WorldWideScience

Sample records for voltage contrast image

  1. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Gui Jianbao; Zou Jing; Rong Junyan [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Hu Zhanli [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Graduate University of Chinese Academy of Sciences (China); Zhang Qiyang; Zheng Hairong [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Xia Dan, E-mail: dan.xia@siat.ac.cn [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China)

    2012-03-21

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 {mu}m and a cooled X-ray CCD detector with pixel size of 24 {mu}m. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  2. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    Science.gov (United States)

    Gui, Jianbao; Zou, Jing; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Zheng, Hairong; Xia, Dan

    2012-03-01

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 μm and a cooled X-ray CCD detector with pixel size of 24 μm. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  3. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  4. CT angiography of intracranial arterial vessels: impact of tube voltage and contrast media concentration on image quality.

    Science.gov (United States)

    Ramgren, Birgitta; Björkman-Burtscher, Isabella M; Holtås, Stig; Siemund, Roger

    2012-10-01

    Computed tomography angiography (CTA) of intracranial arteries has high demands on image quality. Important parameters influencing vessel enhancement are injection rate, concentration of contrast media and tube voltage. To evaluate the impact of an increase of contrast media concentration from 300 to 400 mg iodine/mL (mgI/mL) and the effect of a decrease of tube voltage from 120 to 90 kVp on vessel attenuation and image quality in CT angiography of intracranial arteries. Sixty-three patients were included into three protocol groups: Group I, 300 mgI/mL 120 kVp; Group II, 400 mgI/mL 120 kVp; Group III, 400 mgI/mL 90 kVp. Hounsfield units (HU) were measured in the internal carotid artery (ICA) and the M1 and M2 segments of the middle cerebral artery. Image quality grading was performed regarding M1 and M2 segments, volume rendering and general image impression. The difference in mean HU in ICA concerning the effect of contrast media concentration was statistically significant (P = 0.03) in favor of higher concentration. The difference in ICA enhancement due to the effect of tube voltage was statistically significant (P concentration raised the mean enhancement in ICA with 18% and the decrease of tube voltage raised the mean enhancement with 37%. Image quality grading showed a trend towards improved grading for higher contrast concentration and lower tube voltage. Statistically significant better grading was found for the combined effect of both measures except for general impression (P 0.01-0.05). The uses of highly concentrated contrast media and low tube voltage are easily performed measures to improve image quality in CTA of intracranial vessel.

  5. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  6. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography.

    Science.gov (United States)

    Hwang, Inpyeong; Cho, Jeong Yeon; Kim, Sang Youn; Oh, Seung-June; Ku, Ja Hyeon; Lee, Joongyup; Kim, Seung Hyup

    2015-12-01

    The aim of the present study was to investigate the feasibility and image quality of excretory CT urography performed using low iodine-concentration contrast media and low tube voltage. This prospective study enrolled 63 patients who undergoing CT urography. The subjects were randomized into two groups of an excretory phase CT urography protocol and received either 240 mg I/mL of contrast media and 80 kVp of tube voltage (low-concentration protocol, n=32) or 350 mg I/mL and 120 kVp (conventional protocol, n=31). Two readers qualitatively evaluated images for sharpness of the urinary tract, image noise, streak artifact and overall diagnostic acceptability. The mean attenuation, signal-to-noise ratio, contrast-to-noise ratio and figure of merit were measured in the urinary tract. The non-inferiority test assessed the diagnostic acceptability between the two protocol groups. The low-concentration protocol showed a significantly lower effective radiation dose (3.44 vs. 5.70 mSv, Pconcentration protocol with iterative reconstruction algorithm than in the conventional protocol (4.06±0.45 vs. 4.50±0.37, Pconcentration protocol along the entire urinary tract (Pmedia, 80 kVp tube voltage and an iterative reconstruction algorithm is beneficial to reduce radiation dose and iodine load, and its objective image quality and subjective diagnostic acceptability is not inferior to that of conventional CT urography. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes.

    Science.gov (United States)

    Meng, Xing

    2017-02-01

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages.

  8. Adrenal and nephrogenic hypertension: an image quality study of low tube voltage, low-concentration contrast media combined with adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Li, Zhen; Li, Qiong; Shen, Yaqi; Li, Anqin; Li, Haojie; Liang, Lili; Hu, Yao; Hu, Xuemei; Hu, Daoyu

    2016-09-01

    The aim of this study was to investigate the effect of using low tube voltage, low-concentration contrast media and adaptive statistical iterative reconstruction (ASIR) for reducing the radiation and iodine contrast doses in adrenal and nephrogenic hypertension patients. A total of 148 hypertension patients who were suspected for adrenal lesions or renal artery stenoses were assigned to two groups and. Group A (n=74) underwent a low tube voltage, low molecular weight dextran enhanced multi-detector row spiral CT (MDCT) (80 kVp, 270 mg I/mL contrast agent), and the raw data were reconstructed with standard filtered back projection (FBP) and ASIR at four different levels of blending (20%, 40%, 60% and 80%, respectively). The control group (Group B, n=74) underwent conventional MDCT (120 kVp, 370 mg I/mL contrast agent), and the data were reconstructed with FBP. The CT values, standard deviation (SD), signal-noise-ratio (SNR) and contrast-noise-ratio (CNR) were measured in the renal vessels, normal adrenal tissue, adrenal neoplasms and subcutaneous fat. The volume CT dose index (CTDIvol ) and dose length product (DLP) were recorded, and an effective dose (ED) was obtained. Two-tailed independent t-tests, paired Chi-square tests and Kappa consistency tests were used for statistical analysis of the data. The CTDIvol , DLP and total iodine dose in group A were decreased by 47.8%, 49.0% and 26.07%, respectively, compared to group B (Pconcentration contrast media and 60% ASIR provides similar enhancement and image quality with a reduced radiation dose and contrast iodine dose. © 2016 John Wiley & Sons Ltd.

  9. Contrast agent and radiation dose reduction in abdominal CT by a combination of low tube voltage and advanced image reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Buls, Nico; Gompel, Gert van; Nieboer, Koenraad; Willekens, Inneke; Mey, Johan de [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Vrije Universiteit Brussel (VUB), Research group LABO, Brussel (Belgium); Cauteren, Toon van [Vrije Universiteit Brussel (VUB), Research group LABO, Brussel (Belgium); Verfaillie, Guy [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Evans, Paul; Macholl, Sven; Newton, Ben [GE Healthcare, Department of Medical Diagnostics, Amersham, Buckinghamshire (United Kingdom)

    2015-04-01

    To assess image quality in abdominal CT at low tube voltage combined with two types of iterative reconstruction (IR) at four reduced contrast agent dose levels. Minipigs were scanned with standard 320 mg I/mL contrast concentration at 120 kVp, and with reduced formulations of 120, 170, 220 and 270 mg I/mL at 80 kVp with IR. Image quality was assessed by CT value, dose normalized contrast and signal to noise ratio (CNRD and SNRD) in the arterial and venous phases. Qualitative analysis was included by expert reading. Protocols with 170 mg I/mL or higher showed equal or superior CT values: aorta (278-468 HU versus 314 HU); portal vein (205-273 HU versus 208 HU); liver parenchyma (122-146 HU versus 115 HU). In the aorta, all 170 mg I/mL protocols or higher yielded equal or superior CNRD (15.0-28.0 versus 13.7). In liver parenchyma, all study protocols resulted in higher SNRDs. Radiation dose could be reduced from standard CTDI{sub vol} = 7.8 mGy (6.2 mSv) to 7.6 mGy (5.2 mSv) with 170 mg I/mL. Combining 80 kVp with IR allows at least a 47 % contrast agent dose reduction and 16 % radiation dose reduction for images of comparable quality. (orig.)

  10. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    Science.gov (United States)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  11. A prospective evaluation of contrast and radiation dose and image quality in cardiac CT in children with complex congenital heart disease using low-concentration iodinated contrast agent and low tube voltage and current.

    Science.gov (United States)

    Hou, Qiao-Ru; Gao, Wei; Sun, Ai-Min; Wang, Qian; Qiu, Hai-Sheng; Wang, Fang; Hu, Li-Wei; Li, Jian-Ying; Zhong, Yu-Min

    2017-02-01

    To the assess image quality, contrast dose and radiation dose in cardiac CT in children with congenital heart disease (CHD) using low-concentration iodinated contrast agent and low tube voltage and current in comparison with standard dose protocol. 110 patients with CHD were randomized to 1 of the 2 scan protocols: Group A (n = 45) with 120 mA tube current and contrast agent of 270 mgI/ml in concentration (Visipaque(™); GE Healthcare Ireland, Co., Cork, UK); and Group B (n = 65) with the conventional 160 mA and 370 mgI/ml concentration contrast (Iopamiro(®); Shanghai Bracco Sine Pharmaceutical Corp Ltd, Shanghai, China). Both groups used 80 kVp tube voltage and were reconstructed with 70% adaptive statistical iterative reconstruction algorithm. The CT value and noise in aortic arch were measured and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate image quality. Contrast and radiation dose were recorded. There was no difference in age and weight between the two groups (all p > 0.05). The iodine load and radiation dose in Group A were statistically lower (3976 ± 747 mgI vs 5763 ± 1018 mgI in iodine load and 0.60 ± 0.08 mSv vs 0.77 ± 0.10 mSv in effective dose; p  0.05), and with good agreement between the two observers. Comparing the surgery results, the diagnostic accuracy for extracardiac and intracardiac defects for Group A was 96% and 92%, respectively, while the corresponding numbers for Group B were 95% and 93%. Compared with the standard dose protocol, the use of low tube voltage (80 kVp), low tube current (120 mA) and low-concentration iodinated contrast agent (270 mgI/ml) enables a reduction of 30% in iodine load and 22% in radiation dose while maintaining compatible image quality and diagnostic accuracy. Advances in knowledge: The new cardiac CT scanning protocol can largely reduce the adverse effects of

  12. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  13. System and method for floating-substrate passive voltage contrast

    Science.gov (United States)

    Jenkins, Mark W.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Soden, Jerry M.; Walraven, Jeremy A.; Pimentel, Alejandro A.

    2009-04-28

    A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.

  14. Scanning transmission electron microscopy imaging dynamics at low accelerating voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Mizoguchi, T. [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    Motivated by the desire to minimize specimen damage in beam sensitive specimens, there has been a recent push toward using relatively low accelerating voltages (<100kV) in scanning transmission electron microscopy. To complement experimental efforts on this front, this paper seeks to explore the variations with accelerating voltage of the imaging dynamics, both of the channelling of the fast electron and of the inelastic interactions. High-angle annular-dark field, electron energy loss spectroscopic imaging and annular bright field imaging are all considered. -- Highlights: {yields} Both elastic and inelastic scattering in STEM are acceleration voltage dependent. {yields} HAADF, EELS and ABF imaging are assessed with a view to optimum imaging. {yields} Lower accelerating voltages improve STEM EELS contrast in very thin crystals. {yields} Higher accelerating voltages give better STEM EELS contrast in thicker crystals. {yields} At fixed resolution, higher accelerating voltage aids ABF imaging of light elements.

  15. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    with a simple one-to-one mapping between resolution elements of a spatial phase modulator and resolution elements of the generated intensity pattern is provided. According to the invention a method is provided for synthesizing an intensity pattern with low loss of electromagnetic energy, comprising spatial...... modulation of electromagnetic radiation with a spatial phase mask for modulation of the phase of the incident eletromagnetic radiation by phasor values of individual resolution elements of the spatial phase mask, each phasor value being determined in such a way that the values of the Fourier transformed......The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...

  16. Subharmonic imaging of contrast agents.

    Science.gov (United States)

    Forsberg, F; Shi, W T; Goldberg, B B

    2000-03-01

    Ultrasound contrast agents promise to improve the sensitivity and specificity of diagnostic ultrasound imaging. It is of great importance to adapt ultrasound equipment for optimal use with contrast agents e.g., by exploiting the nonlinear properties of the contrast microbubbles. Harmonic imaging is one technique that has been extensively studied and is commercially available. However, harmonic imaging is associated with problems, due to second harmonic generation and accumulation within the tissue itself. Given the lack of subharmonic generation in tissue, one alternative is the creation of subharmonic images by transmitting at the fundamental frequency (fo) and receiving at the subharmonic (fo/2). Subharmonic imaging should have a much better lateral resolution and may be suitable for scanning deep-lying structures owing to the higher transmit frequency and the much smaller attenuation of scattered subharmonic signals. In this paper, we will review different aspects of subharmonic imaging including implementation, in-vitro gray-scale imaging and subharmonic aided pressure estimation.

  17. Nonlinear intravascular ultrasound contrast imaging

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, Antonius F.W.

    2006-01-01

    Nonlinear contrast agent imaging with intravascular ultrasound (IVUS) is investigated using a prototype IVUS system and an experimental small bubble contrast agent. The IVUS system employed a mechanically scanned single element transducer and was operated at a 20 MHz transmit frequency (F20) for

  18. Assessment of image quality and low-contrast detectability in abdominal CT of obese patients: comparison of a novel integrated circuit with a conventional discrete circuit detector at different tube voltages

    Energy Technology Data Exchange (ETDEWEB)

    Euler, A.; Heye, T.; Kekelidze, M.; Bongartz, G.; Schindera, Sebastian T. [University of Basel Hospital, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Szucs-Farkas, Z. [Hospital Centre of Biel, Institute of Radiology, Biel (Switzerland); Sommer, C. [University Hospital, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Schmidt, B. [Siemens Healthcare Sector, Forchheim (Germany)

    2014-10-15

    To compare image quality and low-contrast detectability of an integrated circuit (IC) detector in abdominal CT of obese patients with conventional detector technology at low tube voltages. A liver phantom with 45 lesions was placed in a water container to mimic an obese patient and examined on two different CT systems at 80, 100 and 120 kVp. The systems were equipped with either the IC or conventional detector. Image noise was measured, and the contrast-to-noise-ratio (CNR) was calculated. Low-contrast detectability was assessed independently by three radiologists. Radiation dose was estimated by the volume CT dose index (CTDI{sub vol}). The image noise was significantly lower, and the CNR was significantly higher with the IC detector at 80, 100 and 120 kVp, respectively (P = 0.023). The IC detector resulted in an increased lesion detection rate at 80 kVp (38.1 % vs. 17.2 %) and 100 kVp (57.0 % vs. 41.0 %). There was no difference in the detection rate between the IC detector at 100 kVp and the conventional detector at 120 kVp (57.0 % vs. 62.2 %). The CTDI{sub vol} at 80, 100 and 120 kVp measured 4.5-5.2, 7.3-7.9 and 9.8-10.2 mGy, respectively. The IC detector at 100 kVp resulted in similar low-contrast detectability compared to the conventional detector with a 120-kVp protocol at a radiation dose reduction of 37 %. (orig.)

  19. Multiscale image contrast amplification (MUSICA)

    Science.gov (United States)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  20. High-contrast imaging testbed

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  1. Low-voltage coherent electron imaging based on a single-atom electron

    OpenAIRE

    Chang, Wei-Tse; Lin, Chun-Yueh; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection are...

  2. Small intestine contrast injection (image)

    Science.gov (United States)

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  3. Low kV rotational 3D X-ray imaging for improved CNR of iodine contrast agent

    NARCIS (Netherlands)

    Schaefer, D.; Ahrens, M.; Grass, M.

    2011-01-01

    The contrast of iodine to soft tissue (water) decreases with higher tube voltage in reconstructed 3D X-ray images. Improved acquisition protocols with a tube voltage of about 80 kV for imaging iodine have been proposed earlier for diagnostic CT imaging. We investigate the contrast-to-noise ratio (CN

  4. Phase contrast imaging of cochlear soft tissue.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Hwang, M.; Rau, C.; Fishman, A.; Lee, W.; Richter, C. (X-Ray Science Division); (Northwestern Univ.); (Diamond Light Source, Ltd.)

    2011-01-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  5. Atmospheric visibility estimation and image contrast calibration

    Science.gov (United States)

    Hermansson, Patrik; Edstam, Klas

    2016-10-01

    A method, referred to as contrast calibration, has been developed for transforming digital color photos of outdoor scenes from the atmospheric conditions, illumination and visibility, prevailing at the time of capturing the image to a corresponding image for other atmospheric conditions. A photo captured on a hazy day can, for instance, be converted to resemble a photo of the same scene for good visibility conditions. Converting digital color images to specified lightning and transmission conditions is useful for image based assessment of signature suppression solutions. The method uses "calibration objects" which are photographed at about the same time as the scene of interest. The calibration objects, which (indirectly) provide information on visibility and lightning conditions, consist of two flat boards, painted in different grayscale colors, and a commercial, neutral gray, reference card. Atmospheric extinction coefficient and sky intensity can be determined, in three wavelength bands, from image pixel values on the calibration objects and using this information the image can be converted to other atmospheric conditions. The image is transformed in contrast and color. For illustration, contrast calibration is applied to sample images of a scene acquired at different times. It is shown that contrast calibration of the images to the same reference values of extinction coefficient and sky intensity results in images that are more alike than the original images. It is also exemplified how images can be transformed to various other atmospheric weather conditions. Limitations of the method are discussed and possibilities for further development are suggested.

  6. Patient dose and image quality from mega-voltage cone beam computed tomography imaging.

    Science.gov (United States)

    Gayou, Olivier; Parda, David S; Johnson, Mark; Miften, Moyed

    2007-02-01

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  7. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  8. Phase contrast imaging of Bose condensed clouds

    NARCIS (Netherlands)

    Meppelink, R; Rozendaal, R.A.; Koller, S.B.; Vogels, J.M.; van der Straten, P.

    2010-01-01

    Phase contrast imaging is used to observe Bose-Einstein condensates (BECs) at finite temperature in situ. The imaging technique is used to accurately derive the absolute phase shift of a probe laser beam due to both the condensate and the thermal cloud. The accuracy of the method is enhanced by usin

  9. Iterative Reconstruction for Differential Phase Contrast Imaging

    NARCIS (Netherlands)

    Koehler, T.; Brendel, B.; Roessl, E.

    2011-01-01

    Purpose: The purpose of this work is to combine two areas of active research in tomographic x-ray imaging. The first one is the use of iterative reconstruction techniques. The second one is differential phase contrast imaging (DPCI). Method: We derive an SPS type maximum likelihood (ML) reconstructi

  10. Spiral phase contrast imaging in microscopy.

    Science.gov (United States)

    Fürhapter, Severin; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2005-02-07

    We demonstrate an optical method for edge contrast enhancement in light microscopy. The method is based on holographic Fourier plane filtering of the microscopic image with a spiral phase element (also called vortex phase or helical phase filter) displayed as an off-axis hologram at a computer controlled high resolution spatial light modulator (SLM) in the optical imaging pathway. The phase hologram imprints a helical phase term of the form exp(i phi) on the diffracted light field in its Fourier plane. In the image plane, this results in a strong and isotropic edge contrast enhancement for both amplitude and phase objects.

  11. Contrast sensitivity function and image discrimination.

    Science.gov (United States)

    Peli, E

    2001-02-01

    A previous study tested the validity of simulations of the appearance of a natural image (from different observation distances) generated by using a visual model and contrast sensitivity functions of the individual observers [J. Opt. Soc. Am. A 13, 1131 (1996)]. Deleting image spatial-frequency components that should be undetectable made the simulations indistinguishable from the original images at distances larger than the simulated distance. The simulated observation distance accurately predicted the distance at which the simulated image could be discriminated from the original image. Owing to the 1/f characteristic of natural images' spatial spectra, the individual contrast sensitivity functions (CSF's) used in the simulations of the previous study were actually tested only over a narrow range of retinal spatial frequencies. To test the CSF's over a wide range of frequencies, the same simulations and testing procedure were applied to five contrast versions of the images (10-300%). This provides a stronger test of the model, of the simulations, and specifically of the CSF's used. The relevant CSF for a discrimination task was found to be obtained by using 1-octave Gabor stimuli measured in a contrast detection task. The relevant CSF data had to be measured over a range of observation distances, owing to limitations of the displays.

  12. Photoacoustic phasoscopy super-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  13. NASA High Contrast Imaging for Exoplanets

    Science.gov (United States)

    Lyon, Richard G.

    2008-01-01

    Described is NASA's ongoing program for the detection and characterization of exosolar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment may enable detection of life outside our solar system. In visible light terrestrial planets are approximately 10(exp -10) dimmer than the parent star. Issues such as diffraction, scatter, wavefront, amplitude and polarization all contribute to a reduction in contrast. An overview of the techniques will be discussed.

  14. High-contrast imaging with METIS

    Science.gov (United States)

    Kenworthy, Matthew A.; Absil, Olivier; Agócs, Tibor; Pantin, Eric; Quanz, Sascha; Stuik, Remko; Snik, Frans; Brandl, Bernhard

    2016-08-01

    The Mid-infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) consists of diffraction-limited imagers that cover 3 to 14 microns with medium resolution (R 5000) long slit spectroscopy, and an integral field spectrograph for high spectral resolution spectroscopy (R 100,000) over the L and M bands. One of the science cases that METIS addresses is the characterization of faint circumstellar material and exoplanet companions through imaging and spectroscopy. We present our approach for high contrast imaging with METIS, covering diffraction suppression with coronagraphs, the removal of slowly changing optical aberrations with focal plane wavefront sensing, interferometric imaging with sparse aperture masks, and observing strategies for both the imagers and IFU image slicers.

  15. Image evolution approach for contrast enhancement

    Science.gov (United States)

    Sapiro, Guillermo; Casalles, Vicent

    1995-09-01

    An algorithm for histogram modification via image evolution equations is first presented in this paper. We show that the image histogram can be modified to achieve any given distribution as the steady state solution of this partial differential equation. We then prove that this equation corresponds to a gradient descent flow of a variational problem. That is, the proposed PDE is solving an energy minimization problem. This gives a new interpretation to histogram modification and contrast enhancement in general. This interpretation is completely formulated in the image domain, in contrast with classical techniques for histogram modification which are formulated in a probabilistic domain. From this, new algorithms for contrast enhancement, which include for example, image modeling, can be derived. Based on the energy formulation and its corresponding PDE, we show that the proposed histogram modification algorithm can be combined with denoising schemes. This allows to perform simultaneous contrast enhancement and denoising, avoiding common noise sharpening effects in classical algorithms. The approach is extended to local contrast enhancement as well. Theoretical results regarding the existence of solutions of the proposed equations are presented.

  16. Magnetic resonance perfusion imaging without contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz [University Hospital of Tuebingen, Section on Experimental Radiology, Tuebingen (Germany); Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D. [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2010-08-15

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  17. Feasibility of 3D harmonic contrast imaging

    NARCIS (Netherlands)

    Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; ten Cate, F.; de Jong, N.

    2004-01-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it

  18. Improving photoacoustic imaging contrast of brachytherapy seeds

    Science.gov (United States)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  19. Minimally-destructive Partial Phase Contrast Imaging

    CERN Document Server

    Wigley, Paul; Hardman, Kyle; Sooriyabandara, Mahasen; Perumbil, Manju; Close, John; Robins, Nicholas; Kuhn, Carlos

    2016-01-01

    This paper presents a minimally-destructive imaging technique based on a combination of phase contrast and Faraday rotation imaging used to continuously observe a condensate of 85 Rb. We demonstrate that the technique is capable of imaging a small sample of only 10 4 atoms up to 100 times with negligible decreases in atom number and no observable heating. At approximately 1GHz detuning, the SNR remains at approximately 7 for all 100 images, with a 22ms TOF absorption image confirming the survival of the condensate. The splitting of the magnetic sublevels of this species at such fields show non-trivial selection rules. We present experimental data outlining particular allowed transitions in this regime.

