease.

  18. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    Science.gov (United States)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  19. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  20. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  1. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  2. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    Science.gov (United States)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  3. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  4. Diagnostic utility of intravenous contrast for MR imaging in pediatric appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Gray R.; Renjen, Pooja; Kovanlikaya, Arzu [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Radiology, New York, NY (United States); Askin, Gulce; Giambrone, Ashley E. [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Biostatistics and Epidemiology, New York, NY (United States); Beneck, Debra [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Pathology, New York, NY (United States)

    2017-04-15

    Magnetic resonance imaging (MRI) is increasingly employed as a diagnostic modality for suspected appendicitis in children. However, there is uncertainty as to which MRI sequences are sufficient for safe, timely and accurate diagnosis. Several recent studies have described different MRI protocols, including exams both with and without the use of intravenous contrast. We hypothesized that intravenous contrast may be useful in some patients but could be safely omitted in others. All MRI examinations (n=112) performed at our institution for evaluating appendicitis in children were retrospectively reevaluated. Exams were reread by pediatric radiologists under three conditions: With postcontrast images, Without postcontrast images, and Without/With - selective use of postcontrast sequences only when needed for diagnostic certainty. Samples were scored as positive, negative or equivocal for appendicitis. Findings were compared to pathological or clinical follow-up in the medical record. Without the use of intravenous contrast yielded more equivocal results (12.4%) compared to With contrast (3.4%). By selectively using postcontrast sequences, the Without/With group yielded fewer equivocal results (1.1%) compared to Without while also reducing contrast use 79.8% compared to the With contrast group. No significant differences in conditional sensitivity or conditional specificity were detected among the three groups. MRI diagnosis of acute appendicitis can be performed without contrast for most patients; injection of contrast can be reserved for only those patients with equivocal non-contrast imaging. (orig.)

  5. Contrast-Enhanced MR Imaging of Lymph Nodes in Cancer Patients

    International Nuclear Information System (INIS)

    Choi, Seung Hong; Moon, Woo Kyung

    2010-01-01

    The accurate identification and characterization of lymph nodes by modern imaging modalities has important therapeutic and prognostic significance for patients with newly diagnosed cancers. The presence of nodal metastases limits the therapeutic options, and it generally indicates a worse prognosis for the patients with nodal metastases. Yet anatomic imaging (CT and MR imaging) is of limited value for depicting small metastatic deposits in normal-sized nodes, and nodal size is a poor criterion when there is no extracapsular extension or focal nodal necrosis to rely on for diagnosing nodal metastases. Thus, there is a need for functional methods that can be reliably used to identify small metastases. Contrast-enhanced MR imaging of lymph nodes is a non-invasive method for the analysis of the lymphatic system after the interstitial or intravenous administration of contrast media. Moreover, some lymphotrophic contrast media have been developed and used for detecting lymph node metastases, and this detection is independent of the nodal size. This article will review the basic principles, the imaging protocols, the interpretation and the accuracies of contrast-enhanced MR imaging of lymph nodes in patients with malignancies, and we also focus on the recent issues cited in the literature. In addition, we discuss the results of several pre-clinical studies and animal studies that were conducted in our institution

  6. A developed unsharp masking method for images contrast enhancement

    International Nuclear Information System (INIS)

    Zaafouri, A.; Sayadi, M.; Fnaiech, F.

    2011-01-01

    In this paper, we propose a developed unsharp masking process for contrast image enhancement. The main idea here is to enhance the dark and bright area in the same way which matches the response of human visual system well. Then in order to reduce the noise effect, a mean weighted high pass filter is used for edge extraction. The proposed method gives satisfactory results for wide range of low contrast images compared with others known approaches.

  7. Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm

    Science.gov (United States)

    Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong

    2018-02-01

    Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.

  8. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    Directory of Open Access Journals (Sweden)

    Shibin Wu

    2013-01-01

    Full Text Available A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR, and contrast improvement index (CII.

  9. Colorectal liver metastases: contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at MR imaging.

    Science.gov (United States)

    Jia, Guang; O'Dell, Craig; Heverhagen, Johannes T; Yang, Xiangyu; Liang, Jiachao; Jacko, Richard V; Sammet, Steffen; Pellas, Theodore; Cole, Patricia; Knopp, Michael V

    2008-09-01

    To describe and determine the reproducibility of a simplified model to quantitatively measure heterogeneous intralesion contrast agent diffusion in colorectal liver metastases. This HIPAA-compliant retrospective study received institutional review board approval, and written informed consent was obtained from 14 patients (mean age, 61 years +/- 9 [standard deviation]; range, 41-78 years), including 10 men (mean age, 65 years +/- 8; range, 47-78 years) and four women (mean age, 54 years +/- 9; range, 41-59 years), with colorectal liver metastases. Magnetic resonance (MR) imaging was performed twice (first baseline MR image [B(1)] and second baseline MR image [B(2)]) in a single target lesion prior to therapy. Dynamic contrast material-enhanced MR imaging was performed by using a saturation-recovery fast gradient-echo sequence. A simplified contrast agent diffusion model was proposed, and a contrast agent diffusion coefficient (CDC) was calculated. The reproducibility of the CDC measurement was evaluated by using the Bland-Altman plot and a linear regression model. The mean CDC was 0.22 mm(2)/sec (range, 0.01-0.73 mm(2)/sec) on B(1) and 0.24 mm(2)/sec (range, 0.01-0.71 mm(2)/sec) on B(2), with an intraclass correlation coefficient of 0.91 (P < .0001). Bland-Altman plot showed good agreement, with a mean difference in measurement pairs of 0.017 mm(2)/sec +/- 0.096. The slope from the linear regression model was 0.89 (95% confidence interval: 0.63, 1.15) and the intercept was 0.01 (95% confidence interval: -0.08, 0.09). The CDC enables a quantitative description of contrast enhancement heterogeneity in lesions. Given the high reproducibility of the CDC metric, CDC appears promising for further qualification as an imaging biomarker of change measurement in response assessment. http://radiology.rsnajnls.org/cgi/content/full/248/3/901/DC1. RSNA, 2008

  10. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    International Nuclear Information System (INIS)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  11. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon [School of Medicine, Ewha Womans University, Seou (Korea, Republic of)

    2013-06-15

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  12. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images.

    Science.gov (United States)

    Yoo, Seon Young; Kim, Yookyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  13. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  14. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  15. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  16. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  17. Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex

    International Nuclear Information System (INIS)

    Brasch, R.C.; Weinmann, H.J.; Wesbey, G.E.

    1984-01-01

    Gadolinium (Gd)-DTPA complex was assessed as a nuclear magnetic resonance (NMR) contrast-enhancing agent by experimentally imaging normal and diseased animals. After intravenous injection, Gd-DTPA, a strongly paramagnetic complex by virtue of unpaired electrons, was rapidly excreted into the urine of rats, producing an easily observable contrast enhancement on NMR images in kidney parenchyma and urine. Sterile soft-tissue abscesses demonstrated an obvious rim pattern of enhancement. A focus of radiation-induced brain damage in a canine model was only faintly detectable on spin-echo NMR images before contrast administration; after 0.5 mmol/kg Gd-DTPA administration, the lesion intensity increased from 3867 to 5590. In comparison, the normal brain with an intact blood-brain barrier remained unchanged in NMR characterization. Gd-DTPA is a promising new NMR contrast enhancer for the clinical assessment of renal function, of inflammatory lesions, and of focal disruption of the blood-brain barrier

  18. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    The role of 18 fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2 nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted

  19. Facial nerve palsy: Evaluation by contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Kinoshita, T.; Ishii, K.; Okitsu, T.; Okudera, T.; Ogawa, T.

    2001-01-01

    AIM: The purpose of this study was to investigate the value of contrast-enhanced magnetic resonance (MR) imaging in patients with peripheral facial nerve palsy. MATERIALS AND METHODS: MR imaging was performed in 147 patients with facial nerve palsy, using a 1.0 T unit. All of 147 patients were evaluated by contrast-enhanced MR imaging and the pattern of enhancement was compared with that in 300 control subjects evaluated for suspected acoustic neurinoma. RESULTS: The intrameatal and labyrinthine segments of the normal facial nerve did not show enhancement, whereas enhancement of the distal intrameatal segment and the labyrinthine segment was respectively found in 67% and 43% of patients with Bell's palsy. The geniculate ganglion or the tympanic-mastoid segment was enhanced in 21% of normal controls versus 91% of patients with Bell's palsy. Abnormal enhancement of the non-paralyzed facial nerve was found in a patient with bilateral temporal bone fracture. CONCLUSION: Enhancement of the distal intrameatal and labyrinthine segments is specific for facial nerve palsy. Contrast-enhanced MR imaging can reveal inflammatory facial nerve lesions and traumatic nerve injury, including clinically silent damage in trauma. Kinoshita T. et al. (2001)

  20. Facial nerve palsy: Evaluation by contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, T.; Ishii, K.; Okitsu, T.; Okudera, T.; Ogawa, T

    2001-11-01

    AIM: The purpose of this study was to investigate the value of contrast-enhanced magnetic resonance (MR) imaging in patients with peripheral facial nerve palsy. MATERIALS AND METHODS: MR imaging was performed in 147 patients with facial nerve palsy, using a 1.0 T unit. All of 147 patients were evaluated by contrast-enhanced MR imaging and the pattern of enhancement was compared with that in 300 control subjects evaluated for suspected acoustic neurinoma. RESULTS: The intrameatal and labyrinthine segments of the normal facial nerve did not show enhancement, whereas enhancement of the distal intrameatal segment and the labyrinthine segment was respectively found in 67% and 43% of patients with Bell's palsy. The geniculate ganglion or the tympanic-mastoid segment was enhanced in 21% of normal controls versus 91% of patients with Bell's palsy. Abnormal enhancement of the non-paralyzed facial nerve was found in a patient with bilateral temporal bone fracture. CONCLUSION: Enhancement of the distal intrameatal and labyrinthine segments is specific for facial nerve palsy. Contrast-enhanced MR imaging can reveal inflammatory facial nerve lesions and traumatic nerve injury, including clinically silent damage in trauma. Kinoshita T. et al. (2001)

  1. MR imaging of the early rheumatoid arthritis: usefulness of contrast enhanced fat suppressed SPGR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mi; Joo, Kyung Bin; Kim, Seong Tae; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1995-06-15

    To evaluate value of post-contrast 3-Dimensional fat suppressed Spoiled GRASS (FS SPGR) in detecting subtle bony erosion and tenosynovitis of hands and wrists due to early rheumatoid arthritis. Fourteen MR imagings of the hands and wrists were performed in 7 early rheumatoid arthritis without any abnormalities in plain radiography and in 7 healthy volunteers. All subjects underwent MR sequence of coronal 3D FS SPGR with and without contrast enhancement in 1.5T MR unit. We evaluated the number of the bony erosion and tenosynovitis respectively in pre-and post-contrast FS SPGR images. The abnormal enhancing areas were not demonstrated in 7 healthy volunteers. Seven patients had 25 bony erosions in pre-contrast FS SPGR and 52 bony erosions with tenosynovitis (n = 10) in post-contrast FS SPGR. Enhancing joint spaces were shown in 8 cases. Post-contrast FS SPGR was better than pre-contrast FS SPGR in the evaluation of early rheumatoid arthritis and is valuable as a baseline study.

  2. MR imaging of the early rheumatoid arthritis: usefulness of contrast enhanced fat suppressed SPGR imaging

    International Nuclear Information System (INIS)

    Kim, Sun Mi; Joo, Kyung Bin; Kim, Seong Tae; Hahm, Chang Kok

    1995-01-01

    To evaluate value of post-contrast 3-Dimensional fat suppressed Spoiled GRASS (FS SPGR) in detecting subtle bony erosion and tenosynovitis of hands and wrists due to early rheumatoid arthritis. Fourteen MR imagings of the hands and wrists were performed in 7 early rheumatoid arthritis without any abnormalities in plain radiography and in 7 healthy volunteers. All subjects underwent MR sequence of coronal 3D FS SPGR with and without contrast enhancement in 1.5T MR unit. We evaluated the number of the bony erosion and tenosynovitis respectively in pre-and post-contrast FS SPGR images. The abnormal enhancing areas were not demonstrated in 7 healthy volunteers. Seven patients had 25 bony erosions in pre-contrast FS SPGR and 52 bony erosions with tenosynovitis (n = 10) in post-contrast FS SPGR. Enhancing joint spaces were shown in 8 cases. Post-contrast FS SPGR was better than pre-contrast FS SPGR in the evaluation of early rheumatoid arthritis and is valuable as a baseline study

  3. Monte Carlo simulation of grating-based neutron phase contrast imaging at CPHS

    International Nuclear Information System (INIS)

    Zhang Ran; Chen Zhiqiang; Huang Zhifeng; Xiao Yongshun; Wang Xuewu; Wie Jie; Loong, C.-K.

    2011-01-01

    Since the launching of the Compact Pulsed Hadron Source (CPHS) project of Tsinghua University in 2009, works have begun on the design and engineering of an imaging/radiography instrument for the neutron source provided by CPHS. The instrument will perform basic tasks such as transmission imaging and computerized tomography. Additionally, we include in the design the utilization of coded-aperture and grating-based phase contrast methodology, as well as the options of prompt gamma-ray analysis and neutron-energy selective imaging. Previously, we had implemented the hardware and data-analysis software for grating-based X-ray phase contrast imaging. Here, we investigate Geant4-based Monte Carlo simulations of neutron refraction phenomena and then model the grating-based neutron phase contrast imaging system according to the classic-optics-based method. The simulated experimental results of the retrieving phase shift gradient information by five-step phase-stepping approach indicate the feasibility of grating-based neutron phase contrast imaging as an option for the cold neutron imaging instrument at the CPHS.

  4. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  5. Noise and contrast detection in computed tomography images

    International Nuclear Information System (INIS)

    Faulkner, K.; Moores, B.M.

    1984-01-01

    A discrete representation of the reconstruction process is used in an analysis of noise in computed tomography (CT) images. This model is consistent with the method of data collection in actual machines. An expression is derived which predicts the variance on the measured linear attenuation coefficient of a single pixel in an image. The dependence of the variance on various CT scanner design parameters such as pixel size, slice width, scan time, number of detectors, etc., is then described. The variation of noise with sampling area is theoretically explained. These predictions are in good agreement with a set of experimental measurements made on a range of CT scanners. The equivalent sampling aperture of the CT process is determined and the effect of the reconstruction filter on the variance of the linear attenuation coefficient is also noted, in particular, the choice and its consequences for reconstructed images and noise behaviour. The theory has been extended to include contrast detail behaviour, and these predictions compare favourably with experimental measurements. The theory predicts that image smoothing will have little effect on the contrast-detail detectability behaviour of reconstructed images. (author)

  6. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  7. A new combined technique for automatic contrast enhancement of digital images

    Directory of Open Access Journals (Sweden)

    Ismail A. Humied

    2012-03-01

    Full Text Available Some low contrast images have certain characteristics makes it difficult to use traditional methods to improve it. An example of these characteristics, that the amplitudes of images histogram components are very high at one location on the gray scale and very small in the rest of the gray scale. In the present paper, a new method is described. It can deal with such cases. The proposed method is a combination of Histogram Equalization (HE and Fast Gray-Level Grouping (FGLG. The basic procedure of this method is segments the original histogram of a low contrast image into two sub-histograms according to the location of the highest amplitude of the histogram components, and achieving contrast enhancement by equalizing the left segment of the histogram components using (HE technique and using (FGLG technique to equalize the right segment of this histogram components. The results have shown that the proposed method does not only produce better results than each individual contrast enhancement technique, but it is also fully automated. Moreover, it is applicable to a broad variety of images that satisfy the properties mentioned above and suffer from low contrast.

  8. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Directory of Open Access Journals (Sweden)

    Estelrich J

    2015-03-01

    Full Text Available Joan Estelrich,1,2 María Jesús Sánchez-Martín,1 Maria Antònia Busquets1,2 1Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain; 2Institut de Nanociència I Nanotecnologia (IN2UB, Barcelona, Catalonia, SpainAbstract: Magnetic resonance imaging (MRI has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions, providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of

  9. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  10. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  11. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  12. Investigation of grid performance using simple image quality tests

    Directory of Open Access Journals (Sweden)

    Dogan Bor

    2016-01-01

    Full Text Available Antiscatter grids improve the X-ray image contrast at a cost of patient radiation doses. The choice of appropriate grid or its removal requires a good knowledge of grid characteristics, especially for pediatric digital imaging. The aim of this work is to understand the relation between grid performance parameters and some numerical image quality metrics for digital radiological examinations. The grid parameters such as bucky factor (BF, selectivity (Σ, Contrast improvement factor (CIF, and signal-to-noise improvement factor (SIF were determined following the measurements of primary, scatter, and total radiations with a digital fluoroscopic system for the thicknesses of 5, 10, 15, 20, and 25 cm polymethyl methacrylate blocks at the tube voltages of 70, 90, and 120 kVp. Image contrast for low- and high-contrast objects and high-contrast spatial resolution were measured with simple phantoms using the same scatter thicknesses and tube voltages. BF and SIF values were also calculated from the images obtained with and without grids. The correlation coefficients between BF values obtained using two approaches (grid parameters and image quality metrics were in good agreement. Proposed approach provides a quick and practical way of estimating grid performance for different digital fluoroscopic examinations.

  13. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  14. Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ja [Dept. of Radiologic Tecnology, Dongnam Health College, Suwon (Korea, Republic of); Kim, You Hyun; Kim, Chang Nam [Dept. of Radiological Science, College of Health Science, Korea University, Seoul (Korea, Republic of); Kim, Chang Nam; Lee, Chang Yeob; Park, Kye Yeon [Dept. of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2009-03-15

    To find out proper photographing conditions in the chest DR imaging, the evaluation of images using the C-D phantom was carried out on relationship of identification capability, graininess, and exposure ratio. The conclusions were obtained as follows. 1. The patient's entrance skin Exposure (ESE) was decreased as tube voltage was increased. 2. According to the tube voltage change, the C-D phantom's identification capability of the exposure conditions was most visible at 110 kVp. 3. The identification capability according to the exposure ratio (mAs) change was most visible at 90 kVp for 0.5 times of low exposure ratio and at 110 kVp for 1.5 times. Therefore, it is known that the images were able to be better identified at a high exposure than a low exposure. 4. The graininess according to the exposure ratio at tube voltage of 110 kVp resulted in the best thing at 1.5 times of ratio when the exposure ratio was 1.5 times increased and the tube voltage was changed, the graininess showed the best result at 110 kVp. Therefore, the patient's exposure dose was low when kVp was increased and the adequate kVp was found to be 110. The image was better identified when exposure ratio was 1.5 times compared to 1.0 times. The graininess was also good when the exposure ratio became 1.5 times. The tube voltage was good at 110 kVp. However, once the exposure ratio is increased, the amount of radiation dose that the patients received get increased, so that the exposure condition has to be thoroughly considered.