  20. Carotid and cerebral CT angiography using low volume of iodinated contrast material and low tube voltage.

    Science.gov (United States)

    Kayan, M; Demirtas, H; Türker, Y; Kayan, F; Çetinkaya, G; Kara, M; Orhan Çelik, A; Umul, A; Yılmaz, Ö; Recep Aktaş, A

    2016-11-01

    To evaluate image quality of carotid computed tomography angiography (CTA) using a low voltage (80kV) and low amount of iodinated contrast material. A total of 101 patients referred for carotid CTA were randomly assigned to receive a specific protocol. In group A patients received intravenous administration of contrast material at a dose of 1mL/kg and CTA examinations were performed at 100kV. In group B, patients received intravenous administration of contrast material at a dose of 0.5mL/kg and CTA examinations were performed at 80kV. The same nonionic iodinated contrast material containing 370mg of iodine per mL was used in both groups. Attenuation values were measured from the center of specific arterial segments using regions of interest. Attenuation values above 300HU were accepted as significant. Institutional review board approval was obtained. A total of 50 patients were included in group A (38 men, 12 women; mean age, 63.56 years±13.18 [SD]) and 51 patients in group B (33 men, 18 women; mean age, 59.60 years±16.63 [SD]). A total of 1615 arterial segments (1515 common carotid artery-middle cerebral artery and 101 aortic arches) were analyzed. Venous contamination was not observed in either group. The mean attenuation values of all arterial segments in both groups were greater than 300HU. Mean arterial attenuation value in group B (499.22HU±97.25 [SD]) was significantly greater than in group A (374.36HU±73.79 [SD]) (P70%) was detected in 2 segments in group A and in 3 segments in group B, while grade IV stenosis (occlusion) was detected in 2 segments in group B. Distal common carotid artery dissection was detected in 1 patient and aortic dissection was detected in 1 patient in group B. Total dose-length product (DLP) value was significantly greater in group A (225.74mGy·cm±21.80 [SD]) than in group B (116.60mGy·cm±21.22 [SD]) (Pmaterial. This provides good image quality with low radiation dose. Copyright © 2016 Editions françaises de radiologie

  1. Diffraction contrast imaging using virtual apertures

    Energy Technology Data Exchange (ETDEWEB)

    Gammer, Christoph, E-mail: cgammer@lbl.gov [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States); Physics of Nanostructured Materials, Faculty of Physics, University of Vienna (Austria); Burak Ozdol, V. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Liebscher, Christian H.; Minor, Andrew M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States)

    2015-08-15

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field.

  2. Ultrasound contrast agents for ultrasound molecular imaging.

    Science.gov (United States)

    Tranquart, F; Arditi, M; Bettinger, T; Frinking, P; Hyvelin, J M; Nunn, A; Pochon, S; Tardy, I

    2014-11-01

    Ultrasound is a real-time imaging technique which is widely used in many clinical applications for its capacity to provide anatomic information with high spatial and temporal resolution. The advent of ultrasound contrast agents in combination with contrast-specific imaging modes has given access to perfusion assessments at an organ level, leading to an improved diagnostic accuracy. More recently, the development of biologically-targeted ultrasound contrast agents has expanded the role of ultrasound even further into molecular imaging applications. Ultrasound molecular imaging can be used to visualize the expression of intravascular markers, and to assess their local presence over time and/or during therapeutic treatment. Major applications are in the field of inflammation and neoangiogenesis due to the strictly intravascular presence of microbubbles. Various technologies have been investigated for attaching the targeting moiety to the shell from simple biotin-avidin constructs to more elaborated insertion within the shell through attachment to PEG residues. This important improvement has allowed a clinical translation of initial pre-clinical investigations, opening the way for an early detection and an accurate characterization of lesions in patients. The combination of anatomic, functional and molecular information/data provided by contrast ultrasound is a powerful tool which is still in its infancy due to the lack of agents suitable for clinical use. The advantages of ultrasound techniques combined with the molecular signature of lesions will represent a significant advance in imaging in the field of personalized medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Fast contrast enhanced imaging with projection reconstruction

    Science.gov (United States)

    Peters, Dana Ceceilia

    The use of contrast agents has lead to great advances in magnetic resonance angiography (MRA). Here we present the first application of projection reconstruction to contrast enhanced MRA. In this research the limited angle projection reconstruction (PR) trajectory is implemented to acquire higher resolution images per unit time than with conventional Fourier transform (FT) imaging. It is well known that as FOV is reduced in conventional spin- warp imaging, higher resolution per unit time can be obtained, but aliasing may appear as a replication of outside material within the FOV. The limited angle PR acquisition also produces aliasing artifacts. This method produced artifacts which were unacceptable in X-ray CT but which appear to be tolerable in MR Angiography. Resolution throughout the FOV is determined by the projection readout resolution and not by the number of projections. As the number of projections is reduced, the resolution is unchanged, but low intensity artifacts appear. Here are presented the results of using limited angle PR in phantoms and contrast-enhanced angiograms of humans.

  4. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  5. Low Voltage Low Light Imager and Photodetector

    Science.gov (United States)

    Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.

  6. Contrast MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kogame, Saeko; Syakudo, Miyuki; Inoue, Yuichi (Osaka City Univ. (Japan). Faculty of Medicine) (and others)

    1992-04-01

    Thirty patients with acute and subacute cerebral infarction (13 and 17 deep cerebral infarction) were studied with 0.5 T MR unit before and after intravenous injection of Gd-DTPA. Thirteen patients were studied within 7 days after neurological ictus, 17 patients were studied between 7 and 14 days. Two types of abnormal enhancement, cortical arterial and parenchymal enhancement, were noted. The former was seen in 3 of 4 cases of very acute cortical infarction within 4 days after clinical ictus. The latter was detected in all 7 cases of cortical infarction after the 6th day of the ictus, and one patient with deep cerebral infarction at the 12th day of the ictus. Gd-DTPA enhanced MR imaging seems to detect gyral enhancement earlier compared with contrast CT, and depict intra-arterial sluggish flow which was not expected to see on contrast CT scans. (author).

  7. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  8. Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing.

    Science.gov (United States)

    Nezafat, Reza; Han, Yuchi; Peters, Dana C; Herzka, Daniel A; Wylie, John V; Goddu, Beth; Kissinger, Kraig K; Yeon, Susan B; Zimetbaum, Peter J; Manning, Warren J

    2007-12-01

    Recently, there has been increased interest in imaging the coronary vein anatomy to guide interventional cardiovascular procedures such as cardiac resynchronization therapy (CRT), a device therapy for congestive heart failure (CHF). With CRT the lateral wall of the left ventricle is electrically paced using a transvenous coronary sinus lead or surgically placed epicardial lead. Proper transvenous lead placement is facilitated by the knowledge of the coronary vein anatomy. Cardiovascular MR (CMR) has the potential to image the coronary veins. In this study we propose and test CMR techniques and protocols for imaging the coronary venous anatomy. Three aspects of design of imaging sequence were studied: magnetization preparation schemes (T(2) preparation and magnetization transfer), imaging sequences (gradient-echo (GRE) and steady-state free precession (SSFP)), and imaging time during the cardiac cycle. Numerical and in vivo studies both in healthy and CHF subjects were performed to optimize and demonstrate the utility of CMR for coronary vein imaging. Magnetization transfer was superior to T(2) preparation for contrast enhancement. Both GRE and SSFP were viable imaging sequences, although GRE provided more robust results with better contrast. Imaging during the end-systolic quiescent period was preferable as it coincided with the maximum size of the coronary veins.

  9. Contrast-to-noise in X-ray differential phase contrast imaging

    NARCIS (Netherlands)

    Engel, K.J.; Geller, D.; Koehler, T.; Martens, G.; Schusser, S.; Vogtmeier, G.; Roessl, E.

    2011-01-01

    A quantitative theory for the contrast-to-noise ratio (CNR) in differential phase contrast imaging (DPCI) is proposed and compared to that of images derived from classical absorption contrast imaging (ACI). Most prominently, the CNR for DPCI contains the reciprocal of thespatial wavelength to be ima

  10. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  11. Imaging with low-voltage scanning transmission electron microscopy: A quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Felisari, L. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); Grillo, V., E-mail: vincenzo.grillo@unimore.it [Istituto Nanoscienze-S3 CNR, via Campi 213/A, 41125 Modena (Italy); IMEM-CNR Parco Area delle Scienze 37/A, 43124 Parma (Italy); Jabeen, F.; Rubini, S. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); Menozzi, C. [Istituto Nanoscienze-S3 CNR, via Campi 213/A, 41125 Modena (Italy); Dipartimento di Fisica, Universita di Modena e Reggio Emilia Via G. Campi 213/A, 41100 Modena (Italy); Rossi, F. [IMEM-CNR Parco Area delle Scienze 37/A, 43124 Parma (Italy); Martelli, F. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); IMM-CNR, via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2011-07-15

    A dedicated specimen holder has been designed to perform low-voltage scanning transmission electron microscopy in dark field mode. Different test samples, namely InGaAs/GaAs quantum wells, InGaAs nanowires and thick InGaAs layers, have been analysed to test the reliability of the model based on the proportionality to the specimen mass-thickness, generally used for image intensity interpretation of scattering contrast processes. We found that size of the probe, absorption and channelling must be taken into account to give a quantitative interpretation of image intensity. We develop a simple procedure to evaluate the probe-size effect and to obtain a quantitative indication of the absorption coefficient. Possible artefacts induced by channelling are pointed out. With the developed procedure, the low voltage approach can be successfully applied for quantitative compositional analysis. The method is then applied to the estimation of the In content in the core of InGaAs/GaAs core-shell nanowires. -- Highlights: {yields} Quantitative analysis of the composition by low-voltage STEM annular dark field. {yields} First evidence of channelling effects in low-voltage STEM in SEM. {yields} Comparison between low-voltage and high-voltage STEM. {yields} Evaluation of the absorption effects on the STEM intensity.

  12. Feasibility of differential phase contrast CT for whole body imaging

    Science.gov (United States)

    Li, Ke; Bevins, Nicholas B.; Zambelli, Joseph N.; Chen, Guang-Hong

    2012-07-01

    Phase contrast based imaging techniques have shown improved contrast in certain biological materials. This has led to an increased interest for the potential of preclinical and clinical imaging systems that incorporate phase sensitive imaging techniques. However, the interplay between the phase contrast mechanism and the so-called small-angle scattering or dark-field mechanism is often not considered. In this work we explore the potential for phase-sensitive whole body imaging by imaging a freshly euthanized specimen. The results suggest that when extrapolating phantom and ex vivo results to whole body imaging, one must consider the complex anatomy of the entire body and its effect on each contrast mechanism.

  13. Acoustically modulated x-ray phase contrast imaging.

    Science.gov (United States)

    Hamilton, Theron J; Bailat, Claude J; Rose-Petruck, Christoph; Diebold, Gerald J

    2004-11-07

    We report the use of ultrasonic radiation pressure with phase contrast x-ray imaging to give an image proportional to the space derivative of a conventional phase contrast image in the direction of propagation of an ultrasonic beam. Intense ultrasound is used to exert forces on objects within a body giving displacements of the order of tens to hundreds of microns. Subtraction of images made with and without the ultrasound field gives an image that removes low spatial frequency features and highlights high frequency features. The method acts as an acoustic 'contrast agent' for phase contrast x-ray imaging, which in soft tissue acts to highlight small density changes.

  14. Research progress of magnetic resonance imaging contrast agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnetic resonance imaging (MRI) is a clinical diagnostic modality, which has become popular in hospitals around the world. Approximately 30% of MRI exams include the use of contrast agents. The research progress of the paramagnetic resonance imaging contrast agents was described briefly. Three important approaches in the soluble paramagnetic resonance imaging contrast agents design including nonionic, tissue-specific and macromolecular contrast agents were investigated. In addition, the problems in the research and development in future were discussed.

  15. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  16. Low tube voltage and low contrast material volume cerebral CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Song [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Xuzhou Medical College, School of Medical Imaging, Xuzhou, Jiangsu (China); Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Meinel, Felix G.; McQuiston, Andrew D. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Zhou, Chang Sheng; Qi, Li [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2014-07-15

    To evaluate the image quality, radiation dose and diagnostic accuracy of low kVp and low contrast material volume cerebral CT angiography (CTA) in intracranial aneurysm detection. One hundred twenty patients were randomly divided into three groups (n = 40 for each): Group A, 70 ml iodinated contrast agent/120 kVp; group B, 30 ml/100 kVp; group C, 30 ml/80 kVp. The CT numbers, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Subjective image quality was evaluated. For patients undergoing DSA, diagnostic accuracy of CTA was calculated with DSA as reference standard and compared. CT numbers of ICA and MCA were higher in groups B and C than in group A (P < 0.01). SNR and CNR in groups A and B were higher than in group C (both P < 0.05). There was no difference in subjective image quality among the three groups (P = 0.939). Diagnostic accuracy for aneurysm detection among these groups had no statistical difference (P = 1.00). Compared with group A, the radiation dose of groups B and C was decreased by 45 % and 74 %. Cerebral CTA at 100 or 80 kVp using 30 ml contrast agent can obtain diagnostic image quality with a low radiation dose while maintaining the same diagnostic accuracy for aneurysm detection. (orig.)

  17. Low-voltage coherent electron imaging based on a single-atom electron

    CERN Document Server

    Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...

  18. Subharmonic Contrast Intravascular Ultrasound for Vasa Vasorum Imaging

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; Tempel, Dennie; Bhagwandas, Vijay; Gisolf, Andries; Krams, Robert; Jong, de Nico; Steen, van der Antonius F.W.

    2007-01-01

    The feasibility of subharmonic contrast intravascular ultrasound (IVUS) imaging was investigated using a prototype nonlinear IVUS system and the commercial contrast agent Definity™. The system employed a mechanically scanned commercial catheter with a custom transducer element fabricated to have sen

  19. Refraction-contrast bone imaging using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto [Ibaraki Prefectural Univ. of Health Sciences, Ami (Japan); Shimao, Daisuke [Ibaraki Prefectural Univ. of Health Sciences, Ami (Japan). Graduate School of Health Sciences; Shiwaku, Hideaki [Japan Atomic Energy Research Inst., Mikazuki, Hyogo (Japan). Synchrotron Radiation Research Center; Hyodo, Kazuyuki [High Energy Accelerator Research Org., Tsukuba, Ibaraki (Japan). Inst. of Material Structure Sciences; Oka, Hiroshi [St. Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    2002-03-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  20. Use of Fourier domain filtering and dynamic programming in finding a titanium coil implant in high voltage x-ray images

    DEFF Research Database (Denmark)

    Nielsen, Henning; Hansen, Jesper Carl

    2006-01-01

    This paper deals with the problem of finding precise position and orientation of a titanium coil implant in humans. Analysis of high voltage X-rays stereo images are used to determine the true 3D position. High voltage images inherently presents with poor contrast. Various image processing techni...... determined the position of the titanium wire within less than 1 mm of ground truth determined from manual analysis of the images....

  1. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  2. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  3. Spatial frequency, phase, and the contrast of natural images

    Science.gov (United States)

    Bex, Peter J.; Makous, Walter

    2002-06-01

    We examined contrast sensitivity and suprathreshold apparent contrast with natural images. The spatial-frequency components within single octaves of the images were removed (notch filtered), their phases were randomized, or the polarity of the images was inverted. Of Michelson contrast, root-mean-square (RMS) contrast, and band-limited contrast, RMS contrast was the best index of detectability. Negative images had lower apparent contrast than their positives. Contrast detection thresholds showed spatial-frequency-dependent elevation following both notch filtering and phase randomization. The peak of the spatial-frequency tuning function was approximately 0.5-2 cycles per degree (c/deg). Suprathreshold contrast matching functions also showed spatial-frequency-dependent contrast loss for both notch-filtered and phase-randomized images. The peak of the spatial-frequency tuning function was approximately 1-3 c/deg. There was no detectable difference between the effects of phase randomization and notch filtering on contrast sensitivity. We argue that these observations are consistent with changes in the activity within spatial-frequency channels caused by the higher-order phase structure of natural images that is responsible for the presence of edges and specularities.

  4. 低浓度对比剂和低管电压结合适应性统计迭代技术对腹部动脉血管成像质量的影响%Effect of Low Contrast Dose and Low Tube Voltage Combined with Adaptive Statistical Iterative Reconstruction in the Image Quality of Abdominal CT Angiography

    Institute of Scientific and Technical Information of China (English)

    吕婷婷; 刘爱连; 汪禾青; 田士峰; 刘静红; 刘义军

    2015-01-01

    Purpose To investigate the effect of low contrast dose and low tube voltage combined with adaptive statistical iterative reconstruction (ASIR) on image quality of abdominal CT angiography. Materials and Methods 139 patients with body mass index (BMI) 0.80) in both groups, the subjective score of group A and group B were 4.60±0.51 and 3.81±0.76, respectively, and the difference was statistically significant (Z= - 6.86, P0.05). The total amount of iodine dose in group A and group B was 270 mg and 350 mg respectively, with a 22.86% reduce of the total iodine for each patient in A group than in B group. Conclusion For patients with BMI0.80),A、B 组图像右肾动脉评分分别为(4.60±0.51)分和(3.81±0.76)分,差异有统计学意义(Z=-6.86,P0.05);A、B 组总碘量分别为270 mg、350 mg,A 组较 B 组每位患者总碘量降低了22.86%。结论对于 BMI<22 kg/m2的患者,低浓度对比剂、低管电压结合 ASIR 技术能够提高腹部CTA 图像质量,并有效降低辐射剂量及对比剂碘含量。

  5. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    Science.gov (United States)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  6. A New Method of CT MedicalImages Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    SUNFeng-rong; LIUWei; WANGChang-yu; MEILiang-mo

    2004-01-01

    A new method of contrast enhancement is proposed in the paper using multiscale edge representation of images, and is applied to the field of CT medical image processing. Comparing to the traditional Window technique, our method is adaptive and meets the demand of radiology clinics more better. The clinical experiment results show the practicality and the potential applied value of our methodin the field of CT medical images contrast enhancement.

  7. Local Adaptive Contrast Enhancement for Color Images

    NARCIS (Netherlands)

    Dijk, J.; Hollander, R.J.M.; Schavemaker, J.G.M.; Schutte, K.

    2007-01-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects thatcan be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a

  8. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Science.gov (United States)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  9. Dual energy contrast enhanced breast imaging optimization using contrast to noise ratio

    Science.gov (United States)

    Arvanitis, C. D.; Royle, G.; Speller, R.

    2007-03-01

    The properties of dual energy contrast enhanced breast imaging have been analyzed by imaging a 4 cm breast equivalent phantom consisting of adipose and glandular equivalent plastics. This phantom had superimposed another thin plastic which incorporated a 2 mm deep cylinder filled with iodinated contrast media. The iodine projected thicknesses used for this study was 3 mg/cm2. Low and high energy spectra that straddle the iodine K-edge were used. Critical parameters such as the energy spectra and exposure are discussed, along with post processing by means of nonlinear energy dependent function. The dual energy image was evaluated using the relative contrast to noise ratio of a 2.5 mm x 2.5 mm region of the image at the different iodine concentrations incorporating different breast composition with respect to the noniodinated areas. Optimum results were achieved when the low and high-energy images were used in such a way that relative contrast to noise ratio of the iodine with respect to the background tissue was maximum. A figure of merit suggests that higher noise levels can be tolerated at the benefit of lower exposure. Contrast media kinetics of a phantom incorporating a water flow of 20.4 ml/min through the plastic cylinder suggests that time domain imaging could be performed with this approach. The results suggest that optimization of dual energy contrast enhanced mammography has the potential to lead to the development of perfusion digital mammography.

  10. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    formulated in order to suppress inflamed cytokine expression by siRNA transfection as well as following the migration of macrophage using MRI and NIR bio-imaging. The nano-complexes could inhibit 50 % mRNA expression and 39 % protein expression. In the in vivo cell tracking NIR bio-imaging and MRI...... for chemotherapy. The nanoparticles were 150 nm in size with spherical shape, which contained PFOB in the inner core and Dox and ICG in the polymeric shell. More importantly, they could target folate receptor expressing cancer cells, which provide positive in vitro and in vivo NIR and 19F MRI results. In project...... stem cells and Raw 264.7 macrophages were chitosan-to-particles weight ratios of w0.1 and w0.01, respectively. In vivo 19F MRI results showed the possibility of capturing labeled cells indicating the potential use of PLGA PFOB in future research involving such as cell migration. . In regard of magnetic...

  11. Endoluminal contrast for abdomen and pelvis magnetic resonance imaging.

    Science.gov (United States)

    Gupta, Mohit K; Khatri, Gaurav; Bailey, April; Pinho, Daniella F; Costa, Daniel; Pedrosa, Ivan

    2016-07-01

    Magnetic resonance (MR) imaging of the abdomen and pelvis can be limited for assessment of different conditions when imaging inadequately distended hollow organs. Endoluminal contrast agents may provide improved anatomic definition and detection of subtle pathology in such scenarios. The available routes of administration for endoluminal contrast agents include oral, endorectal, endovaginal, intravesicular, and through non-physiologic accesses. Appropriate use of endoluminal contrast agents requires a thorough understanding of the clinical indications, available contrast agents, patient preparation, and interaction of the contrast agent with the desired MR imaging protocol. For example, biphasic oral enteric contrast agents are preferred in MR enterography as their signal properties on T1- and T2-weighted imaging allow for evaluation of both intraluminal and bowel wall pathology. In specific situations such as with MR enterography, MR defecography, and accurate local staging of certain pelvic tumors, the use of an endoluminal contrast agent is imperative in providing adequate diagnostic imaging. In other clinical scenarios, the use of an endoluminal contrast agent may serve as an indispensable problem-solving tool.

  12. Motility Contrast Imaging and Tissue Dynamics Spectroscopy

    Science.gov (United States)

    Nolte, David D.; An, Ran; Turek, John

    Motion is the defining physiological characteristic of living matter. If we are interested in how things function, then the way they move is most informative. Motion provides an endogenous and functional suite of biomarkers that are sensitive to subtle changes that occur under applied pharmacological doses or cellular stresses. This chapter reviews the application of biodynamic imaging to measure cellular dynamics in three-dimensional tissue culture for drug screening applications. Nanoscale and microscale motions are detected through statistical fluctuations in dynamic speckle across an ensemble of cells within each resolution voxel. Tissue dynamics spectroscopy generates drug-response spectrograms that serve as phenotypic fingerprints of drug action and can differentiate responses from heterogeneous regions of tumor tissue.

  13. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  14. The optimal polarizations for achieving maximum contrast in radar images

    Science.gov (United States)

    Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter.

  15. A Review of Image Contrast Enhancement Methods and Techniques

    Directory of Open Access Journals (Sweden)

    G. Maragatham

    2015-02-01

    Full Text Available In this study we aim to provide a survey of existing enhancement techniques with their descriptions and present a detailed analysis of them. Since most of the images while capturing are affected by weather, poor lighting and the acquiring device itself, they suffer from poor contrast. Sufficient Contrast in an image makes an object distinguishable from the other objects and the background. Contrast enhancement improves the quality of images for human observer by expanding the dynamic range of input gray level. A plethora enhancement techniques have though emerged, none of them deem to be a universal one, thus becoming selective in application. In such a scenario, it has become imperative to provide a comprehensive survey of these contrast enhancement techniques used in digital image processing.

  16. Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2014-12-01

    Full Text Available Photoacoustic imaging (PAI and thermoacoustic imaging (TAI are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed.

  17. Contrast agents for photoacoustic and thermoacoustic imaging: a review.

    Science.gov (United States)

    Wu, Dan; Huang, Lin; Jiang, Max S; Jiang, Huabei

    2014-12-18

    Photoacoustic imaging (PAI) and thermoacoustic imaging (TAI) are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed.

  18. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3{sup rd} generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Poole, Zachary B.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions, Malvern, PA (United States); Caruso, Damiano [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Bamberg, Fabian; Nikolaou, Konstantin [Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-10-15

    To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA). We evaluated 272 patients who underwent CCTA with 3{sup rd} generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis. Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥.0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p <.0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥.0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤.0414). Correlation analysis showed a moderate association between tube voltage and BMI (r =.639). ATVS allows individual tube voltage adaptation for CCTA performed with 3{sup rd} generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality. (orig.)

  19. Contrast Improvement in Sub- and Ultraharmonic Ultrasound Contrast Imaging by Combining Several Hammerstein Models

    Directory of Open Access Journals (Sweden)

    Fatima Sbeity

    2013-01-01

    Full Text Available Sub- and ultraharmonic (SUH ultrasound contrast imaging is an alternative modality to the second harmonic imaging, since, in specific conditions it could produce high quality echographic images. This modality enables the contrast enhancement of echographic images by using SUH present in the contrast agent response but absent from the nonperfused tissue. For a better access to the components generated by the ultrasound contrast agents, nonlinear techniques based on Hammerstein model are preferred. As the major limitation of Hammerstein model is its capacity of modeling harmonic components only, in this work we propose two methods allowing to model SUH. These new methods use several Hammerstein models to identify contrast agent signals having SUH components and to separate these components from harmonic components. The application of the proposed methods for modeling simulated contrast agent signals shows their efficiency in modeling these signals and in separating SUH components. The achieved gain with respect to the standard Hammerstein model was 26.8 dB and 22.8 dB for the two proposed methods, respectively.

  20. Image quality and high contrast improvements on VLT/NACO

    CERN Document Server

    Girard, Julien H V; Mawet, Dimitri; Kasper, Markus; Zins, Gérard; Neichel, Benoît; Kolb, Johann; Christiaens, Valentin; Tourneboeuf, Martin; 10.1117/12.925660

    2012-01-01

    NACO is the famous and versatile diffraction limited NIR imager and spectrograph with which ESO celebrated 10 years of Adaptive Optics at the VLT. Since two years a substantial effort has been put in to understanding and fixing issues that directly affect the image quality and the high contrast performances of the instrument. Experiments to compensate the non-common-path aberrations and recover the highest possible Strehl ratios have been carried out successfully and a plan is hereafter described to perform such measurements regularly. The drift associated to pupil tracking since 2007 was fixed in October 2011. NACO is therefore even better suited for high contrast imaging and can be used with coronagraphic masks in the image plane. Some contrast measurements are shown and discussed. The work accomplished on NACO will serve as reference for the next generation instruments on the VLT, especially those working at the diffraction limit and making use of angular differential imaging (i.e. SPHERE, VISIR, possibly ...

  1. Contrast optimization in X-ray radiography with single photon counting imagers of Medipix type

    Science.gov (United States)

    Jandejsek, I.; Dammer, J.; Jakubek, J.; Vavrik, D.; Zemlicka, J.

    2012-12-01

    Systematical measurement and optimization of the image contrast in the terms of the signal to noise ratio (SNR) reached by two detector systems Medipix2 (Si sensor) and Flat Panel (Scintillator + CMOS) is the aim of this work. The measurement is carried out with micro-focus X-ray source and aluminum step phantom specimen of various thicknesses. The SNR is computed from measured image data for various combination of aluminum thicknesses and in dependence on tube voltage and acquisition time. On the basis of the results, the comparison of two detector systems is done and the illustrative SNR optimization process for a hypothetical and real samples is demonstrated.

  2. Grid-Based Fourier Transform Phase Contrast Imaging

    Science.gov (United States)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  3. Novel contrast-enhanced ultrasound imaging in prostate cancer

    NARCIS (Netherlands)

    Smeenge, M.; Mischi, M.; Laguna Pes, M.P.; de la Rosette, J.J.M.C.H.; Wijkstra, H.

    2011-01-01

    The purposes of this paper were to present the current status of contrast-enhanced transrectal ultrasound imaging and to discuss the latest achievements and techniques now under preclinical testing. Although grayscale transrectal ultrasound is the standard method for prostate imaging, it lacks accur

  4. Image enhancement by adjusting the contrast of spatial frequencies

    Science.gov (United States)

    Yang, Ching-Chung

    2008-02-01

    We demonstrate a brand-new method for image enhancement by adjusting the contrast of different spatial frequencies. Fine characteristics of an image are well enhanced with negligible side effects. This method is easy to implement owing to its simple optical basis.

  5. Selective polarization imager for contrast enhancement in extended scattering media

    Science.gov (United States)

    Miller, Darren Alexis

    Improved imaging and detection of objects through turbid obscurants is a vital problem of current interest to both military and civilian entities. Image quality is severely degraded when obscurant fields such as fog, smoke, dust, etc., lie between an object and the light-collecting optics. Conventional intensity imaging through turbid media suffers from rapid loss of image contrast due to light scattering from particles (e.g. in fog) or random variations of refractive index (e.g. in medical imaging). Intensity imaging does not differentiate between rays scattered off particles in the obscurant field and those reflected off objects within the field. Scattering degrades image quality in all spectral bands (UV, visible, and IR), although the amount of degradation is wavelength dependent. This dissertation features the development of innovative system designs and techniques that utilize scattered radiation's deterministic polarization state evolution to greatly enhance the image contrast of stand-off objects within obscurant fields such as smoke, fog, or dust using active polarized illumination in the visible. The produced sensors acquire and process image data in real time using computationally non-intensive algorithms that differentiate between radiation that scatters or reflects from obscured objects and the radiation from the scattering media, improving image contrast by factors of ten or greater for dense water vapor obscurants.

  6. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  7. Mechanical compression for contrasting OCT images of biotissues

    Science.gov (United States)

    Kirillin, Mikhail Y.; Argba, Pavel D.; Kamensky, Vladislav A.

    2011-06-01

    Contrasting of biotissue layers in OCT images after application of mechanical compression is discussed. The study is performed on ex vivo samples of human rectum, and in vivo on skin of human volunteers. We show that mechanical compression provides contrasting of biotissue layer boundaries due to different mechanical properties of layers. We show that alteration of pressure from 0 up to 0.45 N/mm2 causes contrast increase from 1 to 10 dB in OCT imaging of human rectum ex vivo. Results of ex vivo studies are in good agreement with Monte Carlo simulations. Application of pressure of 0.45 N/mm2 causes increase in contrast of epidermis-dermis junction in OCT-images of human skin in vivo for about 10 dB.

  8. Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Agata; Stefanczyk, Ludomir [Medical University of Lodz, Radiology Department, Lodz (Poland); Bogorodzki, Piotr; Piatkowska-Janko, Ewa; Kurjata, Robert [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Wolak, Tomasz [Institute of Physiology and Pathology of Hearing, Warsaw (Poland)

    2009-04-15

    The aim of this study was to prove the concept of using a long intravenous half-life blood-pool T1 contrast agent as a new functional imaging method. For each of ten healthy subjects, two dynamic magnetic resonance (MR) protocols were carried out: (1) a reference run with a typical T2* echo-planar imaging (EPI) sequence based on the blood oxygenation level-dependent (BOLD) effect and (2) a run with a T1-sensitive three-dimensional (3D) gradient-echo (GRE) sequence using cerebral blood volume (CBV) contrast after intravenous administration of a contrast agent containing a chelate of gadolinium diethylene-triamine-pentaacetate with a phosphono-oxymethyl substituent. All sequences were performed during the execution of a block-type finger-tapping paradigm. SPM5 software was used for statistical analysis. For both runs maximum activations (peak Z-score = 5.5, cluster size 3,449 voxels) were localized in the left postcentral gyrus. Visual inspection of respective signal amplitudes suggests the T1 contrast to be substantially smaller than EPI (0.5% vs 1%). A new functional imaging method with potentially smaller image artefacts due to the nature of CBV contrast and characteristics of the T1 sequence was proposed and verified. (orig.)

  9. Contrast Enhancement of Color Images with Bi-Histogram

    Directory of Open Access Journals (Sweden)

    Paramjit Singh,

    2014-06-01

    Full Text Available Histogram equalization is a widely used scheme for contrast enhancement in a variety of applications due to its simple function and effectiveness. One possible drawback of the histogram equalization is that it can change the mean brightness of an image significantly as a consequence of histogram flattening. Clearly, this is not a desirable property when preserving the original mean brightness of a given image is necessary. Bi-histogram equalization is able to overcome this drawback for gray scale images. In this paper, we explore the use of bi-histogram equalization based technique for enhancing RGB color images. The technique is based on cumulative density function of a quantized image. From the results it is concluded that bi-histogram equalization is able to improve the contrast of colored images significantly.

  10. Coastal Digital Surface Model on Low Contrast Images

    Science.gov (United States)

    Rosu, A.-M.; Assenbaum, M.; De la Torre, Y.; Pierrot-Deseilligny, M.

    2015-08-01

    Coastal sandy environments are extremely dynamic and require regular monitoring that can easily be achieved by using an unmanned aerial system (UAS) including a drone and a photo camera. The acquired images have low contrast and homogeneous texture. Using these images and with very few, if any, ground control points (GCPs), it is difficult to obtain a digital surface model (DSM) by classical correlation and automatic interest points determination approach. A possible response to this problem is to work with enhanced, contrast filtered images. To achieve this, we use and tune the free open-source software MicMac.

  11. Contrast media-doped hydrodissection during thermal ablation: optimizing contrast media concentration for improved visibility on CT images.

    Science.gov (United States)

    Campbell, Calista; Lubner, Meghan G; Hinshaw, J Louis; Muñoz del Rio, Alejandro; Brace, Christopher L

    2012-09-01

    The purpose of this study is to determine a concentration of iodinated contrast media in saline and 5% dextrose in water (D5W) for organ hydrodissection, a technique used to physically separate and protect tissues adjacent to thermal ablations. A total of 28 samples were prepared from 1:1000-1:1 iohexol or iothalamate meglumine contrast media in either normal saline or D5W. Samples alone or juxtaposed with a homogeneous liver-mimicking phantom were imaged by CT using 80-120 kVp and 10-300 mAs. Mean CT numbers and noise were measured from the fluid, background air, phantom adjacent to the fluid, and phantom distant from the fluid. Visibility was determined from the contrast-to-noise ratio between the fluid and phantom, whereas streaking artifact was quantified by relative noise in the phantom. Measures were individually fit using multiple linear regression to determine an optimal contrast-to-fluid ratio for increased visualization without streaking. Contrast media- and blood-doped saline and D5W were also tested to determine whether such doping altered their electrical conductivity. Iohexol concentration most influenced CT number; volumetric ratios of 1:1000-1:1 produced 20 HU to over 3000 HU. CT numbers were weakly dependent on x-ray tube voltage, whereas contrast-to-noise ratio and streaking artifacts were somewhat dependent on tube output. An optimal ratio of iohexol in fluid was determined to be 1:50. There was no significant difference between the electrical impedances of doped and pure saline or D5W (p > 0.5, all cases). A 1:50 ratio of iohexol in saline or D5W provides an optimal combination of increased visibility on CT without streaking artifacts.

  12. Dynamic contrast-enhanced 3D photoacoustic imaging

    Science.gov (United States)

    Wong, Philip; Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality that integrates the strengths from both optical imaging and acoustic imaging while simultaneously overcoming many of their respective weaknesses. In previous work, we reported on a real-time 3D PAI system comprised of a 32-element hemispherical array of transducers. Using the system, we demonstrated the ability to capture photoacoustic data, reconstruct a 3D photoacoustic image, and display select slices of the 3D image every 1.4 s, where each 3D image resulted from a single laser pulse. The present study aimed to exploit the rapid imaging speed of an upgraded 3D PAI system by evaluating its ability to perform dynamic contrast-enhanced imaging. The contrast dynamics can provide rich datasets that contain insight into perfusion, pharmacokinetics and physiology. We captured a series of 3D PA images of a flow phantom before and during injection of piglet and rabbit blood. Principal component analysis was utilized to classify the data according to its spatiotemporal information. The results suggested that this technique can be used to separate a sequence of 3D PA images into a series of images representative of main features according to spatiotemporal flow dynamics.

  13. Motility contrast imaging of live porcine cumulus-oocyte complexes

    Science.gov (United States)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  14. Contrast ultrasound molecular imaging of inflammation in cardiovascular disease.

    Science.gov (United States)

    Lindner, Jonathan R

    2009-11-01

    The cellular immune response plays an important role in almost every major form of cardiovascular disease. The ability to image the key aspects of the immune response in the clinical setting could be used to improve diagnostic information, to provide important prognostic or risk information, and to customize therapy according to disease phenotype. Accordingly, targeted imaging probes for assessing inflammation have been developed for essentially all forms of medical imaging. Molecular imaging of inflammation with contrast ultrasound relies on the detection of targeted microbubble or other gas-filled particle contrast agents. These agents are confined to the vascular space and, hence, have been targeted to either activated leucocytes or endothelial cell adhesion molecules that are upregulated in inflammation and mediate leucocyte recruitment and adhesion. This review focuses on the inflammation-targeting strategies for ultrasound contrast agents and how they have been matched to cardiovascular disease states such as myocardial ischaemia, infarction, atherosclerosis, transplant rejection, and arteriogenesis.

  15. Phase contrast imaging of breast tumours with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: aolivo@medphys.ucl.ac.uk; Rigon, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Area Science Park, Padriciano 99, 34012 Trieste (Italy)], E-mail: rigon@ts.infn.it; Vinnicombe, S.J. [Department of Radiology, St. Bartholomews Hospital, Barts and the London NHS Trust, West Smithfield, London EC1A 7BE (United Kingdom)], E-mail: s.j.vinnicombe@qmul.ac.uk; Cheung, K.C. [STFC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire WA4 4AD (United Kingdom)], E-mail: k.c.cheung@dl.ac.uk; Ibison, M. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)], E-mail: m.ibison@dl.ac.uk; Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: rspeller@medphys.ucl.ac.uk

    2009-06-15

    Even though the potential of phase contrast (PC) imaging has been demonstrated in a number of biological tissue samples, the availability of free-space propagation phase contrast images of real breast tumours is still limited. The aim of this study was to obtain phase contrast images of two different pathological breast specimens containing tumours of differing morphological type at two synchrotron radiation (SR) facilities, and to assess any qualitative improvements in the evaluation and characterisation of the masses through the use of phase contrast imaging. A second aim was to assess the effects of parameters such as detector resolution, beam energy and sample-to-detector distance on image quality using the same breast specimens, as to date these effects have been modelled and discussed only for geometric phantoms. At each synchrotron radiation facility a range of images was acquired with different detectors and by varying the above parameters. Images of the same samples were also acquired with the absorption-based approach to allow a direct comparison and estimation of the advantages specifically ascribable to the PC technique.

  16. Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, J., E-mail: jacques.cazaux@univ-reims.fr [LISM, EA 4695 Faculty of Sciences, BP 1039, 51687 Reims Cedex 2 (France); Kuwano, N. [Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Sato, K. [Steel Research Laboratory, JFE Steel Corporation, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan)

    2013-12-15

    Due to the influence of refraction effects on the escape probability of the Back-Scattered Electrons (BSE), an expression of the fraction of these BSE is given as a function of the beam energy, E°, and emission angle (with respect to the normal) α. It has been shown that these effects are very sensitive to a local change of the work function in particular for low emerging angles. This sensitivity suggests a new type of contrast in Low Voltage Scanning Electron Microscopy (LVSEM for E°<2 keV): the work function contrast. Involving the change of ϕ with crystalline orientation, this possibility is supported by a new interpretation of a few published images. Some other correlated contrasts are also suggested. These are topographical contrasts or contrasts due to subsurface particles and cracks. Practical considerations of the detection system and its optimization are indicated. - Highlights: • Refraction effects experienced by Back-Scattered Electrons at sample/vacuum interfaces are evaluated as a function of energy and angles. • Sensitive to local work function changes with crystalline orientation these effects concern mainly keV-electrons at low emerging angles. • A new type of contrast in SEM is thus deduced and illustrated. • Some other correlated contrasts, topographical contrasts or contrasts due to subsurface particles and cracks are also suggested.

  17. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jian-xin [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Wang, Yi-min, E-mail: wym6669@yahoo.com.cn [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Lu, Jin-guo [Department of Cardiology, Asia Heart Hospital, Wuhan (China); Zhang, Yu; Wang, Peng; Yang, Cheng [Department of Radiology, Wuhan 161th Hospital, Wuhan (China)

    2014-02-15

    Objective: To investigate the effects of 80-kilovoltage (kV) tube voltage coronary computed tomographic angiography (CCTA) with a reduced amount of contrast agent on qualitative and quantitative image quality parameters and on radiation dose in patients with a body mass index (BMI) <23.0 kg/m{sup 2}. Methods: One hundred and twenty consecutive patients with a BMI <23.0 kg/m{sup 2} and a low calcium load undergoing retrospective electrocardiogram (ECG)-gated dual-source CCTA were randomized into two groups [standard-tube voltage (120-kV) vs. low-tube voltage (80-kV)]. The injection flow rate of contrast agent (350 mg I/mL) was adjusted to body weight of each patient (4.5–5.5 mL/s in the 120-kV group and 2.8–3.8 mL/s in the 80-kV group). Radiation and contrast agent doses were evaluated. Quantitative image quality parameters and figure of merit (FOM) of coronary artery were evaluated. Each coronary segment was evaluated for image quality on a 4-point scale. Results: Compared with the 120-kV group, effective dose and amount of contrast agent in the 80-kV group were decreased by 57.8% and 30.5% (effective dose:2.7 ± 0.5vs. 6.4 ± 1.3 mSv; amount of contrast agent:57.1 ± 3.2 vs. 82.1 ± 6.1 mL; both p < 0.0001), respectively. Image noise was 22.7 ± 2.1 HU for 120-kV images and 33.2 ± 5.2 HU for 80-kV images (p < 0.0001). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the proximal right coronary artery (RCA) and left main coronary artery (LMA) were all lower in 80-kV than 120-kV images (SNR in the proximal RCA: 16.5 ± 1.8 vs. 19.4 ± 2.8; SNR in the LMA: 16.3 ± 2.0 vs.19.6 ± 2.7; CNR in the proximal RCA: 19.4 ± 2.3 vs.22.9 ± 3.0; CNR in the LMA: 18.8 ± 2.4 vs. 22.7 ± 2.9; all p < 0.0001). FOM were all significantly higher in 80-kV than 120-kV images (proximal RCA: 146.7 ± 45.1 vs. 93.4 ± 32.0; LMA: 139.1 ± 47.2 vs. 91.6 ± 31.1; all p < 0.0001). There was no significant difference in image quality score between the two groups (3.3 ± 0

  18. Mesh-based phase contrast Fourier transform imaging

    Science.gov (United States)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  19. [Contrast in static images in clinical magnetic resonance imaging. Part 2: Sequences for various contrast weightings and applications].

    Science.gov (United States)

    Schick, F

    2013-08-01

    The second part of this educational article focuses on sequence techniques in magnetic resonance imaging (MRI) and on suitable parameter sets for different contrast weightings. The content is based on the recently published part 1 of this educational article providing a survey on tissue properties relevant for most important contrast mechanisms. Characteristics of contrast weightings are presented in exemplary images recorded from healthy volunteers. Typical clinical applications of the most commonly used contrast weightings are described and discussed. Sequences for the following contrast weightings are included: proton density (density of hydrogen in small mobile molecules), relaxation times T1 and T2, chemical shift (water and fat), effects of magnetic susceptibility, restricted diffusion of water molecules and magnetization transfer between macromolecules and water molecules.

  20. Vascular contrast in narrow-band and white light imaging.

    Science.gov (United States)

    Du Le, V N; Wang, Quanzeng; Gould, Taylor; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2014-06-20

    Narrow-band imaging (NBI) is a spectrally selective reflectance imaging technique that is used clinically for enhancing visualization of superficial vasculature and has shown promise for applications such as early endoscopic detection of gastrointestinal neoplasia. We have studied the effect of vessel geometry and illumination wavelength on vascular contrast using idealized geometries in order to more quantitatively understand NBI and broadband or white light imaging of mucosal tissue. Simulations were performed using a three-dimensional, voxel-based Monte Carlo model incorporating discrete vessels. In all cases, either 415 or 540 nm illumination produced higher contrast than white light, yet white light did not always produce the lowest contrast. White light produced the lowest contrast for small vessels and intermediate contrast for large vessels (diameter≥100  μm) at deep regions (vessel depth≥200  μm). The results show that 415 nm illuminations provided superior contrast for smaller vessels at shallow depths while 540 nm provided superior contrast for larger vessels in deep regions. Besides 540 nm, our studies also indicate the potential of other wavelengths to achieve high contrast of large vessels at deep regions. Simulation results indicate the importance of three key mechanisms in determining spectral variations in contrast: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering. Measurements of NBI contrast in turbid phantoms incorporating 0.1-mm-diameter hemoglobin-filled capillary tubes indicated good agreement with modeling results. These results provide quantitative insights into light-tissue interactions and the effect of device and tissue properties on NBI performance.

  1. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  2. LEEM image phase contrast of MnAs stripes

    Energy Technology Data Exchange (ETDEWEB)

    Pang, A.B., E-mail: pangangbo@gmail.com [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui, 235000 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Pavlovska, A. [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Däweritz, L. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Locatelli, A. [Sincrotrone Trieste, S.C.p.a., Basovizza, Trieste 34012 (Italy); Bauer, E. [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Altman, M.S. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2013-07-15

    Low energy electron microscopy (LEEM) imaging of strained MnAs layers epitaxially grown on GaAs(001) reveals striped contrast features that become more pronounced and vary systematically in width with increasing defocus, but that are completely absent in focus. Weaker subsidiary fringe-like features are observed along the stripe lengths, while asymmetric contrast reversal occurs between under-focus and over-focus conditions. A Fourier optics calculation is performed that demonstrates that these unusual observations can be attributed to a phase contrast mechanism between the hexagonal α phase and orthorhombic β phase regions of the MnAs film, which self-organize into a periodic stripe array with ridge-groove morphology. The unequal widths of the α and β phase regions are determined accurately from the through focus series, while the height variation in this system can also be determined in principle from the energy dependence of contrast. - Highlights: • LEEM image of MnAs/GaAs(001) reveals striped contrast features varying with defocus. • Duplex contrast and asymmetric reversal between under- and over-focus are observed. • Fourier optics calculation attributes the contrast to a phase contrast mechanism. • Widths of the α and β phase regions are determined accurately. • Height variation in this system can also be determined in principle.

  3. Dual-frequency transducer for nonlinear contrast agent imaging.

    Science.gov (United States)

    Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck

    2013-12-01

    Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.

  4. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    Science.gov (United States)

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-09-06

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more

  5. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging.

    Science.gov (United States)

    Goertz, David E; Frijlink, Martijn E; Tempel, Dennie; Bhagwandas, Vijay; Gisolf, Andries; Krams, Robert; de Jong, Nico; van der Steen, Antonius F W

    2007-12-01

    The feasibility of subharmonic contrast intravascular ultrasound (IVUS) imaging was investigated using a prototype nonlinear IVUS system and the commercial contrast agent Definity . The system employed a mechanically scanned commercial catheter with a custom transducer element fabricated to have sensitivity at both 15 and 30 MHz. Experiments were conducted at a fundamental frequency of 30 MHz (F30; 25% bandwidth), with on-axis pressures ranging from 0.12 to 0.79 MPa, as measured with a needle hydrophone. In vitro characterization experiments demonstrated the detection of 15 MHz subharmonic signals (SH15) when pressure levels reached 360 kPa. The formation of SH15 images was shown, with tissue signals suppressed to near the noise floor and contrast to tissue ratios were improved by up to 30 dB relative to F30. In vivo experiments were performed using the atherosclerotic rabbit aorta model. Following the bolus injection of contrast agent upstream of the imaging catheter, agent was detected within the aorta, vena cava and within the perivascular space. These results provide a first in vivo demonstration of subharmonic contrast IVUS and suggest its potential as a new technique for imaging vasa vasorum.