  15. Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography

    International Nuclear Information System (INIS)

    Lee, In Ja; Kim, You Hyun; Kim, Chang Nam; Kim, Chang Nam; Lee, Chang Yeob; Park, Kye Yeon

    2009-01-01

    To find out proper photographing conditions in the chest DR imaging, the evaluation of images using the C-D phantom was carried out on relationship of identification capability, graininess, and exposure ratio. The conclusions were obtained as follows. 1. The patient's entrance skin Exposure (ESE) was decreased as tube voltage was increased. 2. According to the tube voltage change, the C-D phantom's identification capability of the exposure conditions was most visible at 110 kVp. 3. The identification capability according to the exposure ratio (mAs) change was most visible at 90 kVp for 0.5 times of low exposure ratio and at 110 kVp for 1.5 times. Therefore, it is known that the images were able to be better identified at a high exposure than a low exposure. 4. The graininess according to the exposure ratio at tube voltage of 110 kVp resulted in the best thing at 1.5 times of ratio when the exposure ratio was 1.5 times increased and the tube voltage was changed, the graininess showed the best result at 110 kVp. Therefore, the patient's exposure dose was low when kVp was increased and the adequate kVp was found to be 110. The image was better identified when exposure ratio was 1.5 times compared to 1.0 times. The graininess was also good when the exposure ratio became 1.5 times. The tube voltage was good at 110 kVp. However, once the exposure ratio is increased, the amount of radiation dose that the patients received get increased, so that the exposure condition has to be thoroughly considered.

  16. Image quality, threshold contrast and mean glandular dose in CR mammography

    International Nuclear Information System (INIS)

    Jakubiak, R R; Gamba, H R; Neves, E B; Peixoto, J E

    2013-01-01

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both

  17. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  18. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    Science.gov (United States)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  19. Fuzzy Logic-Based Histogram Equalization for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    V. Magudeeswaran

    2013-01-01

    Full Text Available Fuzzy logic-based histogram equalization (FHE is proposed for image contrast enhancement. The FHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two subhistograms based on the median value of the original image and then equalizes them independently to preserve image brightness. The qualitative and quantitative analyses of proposed FHE algorithm are evaluated using two well-known parameters like average information contents (AIC and natural image quality evaluator (NIQE index for various images. From the qualitative and quantitative measures, it is interesting to see that this proposed method provides optimum results by giving better contrast enhancement and preserving the local information of the original image. Experimental result shows that the proposed method can effectively and significantly eliminate washed-out appearance and adverse artifacts induced by several existing methods. The proposed method has been tested using several images and gives better visual quality as compared to the conventional methods.

  20. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  1. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    Science.gov (United States)

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  2. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast

    Science.gov (United States)

    Guggenheim, James A.; Allen, Thomas J.; Plumb, Andrew; Zhang, Edward Z.; Rodriguez-Justo, Manuel; Punwani, Shonit; Beard, Paul C.

    2015-05-01

    Lymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner. These images showed that hemoglobin based contrast reveals nodal vasculature and lipid-based contrast reveals the exterior node size, shape, and boundary integrity. These two sources of complementary contrast may allow indirect observation of cancer, suggesting a future role for photoacoustic imaging as a tool for the clinical assessment of lymph nodes.

  3. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

    2017-04-01

    Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

  4. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  5. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  6. Comparison of positive and negative enteral contrast agents for MR imaging of the abdomen

    International Nuclear Information System (INIS)

    Kaminsky, S.; Langer, M.

    1994-01-01

    Following oral administration of a buffered gadopentetate-dimeglumine solution (Magnevist enteral R , 1 mmol/l, 6-17 ml/kg) T 1 -, proton-density- and T 2 -weighted spin-echo images of abdominal and retroperitoneal lesions were acquired (0.5 T). Gadopentetate is a signal-enhancing, positive MR contrast agent, intraluminar air served as a model of a signal-free, negative agent. In 21 patients contrast/noise ratios of gadopentetate and air versus lesions and fat were compared quantitatively (t-test). In T 1 - and T 2 -weighted images contrast/noise ratios of gadopentetate versus lesions were significantly higher than those of air. In proton-density images there was no significant difference. In T 1 - and proton-density images contrast/noise ratios of air versus abdominal fat were significantly higher than those of gadopentetate, in T 2 -weighted images gadopentetate had a significantly higher contrast/noise ratio than air. Signal-enhancing positive contrast agents seem advantageous over signal-free negative enteral MR contrast agents. (orig.) [de

  7. Exchange-Mediated Contrast in CEST and Spin-Lock Imaging

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F.; Gore, John C.

    2014-01-01

    PURPOSE Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. METHODS Simulations and experimental measurements at 9.4T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. RESULTS The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate to fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CONCLUSION CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ dependent acquisitions can be employed to selectively portray protons of specific exchange rates. PMID:24239335

  8. Exchange-mediated contrast in CEST and spin-lock imaging.

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F; Gore, John C

    2014-01-01

    Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. >2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates. © 2013.

  9. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    International Nuclear Information System (INIS)

    Reitz, Bodo; Gayou, Olivier; Parda, David S; Miften, Moyed

    2008-01-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins

  10. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  11. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  12. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    Science.gov (United States)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  13. Automated detection of acute haemorrhagic stroke in non-contrasted CT images

    International Nuclear Information System (INIS)

    Meetz, K.; Buelow, T.

    2007-01-01

    An efficient treatment of stroke patients implies a profound differential diagnosis that includes the detection of acute haematoma. The proposed approach provides an automated detection of acute haematoma, assisting the non-stroke expert in interpreting non-contrasted CT images. It consists of two steps: First, haematoma candidates are detected applying multilevel region growing approach based on a typical grey value characteristic. Second, true haematomas are differentiated from partial volume artefacts, relying on spatial features derived from distance-based histograms. This approach achieves a specificity of 77% and a sensitivity of 89.7% in detecting acute haematoma in non-contrasted CT images when applied to a set of 25 non-contrasted CT images. (orig.)

  14. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  15. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  16. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv, E-mail: rajiv.chopra@sri.utoronto.ca [Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, M4N 3M5 (Canada)

    2011-02-07

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 {+-} 0.2 and 0.3 {+-} 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm {+-}0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  17. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Science.gov (United States)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  18. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

    International Nuclear Information System (INIS)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-01-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols. (orig.)

  19. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    International Nuclear Information System (INIS)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon

    1994-01-01

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days

  20. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon [Inje University College of Medicine, Pusan (Korea, Republic of)

    1994-08-15

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days.

  1. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-01-01

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  2. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    Science.gov (United States)

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  3. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  4. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T.; Yupapin, Preecha P.

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  5. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    International Nuclear Information System (INIS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-01-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model. (paper)

  6. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    -contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...

  7. Quality Control of Mega Voltage Portal Imaging System

    International Nuclear Information System (INIS)

    Diklic, A.; Dundara Debeljuh, D.; Jurkovic, S.; Smilovic Radojcic, D.; Svabic Kolacio; Kasabasic, M.; Faj, D.

    2013-01-01

    The Electronic Portal Imaging Device (EPID) is a system used to verify either the correct positioning of the patient during radiotherapy treatment or the linear accelerator beam parameters. The correct position of the patient corresponds to the position at which the patient was scanned at the CT simulator and according to which the therapy plan was made and optimized. Regarding this, besides the advanced treatment planning system and optimized treatment planning techniques, the day-to-day reproduction of simulated conditions is of great importance for the treatment outcome. Therefore, to verify the patient set-up portal imaging should be applied prior to the first treatment session and repeated according to treatment prescriptions during the treatment. In order to achieve full functionality and precision of the EPID, it must be included in radiotherapy Quality Control (QC) programme. The QC of the Mega Voltage portal imaging system was separated in two parts. In the first, the QC of the detector parameters should be performed. For this purpose, the FC2 and QC3 phantoms should be used, along with the Portal Image Processing System program (PIPSpro) package for data analysis. The second part of the QC of the linear accelerator's portal imaging system should include the QC of the CBCT. In this part a set of predefined manufacturer's tests using two different phantoms, one for the geometry calibration and the other for the image quality evaluation, should be performed. Also, the treatment conditions should be simulated using anthropomorphic phantoms and dose distributions for particular EPID protocols should be measured. Procedures for quality control of the portal imaging system developed and implemented at University Hospital Rijeka are presented in this paper.(author)

  8. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    Science.gov (United States)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  9. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  10. Did low tube voltage CT combined with low contrast media burden protocols accomplish the goal of "double low" for patients? An overview of applications in vessels and abdominal parenchymal organs over the past 5 years.

    Science.gov (United States)

    Shen, Yaqi; Hu, Xuemei; Zou, Xianlun; Zhu, Di; Li, Zhen; Hu, Daoyu

    2016-09-01

    Imaging communities have already reached a consensus that the radiation dose of computed tomography (CT) should be reduced as much as reasonably achievable to lower population risks. Increasing attention is being paid to iodinated contrast media (CM) induced nephrotoxicity (CIN); a decrease in the intake of iodinated CM is required by increasingly more radiologists. Theoretically, the radiation dose varies with the tube current time and square of the tube voltage, with higher iodine contrast at low photon energies (Huda et al. [2000] Radiology, 21 7, 430-435).The use of low tube voltage is a promising strategy to reduce both the radiation dose and CM burden. The term 'double low' has been coined to describe scanning protocols that reduce radiation dose and iodine intake synchronously. These protocols are becoming increasingly popular in the clinical setting. The aim of this review was to describe all original studies using the 'double low' strategy in the last 5 years. We searched an online electronic database (PubMed) from January 2011 to December 2015 for original studies published on the relationship of low tube voltage with low radiation dose and low iodine contrast media burden in patients undergoing CT scans. Studies that failed to reduce radiation dose or iodine CM burden were excluded in this study. Thirty-seven studies aimed at reducing radiation dose using low tube voltage combined with iodine CM reduced protocols were included in this study. Most studies evaluated conditions associated with arteries. Four were cerebral and neck computed tomography angiography (CTA) studies, 15 were pulmonary CTA (pCTA) and coronary CTA (cCTA) studies, one concerned myocardial perfusion, five studies focused on the thoracic and abdominal aorta, and one investigated renal arteries. Three studies consisted of CT venography (CTV) of the pelvis and lower extremities. Six publications examined the liver, and two focused on the kidney. Overall, this review demonstrates that

  11. An alternative approach to contrast-detail testing of X-ray image intensifier systems

    International Nuclear Information System (INIS)

    Kotre, C.J.; Marshall, N.W.; Faulkner, K.

    1992-01-01

    The difficulties of making the results of threshold contrast-detail diameter tests on X-ray image intensifier systems consistent with published performance standards are discussed. The current approach to contrast-detail testing is described and an alternative method intended to give greater consistency for all image intensifier input field diameters proposed. The current and alternative test conditions are compared on two image intensifier systems. The results obtained show that the contrast-detail curves for image intensifier systems with a wide range of input field diameters can be effectively normalized to be directly comparable to a common reference standard by applying the proposed alternative test conditions. The implications of this result on the interpretation of the contrast-detail test are discussed. (author)

  12. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Directory of Open Access Journals (Sweden)

    Hong-Seng Gan

    2014-01-01

    Full Text Available Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image’s maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher’s Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.

  13. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  14. Double contrast MR imaging with iron colloid and Gd-DTPA in cholangiocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Shimatani, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kato, T. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kamba, M. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Ohuchi, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kodama, F. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kato, T.; Ohta, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)

    1994-11-01

    Double contrast MR imaging with combined use of chondroitin sulfate iron colloid (CSIC) and Gd-DTPA was attempted in 3 cases of cholangiocellular carcinoma (CCC). In all cases, nonenhanced spin echo T1- and T2-weighted images, and T1-weighted images after i.v. injection of Gd-DTPA were obtained. Within one week, the MR sequences were repeated one hour after i.v. injection of CSIC. Double contrast (CSIC/Gd-DTPA) T1-weighted imaging was evaluated and compared with the other sequences in terms of tumor detectability, tumor spreading and tumor characterization. Double contrast MR imaging was comparable in tumor detectability and superior as to the evaluation of spreading and characterization to the other MR imaging modalities. (orig.).

  15. Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains

    Directory of Open Access Journals (Sweden)

    Behrouz Fathi-Vajargah

    2014-01-01

    Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.

  16. Screened Poisson Equation for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    Jean-Michel Morel

    2014-03-01

    Full Text Available In this work we propose a discussion and detailed implementation of a very simple gradient domain method that tries to eliminate the effect of nonuniform illumination and at the same time preserves the images details. This model, which to the best of our knowledge has not been explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast parameter (which keeps the same value in most experiments, the model delivers state of the art results. They compare favorably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images illustrate significant perception gain.

  17. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  18. Comparison of the image quality of intravenous urograms using low-osmolar contrast media

    International Nuclear Information System (INIS)

    Kaye, B.; Howard, J.; Foord, K.D.; Cumberland, D.C.

    1988-01-01

    Almost equivalent, intravenous iodine doses of the three new low-osmolar contrast media, ioxaglate (Hexabrix), iopamidol (Niopam) and iohexol (Omnipaque) have been compared for image quality on the intravenous urogram. Generally good radiographic images were obtained. Iohexol gave better results for the nephrogram and pelvicalyceal distension compared with the other contrast media, but only the nephrogram results were statistically significant. Pyelographic density and ureteric distension and density were similar with all three contrast media. In patients where low-osmolality contrast media need to be used for intravenous urography, we suggest that iohexol gives the best radiographic images. Other factors, such as cost and the relative incidence of side-effects of the low-osmolar contrast media also need to be taken into consideration. (author)

  19. Technical aspects of contrast-enhanced magnetic resonance imaging of the breast: literature review

    International Nuclear Information System (INIS)

    Leopoldino, Denise de Deus; Gracio, Tatiana Schiller; D'Ippolito, Giuseppe; Bezerra, Alexandre Sergio de Araujo; Gracio, Tatiana Schiller

    2005-01-01

    With the advances in surface coil technology and the development of new imaging protocols in addition to the increase of the use of contrast agents, contrast enhanced magnetic resonance imaging (MRI) has emerged as a promising modality for detection, diagnosis and staging of breast cancer. Despite these advances, there are some unresolved issues, including no defined standard technique for contrast-enhanced breast MRI and no standard criteria of interpretation for the evaluation of such studies. In this article, we review the literature and discuss the general requirements and recommendations for contrast agent-enhanced breast MRI, including image interpretation criteria, MR equipment, dedicated radiofrequency coils, use of paramagnetic contrast agents, fat-suppression techniques, planes of acquisition, pulse sequence specifications and artifact sources. (author)

  20. Novel MR imaging contrast agents for cancer detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2009-05-01

    Full Text Available

    • BACKGROUND: Novel potential MR imaging contrast agents Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP, Gd-hematoporphyrin (Gd-H, Gd-DTPA-9.2.27 against melanoma, Gd-DTPA-WM53 against leukemia and Gd-DTPAC595 against breast cancer cells were synthesized and applied to mice with different human cancer cells (melanoma MM-138, leukemia HL-60, breast MCF-7. The relaxivity, the biodistribution, T1 relaxation times, and signal enhancement of the contrast agents are presented and the results are compared.
    • METHODS: After preparation of contrast agents, the animal studies were performed. The cells (2×106 cells were injected subcutaneously in the both flanks of mice. Two to three weeks after tumor plantation, when the tumor diameter was 2-4 mm, mice were injected with the different contrast agents. The animals were sacrificed at 24 hr post IP injection followed by removal of critical organs. The T1 relaxation times and signal intensities of samples were measured using 11.4 T magnetic field and Gd concentration were measured using UV-spectrophotometer.
    • RESULTS: For Gd-H, the percent of Gd localized to the tumors measured by UV-spect was 28, 23 and 21 in leukemia, melanoma and breast cells, respectively. For Gd-TCP this amount was 21%, 18% and 15%, respectively. For Gd-DTPA-9.2.27, Gd-DTPA-WM53 and Gd-DTPA-C595 approximately 35%, 32% and 27% of gadolinium localized to their specific tumor, respectively.
    • CONCLUSION: The specific studied conjugates showed good tumor uptake in the relevant cell lines and low levels of Gd in the liver, kidney and spleen. The studied agents have considerable promise for further diagnosis applications of MR imaging.
    • KEYWORDS: Magnetic Resonance, Imaging, Monoclonal Antibody, Contrast Agents, Gadolinium, Early Detection of Cancer.

  1. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  3. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values.

    Science.gov (United States)

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.

  4. Feasibility Study of Using Gemstone Spectral Imaging (GSI and Adaptive Statistical Iterative Reconstruction (ASIR for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values.

    Directory of Open Access Journals (Sweden)

    Zheng Zhu

    Full Text Available To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI and adaptive statistical iterative reconstruction (ASIR for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values.26 patients (weight > 65kg and BMI ≥ 22 underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A. Another 21 patients (weight ≤ 65kg and BMI ≥ 22 were scanned with a conventional 120 kVp tube voltage for noise index (NI of 11 with 450mgI/kg contrast material as control group (group B. GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD, signal-noise-ratio (SNR, contrast-noise-ratio (CNR of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis.As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684. CT dose index (CTDI values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000, respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B.The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.

  5. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  6. Correlation between image quality of CT scan and amount of intravenous contrast media

    International Nuclear Information System (INIS)

    Yoon, Dae Young; Choi, Dae Seob; Kim, Seung Hyup; Han, Joon Koo; Choi, Byung Ihn; Im, Jung Gi; Han, Moon Hee; Chang, Kee Hyun; Kim, Jong Hyo; Han, Man Chung

    1993-01-01

    A blind, comparative clinical study was performed prospectively to examine the correlation between image quality of CT scan in terms of contrast enhancement effect and amount of intravenous contrast media. A total of 357 patients were randomized into two groups. Ionic high-osmolality contrast media (68% meglumine ioglicate) was administered intravenously as 100 ml bolus in one group and as 50 ml bolus in the other group. Statistically significant differences of image quality were found in CT scans of the brain, head and neck, chest and abdomen (p 0.05). We suggest that amount of contrast media may be reduced in pelvis CT without significant degradation of image quality

  7. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  8. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  9. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Fahlvik, A.K.

    1991-05-01

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  10. Recording membrane potential changes through photoacoustic voltage sensitive dye

    Science.gov (United States)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  11. Barium sulfate suspension as a negative oral contrast agent for MR imaging

    International Nuclear Information System (INIS)

    Li, K.C.P.; Tart, R.P.; Fitzsimmons, J.R.; Storm, B.; Mao, J.

    1989-01-01

    Proton spectroscopy with linewidth measurements and MR imaging were performed on various commercially available barium sulfate suspensions as well as inorganic sulfates and barium salts. Approximately 500 mL of 20%, 40%, 60%, and 70% wt/wt single-contrast oral barium sulfate suspensions were administered to four normal volunteers, and MR imaging was performed with both a 1.5-T and a 0.15-T MR imager. As much as 80% of the small bowel and the entire colon were well visualized with the 60% or 70% wt/wt single-contrast barium sulfate suspensions. The authors conclude that barium sulfate suspensions are useful as oral MR contrast agents

  12. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  13. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  14. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  15. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  16. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  17. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  18. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  19. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  1. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Walter, Andreas; Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, André; Gölzhäuser, Armin; Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter; Kühlbrandt, Werner; Rhinow, Daniel

    2012-01-01

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90° achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen–hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: ► Various obstacles need to be overcome before Boersch phase plates can be used routinely. ► Technical problems include electrostatic charging, mechanical drift, and image artefacts.

  2. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  3. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    International Nuclear Information System (INIS)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  4. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  6. In-line phase-contrast stereoscopic X-ray imaging for radiological purposes: An initial experimental study

    International Nuclear Information System (INIS)

    Siegbahn, E.A.; Coan, P.; Zhou, S.-A.; Bravin, A.; Brahme, A.

    2011-01-01

    We report results from a pilot study in which the in-line propagation-based phase-contrast imaging technique is combined with the stereoscopic method. Two phantoms were imaged at several sample-detector distances using monochromatic, 30 keV, X-rays. High contrast- and spatial-resolution phase-contrast stereoscopic pairs of X-ray images were constructed using the anaglyph approach and a vivid stereoscopic effect was demonstrated. On the other hand, images of the same phantoms obtained with a shorter sample-to-detector distance, but otherwise the same experimental conditions (i.e. the same X-ray energy and absorbed radiation dose), corresponding to the conventional attenuation-based imaging mode, hardly revealed stereoscopic effects because of the lower image contrast produced. These results have confirmed our hypothesis that stereoscopic X-ray images of samples with objects composed of low-atomic-number elements are considerably improved if phase-contrast imaging is used. It is our belief that the high-resolution phase-contrast stereoscopic method will be a valuable new medical imaging tool for radiologists and that it will be of help to enhance the diagnostic capability in the examination of patients in future clinical practice, even though further efforts will be needed to optimize the system performance.

  7. Differential evolution optimization combined with chaotic sequences for image contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Sauer, Joao Guilherme [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: joao.sauer@gmail.com; Rudek, Marcelo [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: marcelo.rudek@pucpr.br

    2009-10-15

    Evolutionary Algorithms (EAs) are stochastic and robust meta-heuristics of evolutionary computation field useful to solve optimization problems in image processing applications. Recently, as special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used in various designs of EAs. Three differential evolution approaches based on chaotic sequences using logistic equation for image enhancement process are proposed in this paper. Differential evolution is a simple yet powerful evolutionary optimization algorithm that has been successfully used in solving continuous problems. The proposed chaotic differential evolution schemes have fast convergence rate but also maintain the diversity of the population so as to escape from local optima. In this paper, the image contrast enhancement is approached as a constrained nonlinear optimization problem. The objective of the proposed chaotic differential evolution schemes is to maximize the fitness criterion in order to enhance the contrast and detail in the image by adapting the parameters using a contrast enhancement technique. The proposed chaotic differential evolution schemes are compared with classical differential evolution to two testing images. Simulation results on three images show that the application of chaotic sequences instead of random sequences is a possible strategy to improve the performance of classical differential evolution optimization algorithm.

  8. Objective and subjective image quality of primary and recurrent squamous cell carcinoma on head and neck low-tube-voltage 80-kVp computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik; Kaup, Moritz; Kraft, Johannes; Noeske, Eva-Maria; Schulz, Boris; Burck, Iris; Kerl, J.M.; Bauer, Ralf W.; Lehnert, Thomas; Vogl, Thomas J.; Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Scheerer, Friedrich [University Hospital Frankfurt, Department of Cranio-Maxillofacial and Plastic Facial Surgery, Frankfurt (Germany); Wagenblast, Jens [University Hospital Frankfurt, Department of Otolaryngology, Head and Neck Surgery, Frankfurt (Germany)

    2015-03-26

    To investigate low-tube-voltage 80-kVp computed tomography (CT) of head and neck primary and recurrent squamous cell carcinoma (SCC) regarding objective and subjective image quality. We retrospectively evaluated 65 patients (47 male, 18 female; mean age: 62.1 years) who underwent head and neck dual-energy CT (DECT) due to biopsy-proven primary (n = 50) or recurrent (n = 15) SCC. Eighty peak kilovoltage and standard blended 120-kVp images were compared. Attenuation and noise of malignancy and various soft tissue structures were measured. Tumor signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Subjective image quality was rated by three reviewers using 5-point grading scales regarding overall image quality, lesion delineation, image sharpness, and image noise. Radiation dose was assessed as CT dose index volume (CTDI{sub vol}). Interobserver agreement was calculated using intraclass correlation coefficient (ICC). Mean tumor attenuation (153.8 Hounsfield unit (HU) vs. 97.1 HU), SNR (10.7 vs. 8.3), CNR (8.1 vs. 4.8), and subjective tumor delineation (score, 4.46 vs. 4.13) were significantly increased (all P < 0.001) with 80-kVp acquisition compared to standard blended 120-kVp images. Noise of all measured structures was increased in 80-kVp acquisition (P < 0.001). Overall interobserver agreement was good (ICC, 0.86; 95 % confidence intervals: 0.82-0.89). CTDI{sub vol} was reduced by 48.7 % with 80-kVp acquisition compared to standard DECT (4.85 ± 0.51 vs. 9.94 ± 0.81 mGy cm, P < 0.001). Head and neck CT with low-tube-voltage 80-kVp acquisition provides increased tumor delineation, SNR, and CNR for CT imaging of primary and recurrent SCC compared to standard 120-kVp acquisition with an accompanying significant reduction of radiation exposure. (orig.)

  9. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  10. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  11. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    Science.gov (United States)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  12. New K-edge-balanced contrast phantom for image quality assurance in projection radiography

    Science.gov (United States)

    Cresens, Marc; Schaetzing, Ralph

    2003-06-01

    X-ray-absorber step-wedge phantoms serve in projection radiography to assess a detection system's overall exposure-related signal-to-noise ratio performance and contrast response. Data derived from a phantom image, created by exposing a step-wedge onto the image receptor, are compared with predefined acceptance criteria during periodic image quality assurance (QA). For contrast-related measurements, in particular, the x-ray tube potential requires accurate setting and low ripple, since small deviations from the specified kVp, causing energy spectrum changes, lead to significant image signal variation at high contrast ratios. A K-edge-balanced, rare-earth-metal contrast phantom can generate signals that are significantly more robust to the spectral variability and instability of exposure equipment in the field. The image signals from a hafnium wedge, for example, are up to eight times less sensitive to spectral fluctuations than those of today"s copper phantoms for a 200:1 signal ratio. At 120 kVp (RQA 9), the hafnium phantom still preserves 70% of the subject contrast present at 75 kVp (RQA 5). A copper wedge preserves only 7% of its contrast over the same spectral range. Spectral simulations and measurements on prototype systems, as well as potential uses of this new class of phantoms (e.g., QA, single-shot exposure response characterization) are described.

  13. Modelling of chromatic contrast for retrieval of wallpaper images

    OpenAIRE

    Gao, Xiaohong W.; Wang, Yuanlei; Qian, Yu; Gao, Alice

    2015-01-01

    Colour remains one of the key factors in presenting an object and consequently has been widely applied in retrieval of images based on their visual contents. However, a colour appearance changes with the change of viewing surroundings, the phenomenon that has not been paid attention yet while performing colour-based image retrieval. To comprehend this effect, in this paper, a chromatic contrast model, CAMcc, is developed for the application of retrieval of colour intensive images, cementing t...

  14. Tolerance of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis

    Science.gov (United States)

    Rianti, R. A.; Priaminiarti, M.; Syahraini, S. I.

    2017-08-01

    Image enhancement brightness and contrast can be adjusted on lateral cephalometric digital radiographs to improve image quality and anatomic landmarks for measurement by Steiner analysis. To determine the limit value for adjustments of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis. Image enhancement brightness and contrast were adjusted on 100 lateral cephalometric radiography in 10-point increments (-30, -20, -10, 0, +10, +20, +30). Steiner analysis measurements were then performed by two observers. Reliabilities were tested by the Interclass Correlation Coefficient (ICC) and significance tested by ANOVA or the Kruskal Wallis test. No significant differences were detected in lateral cephalometric analysis measurements following adjustment of the image enhancement brightness and contrast. The limit value of adjustments of the image enhancement brightness and contrast associated with incremental 10-point changes (-30, -20, -10, 0, +10, +20, +30) does not affect the results of Steiner analysis.

  15. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    International Nuclear Information System (INIS)

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-01-01

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT

  16. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Stewart, Errol [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Lock, Michael; Fisher, Barbara [Radiation Oncology, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Kozak, Roman [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Chen, Jeff [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lee, Ting-Yim [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Wong, Eugene [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  17. Effects of use of the lodine contrast medium on gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Sung Jae; Cho, Yun Ho [Dept. of Nuclear Medicine, Inha University hospital, Incheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan College, Ansan (Korea, Republic of)

    2016-12-15

    Effects of Gamma camera imaging on gamma ray counting rates as a function of use and density of the iodine contrast medium currently in primary use for clinics, and changes in gamma ray counting rates as a function of the contrast medium status upon attenuation correction using a CT absorption coefficientin an SPECT/CT attenuation correction will be considered herein. For experimental materials used 99mTcO4 370 MBq and Pamiray 370 mg, Iomeron 350 mg, Visipaque 320 mg, Bonorex 300 mg of iodine contrast medium. For image acquisition, planar imaging was consecutively filmed for 1, 2, 3, 4, 5 min, respectively, 30 min after administration of 99mTcO4. while 60 views were filmed per frame for 20 min at 55 min for the SPECT/CT imaging. In planar imaging, the gamma ray counting rates as a function of filming time were reduced showing a statistically significant difference when mixed according to the type of contrast medium density rather than when the radioactive isotope 99mTcO4 and the saline solution were mixed. In the tomography for mixing of the radioactive isotope 99mTcO4 and saline solution, the mean counting rate without correction by the CT absorption coefficient is 182±26 counts, while the counting rate with correction by the CT absorption coefficient is 531.3±34 counts. In the tomography for mixing of the radioactive isotope 99mTcO4 and the saline solution with the contrast medium, the mean values before attenuation correction by CT absorption coefficient were 166±29, 158.3±17, 154±36, and 150±33 counts depending on the densities of the contrast medium, while the mean values after attenuation correction were 515±03, 503±10, 496±31, and 488.7±33 counts, showing significant differences in both cases when comparatively evaluated with the imaging for no mixing of the contrast medium. Iodine contrast medium affects the rate of gamma ray. Therefore, You should always be preceded before another test on the day of diagnosis.

  18. ASCI 2010 contrast media guideline for cardiac imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group

    Science.gov (United States)

    Kitagawa, Kakuya; Tsai, I-Chen; Chan, Carmen; Yu, Wei; Yong, Hwan Seok; Choi, Byoung Wook

    2010-01-01

    The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging. PMID:20931289

  19. Application of image processing to STEM tomography of low-contrast materials

    International Nuclear Information System (INIS)

    Ortalan, V.; Herrera, M.; Morgan, D.G.; Browning, N.D.

    2009-01-01

    In this study, the effect of various image-processing techniques on the visibility of tomographic reconstructions is investigated for a low-contrast material system of non-uniform thickness containing complex features such as grain boundaries and nanoparticles. Starting with a tilt series of high-angle annular dark-field (HAADF) images from an area of Dy-doped YBa 2 Cu 3 O 7-x -coated superconductor obtained using a scanning transmission electron microscope, various image-processing techniques were applied. These can be classified as edge detection, contrast-enhancing methods for non-uniform thickness and image sharpening. Although the processing methods violate the projection criterion for tomographic reconstruction, they were found, at least in this case, to enhance contrast and define the correct shape and size of structural features with minimal artifacts. Enhancing the visibility of structural features in this way allows the spatial distribution of the nanoparticles, their size, number density and location relative to each other and grain boundaries to be determined, which are essential to understand the flux-pinning characteristics of these materials.

  20. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    International Nuclear Information System (INIS)

    Kinoshita, K.; Kishida, S.; Yoda, T.

    2011-01-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V accel ) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni 1+δ O (δ 1+δ O (δ≥ 0).

  1. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media.

    Science.gov (United States)

    Frick, Kyle; Michael, Tesfaldet T; Alomar, Mohammed; Mohammed, Atif; Rangan, Bavana V; Abdullah, Shuaib; Grodin, Jerrold; Hastings, Jeffrey L; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-11-01

    Optical coherence tomography (OCT) coronary imaging requires displacement of red blood cells from the vessel lumen. This is usually accomplished using radiographic contrast. Low molecular weight dextran has low cost and is safe in low volumes. In the present study, we compared dextran with contrast for coronary OCT imaging. Fifty-one vessels in 26 patients were sequentially imaged using manual injection of radiographic contrast (iodixanol) and dextran. OCT images were analyzed at 1 mm intervals to determine the image clarity (defined as a visible lumen border > 270°) and to measure the lumen area and lumen diameter. To correct for the refractive index of dextran, the dextran area measurements were multiplied by 1.117 and the dextran length measurements were multiplied by 1.057. A total of 3,418 cross-sections (1,709 with contrast and 1,709 with dextran) were analyzed. There were no complications related to OCT imaging or to contrast or dextran administration. Clear image segments were observed in 97.0% vs. 96.7% of the cross-sections obtained with contrast and dextran, respectively (P = 0.45). The mean lumen areas were also similar: 6.69 ± 1.95 mm(2) with iodixanol vs. 7.06 ± 2.06 mm(2) with dextran (correlation coefficient 0.984). The image quality and measurements during OCT image acquisition are similar for dextran and contrast. Dextran could be used instead of contrast for OCT imaging, especially in patients in whom contrast load minimization is desired. © 2013 Wiley Periodicals, Inc.

  2. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  3. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    Science.gov (United States)

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  4. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  5. A review on brightness preserving contrast enhancement methods for digital image

    Science.gov (United States)

    Rahman, Md Arifur; Liu, Shilong; Li, Ruowei; Wu, Hongkun; Liu, San Chi; Jahan, Mahmuda Rawnak; Kwok, Ngaiming

    2018-04-01

    Image enhancement is an imperative step for many vision based applications. For image contrast enhancement, popular methods adopt the principle of spreading the captured intensities throughout the allowed dynamic range according to predefined distributions. However, these algorithms take little or no consideration into account of maintaining the mean brightness of the original scene, which is of paramount importance to carry the true scene illumination characteristics to the viewer. Though there have been significant amount of reviews on contrast enhancement methods published, updated review on overall brightness preserving image enhancement methods is still scarce. In this paper, a detailed survey is performed on those particular methods that specifically aims to maintain the overall scene illumination characteristics while enhancing the digital image.

  6. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning

    Energy Technology Data Exchange (ETDEWEB)

    Felmly, Lloyd M. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiothoracic Surgery, Department of Surgery, Charleston, SC (United States); De Cecco, Carlo N.; Varga-Szemes, Akos; McQuiston, Andrew D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J.; Litwin, Sheldon E.; Bayer, Richard R. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-05-15

    To investigate feasibility, image quality and safety of low-tube-voltage, low-contrast-volume comprehensive cardiac and aortoiliac CT angiography (CTA) for planning transcatheter aortic valve replacement (TAVR). Forty consecutive TAVR candidates prospectively underwent combined CTA of the aortic root and vascular access route (270 mgI/ml iodixanol). Patients were assigned to group A (second-generation dual-source CT [DSCT], 100 kV, 60 ml contrast, 4.0 ml/s flow rate) or group B (third-generation DSCT, 70 kV, 40 ml contrast, 2.5 ml/s flow rate). Vascular attenuation, noise, signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were compared. Subjective image quality was assessed by two observers. Estimated glomerular filtration (eGFR) at CTA and follow-up were measured. Besides a higher body-mass-index in group B (24.8±3.8 kg/m{sup 2} vs. 28.1±5.4 kg/m{sup 2}, P=0.0339), patient characteristics between groups were similar (P≥0.0922). Aortoiliac SNR (P=0.0003) was higher in group B. Cardiac SNR (P=0.0003) and CNR (P=0.0181) were higher in group A. Subjective image quality was similar (P≥0.213) except for aortoiliac image noise (4.42 vs. 4.12, P=0.0374). TAVR-planning measurements were successfully obtained in all patients. There were no significant changes in eGFR among and between groups during follow-up (P≥0.302). TAVR candidates can be safely and effectively evaluated by a comprehensive CTA protocol with low contrast volume using low-tube-voltage acquisition. (orig.)

  7. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning

    International Nuclear Information System (INIS)

    Felmly, Lloyd M.; De Cecco, Carlo N.; Varga-Szemes, Akos; McQuiston, Andrew D.; Schoepf, U.J.; Litwin, Sheldon E.; Bayer, Richard R.; Mangold, Stefanie; Vogl, Thomas J.; Wichmann, Julian L.

    2017-01-01

    To investigate feasibility, image quality and safety of low-tube-voltage, low-contrast-volume comprehensive cardiac and aortoiliac CT angiography (CTA) for planning transcatheter aortic valve replacement (TAVR). Forty consecutive TAVR candidates prospectively underwent combined CTA of the aortic root and vascular access route (270 mgI/ml iodixanol). Patients were assigned to group A (second-generation dual-source CT [DSCT], 100 kV, 60 ml contrast, 4.0 ml/s flow rate) or group B (third-generation DSCT, 70 kV, 40 ml contrast, 2.5 ml/s flow rate). Vascular attenuation, noise, signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were compared. Subjective image quality was assessed by two observers. Estimated glomerular filtration (eGFR) at CTA and follow-up were measured. Besides a higher body-mass-index in group B (24.8±3.8 kg/m 2 vs. 28.1±5.4 kg/m 2 , P=0.0339), patient characteristics between groups were similar (P≥0.0922). Aortoiliac SNR (P=0.0003) was higher in group B. Cardiac SNR (P=0.0003) and CNR (P=0.0181) were higher in group A. Subjective image quality was similar (P≥0.213) except for aortoiliac image noise (4.42 vs. 4.12, P=0.0374). TAVR-planning measurements were successfully obtained in all patients. There were no significant changes in eGFR among and between groups during follow-up (P≥0.302). TAVR candidates can be safely and effectively evaluated by a comprehensive CTA protocol with low contrast volume using low-tube-voltage acquisition. (orig.)

  8. Gd-DTPA as a paramagnetic contrast agent in MR imaging of focal liver lesions

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Wolf, K.J.; Felix, R.; Weinmann, H.J.

    1986-01-01

    Gd-DTPA enhances signal intensity in healthy liver and in intrahepatic tumors. However, after contrast agent administration, tumor enhances significantly more than liver parenchyma (2α≤ 0.05). Doubling the dose of Gd-DTPA from 0.1 to 0.2 mmol/kg of body weight increases the enhancement of intrahepatic tumors (2α≤ 0.05) and optimizes the contrast between tumor and liver in T1-weighted spin-echo sequences. However, the contrast between tumor and liver on inversion-recovery and T2-weighted images obtained before contrast agent administration is much greater than the difference on T1-weighted images obtained after contrast agent administration (2α≤ 0.05). In fast images the contrast between liver and tumor can be markedly improved by administering Gd-DTPA

  9. Importance of contrast-enhanced fluid-attenuated inversion reconvery magnetic resonance imaging in various intracranial pathologic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung; Lee, Eun Ja; Kim, Sung Won; Lee, Yong Seok [Dept. of Radiology, Dongguk University Ilsan Hospital, Goyang(Korea, Republic of)

    2016-02-15

    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.