  6. On filtration for high-energy phase-contrast x-ray imaging

    Science.gov (United States)

    Riess, Christian; Mohamed, Ashraf; Hinshaw, Waldo; Fahrig, Rebecca

    2015-03-01

    Phase-sensitive x-ray imaging promises unprecedented soft-tissue contrast and resolution. However, several practical challenges have to be overcome when using the setup in a clinical environment. The system design that is currently closest to clinical use is the grating-based Talbot-Lau interferometer (GBI).1-3 The requirements for patient imaging are low patient dose, fast imaging time, and high image quality. For GBI, these requirements can be met most successfully with a narrow energy width, high- ux spectrum. Additionally, to penetrate a human-sized object, the design energy of the system has to be well above 40 keV. To our knowledge, little research has been done so far to investigate optimal GBI filtration at such high x-ray energies. In this paper, we study different filtration strategies and their impact on high-energy GBI. Specifically, we compare copper filtration at low peak voltage with equal-absorption, equal-imaging time K-edge filtration of spectra with higher peak voltage under clinically realistic boundary conditions. We specifically focus on a design energy of 59 keV and investigate combinations of tube current, peak voltage, and filtration that lead to equal patient absorption. Theoretical considerations suggest that the K edge of tantalum might provide a transmission pocket at around 59 keV, yielding a well-shaped spectrum. Although one can observe a slight visibility benefit when using tungsten or tantalum filtration, experimental results indicate that visibility benefits most from a low x-ray tube peak voltage.

  7. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  8. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging.

    Science.gov (United States)

    Ho, Chris Jun Hui; Balasundaram, Ghayathri; Driessen, Wouter; McLaren, Ross; Wong, Chi Lok; Dinish, U S; Attia, Amalina Binte Ebrahim; Ntziachristos, Vasilis; Olivo, Malini

    2014-06-18

    Photoacoustic imaging is a novel hybrid imaging modality combining the high spatial resolution of optical imaging with the high penetration depth of ultrasound imaging. Here, for the first time, we evaluate the efficacy of various photosensitizers that are widely used as photodynamic therapeutic (PDT) agents as photoacoustic contrast agents. Photoacoustic imaging of photosensitizers exhibits advantages over fluorescence imaging, which is prone to photobleaching and autofluorescence interference. In this work, we examined the photoacoustic activity of 5 photosensitizers: zinc phthalocyanine, protoporphyrin IX, 2,4-bis [4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine, chlorin e6 and methylene blue in phantoms, among which zinc phthalocyanine showed the highest photoacoustic activity. Subsequently, we evaluated its tumor localization efficiency and biodistribution at multiple time points in a murine model using photoacoustic imaging. We observed that the probe localized at the tumor within 10 minutes post injection, reaching peak accumulation around 1 hour and was cleared within 24 hours, thus, demonstrating the potential of photosensitizers as photoacoustic imaging contrast agents in vivo. This means that the known advantages of photosensitizers such as preferential tumor uptake and PDT efficacy can be combined with photoacoustic imaging capabilities to achieve longitudinal monitoring of cancer progression and therapy in vivo.

  9. Multifunctional Photosensitizer-Based Contrast Agents for Photoacoustic Imaging

    Science.gov (United States)

    Ho, Chris Jun Hui; Balasundaram, Ghayathri; Driessen, Wouter; McLaren, Ross; Wong, Chi Lok; Dinish, U. S.; Attia, Amalina Binte Ebrahim; Ntziachristos, Vasilis; Olivo, Malini

    2014-06-01

    Photoacoustic imaging is a novel hybrid imaging modality combining the high spatial resolution of optical imaging with the high penetration depth of ultrasound imaging. Here, for the first time, we evaluate the efficacy of various photosensitizers that are widely used as photodynamic therapeutic (PDT) agents as photoacoustic contrast agents. Photoacoustic imaging of photosensitizers exhibits advantages over fluorescence imaging, which is prone to photobleaching and autofluorescence interference. In this work, we examined the photoacoustic activity of 5 photosensitizers: zinc phthalocyanine, protoporphyrin IX, 2,4-bis [4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine, chlorin e6 and methylene blue in phantoms, among which zinc phthalocyanine showed the highest photoacoustic activity. Subsequently, we evaluated its tumor localization efficiency and biodistribution at multiple time points in a murine model using photoacoustic imaging. We observed that the probe localized at the tumor within 10 minutes post injection, reaching peak accumulation around 1 hour and was cleared within 24 hours, thus, demonstrating the potential of photosensitizers as photoacoustic imaging contrast agents in vivo. This means that the known advantages of photosensitizers such as preferential tumor uptake and PDT efficacy can be combined with photoacoustic imaging capabilities to achieve longitudinal monitoring of cancer progression and therapy in vivo.

  10. Low concentration contrast medium for dual-source computed tomography coronary angiography by a combination of iterative reconstruction and low-tube-voltage technique: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Minwen, E-mail: zhengmw2007@163.com; Liu, Ying, E-mail: yingyinglyly@126.com; Wei, Mengqi, E-mail: weimengqi2008@163.com; Wu, Yongjie, E-mail: wu18291988526@163.com; Zhao, Hongliang, E-mail: zhaohl1980@163.com; Li, Jian, E-mail: xjyylj@yeah.net

    2014-02-15

    Objectives: To assess the impact of low-concentration contrast medium on vascular enhancement, image quality and radiation dose of coronary CT angiography (cCTA) by using a combination of iterative reconstruction (IR) and low-tube-voltage technique. Materials and methods: One hundred patients were prospectively randomized to two types of contrast medium and underwent prospective electrocardiogram-triggering cCTA (Definition Flash, Siemens Healthcare; collimation: 128 mm × 0.6 mm; tube current: 300 mA s). Fifty patients received Iopromide 370 were scanned using the conventional tube setting (100 kVp or 120 kVp if BMI ≥ 25 kg/m{sup 2}) and reconstructed with filtered back projection (FBP). Fifty patients received Iodixanol 270 were scanned using the low-tube-voltage (80 kVp or 100 kVp if BMI ≥ 25 kg/m{sup 2}) technique and reconstructed with IR. CT attenuation was measured in coronary artery and other anatomical regions. Noise, image quality and radiation dose were compared. Results: Compared with two Iopromide 370 subgroups, Iomeprol 270 subgroups showed no significant difference in CT attenuation (576.63 ± 95.50 vs. 569.51 ± 118.93 for BMI < 25 kg/m{sup 2}, p = 0.647 and 394.19 ± 68.09 vs. 383.72 ± 63.11 for BMI ≥ 25 kg/m{sup 2}, p = 0.212), noise (in various anatomical regions of interest) and image quality (3.5 vs. 4.0, p = 0.13), but significantly (0.41 ± 0.17 vs. 0.94 ± 0.45 for BMI < 25 kg/m{sup 2}, p < 0.001 and 1.14 ± 0.24 vs. 2.37 ± 0.69 for BMI ≥ 25 kg/m{sup 2}, p < 0.001) lower radiation dose, which reflects dose saving of 56.4% and 51.9%, respectively. Conclusions: Combined IR with low-tube-voltage technique, a low-concentration contrast medium of 270 mg I/ml can still maintain the contrast enhancement without impairing image quality, as well as significantly lower the radiation dose.

  11. Signal Improvement and Contrast Enhancement in Magnetic Resonance Imaging

    CERN Document Server

    Han, Yi

    2015-01-01

    This thesis reports advances in magnetic resonance imaging (MRI), with the ultimate goal of improving signal and contrast in biomedical applications. More specifically, novel MRI pulse sequences have been designed to characterize microstructure, enhance signal and contrast in tissue, and image functional processes. In this thesis, rat brain and red bone marrow images are acquired using iMQCs (intermolecular multiple quantum coherences) between intermediate separated spins. As an important application, iMQCs images in different directions can be used for anisotropy mapping and tissue microstructure analysis. At the same time, the simulations prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Besides magnitude of iMQCs, phase of iMQCs should be studied as well. The phase anisotropy maps built by our method can clearly show susceptibility information in rat brain. It may provide meaningful diagnostic information. To deeply study susceptibility, the m...

  12. Elemental x-ray imaging using Zernike phase contrast

    Science.gov (United States)

    Shao, Qi-Gang; Chen, Jian; Wali, Faiz; Bao, Yuan; Wang, Zhi-Li; Zhu, Pei-Ping; Tian, Yang-Chao; Gao, Kun

    2016-10-01

    We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method. Project supported by the National Basic Research Program of China (Grant No. 2012CB825801) and the National Natural Science Foundation of China (Grant Nos. 11505188, and 11305173).

  13. Time-gated optical imaging through turbid media using stimulated Raman scattering: Studies on image contrast

    Indian Academy of Sciences (India)

    K Divakar Rao; H S Patel; B Jain; P K Gupta

    2005-02-01

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher physical thickness, and that the contrast improves with decreasing value of anisotropy parameters of the scatterers. These results are consistent with time-resolved Monte Carlo simulations.

  14. Molecular imaging with dynamic contrast-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A., E-mail: k.a.miles@bsms.ac.u [Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton (United Kingdom)

    2010-07-15

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a quantitative technique that employs rapid sequences of CT images after bolus administration of intravenous contrast material to measure a range of physiological processes related to the microvasculature of tissues. By combining knowledge of the molecular processes underlying changes in vascular physiology with an understanding of the relationship between vascular physiology and CT contrast enhancement, DCE-CT can be redefined as a molecular imaging technique. Some DCE-CT derived parameters reflect tissue hypoxia and can, therefore, provide information about the cellular microenvironment. DCE-CT can also depict physiological processes, such as vasodilatation, that represent the physiological consequences of molecular responses to tissue hypoxia. To date the main applications have been in stroke and oncology. Unlike some other molecular imaging approaches, DCE-CT benefits from wide availability and ease of application along with the use of contrast materials and software packages that have achieved full regulatory approval. Hence, DCE-CT represents a molecular imaging technique that is applicable in clinical practice today.

  15. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  16. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  17. Preliminary clinical application of an adaptive iterative statistical reconstruction algorithm inhead and neck computed tomography angiography with low tube voltage and a low concentration of contrast medium

    Institute of Scientific and Technical Information of China (English)

    Shan Hu; Wenzhen Zhu; Daoyu Hu; XiaoYan Meng; Jinhua Zhang; Weijia Wan; Li Zhou

    2015-01-01

    Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgI/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgI/mL contrast medium, and group B (n = 20) was administered 270 mgI/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skul base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistical y compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P < 0.001). The CNR and SNR values in group B were also statistical y higher than those in group A (P < 0.001). Image noise and BHAs were not significantly dif erent between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smal er than those in group A (P< 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P < 0.001 for both). Conclusion Visipaque

  18. Luminosity and contrast normalization in color retinal images based on standard reference image

    Science.gov (United States)

    S. Varnousfaderani, Ehsan; Yousefi, Siamak; Belghith, Akram; Goldbaum, Michael H.

    2016-03-01

    Color retinal images are used manually or automatically for diagnosis and monitoring progression of a retinal diseases. Color retinal images have large luminosity and contrast variability within and across images due to the large natural variations in retinal pigmentation and complex imaging setups. The quality of retinal images may affect the performance of automatic screening tools therefore different normalization methods are developed to uniform data before applying any further analysis or processing. In this paper we propose a new reliable method to remove non-uniform illumination in retinal images and improve their contrast based on contrast of the reference image. The non-uniform illumination is removed by normalizing luminance image using local mean and standard deviation. Then the contrast is enhanced by shifting histograms of uniform illuminated retinal image toward histograms of the reference image to have similar histogram peaks. This process improve the contrast without changing inter correlation of pixels in different color channels. In compliance with the way humans perceive color, the uniform color space of LUV is used for normalization. The proposed method is widely tested on large dataset of retinal images with present of different pathologies such as Exudate, Lesion, Hemorrhages and Cotton-Wool and in different illumination conditions and imaging setups. Results shows that proposed method successfully equalize illumination and enhances contrast of retinal images without adding any extra artifacts.

  19. Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure

    Directory of Open Access Journals (Sweden)

    Jinshan Tang

    2011-08-01

    Full Text Available Low contrast images, suffering from a lack of sharpness, are easily influenced by noise. As a result, many local false peaks may be generated in contrast measurements, making it difficult for the camera’s passive auto-focus system to perform its function of locating the focused peak. In this paper, a new passive auto-focus algorithm is proposed to address this problem. First, a noise reduction preprocessing is introduced to make our algorithm robust to both additive noise and multiplicative noise. Then, a new contrast measure is presented to bring in local false peaks, ensuring the presence of a well defined focused peak. In order to gauge the performance of our algorithm, a modified peak search algorithm is used in the experiments. The experimental results from an actual digital camera validate the effectiveness of our proposed algorithm.

  20. Quasi-real-time fluorescence imaging with lifetime dependent contrast

    Science.gov (United States)

    Jiang, Pei-Chi; Grundfest, Warren S.; Stafsudd, Oscar M.

    2011-08-01

    Conventional fluorescence lifetime imaging requires complicated algorithms to extract lifetimes of fluorophores and acquisition of multiple data points at progressively longer delay times to characterize tissues. To address diminishing signal-to-noise ratios at these progressively longer time delays, we report a time-resolved fluorescence imaging method, normalized fluorescence yield imaging that does not require the extraction of lifetimes. The concept is to extract the ``contrast'' instead of the lifetime value of the fluorophores by using simple mathematical algorithms. This process converts differences in decay times directly to different intensities. The technique was verified experimentally using a gated iCCD camera and an ultraviolet light-emitting diode light source. It was shown that this method can distinguish between chemical dyes (Fluorescein and Rhodamine-B) and biomedical samples, such as powders of elastin and collagen. Good contrast was obtained between fluorophores that varied by less than 6% in lifetime. Additionally, it was shown that long gate times up to 16 ns achieve good contrast depending upon the samples to be studied. These results support the feasibility of time-resolved fluorescence imaging without lifetime extraction, which has a potential clinical role in noninvasive real-time imaging.

  1. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy.

    Science.gov (United States)

    Guo, Caixin; Jin, Yushen; Dai, Zhifei

    2014-05-21

    Among all the imaging techniques, ultrasound imaging has a unique advantage due to its features of real-time, low cost, high safety, and portability. Ultrasound contrast agents (UCAs) have been widely used to enhance ultrasonic signals. One of the most exciting features of UCAs for use in biomedicine is the possibility of easily putting new combinations of functional molecules into microbubbles (MBs), which are the most routinely used UCAs. Various therapeutic agents and medical nanoparticles (quantum dots, gold, Fe3O4, etc.) can be loaded into ultrasound-responsive MBs. Hence, UCAs can be developed as multifunctional agents that integrate capabilities for early detection and diagnosis and for imaging guided therapy of various diseases. The current review will focus on such state-of-the-art UCA platforms that have been exploited for multimodal imaging and for imaging guided photothermal therapy.

  2. The ZIMPOL high contrast imaging polarimeter for SPHERE: polarimetric high contrast commissioning results

    Science.gov (United States)

    Roelfsema, Ronald; Bazzon, Andreas; Schmid, Hans Martin; Pragt, Johan; Govaert, Alain; Gisler, Daniel; Dominik, Carsten; Baruffolo, Andrea; Beuzit, Jean-Luc; Costille, Anne; Dohlen, Kjetil; Downing, Mark; Elswijk, Eddy; de Haan, Menno; Hubin, Norbert; Kasper, Markus; Keller, Christoph; Lizon, Jean-Louis; Mouillet, David; Pavlov, Alexey; Puget, Pascal; Salasnich, Bernardo; Sauvage, Jean-Francois; Wildi, Francois

    2016-07-01

    SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) is a second generation VLT instrument aimed at the direct detection of exo-planets. It has received its first light in May 2014. ZIMPOL (Zurich Imaging Polarimeter) is the imaging polarimeter subsystem of the SPHERE instrument. It's capable of both high accuracy and high sensitivity polarimetry but can also be used as a classical imager. It is located behind an extreme AO system and a stellar coronagraph. ZIMPOL operates at visible wavelengths which is best suited to detect the very faint reflected and hence polarized visible light from extra solar planets. During the SPHERE fourth commissioning period (October 2014) we have made deep coronagraphic observations of the bright star alpha Gru (mR = 1.75) to assess the high contrast polarimetric performance of SPHERE-ZIMPOL. We have integrated on the target for a total time of about 45 minutes during the meridian transit in the Very Broad Band filter (600 - 900 nm) with a classical Lyot coronagraph with 3 λ/D radius focal mask. We reduce the data by a combination of Polarized Background subtraction, Polarimetric Differential Imaging (PDI) and Angular Differential Imaging (ADI). We reach contrasts of 10-6 and 10-7 at a radial distances of respectively 7 and 14 lambda/D from the PSF core. At these radial distances we are respectively a factor of 10 and 2 above the photon noise limit. We discuss our results by considering the temporal and spatial speckle behavior close to the PSF core in combination with low order polarimetric aberrations.

  3. Contrasting roles of Ih and the persistent sodium current at subthreshold voltages during naturalistic stimuli.

    Science.gov (United States)

    Thor, Michael G; Morris, Gareth

    2016-11-01

    The subthreshold activity of hippocampal CA1 pyramidal neurons is regulated by the persistent sodium current (INaP) and the h-current (Ih), carried by tetrodotoxin-sensitive sodium channels and hyperpolarization-activated cyclic-nucleotide-gated channels, respectively. Recently, Yamada-Hanff and Bean (J Neurophysiol 114: 2376-2389, 2015) used pharmacological methods to discern the roles of Ih and INaP at subthreshold voltages during naturalistic stimuli. We discuss these findings in the context of dorsoventral heterogeneity in the hippocampus and suggest further applications of the method.

  4. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  5. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    K. Heath Martin

    2014-11-01

    Full Text Available For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  6. Adaptive image contrast enhancement algorithm for point-based rendering

    Science.gov (United States)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  7. High-contrast self-imaging with ordered optical elements

    CERN Document Server

    Naqavi, Ali; Rossi, Markus

    2016-01-01

    Creating arbitrary light patterns finds applications in various domains including lithography, beam shaping, metrology, sensing and imaging. We study the formation of high-contrast light patterns that are obtained by transmission through an ordered optical element based on self-imaging.By applying the phase-space method, we explain phenomena such as the Talbot and the angular Talbot effects. We show that the image contrast is maximum when the source is either a plane wave or a point source, and it has a minimum for a source with finite spatial extent. We compare these regimes and address some of their fundamental differences. Specifically, we prove that increasing the source divergence reduces the contrast for the plane wave illumination but increases it for the point source. Also, we show that to achieve high contrast with a point source, tuning the source size and its distance to the element is crucial.We furthermore indicate and explore the possibility of realizing highly complex light patterns by using a ...

  8. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    Energy Technology Data Exchange (ETDEWEB)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Wijkstra, Hessel [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Academic Medical Center, Urology Dept., University of Amsterdam (Netherlands)

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  9. Characterizing growth patterns in longitudinal MRI using image contrast

    Science.gov (United States)

    Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido

    2014-03-01

    Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.

  10. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon [Inje University College of Medicine, Pusan (Korea, Republic of)

    1994-08-15

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days.

  11. Optimal Phase Masks for High Contrast Imaging Applications

    Science.gov (United States)

    Ruane, Garreth J.

    2016-05-01

    Phase-only optical elements can provide a number of important functions for high-contrast imaging. This thesis presents analytical and numerical optical design methods for accomplishing specific tasks, the most significant of which is the precise suppression of light from a distant point source. Instruments designed for this purpose are known as coronagraphs. Here, advanced coronagraph designs are presented that offer improved theoretical performance in comparison to the current state-of-the-art. Applications of these systems include the direct imaging and characterization of exoplanets and circumstellar disks with high sensitivity. Several new coronagraph designs are introduced and, in some cases, experimental support is provided. In addition, two novel high-contrast imaging applications are discussed: the measurement of sub-resolution information using coronagraphic optics and the protection of sensors from laser damage. The former is based on experimental measurements of the sensitivity of a coronagraph to source displacement. The latter discussion presents the current state of ongoing theoretical work. Beyond the mentioned applications, the main outcome of this thesis is a generalized theory for the design of optical systems with one of more phase masks that provide precise control of radiation over a large dynamic range, which is relevant in various high-contrast imaging scenarios. The optimal phase masks depend on the necessary tasks, the maximum number of optics, and application specific performance measures. The challenges and future prospects of this work are discussed in detail.

  12. Facial nerve palsy: Evaluation by contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, T.; Ishii, K.; Okitsu, T.; Okudera, T.; Ogawa, T

    2001-11-01

    AIM: The purpose of this study was to investigate the value of contrast-enhanced magnetic resonance (MR) imaging in patients with peripheral facial nerve palsy. MATERIALS AND METHODS: MR imaging was performed in 147 patients with facial nerve palsy, using a 1.0 T unit. All of 147 patients were evaluated by contrast-enhanced MR imaging and the pattern of enhancement was compared with that in 300 control subjects evaluated for suspected acoustic neurinoma. RESULTS: The intrameatal and labyrinthine segments of the normal facial nerve did not show enhancement, whereas enhancement of the distal intrameatal segment and the labyrinthine segment was respectively found in 67% and 43% of patients with Bell's palsy. The geniculate ganglion or the tympanic-mastoid segment was enhanced in 21% of normal controls versus 91% of patients with Bell's palsy. Abnormal enhancement of the non-paralyzed facial nerve was found in a patient with bilateral temporal bone fracture. CONCLUSION: Enhancement of the distal intrameatal and labyrinthine segments is specific for facial nerve palsy. Contrast-enhanced MR imaging can reveal inflammatory facial nerve lesions and traumatic nerve injury, including clinically silent damage in trauma. Kinoshita T. et al. (2001)

  13. High Contrast Imaging with the JWST NIRCAM Coronagraph

    Science.gov (United States)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  14. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    Science.gov (United States)

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information.

  15. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  16. Iodine contrast cone beam CT imaging of breast cancer

    Science.gov (United States)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  17. High Contrast Imaging Testbed for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Lowmman, Andrew E.; Trauger, John T.; Gordon, Brian; Green, Joseph J.; Moody, Dwight; Niessner, Albert F.; Shi, Fang

    2004-01-01

    The Terrestrial Planet Finder (TPF) mission is planning to launch a visible coronagraphic space telescope in 2014. To achieve TPF science goals, the coronagraph must have extreme levels of wavefront correction (less than 1 Angstrom rms over controllable spatial frequencies) and stability to get the necessary suppression of diffracted starlight (approximately l0(exp -10)) contrast at an angular separation approximately 4 (lamda)/D). TPF Coronagraph's primary platform for experimentation is the High Contrast Imaging Testbed, which will provide laboratory validation of key technologies as well as demonstration of a flight-traceable approach to implementation. Precision wavefront control in the testbed is provided by a high actuator density deformable mirror. Diffracted light control is achieved through use of occulting or apodizing masks and stops. Contrast measurements will establish the technical feasibility of TPF requirements, while model and error budget validation will demonstrate implementation viability. This paper describes the current testbed design, development approach, and recent experimental results.

  18. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  19. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  20. Accuracy of pre-contrast imaging in abdominal magnetic resonance imaging of pediatric oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaki, Faizah [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Universiti Kebangsaan Malaysia Medical Center, Department of Radiology, Kuala Lumpur (Malaysia); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto, ON (Canada); Grant, Ronald [University of Toronto, Department of Hematology and Oncology, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Chavhan, Govind B. [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada)

    2016-11-15

    Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging. To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients. We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard. The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P < 0.0001), but the interobserver agreement for the change in confidence was poor (kappa 0.12). Pre-contrast abdominal MR imaging has high accuracy in lesion detection in pediatric oncology patients and shows substantial agreement with the reference standard for characterization of lesions. Gadolinium-based contrast media administration cannot be completely eliminated but can be avoided in many cases, with the decision made on a case-by-case basis, taking into consideration location and type of tumor. (orig.)

  1. Contrast imaging with a monochromatic x-ray scanner

    Science.gov (United States)

    Pole, Donald J.; Popovic, Kosta; Williams, Mark B.