  10. High-contrast imaging in the cloud with klipReduce and Findr

    Science.gov (United States)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  11. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  12. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  13. Initial studies of synchrotron radiation phase-contrast imaging in the field of medicine

    International Nuclear Information System (INIS)

    Chen Shaoliang; Zhang Xi; Peng Yifeng; Li Beilei; Cheng Aiping; Zhu Peiping; Yuan Xiqing; Huang Wanxia

    2010-01-01

    Recently,research on using X-ray phase information in medicine has been growing remarkably fast. Phase-contrast imaging with synchrotron radiation can reveal inner soft tissues such as tendons, cartilage, ligaments, adipose tissue, vessels and nerves without a contrast agent. We have visualized the liver, bile duct, lung, kidney, stomach and intestine, heart, blood vessel, bone and arthrosis, and tumor tissues using 'in-line' phase contrast imaging and diffraction-enhanced imaging. It is seen that the synchrotron radiation graphs show much higher resolution. This method is especially suitable for studying soft tissue structure and blood vessels. (authors)

  14. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by

  15. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  16. Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); McMullan, G.; Faruqi, A.R. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Henderson, R., E-mail: rh15@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2011-01-15

    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem in monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots, each of a diameter of around 7 nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, where the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support; however great care is needed in practice and the problem remains of how to best image ice-embedded biological structures in the absence of a strong, conductive support film. -- Research Highlights: {yields}Three ideas were tested to improve the contrast of images of an organic specimen. {yields}High-resolution images of paraffin on thick carbon films can have perfect

  17. Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion

    International Nuclear Information System (INIS)

    Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.

    2011-01-01

    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem in monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots, each of a diameter of around 7 nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, where the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support; however great care is needed in practice and the problem remains of how to best image ice-embedded biological structures in the absence of a strong, conductive support film. -- Research Highlights: →Three ideas were tested to improve the contrast of images of an organic specimen. →High-resolution images of paraffin on thick carbon films can have perfect contrast

  18. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging

    NARCIS (Netherlands)

    Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.; Griffioen, Arjan W.; Nicolay, Klaas

    2006-01-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the

  19. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

    International Nuclear Information System (INIS)

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-01-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. (orig.)

  20. The Impact of Combining a Low-Tube Voltage Acquisition with Iterative Reconstruction on Total Iodine Dose in Coronary CT Angiography

    Directory of Open Access Journals (Sweden)

    Toon Van Cauteren

    2017-01-01

    Full Text Available Objectives. To assess the impact of combining low-tube voltage acquisition with iterative reconstruction (IR techniques on the iodine dose in coronary CTA. Methods. Three minipigs underwent CCTA to compare a standard of care protocol with two alternative study protocols combining low-tube voltage and low iodine dose with IR. Image quality was evaluated objectively by the CT value, signal-to-noise ratio (SNR, and contrast-to-noise ratio (CNR in the main coronary arteries and aorta and subjectively by expert reading. Statistics were performed by Mann–Whitney U test and Chi-square analysis. Results. Despite reduced iodine dose, both study protocols maintained CT values, SNR, and CNR compared to the standard of care protocol. Expert readings confirmed these findings; all scans were perceived to be of at least diagnostically acceptable quality on all evaluated parameters allowing image interpretation. No statistical differences were observed (all p values > 0.11, except for streak artifacts (p=0.02 which were considered to be more severe, although acceptable, with the 80 kVp protocol. Conclusions. Reduced tube voltage in combination with IR allows a total iodine dose reduction between 37 and 50%, by using contrast media with low iodine concentrations of 200 and 160 mg I/mL, while maintaining image quality.

  1. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  2. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    Science.gov (United States)

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  3. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers

    OpenAIRE

    Schneider, James; Dufrêne, Yves F.; Barger Jr., William R.; Lee, Gil U.

    2000-01-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures o...

  4. Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery.

    Science.gov (United States)

    Allen, Steven P; Hall, Timothy L; Cain, Charles A; Hernandez-Garcia, Luis

    2015-01-01

    To develop MRI feedback for cavitation-based, focused ultrasound, tissue erosion surgery (histotripsy), we investigate image contrast generated by transient cavitation events. Changes in GRE image intensity are observed while balanced pairs of field gradients are varied in the presence of an acoustically driven cavitation event. The amplitude of the acoustic pulse and the timing between a cavitation event and the start of these gradient waveforms are also varied. The magnitudes and phases of the cavitation site are compared with those of control images. An echo-planar sequence is used to evaluate histotripsy lesions in ex vivo tissue. Cavitation events in water cause localized attenuation when acoustic pulses exceed a pressure threshold. Attenuation increases with increasing gradient amplitude and gradient lobe separation times and is isotropic with gradient direction. This attenuation also depends upon the relative timing between the cavitation event and the start of the balanced gradients. These factors can be used to control the appearance of attenuation while imaging ex vivo tissue. By controlling the timing between cavitation events and the imaging gradients, MR images can be made alternately sensitive or insensitive to cavitation. During therapy, these images can be used to isolate contrast generated by cavitation. © 2014 Wiley Periodicals, Inc.

  5. Voltage imaging in vivo with a new class of rhodopsin-based indicators

    Science.gov (United States)

    Douglass, Adam

    2013-03-01

    Reliable, optical detection of single action potentials in an intact brain is one of the longest-standing challenges in neuroscience. We have recently shown that a number of microbial rhodopsins exhibit intrinsic fluorescence that is sensitive to transmembrane potential. One class of indicator, derived from Archaerhodopsin-3 (Arch), responds to voltage transients with a speed and sensitivity that enable near-perfect identification of single action potentials in cultured neurons [Nat Methods. (2011). 9:90-5]. We have extended the use of these indicators to an in vivo context through the application of advanced imaging techniques to the larval zebrafish. Using planar-illumination, spinning-disk confocal, and epifluorescence imaging modalities, we have successfully recorded electrical activity in a variety of fish structures, including the brain and heart, in a completely noninvasive manner. Transgenic lines expressing Arch variants in defined cells enable comprehensive measurements to be made from specific target populations. In parallel, we have also extended the capabilities of our indicators by improving their multiphoton excitability and overall brightness. Microbial rhodopsin-based voltage indicators now enable optical interrogation of complex neural circuits, and electrophysiology in systems for which electrode-based techniques are challenging.

  6. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    International Nuclear Information System (INIS)

    Ogunlade, Olumide; Beard, Paul

    2015-01-01

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  7. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom)

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  8. Optimization of X-ray phase-contrast imaging based on in-line holography

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  9. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  10. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  11. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  12. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    Science.gov (United States)

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  13. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  14. Helium ion microscopy of graphene: beam damage, image quality and edge contrast

    International Nuclear Information System (INIS)

    Fox, D; Zhou, Y B; O’Neill, A; Wang, J J; Coleman, J N; Donegan, J F; Zhang, H Z; Kumar, S; Duesberg, G S

    2013-01-01

    A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 10 13 He + cm −2 was established, with both graphene samples becoming highly defective at doses over 5 × 10 14 He + cm −2 . The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution. (paper)

  15. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  16. Visual detectability of elastic contrast in real-time ultrasound images

    Science.gov (United States)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  17. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  18. Factors influencing fast low angle positive contrast steady-state free precession (FLAPS) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dharmakumar, Rohan; Koktzoglou, Ioannis; Li Debiao

    2007-01-01

    The presence of susceptibility-shifting media can lead to signal voids in magnetic resonance images. While signal voids have been traditionally used to detect such magnetic perturbers, selective magnetic resonance imaging of off-resonant spins surrounding susceptibility-shifted media allows for them to be visualized as hyper-intense (positive contrast) regions. These positive contrast methods can potentially improve the detection conspicuity of magnetic perturbers against regions that appear dark due to the absence of protons, such as air. Recently, a fast low angle positive contrast steady-state free precession (FLAPS) technique has been proposed as a positive contrast imaging method. This work systematically evaluates the contrast characteristics and acquisition strategies of FLAPS-based imaging from the standpoint of imaging parameters and physical properties of the magnetic perturbers. Results show that scan parameters (T R , flip angle, B 0 ), physical properties of the perturber (size and concentration of shift reagent) and the ratio of the relaxation constants (T 1 /T 2 ) of the medium are significant factors influencing the FLAPS-based positive contrast

  19. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    Science.gov (United States)

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.

  20. Craniopharyngiomas - the utility of contrast medium enhancement for MR imaging at 1.5 T

    International Nuclear Information System (INIS)

    Hald, J.K.; Eldevik, O.P.; Brunberg, J.A.; Chandler, W.F.

    1994-01-01

    To evaluate the efficacy of i.v. contrast medium administration in MR imaging at 1.5 T in patients with craniopharyngiomas, MR studies of 10 men and 6 women with pathologically proven craniopharyngiomas were made. The MR images were obtained as 3- to 5-mm-thick coronal (n=13) or axial (n=3) T1-weighted images (T1WI) prior to an following i.v. Gd-DTPA administration. Proton density-(PD) and T2-weighted images (T2WI) were also obtained. Conspicuity of tumor margins, cystic versus solid components, size, location and effect upon adjacent structures were separately characterized in all imaging sequences. In 6 patients contrast medium-enhanced T1WI, PD and T2WI demonstrated cystic tumor components not seen on unenhanced T1WI. There were significant differences (p<0.004) on 2-tailed Student's t-test comparing tumor conspicuity on contrast medium-enhanced T1WI with unenhanced T1WI, PD and T2WI. Optimal tumor delineation on MR imaging of patients with craniopharyngiomas justifies the use of i.v. contrast medium. (orig.)

  1. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  2. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  3. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  4. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  5. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  6. Chain of evidence generation for contrast enhancement in digital image forensics

    Science.gov (United States)

    Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela

    2010-01-01

    The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.

  7. Low tube voltage dual source computed tomography to reduce contrast media doses in adult abdomen examinations: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Thor, Daniel [Department of Diagnostic Medical Physics, Karolinska University Hospital, Stockholm 14186 (Sweden); Brismar, Torkel B., E-mail: torkel.brismar@gmail.com; Fischer, Michael A. [Department of Clinical Science, Intervention and Technology at Karolinska Institutet and Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm 14186 (Sweden)

    2015-09-15

    Purpose: To evaluate the potential of low tube voltage dual source (DS) single energy (SE) and dual energy (DE) computed tomography (CT) to reduce contrast media (CM) dose in adult abdominal examinations of various sizes while maintaining soft tissue and iodine contrast-to-noise ratio (CNR). Methods: Four abdominal phantoms simulating a body mass index of 16 to 35 kg/m{sup 2} with four inserted syringes of 0, 2, 4, and 8 mgI/ml CM were scanned using a 64-slice DS-CT scanner. Six imaging protocols were used; one single source (SS) reference protocol (120 kV, 180 reference mAs), four low kV SE protocols (70 and 80 kV using both SS and DS), and one DE protocol at 80/140 kV. Potential CM reduction with unchanged CNRs relative to the 120 kV protocol was calculated along with the corresponding increase in radiation dose. Results: The potential contrast media reductions were determined to be approximately 53% for DS 70 kV, 51% for SS 70 kV, 44% for DS 80 kV, 40% for SS 80 kV, and 20% for DE (all differences were significant, P < 0.05). Constant CNR could be achieved by using DS 70 kV for small to medium phantom sizes (16–26 kg/m{sup 2}) and for all sizes (16–35 kg/m{sup 2}) when using DS 80 kV and DE. Corresponding radiation doses increased by 60%–107%, 23%–83%, and 6%–12%, respectively. Conclusions: DS single energy CT can be used to reduce CM dose by 44%–53% with maintained CNR in adult abdominal examinations at the cost of an increased radiation dose. DS dual-energy CT allows reduction of CM dose by 20% at similar radiation dose as compared to a standard 120 kV single source.

  8. Renal perfusion image using harmonic ultrasound with microbble contrast agent: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Choi, Jae Ho; Han, Dong Chul; Lee, Hi Bahl; Choi, Deuk Lin; Eun, Hyo Won; Lee, Hun Jae

    2003-01-01

    To compare, in terms of their feasibility and normal range, 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic ultrasound (US) with a microbubble contrast agent for the evaluation of renal perfusion after renal transplantation. During a six-month period, thirty patients who had received a renal transplant underwent both 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic US with a microbubble contrast agent. Sonographic renal perfusion images were obtained before and after a bolus injection of the microbubble contrast agent Levovist TM (SH U 5084; Schering AG, Berlin, Germany) every 3 seconds for 3 minutes. Sonographic renal perfusion images were converted into a renal perfusion curve by a computer program and T peak of the curve thus obtained was compared with that of the 99m Tc-DTPA curve. Average T peak of the 99m Tc-DTPA renal perfusion curve was 16.2 seconds in the normal group and 39.6 seconds in the delayed perfusion group, while average T peak of the sonographic renal perfusion curve was 23.7 seconds and 46.2 seconds, respectively. T peak of the sonographic renal perfusion curve showed a good correlation with that of the 99m Tc-DTPA curve (correlation coefficient=0.8209; p=0.0001). The cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds (sensitivity=90%, specificity=95%). In patients who have received a renal transplant, the findings of renal perfusion imaging using harmonic US with a microbubble contrast agent show close correlation with those of 99m Tc-DTPA renal perfusion imaging. The optimal cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds

  9. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    International Nuclear Information System (INIS)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C.

    2006-01-01

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences

  10. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    Energy Technology Data Exchange (ETDEWEB)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C. [Charite - Universitatsmedizin Berlin, Charite Campus Mitte, Berlin (Germany). Dept. of Radiology

    2006-11-15

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences.

  11. A naturally occurring contrast agent for OCT imaging of smokers' lung

    International Nuclear Information System (INIS)

    Yang Ying; Bagnaninchi, Pierre O; Whiteman, Suzanne C; Pittius, Daniel Gey van; Haj, Alicia J El; Spiteri, Monica A; Wang, Ruikang K

    2005-01-01

    Optical coherence tomography (OCT) offers great potential for clinical applications in terms of its cost, safety and real-time imaging capability. Improvement of its resolution for revealing sub-layers or sub-cellular components within a tissue will further widen its application. In this study we report that carbon pigment, which is frequently present in the lungs of smokers, could be used as a contrast agent to improve the OCT imaging of lung tissue. Carbon produced an intense bright OCT image at a relatively deep location. The parallel histopathological section analysis confirmed the presence of carbon pigment in such tissues. The underlying mechanism of the OCT image formation has been discussed based on a model system in which carbon particles were dispersed in agar gel. Calculations and in-depth intensity profiles of OCT revealed that higher refractive index particles with a size close to or smaller than the wavelength would greatly increase backscattering and generate a sharp contrast, while a particle size several times larger than the wavelength would absorb or obstruct the light path. The naturally occurring contrast agent could provide a diagnostic biomarker of lung tissue in smokers. Furthermore, carbon under such circumstances, can be used as an effective exogenous contrast agent, with which specific components or tissues exhibiting early tumour formation can be optically labelled to delineate the location and boundary, providing potential for early cancer detection and its treatment

  12. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    Science.gov (United States)

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  13. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Yang Yi; Tang Xiangyang

    2012-01-01

    Purpose: The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ ″ s (x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. Methods: The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ=δ s +δ f , where δ f corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ s , which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Results: Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the

  14. Cranial nerve assessment in cavernous sinus tumors with contrast-enhanced 3D fast-imaging employing steady-state acquisition MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Shiori; Aoki, Shigeki; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    The purpose of this study is to apply contrast-enhanced 3D fast-imaging employing steady-state acquisition (3D-FIESTA) imaging to the evaluation of cranial nerves (CN) in patients with cavernous sinus tumors. Contrast-enhanced 3D-FIESTA images were acquired from ten patients with cavernous sinus tumors with a 3-T unit. In all cases, the trigeminal nerve with tumor involvement was easily identified in the cavernous portions. Although oculomotor and abducens nerves were clearly visualized against the tumor area with intense contrast enhancement, they were hardly identifiable within the area lacking contrast enhancement. The trochlear nerve was visualized in part, but not delineated as a linear structure outside of the lesion. Contrast-enhanced 3D-FIESTA can be useful in the assessment of cranial nerves in and around the cavernous sinus with tumor involvement. (orig.)

  15. Cranial nerve assessment in cavernous sinus tumors with contrast-enhanced 3D fast-imaging employing steady-state acquisition MR imaging

    International Nuclear Information System (INIS)

    Amemiya, Shiori; Aoki, Shigeki; Ohtomo, Kuni

    2009-01-01

    The purpose of this study is to apply contrast-enhanced 3D fast-imaging employing steady-state acquisition (3D-FIESTA) imaging to the evaluation of cranial nerves (CN) in patients with cavernous sinus tumors. Contrast-enhanced 3D-FIESTA images were acquired from ten patients with cavernous sinus tumors with a 3-T unit. In all cases, the trigeminal nerve with tumor involvement was easily identified in the cavernous portions. Although oculomotor and abducens nerves were clearly visualized against the tumor area with intense contrast enhancement, they were hardly identifiable within the area lacking contrast enhancement. The trochlear nerve was visualized in part, but not delineated as a linear structure outside of the lesion. Contrast-enhanced 3D-FIESTA can be useful in the assessment of cranial nerves in and around the cavernous sinus with tumor involvement. (orig.)

  16. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    Energy Technology Data Exchange (ETDEWEB)

    Abd Ellah, Mohamed, E-mail: dr_m_hamdy2006@hotmail.co [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Kremser, Christian, E-mail: christian.kremser@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pallwein, Leo, E-mail: leo.pallwein-prettner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Aigner, Friedrich, E-mail: friedrich.Aigner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Schocke, Michael, E-mail: michael.schocke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Peschel, Reinhard, E-mail: reinhard.peschel@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pedross, Florian, E-mail: florian.pedross@i-med.ac.a [Innsbruck Medical University, Medical Statistics Dept., Anich St. 35, 6020 Innsbruck (Austria); Pinggera, Germar-Michael, E-mail: germar.pinggera@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Wolf, Christian, E-mail: christian.wolf@bkh-reutte.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Alsharkawy, Mostafa A.M., E-mail: drmostafamri@yahoo.co [Assiut University, Radiology Dept., Assiut (Egypt); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Frauscher, Ferdinand, E-mail: ferdinand.frauscher@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria)

    2010-10-15

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  17. Optimization of contrast of MR images in imaging of knee joint; Optymalizacja kontrastu obrazow MR na przykladzie obrazow stawu kolanowego

    Energy Technology Data Exchange (ETDEWEB)

    Szyblinski, K. [Institute of Nuclear Physics, Cracow (Poland); Bacic, G. [Dartmouth College, Hanover, NH (United States)

    1994-12-31

    The work describes the method of contrast optimization in magnetic resonance imaging. Computer program presented in the report allows analysis of contrast in selected tissues as a function of experiment parameters. Application to imaging of knee joint is presented. 2 refs, 4 figs.