    2008-03-01

    We are currently developing a monochromatic x-ray source for small animal tomographic imaging. This source consists of a conventional cone beam microfocus x-ray tube with a tungsten target coupled to a filter that uses Bragg diffraction to transmit only x-rays within a narrow energy range (~3 keV FWHM). A tissue-equivalent mouse phantom was used to a) evaluate how clearly CT imaging using the quasi-monoenergetic beam is able to differentiate tissue types compared to conventional polyenergetic CT, and b) to test the ability of the source and Bragg filter combination to perform dual energy, iodine contrast enhanced imaging. Single slice CT scans of the phantom were obtained both with polyenergetic (1.8 mm Al filtration) and quasi-monoenergetic beams. Region of interest analysis showed that pixel value variance was signifcantly reduced in the quasi-monochromatic case compared to the polyenergetic case, suggesting a reduction in the variance of the linear attenuation coefficients of the tissue equivalent materials due to the narrower energy spectrum. To test dual energy iodine K-edge imaging, vials containing solutions with a range of iodine contrasts were added to the phantom. Single-slice CT scans were obtained using spectra with maximum values at 30 and 35 keV, respectively. Analysis of the resulting difference images (35 keV image - 30 keV image) shows that the magnitude of the difference signal produced by iodine exceeds that of bone for iodine concentrations above ~20 mg/ml, and that of muscle and fat tissues for iodine concentrations above ~5 mg/ml.

  2. Research of nonlinear simulation on sweep voltage of streak tube imaging lidar

    Science.gov (United States)

    Zhai, Qian; Han, Shao-kun; Zhai, Yu; Lei, Jie-yu; Yao, Jian-feng

    2016-10-01

    In order to study the influence of nonlinear sweep voltage on the range accuracy of streak tube imaging lidar, a nonlinear distance model of streak tube is proposed. The model of the parallel-plate deflection system is studied, and the mathematical relation between the sweep voltage and the position of the image point on the screen is obtained based on the movement rule of phoelectron. And the mathematical model of the sweep voltage is established on the basis of its principle. The simulation of streak image is carried out for the selected staircase target, the range image of the target can be reconstructed by extremum method. Comparing reconstruction result and actual target, the range accuracy caused by the nonlinear sweep voltage is obtained. The curve of the errors varying with target ranges is also obtained. And the range accuracy of the system is analyzed by the means of changing the parameter relate to sweep time.

  3. Dynamic contrast enhanced magnetic resonance imaging in chronic Achilles tendinosis.

    Science.gov (United States)

    Gärdin, Anna; Brismar, Torkel B; Movin, Tomas; Shalabi, Adel

    2013-11-22

    Chronic Achilles tendinosis is a common problem. When evaluating and comparing different therapies there is a need for reliable imaging methods. Our aim was to evaluate if chronic Achilles tendinosis affects the dynamic contrast-enhancement in the tendon and its surroundings and if short-term eccentric calf-muscle training normalizes the dynamic contrast-enhancement. 20 patients with chronic Achilles tendinopathy were included. Median duration of symptoms was 31 months (range 6 to 120 months). Both Achilles tendons were examined with dynamic contrast enhanced MRI before and after a 12- week exercise programme of eccentric calf-muscle training. The dynamic MRI was evaluated in tendon, vessel and in fat ventrally of tendon. Area under the curve (AUC), time to peak of signal, signal increase per second (SI/s) and increase in signal between start and peak as a percentage (SI%) was calculated. Pain and performance were evaluated using a questionnaire. In the fat ventrally of the tendon, dynamic contrast enhancement was significantly higher in the symptomatic leg compared to the contralateral non-symptomatic leg before but not after treatment. Despite decreased pain and improved performance there was no significant change of dynamic contrast enhancement in symptomatic tendons after treatment. In Achilles tendinosis there is an increased contrast enhancement in the fat ventrally of the tendon. The lack of correlation with symptoms and the lack of significant changes in tendon contrast enhancement parameters do however indicate that dynamic enhanced MRI is currently not a useful method to evaluate chronic Achilles tendinosis.

  4. Learning Discriminative Subspaces on Random Contrasts for Image Saliency Analysis.

    Science.gov (United States)

    Fang, Shu; Li, Jia; Tian, Yonghong; Huang, Tiejun; Chen, Xiaowu

    2017-05-01

    In visual saliency estimation, one of the most challenging tasks is to distinguish targets and distractors that share certain visual attributes. With the observation that such targets and distractors can sometimes be easily separated when projected to specific subspaces, we propose to estimate image saliency by learning a set of discriminative subspaces that perform the best in popping out targets and suppressing distractors. Toward this end, we first conduct principal component analysis on massive randomly selected image patches. The principal components, which correspond to the largest eigenvalues, are selected to construct candidate subspaces since they often demonstrate impressive abilities to separate targets and distractors. By projecting images onto various subspaces, we further characterize each image patch by its contrasts against randomly selected neighboring and peripheral regions. In this manner, the probable targets often have the highest responses, while the responses at background regions become very low. Based on such random contrasts, an optimization framework with pairwise binary terms is adopted to learn the saliency model that best separates salient targets and distractors by optimally integrating the cues from various subspaces. Experimental results on two public benchmarks show that the proposed approach outperforms 16 state-of-the-art methods in human fixation prediction.

  5. Contrast-enhanced ultrasound for liver imaging: recent advances.

    Science.gov (United States)

    Salvatore, Veronica; Borghi, Alberto; Piscaglia, Fabio

    2012-01-01

    Contrast-enhanced ultrasonography (CEUS), providing relevant informations not available with non-enhanced ultrasonography, greatly impacted the practice of liver imaging. The characterization of focal liver lesions (FLLs), is obtained in a rapid, accurate and safe way and is considered the main hepatic indication; however CEUS offers other established or emergent relevant applications. Metastases detection and assessment of response to locoregional tumor treatment are accepted applications with specific indications. Needle guidance in case of poorly or non visible target lesions at conventional ultrasound is also accepted. The early assessment of response to systemic treatment, and in particular to antiangiogenic ones, by quantification software is an emergent application. The manageability of CEUS determined also its use in the operating theatre, improving the accuracy of intraoperatory US with a significant impact on final surgical strategy. In cirrhotic patients, the role of CEUS was proven highly accurate and sensitive in the characterization of portal vein thrombosis, by identification of contrast arterial enhancement inside the thrombus, that occurs only in case of neoplastic origin. In recent years microbubbles taken up by Kupffer cells, thus possessing a "postvascular" phase, were registered as ultrasound contrast agent in Japan (Sonazoid). During the post-vascular phase tumoral tissue tend to appear as a contrast defect image due to the lack of Kupffer cells, strongly contributing to tumor staging beside characterization. Newly developed techniques, such as fusion imaging or real-time three dimensional US, in addition to other applications of CEUS, in terms of post-transplantation or cholecystitis-related complications, have been recently proposed and will be discussed.

  6. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  7. Optical Fourier techniques for medical image processing and phase contrast imaging.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy.

  8. SU-D-12A-02: DeTECT, a Method to Enhance Soft Tissue Contrast From Mega Voltage CT

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, K; Gou, S; Qi, S [UCLA School of Medicine, Los Angeles, CA (United States)

    2014-06-01

    Purpose: MVCT images have been used on TomoTherapy system to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation and adaptive radiation therapy is severely limited due to minimal photoelectric interaction and prominent presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. We aim to utilize a non-local means denoising method and texture analysis to recover the soft tissue information for MVCT. Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. BM3D is an imaging denoising algorithm developed from non-local means methods. BM3D additionally creates 3D groups by stacking 2D patches by the order of similarity. 3D denoising operation is then performed. The resultant 3D group is inversely transformed back to 2D images. In this study, BM3D was applied to MVCT images of a CT quality phantom, a head and neck and a prostate patient. Following denoising, imaging texture was enhanced to create the denoised and texture enhanced CT (DeTECT). Results: The original MVCT images show prevalent noise and poor soft tissue contrast. By applying BM3D denoising and texture enhancement, all MVCT images show remarkable improvements. For the phantom, the contrast to noise ratio for the low contrast plug was improved from 2.2 to 13.1 without compromising line pair conspicuity. For the head and neck patient, the lymph nodes and vein in the carotid space inconspicuous in the original MVCT image becomes highly visible in DeTECT. For the prostate patient, the boundary between the bladder and the prostate in the original MVCT is successfully recovered. Both results are visually validated by kVCT images of the corresponding patients. Conclusion: DeTECT showed the promise to drastically improve the soft tissue contrast of MVCT for image guided radiotherapy and adaptive radiotherapy.

  9. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, C. Zuhal E-mail: sunarerdem@yahoo.com; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-07-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T{sub p}); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T{sub p} were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS.

  10. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  11. Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo.

    Science.gov (United States)

    Yang, Helen H; St-Pierre, François; Sun, Xulu; Ding, Xiaozhe; Lin, Michael Z; Clandinin, Thomas R

    2016-06-30

    A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.

  12. Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images

    CERN Document Server

    Helmberger, M; Pienn, M; Balint, Z; Olschewski, A; Bischof, H

    2013-01-01

    We present a pulmonary vessel segmentation algorithm, which is fast, fully automatic and robust. It uses a coarse segmentation of the airway tree and a left and right lung labeled volume to restrict a vessel enhancement filter, based on an offset medialness function, to the lungs. We show the application of our algorithm on contrast-enhanced CT images, where we derive a clinical parameter to detect pulmonary hypertension (PH) in patients. Results on a dataset of 24 patients show that quantitative indices derived from the segmentation are applicable to distinguish patients with and without PH. Further work-in-progress results are shown on the VESSEL12 challenge dataset, which is composed of non-contrast-enhanced scans, where we range in the midfield of participating contestants.

  13. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Yoon, Young Cheol [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Bong Keun [Department of Preventive Medicine, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2014-02-15

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  14. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    Science.gov (United States)

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer.

  15. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  16. Multidetector CT of pancreatic ductal adenocarcinoma: Effect of tube voltage and iodine load on tumour conspicuity and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Loizou, L.; Leidner, B.; Axelsson, E.; Fischer, M.A.; Grigoriadis, A.; Kartalis, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); C1-46 Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Albiin, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); Ersta Hospital, Department of Radiology, Stockholm (Sweden); Del Chiaro, M.; Segersvaerd, R. [Karolinska University Hospital Huddinge, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Stockholm (Sweden); Verbeke, C. [Karolinska Institutet and Karolinska University Hospital Huddinge, Division of Pathology, Department of Laboratory Medicine, Stockholm (Sweden); Sundin, A. [Uppsala University Hospital, Department of Surgical Sciences, Division of Radiology, Uppsala University and Department of Radiology, Uppsala (Sweden)

    2016-11-15

    To compare a low-tube-voltage with or without high-iodine-load multidetector CT (MDCT) protocol with a normal-tube-voltage, normal-iodine-load (standard) protocol in patients with pancreatic ductal adenocarcinoma (PDAC) with respect to tumour conspicuity and image quality. Thirty consecutive patients (mean age: 66 years, men/women: 14/16) preoperatively underwent triple-phase 64-channel MDCT examinations twice according to: (i) 120-kV standard protocol (PS; 0.75 g iodine (I)/kg body weight, n = 30) and (ii) 80-kV protocol A (PA; 0.75 g I/kg, n = 14) or protocol B (PB; 1 g I/kg, n = 16). Two independent readers evaluated tumour delineation and image quality blindly for all protocols. A third reader estimated the pancreas-to-tumour contrast-to-noise ratio (CNR). Statistical analysis was performed with the Chi-square test. Tumour delineation was significantly better in PB and PA compared with PS (P = 0.02). The evaluation of image quality was similar for the three protocols (all, P > 0.05). The highest CNR was observed with PB and was significantly better compared to PA (P = 0.02) and PS (P = 0.0002). In patients with PDAC, a low-tube-voltage, high-iodine-load protocol improves tumour delineation and CNR leading to higher tumour conspicuity compared to standard protocol MDCT. (orig.)

  17. CONTRAST

    DEFF Research Database (Denmark)

    Kristensen, Thomas Krogsgaard

    2007-01-01

    Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon.......Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon....

  18. Mn porphyrins as novel molecular magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Mouraviev, Vladimir; Venkatraman, Talaignair N; Tovmasyan, Artak; Kimura, Masaki; Tsivian, Matvey; Mouravieva, Vladimira; Polascik, Tom J; Wang, Haichen; Amrhein, Timothy J; Batinic-Haberle, Ines; Lascola, Christopher

    2012-11-01

    In this study, we investigated the potential of a new class of therapeutic Mn porphyrins as molecular MRI probes for prostate cancer imaging. Two compounds of different bioavailibility were investigated: Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) and Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)). These compounds have previously been shown to have adjunctive antineoplastic activity through their actions as powerful superoxide dismutase mimics, peroxynitrite scavengers, and modulators of cellular redox-based signaling pathways. Strong paramagnetic MRI contrast properties and affinity for cancer cells suggest their potential application as novel diagnostic imaging agents. MRI experiments were performed at 7.0T on a Bruker Biospec horizontal bore scanner. All in-vivo experiments were performed on 12 C57 black mice implanted with RM-9 prostate cancer cells on the hind limb. Two mg/kg of MnTnHex-2-PyP(5+) (n=6) and 8 mg/kg MnTE-2-PyP(5+) (n=6) were administered intraperitoneally 90 minutes before imaging. All the images were collected using a volume coil and processed using Paravision 4.0. Phantom studies reveal remarkably high T1 relaxivity changes for both metalloporphyrins, which are twofold to threefold higher than commercially available gadolinium chelates. Observable detection limits using conventional T1-weighted MRI are in the low micromolar range for both compounds. In vivo, MR relaxation changes in prostate tumor xenografts were readily observed after a single injection of either MnTE-2-PyP(5+)or MnTnHex-2-PyP(5+), with tumor contrast to background ratio greatest after MnTE-2-PyP(5+) administration. After a single dose of MnTE-2-PyP(5+), contrast changes in prostate tumors are up to sixfold greater than in surrounding, noncancerous tissues, suggesting the potential use of this metalloporphyrin as a novel diagnostic probe for detecting prostate malignancy using MRI.

  19. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NARCIS (Netherlands)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M.D.; De Jong, N.; Vos, H.J.

    2015-01-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher

  20. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NARCIS (Netherlands)

    Peruzzini, D.; J. Viti (Jacopo); P. Tortoli (Piero); M.D. Verweij (Martin D.); N. de Jong (Nico); H.J. Vos (Rik)

    2015-01-01

    textabstractCurrently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the

  1. Vortex Image Processing (VIP) package for high-contrast direct imaging

    Science.gov (United States)

    Gomez Gonzalez, C.; Absil, O.; Wertz, O.

    2016-05-01

    VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular, reference-star and multi-spectral differential imaging. The code can be downloaded from our git repository on Github: http://github.com/vortex-exoplanet/VIP

  2. Agents described in the Molecular Imaging and Contrast Agent Database for imaging carbonic anhydrase IX expression.

    Science.gov (United States)

    Sneddon, Deborah; Poulsen, Sally-Ann

    2014-10-01

    Carbonic anhydrase IX (CA IX) is selectively expressed in a range of hypoxic tumours and is a validated endogenous hypoxia marker with prognostic significance; hence, CA IX is of great interest as a molecular imaging target in oncology. In this review, we present an overview of the different imaging agents and imaging modalities that have been applied for the in vivo detection of CA IX. The imaging agents reviewed are all entries in the Molecular Imaging and Contrast Agent Database (MICAD) and comprise antibody, antibody fragments and small molecule imaging agents. The effectiveness of these agents for imaging CA IX in vivo gave variable performance; however, a number of agents proved very capable. As molecular imaging has become indispensable in current medical practice we anticipate that the clinical significance of CA IX will see continued development and improvements in imaging agents for targeting this enzyme.

  3. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    Science.gov (United States)

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  4. pH induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  5. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  6. pH-induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  7. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  8. Integrated processing of contrast pulse sequencing ultrasound imaging for enhanced active contrast of hollow gas filled silica nanoshells and microshells.

    Science.gov (United States)

    Ta, Casey N; Liberman, Alexander; Paul Martinez, H; Barback, Christopher V; Mattrey, Robert F; Blair, Sarah L; Trogler, William C; Kummel, Andrew C; Wu, Zhe

    2012-03-01

    In recent years, there have been increasing developments in the field of contrast-enhanced ultrasound both in the creation of new contrast agents and in imaging modalities. These contrast agents have been employed to study tumor vasculature in order to improve cancer detection and diagnosis. An in vivo study is presented of ultrasound imaging of gas filled hollow silica microshells and nanoshells which have been delivered intraperitoneally to an IGROV-1 tumor bearing mouse. In contrast to microbubbles, this formulation of microshells provided strong ultrasound imaging signals by shell disruption and release of gas. Imaging of the microshells in an animal model was facilitated by novel image processing. Although the particle signal could be identified by eye under live imaging, high background obfuscated the particle signal in still images and near the borders of the tumor with live images. Image processing techniques were developed that employed the transient nature of the particle signal to selectively filter out the background signal. By applying image registration, high-pass, median, threshold, and motion filtering, a short video clip of the particle signal was compressed into a single image, thereby resolving the silica shells within the tumor. © 2012 American Vacuum Society.

  9. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    Science.gov (United States)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  10. New contrasts for x-ray imaging and synergy with optical imaging

    Science.gov (United States)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  11. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  12. Analysis of first proximity voltage on the property of GEN Ⅲ image intensifier

    Science.gov (United States)

    Zhang, Ni; Zhu, Yu-feng; Li, Dan; Nie, Jing; Zhang, Tai-min; Liu, Xiao-jian; Liu, Zhao-lu; Cheng, Wei; Fu, Ling-yun

    2013-08-01

    First proximity voltage is the voltage between the cathode of Low Light Level image intensifier and the input surface of Micro-channel plate(MCP). There are so many factors influencing the image intensifier performance, and the first proximity voltage is one of the most important factors that can not be ignored. Based on the theory analysis and test of different proximity voltage on the gain、signal-to-noise ratio and equivalent background noise, this test has studied on the important performance of Gen III image intensifier effected by the proximity voltage. By the experimental study, the increase of first proximity voltage to a certain extent can improve gain、signal-to-noise ratio and equivalent background noise at the same time. The main cause of this phenomenon is that the increase of proximity voltage can enlarge the incident electron energy, and then improve the quantum efficiency of the incident electron; meantime, stray electron produced by field emission at the action of the electric field of filmed-MCP will lead to equivalent background deterioration. Ultimately we conclude that: 1) Signal to noise is proportional to the square of he cathode sensitivity, increases with the first collision energy of the incident electron, especially at 200-500ev. 2)In the increasing process of voltage from 300v to 800v, the gain of filmed-MCP increases rapidly, but lower again when Upk increases further because of gain self-saturation; lgG and lgUpk are linear relationship, thus the curve can intuitively demonstrate the relationship between them. 3) Stray electron produced by field emission at the action of the electric field of filmed-MCP will lead to equivalent background deterioration, but will not exceed the requirements of technical specifications(2.5×10-7lx).

  13. Assessing Tumor Angiogenesis with Dynamic Contrast Enhanced Magnetic Resonance Imaging

    Science.gov (United States)

    Esparza-Coss, Emilio; Jackson, Edward F.

    2006-09-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a method able of assessing microvascular changes at high spatial resolution and without ionizing radiation. The microcirculation and structure of tumors are fundamentally chaotic in that tumor-derived factors stimulate the endothelial cells to form new small vessels (angiogenesis) and this vasculature deviates markedly from normal hierarchical branching patterns. The tumor-induced microvascular changes lead to blood flow that is both spatially and temporally more heterogeneous than the efficient and uniform perfusion of normal organs and tissues. DCE-MRI allows for the assessment of perfusion and permeability of the tumor microvasculature, including the network of vessels with diameters less than 100 μm, which are beyond the resolution of conventional angiograms. The microvessel permeability to small molecular weight contrast media as well as measures of tumor response can be assessed with different analysis techniques ranging from simple measures of enhancement to pharmacokinetic models. In this work, such DCE-MRI analysis techniques are discussed.

  14. Quantitative contrast-enhanced MR imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.H. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Rubinstein, D. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Brown, M. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Yuh, W. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Birch-Iensen, M. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Szumowski, J. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Stears, J. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States)

    1994-11-01

    During the acute stages of optic neuritis damage to the blood-optic nerve barrier can be detected using i.v. paramagnetic contrast-enhanced MR imaging. Quantification of the enhancement pattern of the optic nerve, intraorbital fat and muscle was determined in 15 normal subjects using 3 fat-suppression MR imaging methods: T1-weighted spin-echo and spoiled gradient-echo sequences preceded by a flat-frequency selective pulse (FATSAT+SE and FATSAT+SPGR, respectively) and a pulse sequence combining CHOPPER fat suppression with a fat-frequency selective preparation pulse (HYBRID). Pre- and postcontrast-enhanced studies were acquired for FATSAT+SE and FATSAT+SPGR. There was no significant enhancement of the optic nerve by either method (mean increase of 0.96% and 5.3%, respectively), while there was significant enhancement in muscle (mean 118.2% and 108.2%, respectively; p<0.005) and fat (mean increase of 13% and 37%, respectively; p<0.05). Postcontrast optic nerve/muscle signal intensity ratios (mean, SD) were 0.51 (0.07), 0.58 (0.05) and 0.75 (0.05) for FATSAT+SE, FATSAT+SPGR and HYBRID, respectively. These results suggest a practical methodology and range of values for normal signal intensity increases and ratios of tissue signal that can be used as objective measures of optic neuritis for natural history studies and treatment trials. (orig.).

  15. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure

    Science.gov (United States)

    Chen, Cao; Bing, Zhang; Longsheng, Wu; Xin, Li; Junfeng, Wang

    2014-07-01

    A novel analytical model of pinch-off voltage for CMOS image pixels with a pinned photodiode structure is proposed. The derived model takes account of the gradient doping distributions in the N buried layer due to the impurity compensation formed by manufacturing processes; the impurity distribution characteristics of two boundary PN junctions located in the region for particular spectrum response of a pinned photodiode are quantitative analyzed. By solving Poisson's equation in vertical barrier regions, the relationships between the pinch-off voltage and the corresponding process parameters such as peak doping concentration, N type width and doping concentration gradient of the N buried layer are established. Test results have shown that the derived model features the variations of the pinch-off voltage versus the process implant conditions more accurately than the traditional model. The research conclusions in this paper provide theoretical evidence for evaluating the pinch-off voltage design.

  16. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  17. Optical Imaging of Neurons in the Crab Stomatogastric Ganglion with Voltage-sensitive Dyes

    Science.gov (United States)

    Stein, Wolfgang; Städele, Carola; Andras, Peter

    2011-01-01

    Voltage-sensitive dye imaging of neurons is a key methodology for the understanding of how neuronal networks are organised and how the simultaneous activity of participating neurons leads to the emergence of the integral functionality of the network. Here we present the methodology of application of this technique to identified pattern generating neurons in the crab stomatogastric ganglion. We demonstrate the loading of these neurons with the fluorescent voltage-sensitive dye Di-8-ANEPPQ and we show how to image the activity of dye loaded neurons using the MiCAM02 high speed and high resolution CCD camera imaging system. We demonstrate the analysis of the recorded imaging data using the BVAna imaging software associated with the MiCAM02 imaging system. The simultaneous voltage-sensitive dye imaging of the detailed activity of multiple neurons in the crab stomatogastric ganglion applied together with traditional electrophysiology techniques (intracellular and extracellular recordings) opens radically new opportunities for the understanding of how central pattern generator neural networks work. PMID:21490564

  18. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  19. High-Contrast NIR Polarization Imaging of MWC480

    Science.gov (United States)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Grady, C. A.; Sitko, M. L.; Werren, C.; Day, A. N.; Beerman, C.; Iye, M.; Lynch, D. K.; Russell, R. W.; Brafford, S. M.

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  20. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors.

    Science.gov (United States)

    Lee, Sungmoo; Piao, Hong Hua; Sepheri-Rad, Masoud; Jung, Arong; Sung, Uhna; Song, Yoon-Kyu; Baker, Bradley J

    2016-02-04

    Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.

  1. Protoneus-sequence: extended fluid-attenuated inversion recovery MR imaging without and with contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Nasel, Christian [Division of Neuroradiology, Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, A-1090 Vienna (Austria)]. E-mail: christian.nasel@perfusion.at

    2005-08-01

    Fluid-attenuated inversion recovery imaging (=flair imaging) is widely used as primary screening sequence in various investigation protocols, due to its high lesion contrast and sensitivity in detection of parenchymatous and leptomeningeal disease. An additional increase of sensitivity for detection of lesions may be achieved by contrast-enhanced flair imaging. Based on flair imaging a dual-echo inversion recovery imaging sequence (=proton echo usage [=protoneus] - sequence) was developed, which could significantly extend the possibilities of conventional flair imaging.

  2. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging.

    Science.gov (United States)

    Sigal, Iliya; Gad, Raanan; Caravaca-Aguirre, Antonio M; Atchia, Yaaseen; Conkey, Donald B; Piestun, Rafael; Levi, Ofer

    2013-12-06

    This work presents, to our knowledge, the first demonstration of the Laser Speckle Contrast Imaging (LSCI) technique with extended depth of field (DOF). We employ wavefront coding on the detected beam to gain quantitative information on flow speeds through a DOF extended two-fold compared to the traditional system. We characterize the system in-vitro using controlled microfluidic experiments, and apply it in-vivo to imaging the somatosensory cortex of a rat, showing improved ability to image flow in a larger number of vessels simultaneously.

  3. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy.

    Science.gov (United States)

    Takahashi, Yasufumi; Shevchuk, Andrew I; Novak, Pavel; Babakinejad, Babak; Macpherson, Julie; Unwin, Patrick R; Shiku, Hitoshi; Gorelik, Julia; Klenerman, David; Korchev, Yuri E; Matsue, Tomokazu

    2012-07-17

    We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5-100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5-3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences.

  4. Evaluation of edge effect due to phase contrast imaging for mammography.

    Science.gov (United States)

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  5. Imaging the awake visual cortex with a genetically encoded voltage indicator.

    Science.gov (United States)

    Carandini, Matteo; Shimaoka, Daisuke; Rossi, L Federico; Sato, Tatsuo K; Benucci, Andrea; Knöpfel, Thomas

    2015-01-07

    Genetically encoded voltage indicators (GEVIs) promise to reveal the membrane potential of genetically targeted neuronal populations through noninvasive, chronic imaging of large portions of cortical space. Here we test a promising GEVI in mouse cortex during wakefulness, a challenging condition due to large hemodynamic activity, and we introduce a straightforward projection method to separate a signal dominated by membrane voltage from a signal dominated by hemodynamic activity. We expressed VSFP-Butterfly 1.2 plasmid in layer 2/3 pyramidal cells of visual cortex through electroporation in utero. We then used wide-field imaging with two cameras to measure both fluorophores of the indicator in response to visual stimuli. By taking weighted sums and differences of the two measurements, we obtained clear separation of hemodynamic and voltage signals. The hemodynamic signal showed strong heartbeat oscillations, superimposed on slow dynamics similar to blood oxygen level-dependent (BOLD) or "intrinsic" signals. The voltage signal had fast dynamics similar to neural responses measured electrically, and showed an orderly retinotopic mapping. We compared this voltage signal with calcium signals imaged in transgenic mice that express a calcium indicator (GCaMP3) throughout cortex. The voltage signal from VSFP had similar signal-to-noise ratios as the calcium signal, it was more immune to vascular artifacts, and it integrated over larger regions of visual space, which was consistent with its reporting mostly subthreshold activity rather than the spiking activity revealed by calcium signals. These results demonstrate that GEVIs provide a powerful tool to study the dynamics of neural populations at mesoscopic spatial scales in the awake cortex. Copyright © 2015 Carandini et al.

  6. An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography

    Science.gov (United States)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2016-11-01

    A new image reconstruction framework based on boundary voltages is presented for ultrasound modulated electrical impedance tomography (UMEIT). Combining the electric and acoustic modalities, UMEIT reconstructs the conductivity distribution with more measurements with position information. The proposed image reconstruction framework begins with approximately constructing the sensitivity matrix of the imaging object with inclusion. Then the conductivity is recovered from the boundary voltages of the imaging object. To solve the nonlinear inverse problem, an optimization method is adopted and the iterative method is tested. Compared with that for electrical resistance tomography (ERT), the newly constructed sensitivity matrix is more sensitive to the inclusion, even in the center of the imaging object, and it contains more effective information about the inclusions. Finally, image reconstruction is carried out by the conjugate gradient algorithm, and results show that reconstructed images with higher quality can be obtained for UMEIT with a faster convergence rate. Both theory and image reconstruction results validate the feasibility of the proposed framework for UMEIT and confirm that UMEIT is a potential imaging technique.

  7. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  8. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Science.gov (United States)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  9. Dynamic contrast-enhanced (DCE) imaging for tumor delineation in prostate cancer

    NARCIS (Netherlands)

    Korporaal, J.G.

    2011-01-01

    Dynamic contrast-enhanced (DCE) MR imaging is frequently used for the detection and localization of prostate tumors. After injection of a bolus of contrast agent into the blood circulation, the behavior of the contrast agent in the prostate can be measured by repetitive imaging of the prostate. Pros

  10. Dynamic contrast-enhanced (DCE) imaging for tumor delineation in prostate cancer

    NARCIS (Netherlands)

    Korporaal, J.G.

    2011-01-01

    Dynamic contrast-enhanced (DCE) MR imaging is frequently used for the detection and localization of prostate tumors. After injection of a bolus of contrast agent into the blood circulation, the behavior of the contrast agent in the prostate can be measured by repetitive imaging of the prostate. Pros

  11. Medios de contraste en imágenes Media contrasts in imaging

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2013-03-01

    Full Text Available En el presente trabajo realizamos una revisión y actualización de las acciones, indicaciones, reacciones adversas y sus tratamientos, interacciones y contraindicaciones de los distintos medios de contrastes.In this review, we revised and updated the actions, indications, interactions and contraindications of the different contrast media, as well as their adverse reactions and how to treat them.

  12. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging

    Science.gov (United States)

    2015-01-01

    For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components. PMID:26544723

  13. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT reconstruction is proposed. For this new method, the tube's voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.

  14. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Kyung Hee University Hospital, Department of Radiology, Graduate School, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2017-05-15

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  15. Contrast enhanced cartilage imaging: Comparison of ionic and non-ionic contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Edzard [Department of Radiology, Technical University Munich, Ismaninger Str. 22, D-81675 Munich (Germany)]. E-mail: ewiener@roe.med.tu-muenchen.de; Woertler, Klaus [Department of Radiology, Technical University Munich, Ismaninger Str. 22, D-81675 Munich (Germany); Weirich, Gregor [Institute of Pathology, Technical University Munich, Troger Str. 18, D-81675 Munich (Germany); Rummeny, Ernst J. [Department of Radiology, Technical University Munich, Ismaninger Str. 22, D-81675 Munich (Germany); Settles, Marcus [Department of Radiology, Technical University Munich, Ismaninger Str. 22, D-81675 Munich (Germany)

    2007-07-15

    Our objective was to compare relaxation effects, dynamics and spatial distributions of ionic and non-ionic contrast agents in articular cartilage at concentrations typically used for direct MR arthrography at 1.5 T. Dynamic MR-studies over 11 h were performed in 15 bovine patella specimens. For each of the contrast agents gadopentetate dimeglumine, gadobenate dimeglumine, gadoteridol and mangafodipir trinatrium three patellae were placed in 2.5 mmol/L contrast solution. Simultaneous measurements of T {sub 1} and T {sub 2} were performed every 30 min using a high-spatial-resolution 'MIX'-sequence. T {sub 1}, T {sub 2} and {delta}R {sub 1}, {delta}R {sub 2} profile plots across cartilage thickness were calculated to demonstrate the spatial and temporal distributions. The charge is one of the main factors which controls the amount of the contrast media diffusing into intact cartilage, but independent of the charge, the spatial distribution across cartilage thickness remains highly inhomogeneous even after 11 h of diffusion. The absolute {delta}R {sub 2}-effect in cartilage is at least as large as the {delta}R {sub 1}-effect for all contrast agents. Maximum changes were 5-12 s{sup -1} for {delta}R {sub 1} and 8-15 s{sup -1} for {delta}R {sub 2}. This study indicates that for morphologically intact cartilage only the amount of contrast agents within cartilage is determined by the charge but not the spatial distribution across cartilage thickness. In addition, {delta}R {sub 2} can be considered for quantification of contrast agent concentrations, since it is of the same magnitude and less time consuming to measure than {delta}R {sub 1}.

  16. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    Science.gov (United States)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  17. Magnetic resonance imaging using gadolinium-based contrast agents.

    Science.gov (United States)

    Mitsumori, Lee M; Bhargava, Puneet; Essig, Marco; Maki, Jeffrey H

    2014-02-01

    The purpose of this article was to review the basic properties of available gadolinium-based magnetic resonance contrast agents, discuss their fundamental differences, and explore common and evolving applications of gadolinium-based magnetic resonance contrast throughout the body excluding the central nervous system. A more specific aim of this article was to explore novel uses of these gadolinium-based contrast agents and applications where a particular agent has been demonstrated to behave differently or be better suited for certain applications than the other contrast agents in this class.

  18. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images vs. contrast enhanced fat-suppressed images

    Science.gov (United States)

    Medved, Milica; Fan, Xiaobing; Abe, Hiroyuki; Newstead, Gillian M.; Wood, Abbie M.; Shimauchi, Akiko; Kulkarni, Kirti; Ivancevic, Marko K.; Pesce, Lorenzo L.; Olopade, Olufunmilayo I.; Karczmar, Gregory S.

    2011-01-01

    RATIONALE AND OBJECTIVES To evaluate high spectral and spatial resolution (HiSS) MRI for diagnosis of breast cancer without injection of contrast media: to compare the performance of pre-contrast HiSS images to conventional contrast-enhanced fat-suppressed T1-weighted images, based on image quality and in the task of classifying benign and malignant breast lesions. MATERIALS AND METHODS Ten benign and 44 malignant lesions were imaged at 1.5T with HiSS (pre-contrast administration) and conventional fat-suppressed imaging (3–10 min post-contrast). This set of 108 images, after randomization, was evaluated by three experienced radiologists blinded to the imaging technique. BIRADS morphologic criteria (lesion shape; lesion margin; internal signal intensity pattern) and final assessment were used to measure reader performance. Image quality was evaluated based on boundary delineation and quality of fat suppression. An overall probability of malignancy was assigned to each lesion for HiSS and conventional images separately. RESULTS On boundary delineation and quality of fat-suppression, pre-contrast HiSS scored similarly to conventional post-contrast MRI. On benign vs. malignant lesion separation, there was no statistically significant difference in ROC performance between HiSS and conventional MRI, and HiSS met a reasonable non-inferiority condition. CONCLUSION Pre-contrast HiSS imaging is a promising approach for showing lesion morphology without blooming and other artifacts caused by contrast agents. HiSS images could be used to guide subsequent dynamic contrast-enhanced MRI scans, to maximize spatial and temporal resolution in suspicious regions. HiSS MRI without contrast agent injection may be particularly important for patients at risk for contrast-induced nephrogenic systemic fibrosis, or allergic reactions. PMID:21962476

  19. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    OpenAIRE

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray...

  20. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    Science.gov (United States)

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  1. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Hemant [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore) and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada)]. E-mail: parurad@hotmail.com; Sitoh, Y.-Y. [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Anand, Pooja [Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng (Singapore); Chua, Violet [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Hui, Francis [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-04-15

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis.

  2. An Algorithm of Image Contrast Enhancement Based on Pixels Neighborhood’s Local Feature

    Directory of Open Access Journals (Sweden)

    Chen Yan

    2013-12-01

    Full Text Available In this study, we proposed an algorithm of Image Contrast enhancement based on local feature to acquire edge information of image, remove Ray Imaging noise and overcome edge blurry and other defects. This method can extract edge features and finish contrast enhancement in varying degrees for pixels neighborhood with different characteristics by using neighborhood local variance and complexity function, which can achieve local features enhancement. The stimulation shows that the method can not only enhance the contrast of the entire image, but also effectively preserves image edge information and improve image quality.

  3. Quantification of iodine-131 in tumors using a threshold based on image contrast

    Energy Technology Data Exchange (ETDEWEB)

    DeNardo, G.L.; Shen, Sui; DeNardo, S.J.; Liao Shuquinn; DeNardo, D.A.; Yuan, A. [Department of Internal Medicine, University of California at Davis, Sacramento, California (United States); Lamborn, K.R. [Department of Neurological Surgery, University of California San Francisco, San Francisco, California (United States)

    1998-05-01

    Accurate and reproducible quantification of tumor radioactivity by imaging requires definition of a region of interest (ROI) for the tumor. The use of a threshold for creating the tumor ROI based on tumor-to-background image contrast (image contrast) was examined. Quantification of iodine-131 in spheres in a phantom that simulated tumors in patients was investigated using planar imaging and geometric-mean and effective-point-source methods. Thresholds that provided the least quantitative error for spheres with different diameters (1-5 cm) and locations (0-11 cm deep in the body), {sup 131}I concentrations (0.037-3.2 MBq/ml), and sphere-to-background concentration ratios (1:0, 14:1 and 7:1) were investigated. The correlation between threshold and sphere image contrast was examined. The phantom study showed that an appropriate threshold value for quantification of tumor radioactivity could be determined using image contrast for a single view, provided that image contrast was {>=}1.5. The error of quantification was less than 10% for spheres with high image contrast ({>=}1.5) but was greater than 17% for spheres with low image contrast (<1.5). When image contrast-dependent thresholds were applied to patient studies, {sup 131}I concentrations determined by imaging were in good agreement with the concentrations determined by counting biopsy samples. Additionally, reproducibility was improved when compared with a visual boundary method. It is concluded that accurate and reproducible quantification of radioactivity in tumors is achievable using thresholds based on image contrast if image contrast is greater than or equal to 1.5. Optimal thresholds for quantification of tumor radioactivity were similar if image contrast was similar despite differing tumor diameters, locations and {sup 131}I concentrations. Under certain circumstances, the effective-point-source method was preferable to the geometric-mean method. (orig.) With 6 figs., 2 tabs., 29 refs.

  4. CO2-based in-line phase contrast imaging of small intestine in mice

    Science.gov (United States)

    Tang, Rongbiao; Li, Wei-Xia; Huang, Wei; Yan, Fuhua; Chai, Wei-Min; Yang, Guo-Yuan; Chen, Ke-Min

    2013-07-01

    The objective of this study was to explore the potential of CO2 single contrast in-line phase contrast imaging (PCI) for pre-clinical small intestine investigation. The absorption and phase contrast images of CO2 gas production were attained and compared. A further increase in image contrast was observed in PCI. Compared with CO2-based absorption contrast imaging (ACI), CO2-based PCI significantly enhanced the detection of mucosal microstructures, such as pits and folds. The CO2-based PCI could provide sufficient image contrast for clearly showing the intestinal mucosa in living mice without using barium. We concluded that CO2-based PCI might be a novel and promising imaging method for future studies of gastrointestinal disorders.

  5. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    Science.gov (United States)

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500-1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.

  6. Endoscopic laser speckle contrast imaging system using a fibre image guide

    Science.gov (United States)

    Song, Lipei; Elson, Daniel

    2011-03-01

    There are several challenges when fibre image guides (FIG) are used for endoscopic speckle acquisition: cross talk between fibre cores, FIG fixed pattern noise, the small probe diameter and low sensitivity and resolution due to the decreased number of speckles and their low transmission through the FIG. In this paper, an endoscopic laser speckle contrast analysis system (ELASCA) based on a leached fibre image guide (LFIG) is presented. Different methods of acquiring LASCA images through LFIGs were investigated including the effect of changing the number of speckles per fibre, defocusing the FIG image onto the CCD and processing speckle images with masks and Butterworth filters to deal with the LFIG fixed pattern and noise from the cladding. The experimental results based on a phantom consisting of intralipid suspension pumped at varying speed showed that this system could detect speed changes and that in the case of multiple speckles per fibre the Nyquist frequency criterion need not be applied since the speckle may be transferred through the fibres to some extent. In contrast to the previously reported ELASCA results, this system can both give a map of the observed area and the temporal change in flow. An additional benefit is the small size of the LFIG, which is compatible with current endoscopic instrument channels and may allow additional surgical applications.

  7. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads;

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  8. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Sakurai, Keita; Shimohira, Masashi; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, Nagoya (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Division of Central Radiology, Nagoya (Japan); Asano, Miki [Nagoya City University Graduate School of Medical Sciences, Department of Cardiovascular Surgery, Nagoya (Japan); Yamaguchi, Sachiko [Nagoya City University Graduate School of Medical Sciences, Department of Pediatrics and Neonatology, Nagoya (Japan)

    2015-09-15

    Lower tube voltage has advantages for CT angiography, such as improved contrast To evaluate the image quality of low-voltage (70 kV) CT for congenital heart disease and the ability of sinogram-affirmed iterative reconstruction to improve image quality. Forty-six children with congenital heart disease (median age: 109 days) were examined using dual-source CT. Scans were performed at 80 kV and 70 kV in 21 and 25 children, respectively. A nonionic iodinated contrast medium (300 mg I/ml) was used for the 80-kV protocol. The contrast medium was diluted to 75% (225 mgI/mL) with saline for the 70-kV protocol. Image noise was measured in the two protocols for each group by extracting the standard deviations of a region of interest placed on the descending aorta. We then determined whether sinogram-affirmed iterative reconstruction reduced the image noise at 70 kV. There was more noise at 70 kV than at 80 kV (29 ± 12 vs 20 ± 4.8; P < 0.01). Sinogram-affirmed iterative reconstruction with grade 4 strength settings improved the noise (20 ± 5.9; P < 0.01) for the 70-kV group. Sinogram-affirmed iterative reconstruction improved the image quality of CT in congenital heart disease. (orig.)

  9. Targeted contrast agents--an adjunct to whole-body imaging: current concepts.

    Science.gov (United States)

    Foran, Paul; Bolster, Ferdia; Crosbie, Ian; MacMahon, Peter; O'Kennedy, Richard; Eustace, Stephen J

    2010-03-01

    This article reviews the potential use of a combination of whole-body imaging and targeted contrast agents in improving diagnostics, with a particular focus on oncology imaging. It looks at the rationale for nanoparticles and their development as targeted contrast agents. It subsequently describes many of the advances made thus far in developing tissue-specific contrast agents capable of targeting tumors that combined with whole-body imaging may enable superior cancer detection and characterization.

  10. Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Alexandra Carvalho

    2017-07-01

    Full Text Available Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy. The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r 1 and r 2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg, cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine- N -[methoxy(polyethylene glycol-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings.

  11. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  12. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  13. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope

    Science.gov (United States)

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-01

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  14. Evaluation of the effect of low tube voltage on radiation dose and image quality

    Science.gov (United States)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, A. T. Abdul

    2017-05-01

    Number of Computed Tomography (CT) examinations performed worldwide is increasing. In 2010, the FDA issued an initiative to reduce unnecessary radiation exposure from CT imaging. The aim of this study is to evaluate the effect of low tube voltage on radiation dose and image quality using CTDI phantom. The CTDI phantom was scanned with dual energy CT at 80 kV and 120 kV with the tube current from 150 mAs to 350 mAs. Pitch was 1.0 while slice thickness was 1 mm and 5 mm. Results show if mAs was increased, the SNR values also will be increased. The 5 mm slice thickness shows higher SNR value compared to 1 mm slice thickness. As the voltage and tube current increased, the amount of dose absorbed is also increased because current is proportional to photon flux.

  15. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M.O.; Orton, M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Cancer Research UK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Morgan, B. [Univ. of Leicester, College of Medicine, Biological Sciences and Psychology, Leicester (United Kingdom); Tofts, P.S. [Brighton and Sussex Medical School, Univ. of Sussex, Clinical Imaging Sciences Centre, Sussex (United Kingdom); Buckley, D.L. [University of Leeds, Division of Medical Physics, Leeds (United Kingdom); Huang, W. [Oregon Health and Science Univ., Advanced Imaging Research Centre, Portland, OR (United States); Horsfield, M.A. [Medical Physics Section, Leicester Royal Infirmary, Dept. of Cardiovascular Sciences, Leicester (United Kingdom); Chenevert, T.L. [Univ. of Michigan Health System, Ann Arbor, MI (United States); Collins, D.J. [Royal Marsden Hospital NHS Foundation Trust, Cancer Research UK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Jackson, A. [Univ. of Manchester, Wolfson Molecular Imaging Centre, Withington, Manchester, M20 3LJ (United Kingdom); Lomas, D. [Univ. of Cambridge, Dept. of Radiology, Cambridge (United Kingdom); Whitcher, B. [Unit 2 Greenways Business Park, Mango Solutions, Chippenham (United Kingdom); Clarke, L. [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States); Plummer, R. [Univ. of Newcastle Upon Tyne, The Medical School, Medical Oncology, Northern Inst. for Cancer Research, Newcastle Upon Tyne (United Kingdom); Judson, I. [Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Jones, R. [Beatson West of Scotland Cancer Centre, Glasgow (United Kingdom); Alonzi, R. [Mount Vernon Cancer Centre, Northwood (United Kingdom); Brunner, T. [Gray Inst. for Radiation, Oncology and Biology, Oxford (United Kingdom); Koh, D.M. [Royal Marsden NHS Foundation Trust, Diagnostic Radiology, Sutton, Surrey (United Kingdom)] [and others

    2012-07-15

    Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here. (orig.)

  16. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  17. Parametric based morphological transformation for contrast enhancement of color images in poor-lighting

    Indian Academy of Sciences (India)

    Atluri Srikrishna; M Pompapathi; G Srinivasa Rao

    2015-04-01

    The objective of contrast operators consists in normalizing the gray levels of the input image for the purpose of avoiding abrupt changes in intensity among different regions. In this paper morphological transformations are used to detect the background in color images characterized by poor lighting. The disadvantage of contrast enhancement as studied in previous contrast enhancement algorithms is over illumination. An efficient algorithm is introduced to tackle the problem of over illumination by controlling the intensities at dark and bright regions of an image and preserve the geometry of the object. Finally the performance of the proposed algorithm is illustrated through the processing of gray scale images and color images with different backgrounds.

  18. Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains

    Directory of Open Access Journals (Sweden)

    Behrouz Fathi-Vajargah

    2014-01-01

    Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.

  19. Improving image quality in laboratory x-ray phase-contrast imaging

    Science.gov (United States)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  20. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  1. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    Science.gov (United States)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  2. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  3. Contrast enhanced MR imaging of female pelvic cancers: Established methods and emerging applications

    Energy Technology Data Exchange (ETDEWEB)

    Punwani, Shonit, E-mail: shonit.punwani@gmail.com [Department of Academic Radiology, 2nd Floor Podium, University College London Hospital, 235 Euston Road, London NW1 2BU (United Kingdom)

    2011-04-15

    Contrast enhanced magnetic resonance imaging of female pelvic cancers has been established for over 20 years. Conventional contrast enhanced imaging involves acquiring a set of pre-contrast T1 weighted images, followed by intravenous injection of an gadolinium based contrast agent and subsequent acquisition of a second set of contrast enhanced images. Developments in MR hardware and pulse sequences over the last 10 years have made dynamic contrast enhanced (DCE) protocols possible. DCE-MRI entails imaging of the same volume repeatedly prior to, during and following contrast injection. There have also been developments in image analysis methods and tools to reflect the increased data acquired. Qualitative analysis of contrast enhanced imaging (whether a single set or temporal series) by radiologists remains the mainstay for clinical reporting. Semi-quantitative assessment of signal intensity versus time curves and full pharmacokinetic modelling methods have emerged for evaluation of DCE-MRI data. DCE-MRI has found an established role in the detection, localisation and staging of female pelvic malignancies. Emerging applications of DCE-MRI include assessment of tumour grade, histology prior to and following treatment and prediction of individual and final treatment outcome. This article reviews the biophysical basis of contrast enhancement, the technical aspects of performance and analysis of DCE-MRI studies, and the established and emerging clinical utility of DCE-MRI in female pelvic malignancies.