  18. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  19. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  20. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rosales, E.; Cedeño, E. [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil); Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Hernandez-Wong, J. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); CONACYT, México, DF, México (Mexico); Rojas-Trigos, J. B.; Marin, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Gandra, F. C. G.; Mansanares, A. M., E-mail: manoel@ifi.unicamp.br [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil)

    2016-07-25

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  1. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.

    Science.gov (United States)

    Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development

  2. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  3. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  4. Image sensor system with bio-inspired efficient coding and adaptation.

    Science.gov (United States)

    Okuno, Hirotsugu; Yagi, Tetsuya

    2012-08-01

    We designed and implemented an image sensor system equipped with three bio-inspired coding and adaptation strategies: logarithmic transform, local average subtraction, and feedback gain control. The system comprises a field-programmable gate array (FPGA), a resistive network, and active pixel sensors (APS), whose light intensity-voltage characteristics are controllable. The system employs multiple time-varying reset voltage signals for APS in order to realize multiple logarithmic intensity-voltage characteristics, which are controlled so that the entropy of the output image is maximized. The system also employs local average subtraction and gain control in order to obtain images with an appropriate contrast. The local average is calculated by the resistive network instantaneously. The designed system was successfully used to obtain appropriate images of objects that were subjected to large changes in illumination.

  5. Multipeak Mean Based Optimized Histogram Modification Framework Using Swarm Intelligence for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    P. Babu

    2015-01-01

    Full Text Available A novel approach, Multipeak mean based optimized histogram modification framework (MMOHM is introduced for the purpose of enhancing the contrast as well as preserving essential details for any given gray scale and colour images. The basic idea of this technique is the calculation of multiple peaks (local maxima from the original histogram. The mean value of multiple peaks is computed and the input image’s histogram is segmented into two subhistograms based on this multipeak mean (mmean value. Then, a bicriteria optimization problem is formulated and the subhistograms are modified by selecting optimal contrast enhancement parameters. While formulating the enhancement parameters, particle swarm optimization is employed to find optimal values of them. Finally, the union of the modified subhistograms produces a contrast enhanced and details preserved output image. This mechanism enhances the contrast of the input image better than the existing contemporary HE methods. The performance of the proposed method is well supported by the contrast enhancement quantitative metrics such as discrete entropy, natural image quality evaluator, and absolute mean brightness error.

  6. Improving scale invariant feature transform with local color contrastive descriptor for image classification

    Science.gov (United States)

    Guo, Sheng; Huang, Weilin; Qiao, Yu

    2017-01-01

    Image representation and classification are two fundamental tasks toward version understanding. Shape and texture provide two key features for visual representation and have been widely exploited in a number of successful local descriptors, e.g., scale invariant feature transform (SIFT), local binary pattern descriptor, and histogram of oriented gradient. Unlike these gradient-based descriptors, this paper presents a simple yet efficient local descriptor, named local color contrastive descriptor (LCCD), which captures the contrastive aspects among local regions or color channels for image representation. LCCD is partly inspired by the neural science facts that color contrast plays important roles in visual perception and there exist strong linkages between color and shape. We leverage f-divergence as a robust measure to estimate the contrastive features between different spatial locations and multiple channels. Our descriptor enriches local image representation with both color and contrast information. Due to that LCCD does not explore any gradient information, individual LCCD does not yield strong performance. But we verified experimentally that LCCD can compensate strongly SIFT. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combination on three challenging benchmarks, including MIT Indoor-67 database, SUN397, and PASCAL VOC 2007.

  7. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  8. Phase contrast X-ray imaging at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Che Ismail, E.; Gundogdu, O.; Bradley, D.A.

    2008-01-01

    Full text: Phase contrast X-ray imaging is a simple technique to investigate various biological samples. At Surrey, the bone-cartilage interface is one of the biological samples which actively been studied. Bone-cartilage interface study gives a particular interest in this research as the degeneration of cartilage is the hallmark of the degenerative joint disease such as osteoarthritis. We have been applying the phase contrast imaging technique in studying the bone-cartilage interface, obtaining information on anatomical features such as the cartilage, blood vessel, tide mark and cement line. Our samples range from dry bone-cartilage to wet bone-cartilage tissue. This work will briefly review the basic supporting physics of the study. It also shows some of the images and other results that we have obtained to-date. Fig. 1 shows examples obtained using the X-ray tube system at the University of Surrey

  9. Digital subtraction in gadolinium-enhanced MR imaging of the brain: a method to reduce contrast dosage

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Chan, C.Y.; Lai, K.F.; Cheung, Y.K.; Wong, K.P.C.; Yuen, M.K.; Chau, L.F.; Fong, D.; Mok, C.K.

    2002-01-01

    The aim of the study was to investigate the feasibility of using digital subtraction in contrast-enhanced MR imaging of the brain to reduce the MR contrast dosage without jeopardizing patient care. Fifty-two patients with intracranial lesions, either intra-axial or extra-axial, detected by computerized tomography were selected for contrast-enhanced MR imaging with half-dose and full-dose of gadopentetate dimeglumine. The half-dose unsubtracted, full-dose unsubtracted, and half-dose subtracted MR images were visually assessed by counting the number of enhancing brain lesions in the images and quantitatively analyzed by computing their lesion contrast-to-background ratios (CBR). The visual conspicuity of the half-dose subtracted MR images was comparable to that of the full-dose unsubtracted MR images (p>0.05), whereas the CBR of the half-dose subtracted images was approximately two to three times higher than that of the full-dose unsubtracted images. The half-dose subtracted T1-weighted spin-echo images might be able to replace the conventional standard-dose T1-weighted spin-echo images in MR imaging of the brain. (orig.)

  10. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  11. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    Science.gov (United States)

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  12. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  13. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  14. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    Science.gov (United States)

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  15. Clinical use of gadobutrol for contrast-enhanced magnetic resonance imaging of neurological diseases

    Directory of Open Access Journals (Sweden)

    Cheng KT

    2012-02-01

    Full Text Available Kenneth T Cheng1, Hannah Y Cheng2, Kam Leung31Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; 2Freelance Technical Writer, New Orleans, LA, USA; 3National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USAAbstract: Contrast-enhanced magnetic resonance imaging (CE-MRI is an important clinical tool for diagnosing neurological diseases. The appropriate use of a suitable MRI contrast agent or contrast pharmaceutical is essential for CE-MRI to produce desirable diagnostic images. Currently, there are seven contrast agents (CAs or pharmaceuticals approved for clinical imaging of the central nervous system (CNS in the US, Europe, or Japan. All of the clinically approved CAs are water-soluble gadolinium-based contrast agents (GBCAs which do not penetrate the CNS blood–brain barrier (BBB. These agents are used for imaging CNS areas without a BBB, or various pathologies, such as tumors and infection that break down the BBB and allow CAs to enter into the surrounding parenchyma. Clinically, GBCAs are most useful for detecting primary and secondary cerebral neoplastic lesions. Among these CNS GBCAs, gadobutrol (Gd-BT-DO3A, Gadovist™ is a neutral, nonionic, macrocyclic compound that showed promising results from clinical trials of CNS imaging. In comparison with other GBCAs, Gd-BT-DO3A has relatively high in vitro kinetic stability and r1 relaxivity. Gd-BT-DO3A has been recently approved by the US Food and Drug Administration (FDA in 2011 for CNS imaging. A review of available literature shows that Gd-BT-DO3A exhibits similar safety and clinical efficacy profiles to other GBCAs. Gd-BT-DO3A has the distinguishing feature that it is the only clinical agent commercially available in a formulation of 1.0 M concentration with a relatively higher in vitro T1 shortening per unit volume than other clinical GBCAs which are only

  16. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Science.gov (United States)

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Usefulness of 3D-VIBE method in breast dynamic MRI. Imaging parameters and contrasting effects

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Nishiki, Shigeo; Satou, Kouichi; Wada, Akihiko; Imaoka, Izumi; Matsuo, Michimasa

    2003-01-01

    MR imaging (MRI) has been reported to be a useful modality to characterize breast tumors and to evaluate disease extent. Contrast-enhanced dynamic MRI, in particular, allows breast lesions to be characterized with high sensitivity and specificity. Our study was designed to develop three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) techniques for the evaluation of breast tumors. First, agarose/Gd-DTPA phantoms with various concentrations of Gd-DTPA were imaged using 3D-VIBE and turbo spin echo (TSE). Second, one of the phantoms was imaged with 3D-VIBE using different flip angles. Finally, water excitation (WE) and a chemical shift-selective (CHESS) pulse were applied to the images. Each image was analyzed for signal intensity, signal-to-noise ratio (1.25*Ms/Mb) (SNR), and contrast ratio [(Ms1-Ms2)/{(Ms1+Ms2)/2}]. The results showed that 3D-VIBE provided better contrast ratios with a linear fit than TSE, although 3D-VIBE showed a lower SNR. To reach the best contrast ratio, the optimized flip angle was found to be 30 deg for contrast-enhanced dynamic study. Both WE and CHESS pulses were reliable for obtaining fat- suppressed images. In conclusion, the 3D-VIBE technique can image the entire breast area with high resolution and provide better contrast than TSE. Our phantom study suggests that optimized 3D-VIBE may be useful for the assessment of breast tumors. (author)

  18. Numerical deconvolution to enhance sharpness and contrast of portal images for radiotherapy patient positioning verification

    International Nuclear Information System (INIS)

    Looe, H.K.; Uphoff, Y.; Poppe, B.; Carl von Ossietzky Univ., Oldenburg; Harder, D.; Willborn, K.C.

    2012-01-01

    The quality of megavoltage clinical portal images is impaired by physical and geometrical effects. This image blurring can be corrected by a fast numerical two-dimensional (2D) deconvolution algorithm implemented in the electronic portal image device. We present some clinical examples of deconvolved portal images and evaluate the clinical advantages achieved by the improved sharpness and contrast. The principle of numerical 2D image deconvolution and the enhancement of sharpness and contrast thereby achieved are shortly explained. The key concept is the convolution kernel K(x,y), the mathematical equivalent of the smearing or blurring of a picture, and the computer-based elimination of this influence. Enhancements of sharpness and contrast were observed in all clinical portal images investigated. The images of fine bone structures were restored. The identification of organ boundaries and anatomical landmarks was improved, thereby permitting a more accurate comparison with the x-ray simulator radiographs. The visibility of prostate gold markers is also shown to be enhanced by deconvolution. The blurring effects of clinical portal images were eliminated by a numerical deconvolution algorithm that leads to better image sharpness and contrast. The fast algorithm permits the image blurring correction to be performed in real time, so that patient positioning verification with increased accuracy can be achieved in clinical practice. (orig.)

  19. Numerical deconvolution to enhance sharpness and contrast of portal images for radiotherapy patient positioning verification

    Energy Technology Data Exchange (ETDEWEB)

    Looe, H.K.; Uphoff, Y.; Poppe, B. [Pius Hospital, Oldenburg (Germany). Clinic for Radiation Therapy; Carl von Ossietzky Univ., Oldenburg (Germany). WG Medical Radiation Physics; Harder, D. [Georg August Univ., Goettingen (Germany). Medical Physics and Biophysics; Willborn, K.C. [Pius Hospital, Oldenburg (Germany). Clinic for Radiation Therapy

    2012-02-15

    The quality of megavoltage clinical portal images is impaired by physical and geometrical effects. This image blurring can be corrected by a fast numerical two-dimensional (2D) deconvolution algorithm implemented in the electronic portal image device. We present some clinical examples of deconvolved portal images and evaluate the clinical advantages achieved by the improved sharpness and contrast. The principle of numerical 2D image deconvolution and the enhancement of sharpness and contrast thereby achieved are shortly explained. The key concept is the convolution kernel K(x,y), the mathematical equivalent of the smearing or blurring of a picture, and the computer-based elimination of this influence. Enhancements of sharpness and contrast were observed in all clinical portal images investigated. The images of fine bone structures were restored. The identification of organ boundaries and anatomical landmarks was improved, thereby permitting a more accurate comparison with the x-ray simulator radiographs. The visibility of prostate gold markers is also shown to be enhanced by deconvolution. The blurring effects of clinical portal images were eliminated by a numerical deconvolution algorithm that leads to better image sharpness and contrast. The fast algorithm permits the image blurring correction to be performed in real time, so that patient positioning verification with increased accuracy can be achieved in clinical practice. (orig.)

  20. Contrast enhancement in EIT imaging of the brain

    International Nuclear Information System (INIS)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data. (paper)

  1. Contrast enhancement in EIT imaging of the brain.

    Science.gov (United States)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.

  2. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  3. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  4. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  5. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  6. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  7. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  8. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE.

    Science.gov (United States)

    Anderson, N G; Butler, A P; Scott, N J A; Cook, N J; Butzer, J S; Schleich, N; Firsching, M; Grasset, R; de Ruiter, N; Campbell, M; Butler, P H

    2010-09-01

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 microA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications.

  9. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)

    2010-09-15

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  10. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  11. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Paola [Faculty of Medicine and Institute of Clinical Radiology, Ludwig-Maximilians University, Munich (Germany); Wagner, Andreas; Mollenhauer, Juergen [Department of Orthopaedics of the University of Jena, Rudolf-Elle-Hospital Eisenberg (Germany); Bravin, Alberto; Diemoz, Paul C; Keyrilaeinen, Jani, E-mail: Paola.Coan@physik.uni-muenchen.d [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2010-12-21

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 x 47 {mu}m{sup 2}. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  12. Separating topographical and chemical analysis of nanostructure of polymer composite in low voltage SEM

    International Nuclear Information System (INIS)

    Wan, Q; Plenderleith, R A; Claeyssens, F; Rodenburg, C; Dapor, M; Rimmer, S

    2015-01-01

    The possibility of separating the topographical and chemical information in a polymer nano-composite using low-voltage SEM imaging is demonstrated, when images are acquired with a Concentric Backscattered (CBS) detector. This separation of chemical and topographical information is based on the different angular distribution of electron scattering which were calculated using a Monte Carlo simulation. The simulation based on angular restricted detection was applied to a semi-branched PNIPAM/PEGDA interpenetration network for which a linear relationship of topography SEM contrast and feature height data was observed. (paper)

  13. Phase-contrast X-ray CT imaging of the kidney. Differences between ethanol fixation and formalin fixation

    International Nuclear Information System (INIS)

    Shirai, Ryota; Kunii, Takuya; Maruyama, Hiroko; Takeda, Tohoru; Yoneyama, Akio; Lwin, Thet Thet

    2012-01-01

    A phase-contrast X-ray imaging technique using an X-ray interferometer that provides approximately 1000 times higher sensitivity than the conventional X-ray imaging method for low-atomic number elements based on the difference in the mass attenuation coefficient has recently been developed. In the present study, we compared rat kidneys fixed in 100% ethanol and in 10% formalin to evaluate the effects of ethanol in enhancing image contrast in phase-contrast imaging because ethanol causes significant dehydration of tissues and enhances density differences between tissue components. The experiments were conducted at the Photon Factory in Tsukuba, and the X-ray energy was set at 35 keV. Fine anatomical structures in the kidney such as the glomeruli, tubules, and vessels were observed. Particularly clear renal images were obtained with ethanol fixation. The pixel value ratio between the cortex and medulla was about 43% in ethanol-fixed kidneys and 21% in formalin-fixed kidneys. In other words, the contrast in ethanol-fixed kidneys was about two times higher than that in formalin-fixed kidneys. Histological examination showed significantly condensed features in the cortex. The results of this study suggest that the ethanol fixation technique may be useful for enhancing the image contrast of renal structures in the phase-contrast X-ray imaging technique. (author)

  14. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  15. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube-voltage and adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kanematsu, Masayuki, E-mail: masa_gif@yahoo.co.jp [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Kawada, Hiroshi; Kawai, Nobuyuki; Tanahashi, Yukichi [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Miyoshi, Toshiharu R.T. [Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-01-15

    Highlights: • 80 kVp CT scanning was successfully applied to the hepatic imaging. • Iodine contrast material load was reduced to 400 mg iodine/kg. • Image quality and the detectability of HCCs were maintained. - Abstract: Purpose: To prospectively assess the effect of reduced iodine load to contrast enhancement, image quality, and detectability of hepatocellular carcinomas (HCCs) in hepatic CT with a combination of 80 kVp tube voltage setting and adaptive statistical iterative reconstruction (ASIR) technique in patients with chronic liver disease. Materials and methods: This HIPAA-compliant study was approved by our institutional review board and written informed consent was obtained in all patients. During a recent 9-month period, 170 consecutive patients (114 men and 56 women; age range, 40–85 years; mean, 67.7 years) with suspected chronic liver diseases were randomized into three CT groups according to the following iodine-load and tube-voltage protocols: 600 milligram per kilogram body weight (mg/kg) iodine load and 120 peak kilovolt (kVp) tube voltage setting (600-120 group), 500 mg/kg and 80 kVp (500-80 group), and 400 mg/kg and 80 kVp (400-80 group). Analysis of variance was conducted to evaluate differences in CT number, background noise, signal-to-noise ratio (SNR), effective dose, HCC-to-liver contrast-to-noise ratio (CNR), and figure of merit (FOM). Sensitivity, specificity, and area under the receiver-operating-characteristic curve (AUC) were compared to assess the detectability of HCCs. Results: Vascular and hepatic enhancement in the 400-80 and 500-80 groups was comparable to or greater than that in the 600-120 group (P < .05). Subjective image quality was comparable among the three groups. Sensitivity, specificity, and AUC for detecting HCCs were comparable among the groups. The effective dose was kept low (3.3–4.1 mSv) in all three groups. Conclusion: Iodine load can be reduced by 33% in CT of the liver with a combination of 80 kVp tube

  16. Single-portal-phase low-tube-voltage dual-energy CT for short-term follow-up of acute pancreatitis: evaluation of CT severity index, interobserver agreement and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Universitaetsklinikum Frankfurt, Institut fuer Diagnostische und Interventionelle Radiologie, Frankfurt am Main (Germany); Majenka, Pawel; Beeres, Martin; Kromen, Wolfgang; Schulz, Boris; Bauer, Ralf W.; Kerl, J.M.; Gruber-Rouh, Tatjana; Hammerstingl, Renate; Vogl, Thomas J.; Lehnert, Thomas [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wesarg, Stefan [Fraunhofer IGD, Cognitive Computing and Medical Imaging, Darmstadt (Germany)

    2014-11-15

    To intra-individually compare single-portal-phase low-tube-voltage (100-kVp) computed tomography (CT) with 120-kVp images for short-term follow-up assessment of CT severity index (CTSI) of acute pancreatitis, interobserver agreement and radiation dose. We retrospectively analysed 66 patients with acute pancreatitis who underwent initial dual-contrast-phase CT (unenhanced, arterial, portal phase) at admission and short-term (mean interval 11.4 days) follow-up dual-contrast-phase dual-energy CT. The 100-kVp and linearly blended images representing 120-kVp acquisition follow-up CT images were independently evaluated by three radiologists using a modified CTSI assessing pancreatic inflammation, necrosis and extrapancreatic complications. Scores were compared with paired t test and interobserver agreement was evaluated using intraclass correlation coefficients (ICC). Mean CTSI scores on unenhanced, portal- and dual-contrast-phase images were 4.9, 6.1 and 6.2 (120 kVp) and 5.0, 6.0 and 6.1 (100 kVp), respectively. Contrast-enhanced series showed a higher CTSI compared to unenhanced images (P < 0.05) but no significant differences between single- and dual-contrast-phase series (P > 0.7). CTSI scores were comparable for 100-kVp and 120-kVp images (P > 0.05). Interobserver agreement was substantial for all evaluated series and subcategories (ICC 0.67-0.93). DLP of single-portal-phase 100-kVp images was reduced by 41 % compared to 120-kVp images (363.8 versus 615.9 mGy cm). Low-tube-voltage single-phase 100-kVp CT provides sufficient information for follow-up evaluation of acute pancreatitis and significantly reduces radiation exposure. (orig.)

  17. Local contrast-enhanced MR images via high dynamic range processing.

    Science.gov (United States)

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy

    Science.gov (United States)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    We report a method of boosting the imaging contrast of microsphere-assisted super-resolution visualization by utilizing dark-field illumination (DFI). We conducted experiments on both 10-µm-diameter silica (SiO2) microspheres with refractive index n ∼ 1.46 under no and partial immersion in ethyl alcohol (n ∼ 1.36) and 20-µm-diameter barium titanate glass (BTG, n ∼ 1.9) microspheres with full immersion to show the super-resolution capability. We experimentally demonstrated that the imaging contrast and uniformity were extraordinarily improved in the DFI mode. The intensity profiles in the visualization also numerically confirm the enhanced sharpness for a better imaging quality when applying DFI.

  19. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polarization-dependent imaging contrast in abalone shells

    Science.gov (United States)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.

    2008-02-01

    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  1. The effects of voltage of x-ray tube on fractal dimension and anisotropy of diagnostic image

    International Nuclear Information System (INIS)

    Baik, Jee Seon; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Park, Kwan Soo

    2007-01-01

    The purpose of this study was to evaluate the effect of the kV on fractal dimension of trabecular bone in digital radiographs. 16 bone cores were obtained from patients who had taken partial resection of tibia due to accidents. Each bone core along with an aluminum step wedge was radiographed with an occlusal film at 0.08 sec and with the constant film-focus distance (32 cm). All radiographs were acquired at 60, 75, and 90 kV. A rectangular ROI was drawn at medial part, distal part, and the bone defect area of each bone core image according to each kV. The directional fractal dimension was measured using Fourier Transform spectrum, and the anisotropy was obtained using directional fractal dimension. The values were compared by the repeated measures ANOVA. The fractal dimensions increased along with kV increase (p<0.05). The anisotropy measurements did not show statistically significant difference according to kV change. The fractal dimensions of the bone defect areas of the bone cores have low values contrast to the non-defect areas of the bone cores. The anisotropy measurements of the bone defect areas were lower than those of the non-defect areas of the bone cores, but not statistically significant. Fractal analysis can notice a difference of a change of voltage of x-ray tube and bone defect or not. And anisotropy of a trabecular bone is coherent even with change of the voltage of x-ray tube or defecting off a part of bone

  2. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  3. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  4. Post double-contrast sigmoid flush: An adjuvant technique in imaging diverticular disease

    International Nuclear Information System (INIS)

    Lappas, J.C.; Maglinte, D.D.T.; Kopecky, K.K.; Cockerill, E.M.; Lehman, G.A.

    1987-01-01

    In a prospective study, the effect of a low-density contrast medium infusion was evaluated as an adjunct to high-density double-contrast medium sigmoid imaging. Following a double-contrast medium barium enema (DCBE), 52 consecutive patients with sigmoid diverticulosis received an additional 500-700-mL enema with either water or a 1.5%CT barium suspension. Rectosigmoid films were evaluated for luminal distention, visualization of the interhaustral space, definition of diverticula, and interpretation of polypoid defects. While double-contrast medium views were excellent in 21%, improvement in multiple factors by water or 1.5% barium flush resulted in improved sigmoid images in 65% and 73% of patients, respectively. Polyps may be confirmed and artifactual defects confidently excluded. Sigmoid flush, particularly with low-density barium, is a simple adjunct to DCBE that improves visualization of the diverticular sigmoid

  5. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    Directory of Open Access Journals (Sweden)

    Orly Yadid-Pecht

    2012-07-01

    Full Text Available Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR and Dynamic Range (DR as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  6. Nonlinear image blending for dual-energy MDCT of the abdomen: can image quality be preserved if the contrast medium dose is reduced?

    Science.gov (United States)

    Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele; Alfaro-Cordoba, Marcela; Eusemann, Christian D; Scribano, Emanuele; Blandino, Alfredo; Mazziotti, Silvio; Ascenti, Giorgio

    2014-10-01

    The objective of this study was to compare the image quality of a dual-energy nonlinear image blending technique at reduced load of contrast medium with a simulated 120-kVp linear blending technique at a full dose during portal venous phase MDCT of the abdomen. Forty-five patients (25 men, 20 women; mean age, 65.6 ± 9.7 [SD] years; mean body weight, 74.9 ± 12.4 kg) underwent contrast-enhanced single-phase dual-energy CT of the abdomen by a random assignment to one of three different contrast medium (iomeprol 400) dose injection protocols: 1.3, 1.0, or 0.65 mL/kg of body weight. The contrast-to-noise ratio (CNR) and noise at the portal vein, liver, aorta, and kidney were compared among the different datasets using the ANOVA. Three readers qualitatively assessed all datasets in a blinded and independent fashion. Nonlinear blended images at a 25% reduced dose allowed a significant improvement in CNR (p < 0.05 for all comparisons), compared with simulated 120-kVp linear blended images at a full dose. No statistically significant difference existed in CNR and noise between the nonlinear blended images at a 50% reduced dose and the simulated 120-kVp linear blended images at a full dose. Nonlinear blended images at a 50% reduced dose were considered in all cases to have acceptable image quality. The dual-energy nonlinear image blending technique allows reducing the dose of contrast medium up to 50% during portal venous phase imaging of the abdomen while preserving image quality.

  7. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  8. Reduced iodinated contrast media for abdominal imaging by dual-layer spectral detector computed tomography for patients with kidney disease

    Directory of Open Access Journals (Sweden)

    Hirokazu Saito, MD

    2018-04-01

    Full Text Available Contrast-enhanced computed tomography using iodinated contrast media is useful for diagnosis of gastrointestinal diseases. However, contrast-induced nephropathy remains problematic for kidney diseases patients. Although current guidelines recommended the use of a minimal dose of contrast media necessary to obtain adequate images for diagnosis, obtaining adequate images with sufficient contrast enhancement is difficult with conventional computed tomography using reduced contrast media. Dual-layer spectral detector computed tomography enables the simultaneous acquisition of low- and high-energy data and the reconstruction of virtual monochromatic images ranging from 40 to 200 keV, retrospectively. Low-energy virtual monochromatic images can enhance the contrast of images, thereby facilitating reduced contrast media. In case 1, abdominal computed tomography angiography at 50 keV using 40% of the conventional dose of contrast media revealed the artery that was the source of diverticular bleeding in the ascending colon. In case 2, ischemia of the transverse colon was diagnosed by contrast-enhanced computed tomography and iodine-selective imaging using 40% of the conventional dose of contrast media. In case 3, advanced esophagogastric junctional cancer was staged and preoperative abdominal computed tomography angiography could be obtained with 30% of the conventional dose of contrast media. However, the texture of virtual monochromatic images may be a limitation at low energy. Keywords: Virtual monochromatic images, Contrast-induced nephropathy

  9. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  10. Combined fluorescence and phase contrast imaging at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Hornberger, B.; Feser, M.; Jacobsen, C.; Vogt, S.; Legnini, D.; Paterson, D.; Rehak, P.; DeGeronimo, G.; Palmer, B.M.; Experimental Facilities Division; State Univ. of New York at Stony Brook Univ.; BNL; Univ. of Vermont

    2006-01-01

    X-ray fluorescence microprobes excel at detecting and quantifying trace metals in biological and environmental science samples, but typically do not detect low Z elements such as carbon and nitrogen. Therefore, it is hard to put the trace metals into context with their natural environment. We are implementing phase contrast capabilities with a segmented detector into several microprobes at the Advanced Photon Source (APS) to address this problem. Qualitative differential phase contrast images from a modified soft x-ray detector already provide very useful information for general users. We are also implementing a quantitative method to recover the absolute phase shift by Fourier filtering detector images. New detectors are under development which are optimized for the signal levels present at the APS. In this paper, we concentrate on fundamental signal to noise considerations comparing absorption and differential phase contrast

  11. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast.

    Science.gov (United States)

    Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei

    2012-08-01

    Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes.

  12. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  13. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  14. Complementary contrast media for metal artifact reduction in dual-energy computed tomography.

    Science.gov (United States)

    Lambert, Jack W; Edic, Peter M; FitzGerald, Paul F; Torres, Andrew S; Yeh, Benjamin M

    2015-07-01

    Metal artifacts have been a problem associated with computed tomography (CT) since its introduction. Recent techniques to mitigate this problem have included utilization of high-energy (keV) virtual monochromatic spectral (VMS) images, produced via dual-energy CT (DECT). A problem with these high-keV images is that contrast enhancement provided by all commercially available contrast media is severely reduced. Contrast agents based on higher atomic number elements can maintain contrast at the higher energy levels where artifacts are reduced. This study evaluated three such candidate elements: bismuth, tantalum, and tungsten, as well as two conventional contrast elements: iodine and barium. A water-based phantom with vials containing these five elements in solution, as well as different artifact-producing metal structures, was scanned with a DECT scanner capable of rapid operating voltage switching. In the VMS datasets, substantial reductions in the contrast were observed for iodine and barium, which suffered from contrast reductions of 97% and 91%, respectively, at 140 versus 40 keV. In comparison under the same conditions, the candidate agents demonstrated contrast enhancement reductions of only 20%, 29%, and 32% for tungsten, tantalum, and bismuth, respectively. At 140 versus 40 keV, metal artifact severity was reduced by 57% to 85% depending on the phantom configuration.

  15. A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement.

    Science.gov (United States)

    Kallel, Fathi; Ben Hamida, Ahmed

    2017-12-01

    The performances of medical image processing techniques, in particular CT scans, are usually affected by poor contrast quality introduced by some medical imaging devices. This suggests the use of contrast enhancement methods as a solution to adjust the intensity distribution of the dark image. In this paper, an advanced adaptive and simple algorithm for dark medical image enhancement is proposed. This approach is principally based on adaptive gamma correction using discrete wavelet transform with singular-value decomposition (DWT-SVD). In a first step, the technique decomposes the input medical image into four frequency sub-bands by using DWT and then estimates the singular-value matrix of the low-low (LL) sub-band image. In a second step, an enhanced LL component is generated using an adequate correction factor and inverse singular value decomposition (SVD). In a third step, for an additional improvement of LL component, obtained LL sub-band image from SVD enhancement stage is classified into two main classes (low contrast and moderate contrast classes) based on their statistical information and therefore processed using an adaptive dynamic gamma correction function. In fact, an adaptive gamma correction factor is calculated for each image according to its class. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed low-high (LH), high-low (HL), and high-high (HH) sub-bands for enhanced image generation. Different types of non-contrast CT medical images are considered for performance evaluation of the proposed contrast enhancement algorithm based on adaptive gamma correction using DWT-SVD (DWT-SVD-AGC). Results show that our proposed algorithm performs better than other state-of-the-art techniques.

  16. Independent component analysis of dynamic contrast-enhanced computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Koh, T S [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Yang, X [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Bisdas, S [Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Germany); Lim, C C T [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-10-07

    Independent component analysis (ICA) was applied on dynamic contrast-enhanced computed tomography images of cerebral tumours to extract spatial component maps of the underlying vascular structures, which correspond to different haemodynamic phases as depicted by the passage of the contrast medium. The locations of arteries, veins and tumours can be separately identified on these spatial component maps. As the contrast enhancement behaviour of the cerebral tumour differs from the normal tissues, ICA yields a tumour component map that reveals the location and extent of the tumour. Tumour outlines can be generated using the tumour component maps, with relatively simple segmentation methods. (note)

  17. Detection of low-contrast images in film-grain noise.

    Science.gov (United States)

    Naderi, F; Sawchuk, A A

    1978-09-15

    When low contrast photographic images are digitized by a very small aperture, extreme film-grain noise almost completely obliterates the image information. Using a large aperture to average out the noise destroys the fine details of the image. In these situations conventional statistical restoration techniques have little effect, and well chosen heuristic algorithms have yielded better results. In this paper we analyze the noisecheating algorithm of Zweig et al. [J. Opt. Soc. Am. 65, 1347 (1975)] and show that it can be justified by classical maximum-likelihood detection theory. A more general algorithm applicable to a broader class of images is then developed by considering the signal-dependent nature of film-grain noise. Finally, a Bayesian detection algorithm with improved performance is presented.

  18. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    International Nuclear Information System (INIS)

    Beitzke, Dietrich; Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-01-01

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  19. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    Science.gov (United States)

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  20. Post-contrast T1-weighted sequences in pediatric abdominal imaging: comparative analysis of three different sequences and imaging approach

    Energy Technology Data Exchange (ETDEWEB)

    Roque, Andreia; Ramalho, Miguel; AlObaidy, Mamdoh; Heredia, Vasco; Burke, Lauren M.; De Campos, Rafael O.P.; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States)

    2014-10-15

    Post-contrast T1-weighted imaging is an essential component of a comprehensive pediatric abdominopelvic MR examination. However, consistent good image quality is challenging, as respiratory motion in sedated children can substantially degrade the image quality. To compare the image quality of three different post-contrast T1-weighted imaging techniques - standard three-dimensional gradient-echo (3-D-GRE), magnetization-prepared gradient-recall echo (MP-GRE) and 3-D-GRE with radial data sampling (radial 3-D-GRE) - acquired in pediatric patients younger than 5 years of age. Sixty consecutive exams performed in 51 patients (23 females, 28 males; mean age 2.5 ± 1.4 years) constituted the final study population. Thirty-nine scans were performed at 3 T and 21 scans were performed at 1.5 T. Two different reviewers independently and blindly qualitatively evaluated all sequences to determine image quality and extent of artifacts. MP-GRE and radial 3-D-GRE sequences had the least respiratory motion (P < 0.0001). Standard 3-D-GRE sequences displayed the lowest average score ratings in hepatic and pancreatic edge definition, hepatic vessel clarity and overall image quality. Radial 3-D-GRE sequences showed the highest scores ratings in overall image quality. Our preliminary results support the preference of fat-suppressed radial 3-D-GRE as the best post-contrast T1-weighted imaging approach for patients under the age of 5 years, when dynamic imaging is not essential. (orig.)

  1. Contrast-enhanced CT with a High-Affinity Cationic Contrast Agent for Imaging ex Vivo Bovine, Intact ex Vivo Rabbit, and in Vivo Rabbit Cartilage

    OpenAIRE

    Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.; Grinstaff, Mark W.

    2013-01-01

    The high affinity of a cationic iodinated contrast agent for cartilage provides better tissue visualization, easier segmentation, higher contrast-to-noise ratios, and longer usable imaging windows and requires a lower dose of injected contrast agent compared with an anionic contrast agent.

  2. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  3. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  4. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    Science.gov (United States)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  5. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    Science.gov (United States)

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  6. Advanced imaging of the musculoskeletal system: Standard, three-dimensional, and contrast-enhanced CT and MR imaging, and quantitative bone densitometry

    International Nuclear Information System (INIS)

    Resnick, D.; Sartoris, D.J.

    1987-01-01

    This course reviews the application of advanced imaging techniques to a broad spectrum of musculoskeletal disorders. The indications for and utility of standard CT in both the axial and the appendicular skeleton is explored. The combined use of CT with air and contrast arthrography at sites including the hip, knee, and shoulder is discussed. A summary of the proved and potential applications of MR imaging in osseous, articular, bone marrow, and soft-tissue disorders is provided. The utility of intraarticular contrast agents in enhancing the diagnostic capabilities of MR imaging for disorders of hyaline cartilage and and fibrocartilage is demonstrated. The advantages of multiplanar reformation and three-dimensional image reconstruction of cross-sectional imaging data are described in conjunction with the fundamental technological principles of these strategies. Accepted methods as well as investigative techniques for the diagnosis and follow-up of metabolic bone disease are contrasted with regard to relative indications, advantages, and limitations

  7. Low density contrast agents for x-ray phase contrast imaging: the use of ambient air for x-ray angiography of excised murine liver tissue

    International Nuclear Information System (INIS)

    Laperle, Christopher M; Wintermeyer, Philip; Derdak, Zoltan; Wands, Jack R; Hamilton, Theron J; Walker, Evan J; Diebold, Gerald; Rose-Petruck, Christoph; Shi, Daxin; Anastasio, Mark A

    2008-01-01

    We report a new preparative method for providing contrast through reduction in electron density that is uniquely suited for propagation-based differential x-ray phase contrast imaging. The method, which results in an air or fluid filled vasculature, makes possible visualization of the smallest microvessels, roughly down to 15 μm, in an excised murine liver, while preserving the tissue for subsequent histological workup. We show the utility of spatial frequency filtering for increasing the visibility of minute features characteristic of phase contrast imaging, and the capability of tomographic reconstruction to reveal microvessel structure and three-dimensional visualization of the sample. The effect of water evaporation from livers during x-ray imaging on the visibility of blood vessels is delineated. The deformed vascular tree in a cancerous murine liver is imaged.