  4. Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion

    NARCIS (Netherlands)

    Doronina-Amitonova, L.V.; Fedotov, I.V.; Zheltikov, A.M.

    2015-01-01

    Stimulated emission depletion (STED) is the key optical technology enabling super-resolution microscopy below the diffraction limit. Here, we demonstrate that modulation of STED in the time domain, combined with properly designed lock-in detection, can radically enhance the contrast of fluorescent i

  5. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.

    Science.gov (United States)

    Pablico-Lansigan, Michele H; Hickling, William J; Japp, Emily A; Rodriguez, Olga C; Ghosh, Anup; Albanese, Chris; Nishida, Maki; Van Keuren, Edward; Fricke, Stanley; Dollahon, Norman; Stoll, Sarah L

    2013-10-22

    Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.

  6. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  7. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent.

    NARCIS (Netherlands)

    Makowski, M.R.; Wiethoff, A.J.; Uribe, S.; Parish, V.; Botnar, R.M.; Bell, A.; Kiesewetter, C.; Beerbaum, P.B.J.; Jansen, C.H.; Razavi, R.; Schaeffter, T.; Greil, G.F.

    2011-01-01

    PURPOSE: To compare the image quality and diagnostic performance of a contrast agent-specific inversion-recovery (IR) steady-state free precession (SSFP) magnetic resonance (MR) imaging sequence performed by using an intravascular contrast agent (gadofosveset trisodium) with those of a commonly used

  8. Contrast-enhanced dual-energy mammography : a promising new imaging tool in breast cancer detection

    NARCIS (Netherlands)

    Lalji, Ulrich; Lobbes, Marc

    2014-01-01

    Contrast-enhanced dual-energy mammography (CEDM) is a promising new breast imaging tool for breast cancer detection. In CEDM, an iodine-based contrast agent is intravenously administered and subsequently, dual-energy mammography is performed. This results in a set of images containing both a regular

  9. Optimization of contrast of MR images in imaging of knee joint; Optymalizacja kontrastu obrazow MR na przykladzie obrazow stawu kolanowego

    Energy Technology Data Exchange (ETDEWEB)

    Szyblinski, K. [Institute of Nuclear Physics, Cracow (Poland); Bacic, G. [Dartmouth College, Hanover, NH (United States)

    1994-12-31

    The work describes the method of contrast optimization in magnetic resonance imaging. Computer program presented in the report allows analysis of contrast in selected tissues as a function of experiment parameters. Application to imaging of knee joint is presented. 2 refs, 4 figs.

  10. Feasibility study of phase-contrast cone beam CT imaging systems

    Science.gov (United States)

    Cai, Weixing

    Attenuation-based x-ray imaging techniques have been developed for many decades. One of the state-of-the-art imaging modalities is the cone beam computed tomography (CBCT) that efficiently scans an object and reproduces high-resolution and isotropic three-dimensional images of it. However, attenuation-based imaging shows a limitation in soft tissue imaging where the absorption contrast is low. Recently several phase-contrast techniques have been developed that are expected to improve low-contrast details by using the phase information of the object. The idea of this thesis is to incorporate the phase-contrast techniques into the current cone beam CT systems to combine the advantages of both phase-contrast imaging and CBCT. From a practical view of medical imaging, two phase-contrast cone beam CT systems are proposed by using the in-line phase-contrast technique and the differential phase-contrast technique, respectively. An in-line phase-contrast image is a Fresnel diffraction pattern in the near field. The image is edge-enhanced, and for soft tissues it is possible to retrieve the phase projection from a single in-line image. Therefore, this technique can be utilized in either of two methods. The first method is to produce edge-enhanced reconstruction images of the attenuation coefficient, and the second is to reconstruct the phase coefficient using the retrieved phase projections. In order to investigate this modality, computer simulations were performed for both working modes. The results using the in-line phase-contrast technique demonstrate superior image quality than that of the attenuation-based technique. A bench-top in-line PC-CBCT system was designed and constructed on top of an optical table, and a simple phantom was imaged and reconstructed using both modes to validate the principle of the proposed imaging scheme. The grating-based differential phase-contrast technique is able to produce the first derivative of phase projections using the principle of

  11. Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm.

    Science.gov (United States)

    Hannah, Alexander S; VanderLaan, Donald; Chen, Yun-Sheng; Emelianov, Stanislav Y

    2014-09-01

    Recently, a dual photoacoustic and ultrasound contrast agent-named photoacoustic nanodroplet-has been introduced. Photoacoustic nanodroplets consist of a perfluorocarbon core, surfactant shell, and encapsulated photoabsorber. Upon pulsed laser irradiation the perfluorocarbon converts to gas, inducing a photoacoustic signal from vaporization and subsequent ultrasound contrast from the resulting gas microbubbles. In this work we synthesize nanodroplets which encapsulate gold nanorods with a peak absorption near 1064 nm. Such nanodroplets are optimal for extended photoacoustic imaging depth and contrast, safety and system cost. We characterized the nanodroplets for optical absorption, image contrast and vaporization threshold. We then imaged the particles in an ex vivo porcine tissue sample, reporting contrast enhancement in a biological environment. These 1064 nm triggerable photoacoustic nanodroplets are a robust biomedical tool to enhance image contrast at clinically relevant depths.

  12. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    Science.gov (United States)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  13. Perceived overall contrast and quality of the tone scale rendering for natural images

    Science.gov (United States)

    Fedorovskaya, Elena A.

    2002-06-01

    Past research has demonstrated the complexity of perceived contrast as an attribute of natural images. This attribute is affected by the tone reproduction characteristics in an imaging system, the observer's viewing environment, and the scene itself. Development of digital photography with new tools to affect tone reproduction prompts the necessity for further insights into parameters that influence the perception of contrast to computationally predict and optimize this attribute for a large variety of individual images. To elucidate the relationship between perceived overall contrast and image properties, we performed a series of experiments where observers estimated perceived overall contrast, defined as an integrated impression of difference in lightness, for images of natural scenes presented on a monitor screen. The ratings were used to develop a computational prediction based on assessment of features, which hypothetically could be used by the subjects' visual system when evaluating perceived overall contrast.

  14. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Bodo [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States); Gayou, Olivier [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States); Parda, David S [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States); Miften, Moyed [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States)

    2008-02-21

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

  15. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    Science.gov (United States)

    Reitz, Bodo; Gayou, Olivier; Parda, David S.; Miften, Moyed

    2008-02-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

  16. Near-field x-ray phase contrast imaging and phase retrieval algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua-Feng; Xie Hong-Lan; Gao Hong-Yi; Chen Jian-Wen; Li Ru-Xin; Xu Zhi-Zhan

    2005-01-01

    Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented.A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.

  17. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  18. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  19. Contrast-enhanced breast ultrasonography: imaging features with histopathologic correlation.

    Science.gov (United States)

    Liu, He; Jiang, Yu-Xin; Liu, Ji-Bin; Zhu, Qing-Li; Sun, Qiang; Chang, Xiao-Yan

    2009-07-01

    The purpose of this study was to identify histopathologic correlates for the varied appearances of breast masses on contrast-enhanced ultrasonography (CEUS). Contrast-enhanced ultrasonography was performed in 104 patients (age range, 19-86 years) after administration of a sulfur hexafluoride microbubble contrast agent, and enhancement patterns were classified as no enhancement, peripheral enhancement, homogeneous enhancement, regional enhancement, and heterogeneous enhancement. All patients' histologic slides were reviewed and correlated with CEUS findings. In malignant masses, heterogeneous enhancement corresponded to tumor cell cords or clusters in a variable amount of desmoplastic stroma. Homogeneous enhancement corresponded to hypercellularity in the whole mass, or ductal carcinoma in situ (DCIS) was predominant. Regional enhancement corresponded to a DCIS component. Peripheral enhancement corresponded to a DCIS component, hypercellularity or adenosis at the periphery, and low-degree cellularity, degeneration, fibrosis, or necrosis in the center. No enhancement was present in 1 case of low-grade DCIS. In benign masses, heterogeneous enhancement corresponded to loose cell proliferation in a more sclerotic stroma. Homogeneous enhancement corresponded to diffuse hypercellularity, an inflammatory cell infiltrate, or intraductal papilloma. Regional enhancement corresponded to focal hypercellularity or intraductal papilloma within a dilated duct. No enhancement corresponded to desmoplastic stroma. Peripheral enhancement was shown in 1 case of granulomatous mastitis with an inflammatory infiltrate at the periphery and necrosis in the center. Breast mass CEUS findings correlated with histologic features.

  20. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  1. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Science.gov (United States)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  2. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  3. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  4. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    Science.gov (United States)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  5. In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2015-09-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent...2015 4. TITLE AND SUBTITLE In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b...men with false positive PSA elevation and to ensure successful biopsy for those with small cancers. Photoacoustic imaging is an emerging functional

  6. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv, E-mail: rajiv.chopra@sri.utoronto.ca [Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, M4N 3M5 (Canada)

    2011-02-07

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 {+-} 0.2 and 0.3 {+-} 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm {+-}0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  7. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Science.gov (United States)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  8. Contrast enhancement of subcutaneous blood vessel images by means of visible and near-infrared hyper-spectral imaging

    Science.gov (United States)

    Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-02-01

    Visualization of subcutaneous veins is very difficult with the naked eye, but important for diagnosis of medical conditions and different medical procedures such as catheter insertion and blood withdrawal. Moreover, recent studies showed that the images of subcutaneous veins could be used for biometric identification. The majority of methods used for enhancing the contrast between the subcutaneous veins and surrounding tissue are based on simple imaging systems utilizing CMOS or CCD cameras with LED illumination capable of acquiring images from the near infrared spectral region, usually near 900 nm. However, such simplified imaging methods cannot exploit the full potential of the spectral information. In this paper, a new highly versatile method for enhancing the contrast of subcutaneous veins based on state-of-the-art high-resolution hyper-spectral imaging system utilizing the spectral region from 550 to 1700 nm is presented. First, a detailed analysis of the contrast between the subcutaneous veins and the surrounding tissue as a function of wavelength, for several different positions on the human arm, was performed in order to extract the spectral regions with the highest contrast. The highest contrast images were acquired at 1100 nm, however, combining the individual images from the extracted spectral regions by the proposed contrast enhancement method resulted in a single image with up to ten-fold better contrast. Therefore, the proposed method has proved to be a useful tool for visualization of subcutaneous veins.

  9. Intermolecular Contrast in Atomic Force Microscopy Images without Intermolecular Bonds

    NARCIS (Netherlands)

    Hämäläinen, Sampsa K.; van der Heijden, N.J. (Nadine); van der Lit, Joost; den Hartog, Stephan; Liljeroth, Peter; Swart, Ingmar

    2014-01-01

    Intermolecular features in atomic force microscopy images of organic molecules have been ascribed to intermolecular bonds. A recent theoretical study [P. Hapala et al., Phys. Rev. B 90, 085421 (2014)] showed that these features can also be explained by the flexibility of molecule-terminated tips. We

  10. [Examination of reducing misregistration for lower tube voltage of the mask image in CT angiography using subtraction method].

    Science.gov (United States)

    Nakatani, Kasumi; Fukunishi, Yasunobu

    2015-05-01

    Computed tomographic angiography (CTA) has been used recently for the evaluation of intracerebral aneurysms, but it is difficult to use this technique to visualize aneurysms near the base of the skull because of the presence of bone. So, subtracted CTA has been used to separate vessels from bony structures. However, we see some misregistration when using subtraction method because of the patient moving, the disaccord of the X-ray tube orbit between the mask image and the live image, the expanding focus, and the bed bending. So, attentioning the difference of bone CT number in any tube voltages, we examined to make the image containing less misregistration by changing the tube voltage of mask image. Making a sham blood vessel, we examined the bone misregistration, the blood vessel volume, and the smoothness when changing the tube voltages of mask images. Comparing with 120 kV, as the tube voltage of the mask image was 80 kV, the bone misregistration decreased significantly, however the blood vessel volume decreased. As for the tube voltage of 100 kV, the bone misregistration decreased significantly, and the blood vessel volume and the smoothness were not significantly different so we could get coordinative image of 120 kV. When the tube voltage of the mask image becomes lower than that of the live image and the effective energy becomes different, the effect of misregistration is less. This method deals with changing the tube voltage only. So, it may be easy to make volume rendering (VR) image and this method may be used in every facility.

  11. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Uder, Michael; Lell, Michael M. [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); University Erlangen, Imaging Science Institute, Erlangen (Germany); Kramer, Manuel R.; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Schmidt, Bernhard [Siemens Healthcare, Erlangen (Germany)

    2014-09-15

    Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDI{sub vol}. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8 %. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality. (orig.)

  12. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose.

    Science.gov (United States)

    May, Matthias S; Kramer, Manuel R; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2014-09-01

    Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDIvol. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8%. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality.

  13. Investigation of the application of phase contrast imaging using a point X-ray source to industrial non-destructive testing.

    Science.gov (United States)

    Suzuki, Kazuaki; Haig, Ian

    2014-03-06

    X-Tek Systems, a division of Nikon Metrology UK, designs, develops and manufactures microfocus X-ray radiography and computed tomography systems for industrial non-destructive testing. The range of X-ray acceleration voltages of its current standard products is 130-450 kV. It is widely known that X-ray images can be created using phase contrast formed by the natural propagation of X-rays. Simulation of the natural propagation of X-rays through a cylindrical test sample predicted a small contrast peak at the boundary between the cylinder material and air. Comparison data were obtained using an X-ray source with acceleration voltage above 100 kV. The simulation results correlated well with the experimental data. A further practical example (a 'magic mirror' amulet from an old Japanese shrine) is introduced and discussed. In this specimen, we detected intensity variation including the effect of phase contrast in the operating region above 100 kV. In summary, natural propagation phase contrast was observed in radiographic images from a standard point X-ray source with acceleration voltages exceeding 100 kV.

  14. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Science.gov (United States)

    Hernández-Rosales, E.; Cedeño, E.; Hernandez-Wong, J.; Rojas-Trigos, J. B.; Marin, E.; Gandra, F. C. G.; Mansanares, A. M.

    2016-07-01

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  15. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rosales, E.; Cedeño, E. [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil); Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Hernandez-Wong, J. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); CONACYT, México, DF, México (Mexico); Rojas-Trigos, J. B.; Marin, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Gandra, F. C. G.; Mansanares, A. M., E-mail: manoel@ifi.unicamp.br [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil)

    2016-07-25

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  16. Exploring Planetary System Evolution Through High-Contrast Imaging

    Science.gov (United States)

    Esposito, Thomas; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Millar-Blanchaer, Max; Gpies Team

    2015-01-01

    Direct imaging of circumstellar disks provides unique information about planetary system construction and evolution. Several hundred nearby main-sequence stars are known to host debris disks, which are produced by mutual collisions of orbiting planetesimals during a phase thought to coincide with terrestrial planet formation. Therefore, detection of the dust in such systems through scattered near-infrared starlight offers a view of the circumstellar environment during the epoch of planet assembly. We have used ground-based coronagraphic angular differential imaging (ADI) with Keck NIRC2 and Gemini Planet Imager (GPI) to investigate disk structures that may act as signposts of planets. ADI and its associated image processing algorithms (e.g., LOCI) are powerful tools for suppressing the stellar PSF and quasistatic speckles that can contaminate disk signal. However, ADI PSF-subtraction also attenuates disk surface brightness in a spatially- and parameter-dependent manner, thereby biasing photometry and compromising inferences regarding the physical processes responsible for the dust distribution. To account for this disk "self-subtraction," we developed a novel technique to forward model the disk structure and compute a self-subtraction map for a given ADI-processed image. Applying this method to NIRC2 near-IR imaging of the HD 32297 debris disk, we combined the high signal-to-noise ratio (S/N) of ADI data with unbiased photometry to measure midplane curvature in the edge-on disk and a break in the disk's radial brightness profile. Such a break may indicate the location of a planetesimal ring that is a source of the light-scattering micron-sized grains. For the HD 61005 debris disk, we examined similar data together with GPI 1.6-micron polarization data and detected the dust ring's swept-back morphology, brightness asymmetry, stellocentric offset, and inner clearing. To study the physical mechanism behind these features, we explored how eccentricity and mutual

  17. Diagnostic image quality of hysterosalpingography: ionic versus non ionic water soluble iodinated contrast media

    Science.gov (United States)

    Mohd Nor, H; Jayapragasam, KJ; Abdullah, BJJ

    2009-01-01

    Objective To compare the diagnostic image quality between three different water soluble iodinated contrast media in hysterosalpingography (HSG). Material and method In a prospective randomised study of 204 patients, the diagnostic quality of images obtained after hysterosalpingography were evaluated using Iopramide (106 patients) and Ioxaglate (98 patients). 114 patients who had undergone HSG examination using Iodamide were analysed retrospectively. Image quality was assessed by three radiologists independently based on an objective set of criteria. The obtained results were statistically analysed using Kruskal-Wallis and Mann-Whitney U test. Results Visualisation of fimbrial rugae was significantly better with Iopramide and Ioxaglate than Iodamide. All contrast media provided acceptable diagnostic image quality with regard to uterine, fallopian tubes outline and peritoneal spill. Uterine opacification was noted to be too dense in all three contrast media and not optimal for the assessment of intrauterine pathology. Higher incidence of contrast intravasation was noted in the Iodamide group. Similarly, the numbers of patients diagnosed with bilateral blocked fallopian tubes were also higher in the Iodamide group. Conclusion HSG using low osmolar contrast media (Iopramide and Ioxaglate) demonstrated diagnostic image qualities similar to HSG using conventional high osmolar contrast media (Iodamide). However, all three contrast media were found to be too dense for the detection of intrauterine pathology. Better visualisation of the fimbrial outline using Ioxaglate and Iopramide were attributed to their low contrast viscosity. The increased incidence of contrast media intravasation and bilateral tubal blockage using Iodamide are probably related to the high viscosity. PMID:21611058

  18. Stochastic optimal phase retrieval algorithm for high-contrast imaging

    Science.gov (United States)

    Give'on, Amir; Kasdin, N. Jeremy; Vanderbei, Robert J.; Spergel, David N.; Littman, Michael G.; Gurfil, Pini

    2003-12-01

    The Princeton University Terrestrial Planet Finder (TPF) has been working on a novel method for direct imaging of extra solar planets using a shaped-pupil coronagraph. The entrance pupil of the coronagraph is optimized to have a point spread function (PSF) that provides the suppression level needed at the angular separation required for detection of extra solar planets. When integration time is to be minimized, the photon count at the planet location in the image plane is a Poisson distributed random process. The ultimate limitation of these high-dynamic-range imaging systems comes from scattering due to imperfections in the optical surfaces of the collecting system. The first step in correcting the wavefront errors is the estimation of the phase aberrations. The phase aberration caused by these imperfections is assumed to be a sum of two-dimensional sinusoidal functions. Its parameters are estimated using a global search with a genetic algorithm and a local optimization with the BFGS quasi-Newton method with a mixed quadratic and cubic line search procedure.

  19. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    CERN Document Server

    Panigrahi, Swapnesh; Alouini, Mehdi

    2015-01-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model.

  20. Influence of tube voltage on digitized image qualityof patients exposed to occupational dust: phantoms and clinical studies

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohua; Liu Dongsheng; Xuan Xiao; Duan Jianghui; Yuan Huishu

    2014-01-01

    Background High-voltage analog X-ray examination is a main tool for pneumoconiosis,which is challenged by digital radiography (DR).The tube voltage of DR chest films required for diagnosis and staging of pneumoconiosis is concerned technically.We investigated the influence of the tube voltage on chest X-ray DR image quality of patients exposed to occupational dust.Methods DR images of the CDRAD2.0model,an anatomical chest phantom,and 136 exposed workers were analyzed at different tube voltages by threereaders.Image quality factors (IQF) were calculated and compared using the CDRAD2.0 model.DR images of ten anatomic positions were scored against those of the high-kilovolt chest films in anatomical phantom and clinical cases,and differences in scores were analyzed.Results In the CDRAD2.0 model,all three readers had a minimal IQF at 120 kV (mean:22.25 kV).The differences in the mean IQF of DR images at different tube voltages was significant (F=13.78,P<0.001).The IQF of DR imaging at 120 kV was similar to high kilovolt analog imaging (t=-0.58,P>0.05).In the anatomic phantom and clinical cases,the DR images at 120 kV were closest in anatomical detail to the high W analog images,and the means were similar (P>0.05).Conclusions Among different tube voltages,DR image quality is closest to the high kilovolt analog images at 120 kV in patients exposed to occupational dust.

  1. Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: intra-individual comparison

    Energy Technology Data Exchange (ETDEWEB)

    Krazinski, Aleksander W.; Silverman, Justin R. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Meinel, Felix G.; Geyer, Lucas L. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Healthcare, CT Division, Malvern, PA (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' - Polo Pontino, Department of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2014-11-15

    To evaluate the effect of automated tube voltage selection on radiation dose and image quality at cardiovascular CT angiography (CTA). We retrospectively analysed paired studies in 72 patients (41 male, 60.5 ± 16.5 years), who had undergone CTA acquisitions of the heart or aorta both before and after the implementation of an automated x-ray tube voltage selection algorithm (ATVS). All other parameters were kept identical between the two acquisitions. Subjective image quality (IQ) was rated and objective IQ was measured by image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and figure of merit (FOM). Image quality parameters and effective dose were compared between acquisitions. Overall subjective image quality improved with the percentage of cases scored as adequate or higher increasing from 79 % to 92 % after implementation of ATVS (P = 0.03). SNR (14.1 ± 5.9, 15.7 ± 6.1, P = 0.009), CNR (11.6 ± 5.3, 13.2 ± 5.6, P = 0.011), and FOM (19.9 ± 23.3, 43.8 ± 51.1, P < 0.001) were significantly higher after implementation of ATVS. Mean image noise (24.1 ± 8.4 HU, 22.7 ± 7.1 HU, P = 0.048) and mean effective dose (10.6 ± 5.9 mSv, 8.8 ± 5.0 mSv, P = 0.003) were significantly lower after implementation of ATVS. Automated tube voltage selection can operator-independently optimize cardiovascular CTA image acquisition parameters with improved image quality at reduced dose. (orig.)

  2. Global and local contrast enhancement algorithm for image using wavelet neural network and stationary wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Changjiang Zhang; Xiaodong Wang; Haoran Zhang

    2005-01-01

    A new contrast enhancement algorithm for image is proposed employing wavelet neural network (WNN)and stationary wavelet transform (SWT). Incomplete Beta transform (IBT) is used to enhance the global contrast for image. In order to avoid the expensive time for traditional contrast enhancement algorithms,which search optimal gray transform parameters in the whole gray transform parameter space, a new criterion is proposed with gray level histogram. Contrast type for original image is determined employing the new criterion. Gray transform parameter space is given respectively according to different contrast types,which shrinks the parameter space greatly. Nonlinear transform parameters are searched by simulated annealing algorithm (SA) so as to obtain optimal gray transform parameters. Thus the searching direction and selection of initial values of simulated annealing is guided by the new parameter space. In order to calculate IBT in the whole image, a kind of WNN is proposed to approximate the IBT. Having enhanced the global contrast to input image, discrete SWT is done to the image which has been processed by previous global enhancement method, local contrast enhancement is implemented by a kind of nonlinear operator in the high frequency sub-band images of each decomposition level respectively. Experimental results show that the new algorithm is able to adaptively enhance the global contrast for the original image while it also extrudes the detail of the targets in the original image well. The computation complexity for the new algorithm is O(MN) log(MN), where M and N are width and height of the original image, respectively.