  8. Evaluation of different magnetic resonance imaging contrast materials to be used as dummy markers in image-guided brachytherapy for gynecologic malignancies*

    Science.gov (United States)

    Sales, Camila Pessoa; Carvalho, Heloisa de Andrade; Taverna, Khallil Chaim; Pastorello, Bruno Fraccini; Rubo, Rodrigo Augusto; Borgonovi, Arthur Felipe; Stuart, Silvia Radwanski; Rodrigues, Laura Natal

    2016-01-01

    Objective To identify a contrast material that could be used as a dummy marker for magnetic resonance imaging. Materials and Methods Magnetic resonance images were acquired with six different catheter-filling materials-water, glucose 50%, saline, olive oil, glycerin, and copper sulfate (CuSO4) water solution (2.08 g/L)-inserted into compatible computed tomography/magnetic resonance imaging ring applicators placed in a phantom made of gelatin and CuSO4. The best contrast media were tested in four patients with the applicators in place. Results In T2-weighted sequences, the best contrast was achieved with the CuSO4-filled catheters, followed by saline- and glycerin-filled catheters, which presented poor visualization. In addition (also in T2-weighted sequences), CuSO4 presented better contrast when tested in the phantom than when tested in the patients, in which it provided some contrast but with poor identification of the first dwell position, mainly in the ring. Conclusion We found CuSO4 to be the best solution for visualization of the applicator channels, mainly in T2-weighted images in vitro, although the materials tested presented low signal intensity in the images obtained in vivo, as well as poor precision in determining the first dwell position. PMID:27403016

  9. Evaluation of different magnetic resonance imaging contrast materials to be used as dummy markers in image-guided brachytherapy for gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Camila Pessoa; Carvalho, Heloisa de Andrade; Rubo, Rodrigo Augusto; Stuart, Silvia Radwanski; Rodrigues, Laura Natal, E-mail: camyps@gmail.com [Universidade de Sao Paulo (InRad/HC/FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Instituto de Radiologia; Taverna, Khallil Chaim; Pastorello, Bruno Fraccini [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Departamento de Radiologia e Oncologia. Lab. de Ressonancia Magnetica em Neurorradiologia; Borgonovi, Arthur Felipe [Royal Philips Electronics, Eindhoven (Netherlands)

    2016-05-15

    Objective: to identify a contrast material that could be used as a dummy marker for magnetic resonance imaging. Materials and methods: magnetic resonance images were acquired with six different catheter-filling materials - water, glucose 50%, saline, olive oil, glycerin, and copper sulfate (CuSO{sub 4}) water solution (2.08 g/L) - inserted into compatible computed tomography/magnetic resonance imaging ring applicators placed in a phantom made of gelatin and CuSO{sub 4}. The best contrast media were tested in four patients with the applicators in place. Results: in T2-weighted sequences, the best contrast was achieved with the CuSO{sub 4}-filled catheters, followed by saline- and glycerin-filled catheters, which presented poor visualization. In addition (also in T2-weighted sequences), CuSO{sub 4} presented better contrast when tested in the phantom than when tested in the patients, in which it provided some contrast but with poor identification of the first dwell position, mainly in the ring. Conclusion: we found CuSO{sub 4} to be the best solution for visualization of the applicator channels, mainly in T2-weighted images in vitro, although the materials tested presented low signal intensity in the images obtained in vivo, as well as poor precision in determining the first dwell position. (author)

  10. Weight-adapted iodinated contrast media administration in abdomino-pelvic CT: Can image quality be maintained?

    Science.gov (United States)

    Perrin, E; Jackson, M; Grant, R; Lloyd, C; Chinaka, F; Goh, V

    2018-02-01

    In many centres, a fixed method of contrast-media administration is used for CT regardless of patient body habitus. The aim of this trial was to assess contrast enhancement of the aorta, portal vein, liver and spleen during abdomino-pelvic CT imaging using a weight-adapted contrast media protocol compared to the current fixed dose method. Thirty-nine oncology patients, who had previously undergone CT abdomino-pelvic imaging at the institution using a fixed contrast media dose, were prospectively imaged using a weight-adapted contrast media dose (1.4 ml/kg). The two sets of images were assessed for contrast enhancement levels (HU) at locations in the liver, aorta, portal vein and spleen during portal-venous enhancement phase. The t-test was used to compare the difference in results using a non-inferiority margin of 10 HU. When the contrast dose was tailored to patient weight, contrast enhancement levels were shown to be non-inferior to the fixed dose method (liver p contrast dose reduction of 165 ml using the weight-adapted method compared to the fixed dose method, with a mean cost per patient of £6.81 and £7.19 respectively. Using a weight-adapted method of contrast media administration was shown to be non-inferior to a fixed dose method of contrast media administration. Patients weighing 76 kg, or less, received a lower contrast dose which may have associated cost savings. A weight-adapted contrast media protocol should be implemented for portal-venous phase abdomino-pelvic CT for oncology patients with adequate renal function (>70 ml/min/1.73 m 2 ). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  12. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  13. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  14. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  15. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.

    Science.gov (United States)

    Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T

    2011-10-01

    The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.

  16. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)

    2017-01-15

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  17. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    International Nuclear Information System (INIS)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  18. Estimation of chromatic errors from broadband images for high contrast imaging

    Science.gov (United States)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  19. Contrast-enhanced fat- suppression MR imaging of avascular necrosis of femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tae Kyoung; Shim, Jae Chan; Lee, Ghi Jai; Jeon, Jeong Dong; Bang, Sun Woo; Kim, Ho Kyun [College of Medicine, Inje University, Seoul (Korea, Republic of)

    2000-02-01

    To evaluate the findings and role of contrast-enhanced fat suppression MR imaging in avascular necrosis (AVN) of the femoral head. In 15 patients with AVN of the femoral head, MR T1-weighted and T2-weighted images and contrast-enhanced fat-suppression T1-weighted images were obtained, and the findings were reviewed. Early and advanced groups were classified on the basis of clinical findings and imaging, and the enhancement pattern was classified as either type I, rim enhancement; type II, surrounding diffuse enhancement; type III, intralesional enhancement; or type IV, II + III. Twenty-four cases of AVN of the femoral head were detected; in nine patients, lesions were bilateral. Eight cases occurred in the early group and 16 in the advanced. All eight in the early group showed the 'double line sign' on T2-weighted images, with a type-I enhancement pattern. In the advanced group, type II (8/16) and type IV (8/16) enhancement patterns were seen. Among the cases showing the type-IV pattern, the intralesional enhancing area showed low signal intensity on T1-weighted images and isosignal intensity on T2-weighted in one case, and low signal intensity on T2-weighted in one case, and low signal intensity on T1-weighted images and high signal intensity on T2-weighted in the other cases. There was no difference in the extent of the disease before and after enhancement. Contrast-enhanced fat-suppression MR images may be helpful in evaluating the extent of AVN of the femoral head and predicting the histopathologic findings of the disease. (author)

  20. Contrast-enhanced fat- suppression MR imaging of avascular necrosis of femoral head

    International Nuclear Information System (INIS)

    Oh, Tae Kyoung; Shim, Jae Chan; Lee, Ghi Jai; Jeon, Jeong Dong; Bang, Sun Woo; Kim, Ho Kyun

    2000-01-01

    To evaluate the findings and role of contrast-enhanced fat suppression MR imaging in avascular necrosis (AVN) of the femoral head. In 15 patients with AVN of the femoral head, MR T1-weighted and T2-weighted images and contrast-enhanced fat-suppression T1-weighted images were obtained, and the findings were reviewed. Early and advanced groups were classified on the basis of clinical findings and imaging, and the enhancement pattern was classified as either type I, rim enhancement; type II, surrounding diffuse enhancement; type III, intralesional enhancement; or type IV, II + III. Twenty-four cases of AVN of the femoral head were detected; in nine patients, lesions were bilateral. Eight cases occurred in the early group and 16 in the advanced. All eight in the early group showed the 'double line sign' on T2-weighted images, with a type-I enhancement pattern. In the advanced group, type II (8/16) and type IV (8/16) enhancement patterns were seen. Among the cases showing the type-IV pattern, the intralesional enhancing area showed low signal intensity on T1-weighted images and isosignal intensity on T2-weighted in one case, and low signal intensity on T2-weighted in one case, and low signal intensity on T1-weighted images and high signal intensity on T2-weighted in the other cases. There was no difference in the extent of the disease before and after enhancement. Contrast-enhanced fat-suppression MR images may be helpful in evaluating the extent of AVN of the femoral head and predicting the histopathologic findings of the disease. (author)

  1. Paramagnetic contrast media for magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    McNamara, M.T.

    1987-01-01

    Presently, a variety of radiofrequency (RF) and magnetic field gradient pulse sequences is used to manipulate magnetic resonance (MR) image contrast. Such manipulation may be performed by altering the RF pulse sequence repetition time (TR), the spin-echo delay time (TE), the inversion-delay time (TI), and the flip angle. The detection and characterization of a lesion or structure may thus be optimized. Although such contrast manipulation is noninvasive, magnetic resonance imaging (MRI) still suffers somewhat from lack of specificity. Also, the use of multiple imaging sequences to locate and characterize a lesion may prolong the imaging time and, thus, might place an economic burden on the system. Paramagnetic pharmaceuticals offer promise in this regard. They shorten tissue relaxation times, thus permitting the use of shorter imaging parameters, and in some circumstances, may obviate additional and more time-consuming pulse sequences. Paramagnetics could expand the sensitivity and specificity of MRI and provide functional information with regard to tissue perfusion, tissue viability, and blood-brain barrier integrity

  2. Influence of phantom and tube voltage in fluoroscopy on image intensifier (I.I.) incident dose rate

    International Nuclear Information System (INIS)

    Seguchi, Shigenobu; Ishikawa, Yoshinobu; Kuwahara, Kazuyoshi; Morita, Miki; Mizuno, Shouta; Nakamura, Akio

    1999-01-01

    We examined the influence of phantoms and tube voltage in fluoroscopy on the image intensifier (I.I.) conversion factor. We used 20-cm-thick acrylic resin, 20 mm aluminum, and 1.5 mm copper, which are generally used as phantoms in the measurement of I.I. incident dose rate. We measured I.I. incident dose rate and conversion factor under conditions in which the range of tube voltage was from 60 kV to 120 kV. The result showed that the conversion factor is influenced by the type of phantom, with copper showing the highest value, aluminum second, and acrylic the smallest under the same condition of aluminum at half value layer. It was determined that conversion factor depends on tube voltage and has peaks from 80-100 kV. The location and height of the peak are influenced by the type of phantom. Therefore, I.I. incident dose rate is influenced by both the type of phantom and tube voltage under automatic brightness control fluoroscopy. Unification of phantoms and tube voltage is necessary for long-term evaluation of I.I. incident dose rate. (author)

  3. Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics

    Science.gov (United States)

    Scott, Gregory; Fagerholm, Erik D.; Mutoh, Hiroki; Leech, Robert; Sharp, David J.; Shew, Woodrow L.

    2014-01-01

    Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution. Here we show that, as mice recovered from anesthesia, scale-invariant spatiotemporal patterns of neuronal activity gradually emerge. We show for the first time that this scale-invariant activity spans four orders of magnitude in awake mice. In contrast, we found that the cortical dynamics of anesthetized mice were not scale invariant. Our results bridge empirical evidence from disparate scales and support theoretical predictions that the awake cortex operates in a dynamical regime known as criticality. The criticality hypothesis predicts that small-scale cortical dynamics are governed by the same principles as those governing larger-scale dynamics. Importantly, these scale-invariant principles also optimize certain aspects of information processing. Our results suggest that during the emergence from anesthesia, criticality arises as information processing demands increase. We expect that, as measurement tools advance toward larger scales and greater resolution, the multiscale framework offered by criticality will continue to provide quantitative predictions and insight on how neurons, microcircuits, and large-scale networks are dynamically coordinated in the brain. PMID:25505314

  4. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  5. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    Science.gov (United States)

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  6. Contrast MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kogame, Saeko; Syakudo, Miyuki; Inoue, Yuichi (Osaka City Univ. (Japan). Faculty of Medicine) (and others)

    1992-04-01

    Thirty patients with acute and subacute cerebral infarction (13 and 17 deep cerebral infarction) were studied with 0.5 T MR unit before and after intravenous injection of Gd-DTPA. Thirteen patients were studied within 7 days after neurological ictus, 17 patients were studied between 7 and 14 days. Two types of abnormal enhancement, cortical arterial and parenchymal enhancement, were noted. The former was seen in 3 of 4 cases of very acute cortical infarction within 4 days after clinical ictus. The latter was detected in all 7 cases of cortical infarction after the 6th day of the ictus, and one patient with deep cerebral infarction at the 12th day of the ictus. Gd-DTPA enhanced MR imaging seems to detect gyral enhancement earlier compared with contrast CT, and depict intra-arterial sluggish flow which was not expected to see on contrast CT scans. (author).

  7. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill

    2014-01-01

    INTRODUCTION: Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  8. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  9. Improved MR breast images by contrast optimization using artificial intelligence

    International Nuclear Information System (INIS)

    Konig, H.; Gohagan, J.; Laub, G.; Bachus, R.; Heywang, S.; Reinhardt, E.R.

    1986-01-01

    The clinical relevance of MR imaging of the breast is mainly related to the modelity's ability to differentiate among normal, benign, and malignant tissue and to yield prognostic information. In addition to the MR imaging parameters, morphologic features of these images are calculated. Based on statistical information of a comprehensive, labeled image and knowledge of a data base system, a numerical classifier is deduced. The application of this classifier to all cases leads to estimations of specific tissue types for each pixel. The method is sufficiently sensitive for grading a recognized tissue class. In this manner images with optimal contrast appropriate to particular diagnostic requirements are generated. The discriminant power of each MR imaging parameter as well as of a combination of parameters can be determined objectively with respect to tissue discrimination

  10. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    International Nuclear Information System (INIS)

    Plascencia-Villa, Germán; Bahena, Daniel; José-Yacamán, Miguel; Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T

    2014-01-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications. (paper)

  11. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young

    2015-01-01

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  12. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    Science.gov (United States)

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  13. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, C. Zuhal E-mail: sunarerdem@yahoo.com; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-07-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T{sub p}); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T{sub p} were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS.

  14. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    International Nuclear Information System (INIS)

    Erdem, C. Zuhal; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-01-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T p ); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T p were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS

  15. Initial Experience of Using Dual-Energy CT with an Iodine Overlay Image for Hand Psoriatic Arthritis: Comparison Study with Contrast-enhanced MR Imaging.

    Science.gov (United States)

    Fukuda, Takeshi; Umezawa, Yoshinori; Tojo, Shinjiro; Yonenaga, Takenori; Asahina, Akihiko; Nakagawa, Hidemi; Fukuda, Kunihiko

    2017-07-01

    Purpose To determine the feasibility of dual-energy (DE) computed tomography (CT) with an iodine overlay image (IOI) for evaluation of psoriatic arthritis in the hand. Materials and Methods Approval from the institutional ethics committee and written informed consent from all patients were obtained. This prospective study included 16 patients who had psoriasis with finger joint symptoms from January 2015 to January 2016. Contrast material-enhanced (CE) DE CT and 1.5-T CE magnetic resonance (MR) imaging were performed within 1 month of each other. DE CT was performed with a tube voltage of 80 kV and 140 kV with use of a 0.4-mm tin filter. Images acquired with both modalities were evaluated by two radiologists independently by using a semiquantitative scoring system. Interreader agreement was calculated for each modality: Weighted κ values were calculated for synovitis, flexor tenosynovitis, and extensor peritendonitis, and κ values were calculated for periarticular inflammation. With consensus scores and CE MR images as the reference, the sensitivity and specificity of IOI DE CT for inflammatory lesions were calculated. Statistical analysis of discordant readings was performed by using the McNemar test. Results Interreader agreement for inflammatory lesions was excellent or good (weighted κ = 0.83 and κ = 0.75 in IOI DE CT; weighted κ = 0.81 and κ = 0.87 in CE MR imaging). The sensitivity and specificity of IOI DE CT were 0.78 and 0.87, respectively. Total agreement was 86.3%; however, there were significantly more lesions detected with IOI DE CT than with CE MR imaging alone (134 vs 20 lesions in 1120 evaluated items; P the abnormalities detected with IOI DE CT alone were located in distal interphalangeal joints. Conclusion IOI DE CT is a new imaging modality that may be useful for evaluating psoriatic arthritis in the hand, particularly in the detection of inflammatory lesions in small joints, and may be more useful than CE MR imaging, within the limitation

  16. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  17. Pathologic contrast enhancement of cerebral lesions: A comparative study using stereotactic CT, stereotactic MR imaging, and stereotactic biopsy

    International Nuclear Information System (INIS)

    Earnest, F. IV; Kelly, P.J.; Scheithauer, B.; Kall, B.; Cascino, T.L.; Ehman, R.L.; Forbes, G.

    1986-01-01

    The author compared the pattern and degree of Gd-DTPA dimeglumine contrast enhancement demonstrated on stereotactic MR images with that seen on stereotactic CT images obtained after conventional iodinated contrast agent enhancement and with histopathologic findings on sequential stereotactic brain biopsies. Stereotactic biopsies of the areas that enhanced on CT or MR imaging revealed tumor tissue with neovascularity. Tumor tissue with no or mild neovascularity did not enhance with contrast agent administration. Isolated tumor cells were frequently found beyond the margins of some primary brain neoplasms defined by contrast agent-enhanced MR imaging and CT. The histopathologic findings associated with pathologic contrast agent enhancement are presented

  18. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    Science.gov (United States)

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Tot Bui

    2010-09-01

    Full Text Available Gadolinium (Gd, with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA, or other derivatives (at 0.1 mmole/kg recommended dose, distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF, particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1 relaxivity, r(1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug

  20. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  1. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  2. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    International Nuclear Information System (INIS)

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-01-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10 6 images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  3. Quality control measurements of X-ray image-intensifier television chain systems

    International Nuclear Information System (INIS)

    Henshaw, E.T.

    1989-01-01

    The test methods and limiting values for the following basic parameters of an image intensifier TV system are presented in relation to (a) acceptance tests and (b) constancy tests: automatic gain and brightness control, video voltage output, monitor check (grey scale), geometric distortion, noise (low-contrast detectability), overall imaging ability, limiting resolution, uniformity of resolution, conversion factor, contrast ratio and measurement of field size. Several of these tests make use of the Leeds Test Objects. (author)

  4. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  5. Hybrid imaging with contrast enhanced CT scan: A nuclear physician's point of view

    International Nuclear Information System (INIS)

    Houzard, C.; Tychyj-Pinel, C.; Defez, D.; Valette, P.J.; Giammarile, F.; Houzard, C.; Valette, P.J.; Giammarile, F.

    2010-01-01

    The ongoing development of hybrid imaging, with physical association of CT scan and PET or SPECT scan, allows integrating morphological and functional information on a single exam. This important technological evolution changes diagnostic and therapeutic strategy in a major manner, essentially in oncology. The possibility to inject intravenously iodinated contrast media in order to enhance CT image contrast is still a controversial question in France. We present our experience in this domain by approaching technical problems and diagnostic advantages. (authors)

  6. Flow-driven voltage generation in carbon nanotubes

    Indian Academy of Sciences (India)

    The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated ...

  7. Detection of acute avascular necrosis with dynamic contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Nadel, S.N.; Richardson, W.J.; Martinez, S.; Rizk, W.S.; Malizos, K.; Debatin, J.F.

    1991-01-01

    Early detection of avascular necrosis (AVN) may allow earlier intervention and lead to improved treatment success. This paper is designed to compare standard and dynamic contrast-enhanced MR imaging in the detection of acute AVN. A previously described animal model of AVN was used. Five anesthetized dogs underwent right femoral head devascularization, including placement of a supercooling coil around the femoral neck. Within 3 hours the dogs were imaged in a 1.5-T Signa magnet. Standard T1-weighted, T2-weighted, and STIR images were obtained through both hips. A DiGrass sequence with 30 sequential 3.2-second T1-weighted images was used, and 0.2 mmol/kg gadoteridol was injected intravenously at the start of the sequence at 2 mL/sec with an automated injector. Following imaging, oxytetracycline was given intravenously. After 3 days the dogs were killed, and their femoral heads were extracted, coronally sectioned, and analyzed for fluorescence. T1-weighted, T2-weighted, and STIR sequences showed no marrow abnormalities on either the normal or the operated-on side. With contrast material injection, all normal areas and the unoperated portion the femoral neck and diaphysis enhanced markedly 4-9 seconds following the bolus

  8. Rapid non-contrast magnetic resonance imaging for post appendectomy intra-abdominal abscess in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Megan H. [Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Eutsler, Eric P.; Khanna, Geetika [Washington University School of Medicine in St. Louis, Pediatric Radiology, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Sheybani, Elizabeth F. [Mercy Hospital St. Louis, Department of Radiology, St. Louis, MO (United States)

    2017-07-15

    Acute appendicitis, especially if perforated at presentation, is often complicated by postoperative abscess formation. The detection of a postoperative abscess relies primarily on imaging. This has traditionally been done with contrast-enhanced computed tomography. Non-contrast magnetic resonance imaging (MRI) has the potential to accurately detect intra-abdominal abscesses, especially with the use of diffusion-weighted imaging (DWI). To evaluate our single-center experience with a rapid non-contrast MRI protocol evaluating post-appendectomy abscesses in children with persistent postsurgical symptoms. In this retrospective, institutional review board-approved study, all patients underwent a clinically indicated non-contrast 1.5- or 3-Tesla abdomen/pelvis MRI consisting of single-shot fast spin echo, inversion recovery and DWI sequences. All MRI studies were reviewed by two blinded pediatric radiologists to identify the presence of a drainable fluid collection. Each fluid collection was further characterized as accessible or not accessible for percutaneous or transrectal drainage. Imaging findings were compared to clinical outcome. Seven of the 15 patients had a clinically significant fluid collection, and 5 of these patients were treated with percutaneous drain placement or exploratory laparotomy. The other patients had a phlegmon or a clinically insignificant fluid collection and were discharged home within 48 h. Rapid non-contrast MRI utilizing fluid-sensitive and DWI sequences can be used to identify drainable fluid collections in post-appendectomy patients. This protocol can be used to triage patients between conservative management vs. abscess drainage without oral/intravenous contrast or exposure to ionizing radiation. (orig.)

  9. Rapid non-contrast magnetic resonance imaging for post appendectomy intra-abdominal abscess in children

    International Nuclear Information System (INIS)

    Lee, Megan H.; Eutsler, Eric P.; Khanna, Geetika; Sheybani, Elizabeth F.

    2017-01-01

    Acute appendicitis, especially if perforated at presentation, is often complicated by postoperative abscess formation. The detection of a postoperative abscess relies primarily on imaging. This has traditionally been done with contrast-enhanced computed tomography. Non-contrast magnetic resonance imaging (MRI) has the potential to accurately detect intra-abdominal abscesses, especially with the use of diffusion-weighted imaging (DWI). To evaluate our single-center experience with a rapid non-contrast MRI protocol evaluating post-appendectomy abscesses in children with persistent postsurgical symptoms. In this retrospective, institutional review board-approved study, all patients underwent a clinically indicated non-contrast 1.5- or 3-Tesla abdomen/pelvis MRI consisting of single-shot fast spin echo, inversion recovery and DWI sequences. All MRI studies were reviewed by two blinded pediatric radiologists to identify the presence of a drainable fluid collection. Each fluid collection was further characterized as accessible or not accessible for percutaneous or transrectal drainage. Imaging findings were compared to clinical outcome. Seven of the 15 patients had a clinically significant fluid collection, and 5 of these patients were treated with percutaneous drain placement or exploratory laparotomy. The other patients had a phlegmon or a clinically insignificant fluid collection and were discharged home within 48 h. Rapid non-contrast MRI utilizing fluid-sensitive and DWI sequences can be used to identify drainable fluid collections in post-appendectomy patients. This protocol can be used to triage patients between conservative management vs. abscess drainage without oral/intravenous contrast or exposure to ionizing radiation. (orig.)

  10. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    Science.gov (United States)

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Nitroxide radicals as contrast substances for magnetic resonance imaging diagnostics. Part 1

    International Nuclear Information System (INIS)

    Zhelev, Z.

    2016-01-01

    In last ten years, there is a significant progress in the selective and localized detection of redox-active compounds in the cells, tissues, and intact organisms. This progress is due to the development of new synthetic and genetically encoded redox-sensitive contrast substances, as well as due to the improvement of the techniques for their imaging: fluorescent, chemiluminescent, magnetic resonance, nuclear, ultrasonic. One of the most attractive redox-sensitive contrast substances are cyclic (stable) nitroxide radicals. They can be visualized and analyzed in vitro and in vivo by a variety of magnetic resonance techniques - electron-paramagnetic resonance imaging (EPRI), magnetic resonance imaging (MRI), Overhauser-enhanced MRI (OMRI). This review describes the merits and demerits of the nitroxide-enhanced EPR and MRI and the perspectives for their application in biomedical studies and clinical practice. The article is intended for a wide range of readers - from students to specialists in the field. Key words: Magnetic Resonance Imaging (MRI). Electron-Paramagnetic Resonance (EPR). Overhauser-Enhanced MRI (O MRI). Nitroxide

  12. Design and Optimization of Gadolinium Based Contrast Agents for Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pereira, G.A.; Geraldes, C.F.G.C.; University of Coimbra

    2007-01-01

    The role of Gd 3+ chelates as contrast agents in Magnetic Resonance Imaging is discussed. The theory describing the different contributions to paramagnetic relaxation relevant to the understanding of the molecular parameters determining the relativity of those Gd 3+ chelates, is presented. The experimental techniques used to obtain those parameters are also described. Then, the various approaches taken to optimize those parameters, leading to maximum relativity (efficiency) of the contrast agents, are also illustrated with relevant examples taken from the literature. The various types of Gd 3+ -based agents, besides non-specific and hepatobiliary agents, are also discussed, namely blood pool, targeting, responsive and paramagnetic chemical shift saturation transfer (PARACEST) agents. Finally, a perspective is presented of some of the challenges lying ahead in the optimization of MRI contrast agents to be useful in Molecular Imaging. (author)

  13. The role of contrast-enhanced ultrasonography in image-guided liver ablations

    International Nuclear Information System (INIS)

    Pescatori, Lorenzo Carlo; Sconfienza, Luca Maria; Mauri, Giovanni

    2016-01-01

    We read with great interest the paper by Kim et al. entitled “Local ablation therapy with contrast enhanced ultrasonography for hepatocellular carcinoma: a practical review,” recently published in Ultrasonography. We think that contrast-enhanced ultrasonography (CEUS), together with the development of reliable navigation systems, is likely to represent one of the most important advances in image-guided ablations in recent years. Thus, we offer some considerations on the topic

  14. Combined mixed approach algorithm for in-line phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    De Caro, Liberato; Scattarella, Francesco; Giannini, Cinzia; Tangaro, Sabina; Rigon, Luigi; Longo, Renata; Bellotti, Roberto

    2010-01-01

    Purpose: In the past decade, phase-contrast imaging (PCI) has been applied to study different kinds of tissues and human body parts, with an increased improvement of the image quality with respect to simple absorption radiography. A technique closely related to PCI is phase-retrieval imaging (PRI). Indeed, PCI is an imaging modality thought to enhance the total contrast of the images through the phase shift introduced by the object (human body part); PRI is a mathematical technique to extract the quantitative phase-shift map from PCI. A new phase-retrieval algorithm for the in-line phase-contrast x-ray imaging is here proposed. Methods: The proposed algorithm is based on a mixed transfer-function and transport-of-intensity approach (MA) and it requires, at most, an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy in the initial estimate determines the convergence speed of the algorithm. The proposed algorithm retrieves both the object phase and its complex conjugate in a combined MA (CMA). Results: Although slightly less computationally effective with respect to other mixed-approach algorithms, as two phases have to be retrieved, the results obtained by the CMA on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The authors have also tested the CMA on noisy experimental phase-contrast data obtained by a suitable weakly absorbing sample consisting of a grid of submillimetric nylon fibers as well as on a strongly absorbing object made of a 0.03 mm thick lead x-ray resolution star pattern. The CMA has shown a good efficiency in recovering phase information, also in presence of noisy data, characterized by peak-to-peak signal-to-noise ratios down to a few dBs, showing the possibility to enhance with phase radiography the signal-to-noise ratio for features in the submillimetric scale with respect to the attenuation

  15. Optimization of recommendations for abdomen computerized tomography based on reconstruction filters, voltage and tube current

    International Nuclear Information System (INIS)

    Silveira, Vinicius da Costa

    2015-01-01

    The use of computed tomography has increased significantly over the past decades. In Brazil the use increased more than twofold from 2008 to 2014, in the meantime the abdomen procedures have tripled. The high frequency of this procedure combined by the increasing collective radiation dose in medical exposures, has resulted development tools to maximize the benefit in CT images. This work aimed to establish protocols optimized in abdominal CT through acquisitions parameters and reconstructions techniques based on filters kernels. A sample of patients undergoing abdominal CT in a diagnostic center of Rio de Janeiro was assessed. Had been collected patients information and acquisitions parameters. The phantoms CT image acquisitions were performed by using different voltage values by adjusting the tube current (mAs) to obtain the same value from CTDI vol patients with normal BMI. Afterwards, the CTDIvol values were reduced by 30%, 50% and 60%. All images were reconstructed with low-contrast filters (A) and standard filters (B). The CTDIvol values for patients with normal BMI were 7% higher than in patients with underweight BMI and 30%, 50% and 60% lower than the overweight, obese I and III patients, respectively. The evaluations of image quality showed that variation of the current (mA) and the reconstruction filters did not affect the Hounsfield values. When the contrast-to-noise ratio (CNR) was normalized to CTDIvol, the protocols acquired with 60% reduction of CTDIvol with 140 kV and 80 kV showed CNR 6% lower than the routine. Modifications of the acquisition parameters did not affect spatial resolution, but the post-processing with B filters reduced the spatial frequency by 16%. With reduced the dose of 30%, lesions in the spleen had the CNR higher than 10% routine protocols with 140 kV acquired and post-processed to filter A. The image post-processing with a filter A with a 80kV voltage provided CNR values equal to the routine for the liver lesions with a 30

  16. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    Directory of Open Access Journals (Sweden)

    Laurel M Burk

    Full Text Available We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic

  17. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Bradley, D.A.

    2010-01-01

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  18. X-ray phase contrast imaging of the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Pfeiffer, F. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: d.a.bradley@surrey.ac.uk

    2010-04-15

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  19. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  20. Non-contrast MR imaging of the glenohumeral joint. Part I. Normal anatomy

    International Nuclear Information System (INIS)

    Rafii, Mahvash

    2004-01-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  1. Non-contrast MR imaging of the glenohumeral joint. Part I. Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Rafii, Mahvash [NYU School of Medicine, NYU Medical Center, Department of Radiology, New York (United States)

    2004-10-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  2. Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound.

    Science.gov (United States)

    Rognin, Nicolas G; Arditi, Marcel; Mercier, Laurent; Frinking, Peter J A; Schneider, Michel; Perrenoud, Geneviève; Anaye, Anass; Meuwly, Jean-Yves; Tranquart, François

    2010-11-01

    The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.

  3. Contrast reference values in panoramic radiographic images using an arch-form phantom stand

    International Nuclear Information System (INIS)

    Shin, Jae Myung; Lee, Che Na; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Lee, Sam Sun

    2016-01-01

    The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images

  4. Contrast reference values in panoramic radiographic images using an arch-form phantom stand

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Lee, Che Na; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Lee, Sam Sun [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2016-09-15

    The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images.

  5. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  6. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... in cerebral hemodynamics than noncontrast-enhanced imaging. The results of the deconvolution analysis suggested that perfusion calculation by conventional tracer kinetic methods may be impracticable because of nonlinear effects in contrast-enhanced MR imaging....

  7. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    International Nuclear Information System (INIS)

    Jeon, P-H; Lee, C-L; Kim, D-H; Lee, Y-J; Kim, H-J; Jeon, S-S

    2014-01-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  8. Contrast agents for tumor diagnosis in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Rensuke; Doi, Hisayoshi; Okada, Shoji [University of Shizuoka (Japan). School of Pharmaceutical Science; Yano, Masayuki; Katano, Susumu; Nakajima, Nobuaki

    1992-01-01

    In order to develop contrast agents for tumor diagnosis in magnetic resonance imaging (MRI), we investigated the effects of several gadolinium complexes on T{sub 1} relaxation time of proton in some tissues of Ehrlich solid tumor-bearing mice. L-Aspartic acid, L-glutamic acid, DL-homocysteine, L-glutamyl-glutamic acid, glutathione, sperimidine and ethylenediaminetetrakis (methylenephosphate) (EDTMP) were used as ligands for Gd{sup 3+}. Since each Gd-complex could not be purified except Gd-EDTMP, the mixture of GdCl{sub 3} and a ligand was administered intravenously. Among the compounds tested, the mixture of aspartic acid, glutathione or spermidine with GdCl{sub 3} showed almost the same or above reduction of T{sub 1} relaxation times in the tumor tissue compared with Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) which is used clinically. Furthermore, the contrast-enhancing effect of the three mixtures in the tumor was observed by in vivo T{sub 1}-weighted magnetic resonance imaging. The in vivo tissue distribution using radioactive {sup 153}Gd{sup 3+} showed that these mixtures mentioned above were also taken up more highly in the tumor than {sup 153}GdCl{sub 3} itself and {sup 153}Gd-DTPA, suggesting the formation of Gd-complexes. However, the overall tissue distribution of the mixtures was similar to that of {sup 153}GdCl{sub 3} because the Gd-complexes were not purified. Gd-EDTMP exhibited the almost same effects with Gd-DTPA as a contrast agent. (author).

  9. NEW TECHNIQUES FOR HIGH-CONTRAST IMAGING WITH ADI: THE ACORNS-ADI SEEDS DATA REDUCTION PIPELINE

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Turner, Edwin L.; McElwain, Michael W.; Grady, C. A.; Abe, L.; Brandner, W.; Feldt, M.; Henning, T.; Carson, J.; Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Goto, M.; Hashimoto, J.; Hayashi, M.; Iye, M.; Hodapp, K. W.

    2013-01-01

    We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ∼20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.

  10. STM contrast inversion of the Fe(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Mándi, Gábor [Budapest University of Technology and Economics, Department of Theoretical Physics, Budafoki út 8, H-1111 Budapest (Hungary); Palotás, Krisztián, E-mail: palotas@phy.bme.hu [Budapest University of Technology and Economics, Department of Theoretical Physics, Budafoki út 8, H-1111 Budapest (Hungary); Condensed Matter Research Group of the Hungarian Academy of Sciences, Budafoki út 8, H-1111 Budapest (Hungary)

    2014-06-01

    We extend the orbital-dependent electron tunneling model implemented within the three-dimensional (3D) Wentzel–Kramers–Brillouin (WKB) atom-superposition approach to simulate spin-polarized scanning tunneling microscopy (SP-STM) above magnetic surfaces. The tunneling model is based on the electronic structure data of the magnetic tip and surface obtained from first principles. Applying our method, we analyze the orbital contributions to the tunneling current, and study the nature of atomic contrast reversals occurring on constant-current SP-STM images above the Fe(1 1 0) surface. We find an interplay of orbital-dependent tunneling and spin-polarization effects responsible for the contrast inversion, and we discuss its dependence on the bias voltage, on the tip-sample distance, and on the tip orbital composition.

  11. WE-DE-207B-01: Optimization for Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.

  12. The structure of dodecagonal (Ta,V){sub 1.6}Te imaged by phase-contrast scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Mueller, E.; Wepf, R.A. [Electron Microscopy ETH Zurich (EMEZ), Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Conrad, M.; Reich, C.; Harbrecht, B. [Department of Chemistry and Centre of Materials Science, Philipps-Universitaet, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Nesper, R. [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2012-10-15

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principle of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.

  13. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  14. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T., E-mail: thomas.weber@physik.uni-erlangen.de [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Bartl, P.; Durst, J. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Haas, W. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); University of Erlangen-Nuremberg, Pattern Recognition Lab, Martensstr. 3, 91058 Erlangen (Germany); Michel, T.; Ritter, A.; Anton, G. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-08-21

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary. With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases. These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool 'SPHINX', combining both wave and particle contributions of the simulated photons. The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant. Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements. This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  15. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  16. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    Science.gov (United States)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  17. Single-energy non-contrast hepatic steatosis criteria applied to virtual non-contrast images: is it still highly specific and positively predictive?

    Science.gov (United States)

    Haji-Momenian, S; Parkinson, W; Khati, N; Brindle, K; Earls, J; Zeman, R K

    2018-06-01

    To determine the sensitivity, specificity, and predictive values of single-energy non-contrast hepatic steatosis criteria on dual-energy virtual non-contrast (VNC) images. Forty-eight computed tomography (CT) examinations, which included single-energy non-contrast (TNC) and contrast-enhanced dual-energy CT angiography (CTA) of the abdomen, were enrolled. VNC images were reconstructed from the CTA. Region of interest (ROI) attenuations were measured in the right and left hepatic lobes, spleen, and aorta on TNC and VNC images. The right and left hepatic lobes were treated as separate samples. Steatosis was diagnosed based on TNC liver attenuation of ≤40 HU or liver attenuation index (LAI) of ≤-10 HU, which are extremely specific and predictive for moderate to severe steatosis. The sensitivity, specificity, and predictive values of VNC images for steatosis were calculated. VNC-TNC deviations were correlated with aortic enhancement and patient water equivalent diameter (PWED). Thirty-two liver ROIs met steatosis criteria based on TNC attenuation; VNC attenuation had sensitivity, specificity, and a positive predictive value of 66.7%, 100%, and 100%, respectively. Twenty-one liver ROIs met steatosis criteria based on TNC LAI. VNC LAI had sensitivity, specificity, and positive predictive values of 61.9%, 90.7%, and 65%, respectively. Hepatic and splenic VNC-TNC deviations did not correlate with one another (R 2 =0.08), aortic enhancement (R 2 predictive for moderate to severe steatosis on VNC reconstructions from the arterial phase. Hepatic attenuation performs better than LAI criteria. VNC deviations are independent of aortic enhancement and PWED. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. A phase contrast imaging system for TEXT-U

    International Nuclear Information System (INIS)

    Chatterjee, R.; Hallock, G.A.; Gartman, M.L.

    1994-01-01

    A diagnostic to study plasma density fluctuations, Phase Contrast Imaging (PCI) has been developed for the Texas Experimental Tokamak-Upgrade. The diagnostic has a sensitivity of about 10 -4 n e0 and is capable of detecting a wide range of wavenumbers (0.5 cm -1 - 12 cm -1 ) with a bandwidth of 500 Khz. The design of the diagnostic, some results of acoustic calibration tests and preliminary results of simulation of expected spectra are presented

  19. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  20. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.