  3. Fusion of multi-voltage digital radiography images based on nonsubsampled contourlet transform.

    Science.gov (United States)

    Yanjie, Qi; Liming, Wang

    2016-01-01

    In order to increase the single digital radiography (DR) image information of the composite component in the industry, the different DR images are captured at different voltages so as to get the structural information at different thickness region firstly. Secondly, the original DR images are decomposed by nonsubsampled contourlet transform (NSCT), and the low-frequency subbands are fused by the role of principle component analysis (PCA), and the modified central energy role is used to carry out the high-frequency directional subbands fusion. The false edges are extracted, and the values of the high-frequency subband coefficients of the false edges are set to be a small value so as to reduce the false edges in the fusion image. Finally, the output image can be obtained by inverse nonsubsampled contourlet transform. The experimental results show that the fused DR image brings more detailed information, and the structure of the component can be seen clearly, so it is useful to the fast and accurate quality judgements of the component.

  4. Diagnostic utility of intravenous contrast for MR imaging in pediatric appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Gray R.; Renjen, Pooja; Kovanlikaya, Arzu [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Radiology, New York, NY (United States); Askin, Gulce; Giambrone, Ashley E. [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Biostatistics and Epidemiology, New York, NY (United States); Beneck, Debra [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Pathology, New York, NY (United States)

    2017-04-15

    Magnetic resonance imaging (MRI) is increasingly employed as a diagnostic modality for suspected appendicitis in children. However, there is uncertainty as to which MRI sequences are sufficient for safe, timely and accurate diagnosis. Several recent studies have described different MRI protocols, including exams both with and without the use of intravenous contrast. We hypothesized that intravenous contrast may be useful in some patients but could be safely omitted in others. All MRI examinations (n=112) performed at our institution for evaluating appendicitis in children were retrospectively reevaluated. Exams were reread by pediatric radiologists under three conditions: With postcontrast images, Without postcontrast images, and Without/With - selective use of postcontrast sequences only when needed for diagnostic certainty. Samples were scored as positive, negative or equivocal for appendicitis. Findings were compared to pathological or clinical follow-up in the medical record. Without the use of intravenous contrast yielded more equivocal results (12.4%) compared to With contrast (3.4%). By selectively using postcontrast sequences, the Without/With group yielded fewer equivocal results (1.1%) compared to Without while also reducing contrast use 79.8% compared to the With contrast group. No significant differences in conditional sensitivity or conditional specificity were detected among the three groups. MRI diagnosis of acute appendicitis can be performed without contrast for most patients; injection of contrast can be reserved for only those patients with equivocal non-contrast imaging. (orig.)

  5. Ultrasonic Imaging Using a Flexible Array: Improvements to the Maximum Contrast Autofocus Algorithm

    Science.gov (United States)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  6. An Improved Local Equilibrium Contrast Enhancement Algorithm for Infrared Laser Images

    Directory of Open Access Journals (Sweden)

    Yuhong Li

    2010-12-01

    Full Text Available An improved local equilibrium contrast enhancement algorithm based self-adaptive contrast enhancement algorithm is proposed for infrared laser images, in which the image pixel value histogram is divided into three parts: background and noise area, targets area, and uninterested area. The targets parts are highlighted, while the background and noise parts and the uninterested parts are restrained. A comprehensive qualitative and quantitative image enhancement performance evaluation is presented to verify the proposed theory and algorithm validity, efficiency and reasonability. The experimental results indicate that the proposed algorithm can greatly improve the global and local contrast for both near infrared images and far infrared laser images while efficiently reducing noise in the infrared laser images,and the visual quality of enhanced image is obviously better than the enhancement of the traditional histogram equalization, double plateaus histogram equalization algorithm, etc.

  7. Subharmonic, non-linear fundamental and ultraharmonic imaging of microbubble contrast at high frequencies.

    Science.gov (United States)

    Daeichin, Verya; Bosch, Johan G; Needles, Andrew; Foster, F Stuart; van der Steen, Antonius; de Jong, Nico

    2015-02-01

    There is increasing use of ultrasound contrast agent in high-frequency ultrasound imaging. However, conventional contrast detection methods perform poorly at high frequencies. We performed systematic in vitro comparisons of subharmonic, non-linear fundamental and ultraharmonic imaging for different depths and ultrasound contrast agent concentrations (Vevo 2100 system with MS250 probe and MicroMarker ultrasound contrast agent, VisualSonics, Toronto, ON, Canada). We investigated 4-, 6- and 10-cycle bursts at three power levels with the following pulse sequences: B-mode, amplitude modulation, pulse inversion and combined pulse inversion/amplitude modulation. The contrast-to-tissue (CTR) and contrast-to-artifact (CAR) ratios were calculated. At a depth of 8 mm, subharmonic pulse-inversion imaging performed the best (CTR = 26 dB, CAR = 18 dB) and at 16 mm, non-linear amplitude modulation imaging was the best contrast imaging method (CTR = 10 dB). Ultraharmonic imaging did not result in acceptable CTRs and CARs. The best candidates from the in vitro study were tested in vivo in chicken embryo and mouse models, and the results were in a good agreement with the in vitro findings.

  8. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    Science.gov (United States)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  9. Infrared image enhancement through contrast enhancement by using multiscale new top-hat transform

    Science.gov (United States)

    Bai, Xiangzhi; Zhou, Fugen; Xue, Bindang

    2011-03-01

    Infrared imaging sensor is sensitive to the variation of imaging environment, which may affect the quality of the obtained images and blur the regions of interest in infrared image. So, it is very important to enhance infrared image. In infrared image, the gray values of the regions of interest are bright or dim image regions, which are different from the surrounding regions. The new top-hat transform could extract image regions which are different from its surrounding regions. In light of this, an infrared image enhancement algorithm through contrast enhancement is proposed in this paper based on multiscale new top-hat transform. Firstly, the multiscale white and black new top-hat transforms are used to extract the multiscale light and dark infrared image regions. Then, the final light and dark infrared image regions for image enhancement are constructed by using the extracted multiscale light and dark infrared image regions. Finally, the contrast of the infrared image is enhanced through a power strategy. Experimental results on different infrared images show that the proposed algorithm could well enhance infrared image and make the possible interested targets brighter, which is very helpful for target detection and recognition.

  10. Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ja [Dept. of Radiologic Tecnology, Dongnam Health College, Suwon (Korea, Republic of); Kim, You Hyun; Kim, Chang Nam [Dept. of Radiological Science, College of Health Science, Korea University, Seoul (Korea, Republic of); Kim, Chang Nam; Lee, Chang Yeob; Park, Kye Yeon [Dept. of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2009-03-15

    To find out proper photographing conditions in the chest DR imaging, the evaluation of images using the C-D phantom was carried out on relationship of identification capability, graininess, and exposure ratio. The conclusions were obtained as follows. 1. The patient's entrance skin Exposure (ESE) was decreased as tube voltage was increased. 2. According to the tube voltage change, the C-D phantom's identification capability of the exposure conditions was most visible at 110 kVp. 3. The identification capability according to the exposure ratio (mAs) change was most visible at 90 kVp for 0.5 times of low exposure ratio and at 110 kVp for 1.5 times. Therefore, it is known that the images were able to be better identified at a high exposure than a low exposure. 4. The graininess according to the exposure ratio at tube voltage of 110 kVp resulted in the best thing at 1.5 times of ratio when the exposure ratio was 1.5 times increased and the tube voltage was changed, the graininess showed the best result at 110 kVp. Therefore, the patient's exposure dose was low when kVp was increased and the adequate kVp was found to be 110. The image was better identified when exposure ratio was 1.5 times compared to 1.0 times. The graininess was also good when the exposure ratio became 1.5 times. The tube voltage was good at 110 kVp. However, once the exposure ratio is increased, the amount of radiation dose that the patients received get increased, so that the exposure condition has to be thoroughly considered.

  11. Assessment and Monitoring Tumor Vascularity With Contrast-Enhanced Ultrasound Maximum Intensity Persistence Imaging

    Science.gov (United States)

    Pysz, Marybeth A.; Foygel, Kira; Panje, Cedric M.; Needles, Andrew; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Objectives Contrast-enhanced ultrasound imaging is increasingly being used in the clinic for assessment of tissue vascularity. The purpose of our study was to evaluate the effect of different contrast administration parameters on the in vivo ultrasound imaging signal in tumor-bearing mice using a maximum intensity persistence (MIP) algorithm and to evaluate the reliability of in vivo MIP imaging in assessing tumor vascularity. The potential of in vivo MIP imaging for monitoring tumor vascularity during antiangiogenic cancer treatment was further evaluated. Materials and Methods In intraindividual experiments, varying contrast microbubble concentrations (5 × 105, 5 × 106, 5 × 107, 5 × 108 microbubbles in 100 µL saline) and contrast injection rates (0.6, 1.2, and 2.4 mL/min) in subcutaneous tumor-bearing mice were applied and their effects on in vivo contrast-enhanced ultrasound MIP imaging plateau values were obtained using a dedicated small animal ultrasound imaging system (40 MHz). Reliability of MIP ultrasound imaging was tested following 2 injections of the same micro-bubble concentration (5 × 107 microbubbles at 1.2 mL/min) in the same tumors. In mice with subcutaneous human colon cancer xenografts, longitudinal contrast-enhanced ultrasound MIP imaging plateau values (baseline and at 48 hours) were compared between mice with and without antiangiogenic treatment (anti-vascular endothelial growth factor antibody). Ex vivo CD31 immunostaining of tumor tissue was used to correlate in vivo MIP imaging plateau values with microvessel density analysis. Results In vivo MIP imaging plateau values correlated significantly (P = 0.001) with contrast microbubble doses. At 3 different injection rates of 0.6, 1.2, and 2.4 mL/min, MIP imaging plateau values did not change significantly (P = 0.61). Following 2 injections with the same microbubble dose and injection rate, MIP imaging plateau values were obtained with high reliability with an intraclass correlation

  12. Theoretical analysis of x-ray CT phase-contrast imaging

    Science.gov (United States)

    Feng, Sheng; Liu, Song; Zhang, Xuelong

    2008-12-01

    Recently phase contrast imaging has attracted much attention. An obvious advantage of using X-rays for imaging the internal structure of relatively thick samples lies in its high degree of penetration of solid objects. However, often leads to poor image contrast for soft tissue. Phase contrast imaging can be very useful in such situation, as the phase of the transmitted beam may often be more sensitive indicator of density of sample than convention contrast. On the other hand, Computed Tomography is the best technology in the aspect of X-rays detection. Using the technology, the detected object can be imaged to three-dimensional image, so as to observe the inner structure of object, and be convenient to the disease examination. If the phase contrast imaging can be used to the technology of Computed Tomography, the high resolution image can be gained. The technology will become the development orientation of medical image. The aim of this article was to apply the theory of X-rays phase contrast imaging to the traditional X-CT technique. For this purpose, the formula deduced from the imaging theory with parallel monochromatic X-rays illuminating the object based on the Fresnel-Kircohhof theory had been completed and a formula similar to that of the traditional X-CT reconstruction had been gained, which was Radon transform formula. At last, X-rays reconstruction simulation had been carried out according to the formula, and proved that the method could be used in clinical medical imaging. The method discussed in this paper had a very bright prospect for application.

  13. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents

    Science.gov (United States)

    Zhu, Derong; Liu, Fuyao; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2013-01-01

    Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality. PMID:23698781

  14. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging.

    Science.gov (United States)

    German, S V; Navolokin, N A; Kuznetsova, N R; Zuev, V V; Inozemtseva, O A; Anis'kov, A A; Volkova, E K; Bucharskaya, A B; Maslyakova, G N; Fakhrullin, R F; Terentyuk, G S; Vodovozova, E L; Gorin, D A

    2015-11-01

    Magnetic fluid-loaded liposomes (MFLs) were fabricated using magnetite nanoparticles (MNPs) and natural phospholipids via the thin film hydration method followed by extrusion. The size distribution and composition of MFLs were studied using dynamic light scattering and spectrophotometry. The effective ranges of magnetite concentration in MNPs hydrosol and MFLs for contrasting at both T2 and T1 relaxation were determined. On T2 weighted images, the MFLs effectively increased the contrast if compared with MNPs hydrosol, while on T1 weighted images, MNPs hydrosol contrasting was more efficient than that of MFLs. In vivo magnetic resonance imaging (MRI) contrasting properties of MFLs and their effects on tumor and normal tissues morphology, were investigated in rats with transplanted renal cell carcinoma upon intratumoral administration of MFLs. No significant morphological changes in rat internal organs upon intratumoral injection of MFLs were detected, suggesting that the liposomes are relatively safe and can be used as the potential contrasting agents for MRI.

  15. High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    CERN Document Server

    Skemer, Andrew J; Esposito, Simone; Skrutskie, Michael F; Defrere, Denis; Bailey, Vanessa; Leisenring, Jarron; Apai, Daniel; Biller, Beth; Bonnefoy, Mickael; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; De Rosa, Robert J; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Maire, Anne-Lise; Males, Jared R; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Su, Kate; Vaz, Amali; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E; Zimmerman, Neil

    2014-01-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\\mu$m in preparation for JWST.

  16. Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Marc T.; Heran, Francoise; Lafitte, Francois; Elmaleh-Berges, Monique; Piekarski, Jean-Daniel [Department of Medical Imaging, Fondation Ophthalmologique Adolphe de Rothschild, 25, rue Manin, 75940 Paris (France); Ayache, Denis [Department of Otorhinolaryngology, Fondation Ophthalmologique Adolphe de Rothschild, 25, rue Manin, 75940 Paris (France); Alberti, Corinne [Department of Biostatistics, Hopital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris (France)

    2003-01-01

    Our objective was to assess the value of delayed contrast-enhanced T1-weighted spin-echo MR imaging in the detection of residual cholesteatoma in patients who have undergone canal wall-up tympanoplasty procedure. The MR imaging was obtained prior to revision surgery in 18 patients with opacity of the post-operative cavity at CT examination 12-18 months after canal wall-up tympanoplasty. In each patient the following was performed: precontrast T1- and T2-weighted images; and early and delayed contrast-enhanced axial and coronal T1-weighted imaging. Early and delayed MR imaging results were separately compared with surgical second-look findings. Sensitivity, specificity, and predictive values were evaluated for early and delayed post-contrast MR imaging, compared with second-look surgery findings. A residual cholesteatoma was correctly identified in 8 of 9 cases with delayed contrast-enhanced T1-weighted MR imaging. Mean sensitivity, specificity, positive predictive value, and interobserver agreement (evaluated by kappa statistics) were, respectively, 85.2, 92.6, 92.6%, and kappa=0.78 for the delayed contrast-enhanced MR imaging technique. The same parameters were, respectively, 96.3, 33.3, 60.6, and 0.30 for the early contrast-enhanced T1-weighted MR images. We conclude that delayed contrast-enhanced T1-weighted MR imaging is reliable for the detection of residual cholesteatomas of the middle ear in patients who have undergone canal wall-up tympanoplasty. (orig.)

  17. Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source

    Science.gov (United States)

    Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.

    2016-12-01

    X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.

  18. Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex

    Science.gov (United States)

    Takeshita, Daisuke; Bahar, Sonya

    2011-12-01

    Seizures are often assumed to result from an excess of synchronized neural activity. However, various recent studies have suggested that this is not necessarily the case. We investigate synchronization during focal neocortical seizures induced by injection of 4-aminopyridine (4AP) in the rat neocortex in vivo. Neocortical activity is monitored by field potential recording and by the fluorescence of the voltage-sensitive dye RH-1691. After removal of artifacts, the voltage-sensitive dye (VSD) signal is analyzed using the nonlinear dynamics-based technique of stochastic phase synchronization in order to determine the degree of synchronization within the neocortex during the development and spread of each seizure event. Results show a large, statistically significant increase in synchronization during seizure activity. Synchrony is typically greater between closer pixel pairs during a seizure event; the entire seizure region is synchronized almost exactly in phase. This study represents, to our knowledge, the first application of synchronization analysis methods to mammalian VSD imaging in vivo. Our observations indicate a clear increase in synchronization in this model of focal neocortical seizures across a large area of the neocortex; a sharp increase in synchronization during seizure events was observed in all 37 seizures imaged. The results are consistent with a recent computational study which simulates the effect of 4AP in a neocortical neuron model.

  19. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  20. A high-contrast coronagraph for earth-like exoplanet direct imaging: design and test

    CERN Document Server

    Liu, C C; Dou, J P; Zhu, Y T; Zhang, X; Zhao, G; Wu, Zh; Chen, R

    2014-01-01

    The high-contrast coronagraph for direct imaging earth-like exoplanet at the visible needs a contrast of 10^(-10) at a small angular separation of 4 lambda/D or less. Here we report our recent laboratory experiment that is close to the limits. The test of the high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve the goal, we use a liquid crystal array (LCA) as a phase corrector to create a dark hole based on our dedicated focal dark algorithm. We have suppressed the diffracted and speckle noise near the star point image to a level of 1.68 x 10^(-9) at 4 lambda/D, which can be immediately used for the direct imaging of Jupiter like exoplanets. This demonstrates that high-contrast coronagraph telescope in space has the potentiality to detect and characterize earth-like planets.

  1. Spherical-Wave Far-Field Interferometer for Hard X-Ray Phase Contrast Imaging

    CERN Document Server

    Miao, Houxun; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Panna, Alireza; Bhandarkar, Priya; Wen, Han

    2014-01-01

    Low dose, high contrast x-ray imaging is of general interest in medical diagnostic applications. X-ray Mach-Zehnder interferometers using collimated synchrotron beams demonstrate the highest levels of phase contrast under a given exposure dose. However, common x-ray sources emit divergent cone beams. Here, we developed a spherical-wave inline Mach-Zehnder interferometer for phase contrast imaging over an extended area with a broadband and divergent source. The first tabletop system was tested in imaging experiments of a mammographic accreditation phantom and various biological specimens. The noise level of the phase contrast images at a clinical radiation dose corresponded to a 6 nano radian bending of the x-ray wavefront. Un-resolved structures with conventional radiography and near-field interferometer techniques became visible at a fraction of the radiation dose.

  2. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Science.gov (United States)

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422

  3. 1.5 Harmonic Imaging Sonography with microbubble contrast agent improves characterization of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kouji Yamamoto; Katsuya Shiraki; Shigeo Nakanishi; Hiroyuki Fuke; Takeshi Nakano; Akira Hashimoto; Atsuya Shimizu; Toshinobu Hamataki

    2005-01-01

    AIM: To investigate the usefulness of 1.5 Harmonic Imaging Sonography with the use of the contrast agent Levovist for the diagnosis of hepatocellular carcinoma (HCC) and for the evaluation of therapeutic response.METHODS: Phantom experiments were performed to compare the contrast effects of 2nd harmonic imaging and 1.5 Harmonic Imaging Sonography. 1.5 Harmonic Imaging Sonography was employed to examine 36 patients with HCC (42 nodules) before and after the treatment and to compare against the findings obtained using other diagnostic imaging modalities. RESULTS: In 1.5 Harmonic Imaging Sonography, the tumor vessels of HCCs were clearly identified during the early phase, and late-phase images clearly demonstrated the differences in contrast enhancement between the tumor and surrounding hepatic parenchyma. Blood flow within the tumor was detected in 36 nodules (85.7%)during the early phase and in all 42 nodules (100%) during the late phase using 1.5 Harmonic Imaging Sonography,in 38 nodules (90.5%) using contrast-enhanced CT, in 34nodules (81.0%) using digital subtraction angiography (DSA), and in 42 nodules (100%) using US CO2angiography.Following transcatheter arterial embolization, 1.5Harmonic Imaging Sonography detected blood flow and contrast enhancement within the tumors that were judged to contain viable tissue in 20 of 42 nodules (47.6%).However, 6 of these 20 cases were not judged in contrastenhanced CT. 1.5 Harmonic Imaging Sonography was compared with the US CO2 angiography findings as the gold standard, and the sensitivity and specificity of these images for discerning viable and nonviable HCC after transcatheter arterial embolization were 100% and 100%,respectively.CONCLUSION: 1.5 Harmonic Imaging Sonography permits the vascular structures of HCCs to be identified and blood flow within the tumor to be clearly demonstrated.Furthermore, 1.5 Harmonic Imaging Sonography is potentially useful for evaluating the therapeutic effects of transcatheter arterial

  4. Characterisation of contrast agent microbubbles for ultrasound imaging and therapy research

    OpenAIRE

    2016-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared to the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound, and in particular these recent developments, have amplified the need to characterize and...

  5. Registration of phase-contrast images in propagation-based X-ray phase tomography.

    Science.gov (United States)

    Weber, L; Hänsch, A; Wolfram, U; Pacureanu, A; Cloetens, P; Peyrin, F; Rit, S; Langer, M

    2017-08-16

    X-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    Science.gov (United States)

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  7. Imaging liver metastases with a new oral manganese-based contrast agent.

    NARCIS (Netherlands)

    Chabanova, E.; Logager, V.; Moller, J.M.; Dekker, H.M.; Barentsz, J.O.; Thomsen, H.S.

    2006-01-01

    RATIONALE AND OBJECTIVES: The purpose of the study was a preliminary evaluation of a new oral, manganese-based, liver-specific contrast medium (CMC-001; CMC Contrast AB, Malmoe, Sweden) for magnetic resonance imaging (MRI) in patients with liver metastases. MATERIALS AND METHODS: The study included

  8. Imaging liver metastases with a new oral manganese-based contrast agent.

    NARCIS (Netherlands)

    Chabanova, E.; Logager, V.; Moller, J.M.; Dekker, H.M.; Barentsz, J.O.; Thomsen, H.S.

    2006-01-01

    RATIONALE AND OBJECTIVES: The purpose of the study was a preliminary evaluation of a new oral, manganese-based, liver-specific contrast medium (CMC-001; CMC Contrast AB, Malmoe, Sweden) for magnetic resonance imaging (MRI) in patients with liver metastases. MATERIALS AND METHODS: The study included

  9. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    Science.gov (United States)

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  10. Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents

    Science.gov (United States)

    Doiron, Amber L.; Homan, Kimberly A.; Emelianov, Stanislav; Brannon-Peppas, Lisa

    2010-01-01

    Purpose With the broadening field of nanomedicine poised for future molecular level therapeutics, nano-and microparticles intended for the augmentation of either single- or multimodal imaging are created with PLGA as the chief constituent and carrier. Methods Emulsion techniques were used to encapsulate hydrophilic and hydrophobic imaging contrast agents in PLGA particles. The imaging contrast properties of these PLGA particles were further enhanced by reducing silver onto the PLGA surface, creating a silver cage around the polymeric core. Results The MRI contrast agent Gd-DTPA and the exogenous dye rhodamine 6G were both encapsulated in PLGA and shown to enhance MR and fluorescence contrast, respectively. The silver nanocage built around PLGA nanoparticles exhibited strong near infrared light absorbance properties, making it a suitable contrast agent for optical imaging strategies such as photoacoustic imaging. Conclusions The biodegradable polymer PLGA is an extremely versatile nano- and micro-carrier for several imaging contrast agents with the possibility of targeting diseased states at a molecular level. PMID:19034628

  11. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    Science.gov (United States)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  12. Image Quality and Radiation Exposure in Coronary CT Angiography According to Tube Voltage and Body Mass Index

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Kyung [Korea University Guro Hospital, Seoul (Korea, Republic of); Kim, Yoo Kyung [Ewha Womans University MokDong Hospital, Seoul (Korea, Republic of)

    2010-01-15

    To investigate the image quality and radiation dose of a coronary CT angiography (CCTA) according to tube voltage and body mass index (BMI). This study included 139 patients who underwent CCTA using a retrospective electrocardiography- gating technique. A total of 48 patients (BMI <2 5, group A) were examined with 100 kVp, 45 patients (BMI > 25, group B) with 120 kVp, and 46 patients (BMI < 25, group C) with 120 kVp. Attenuation and image noise of the aorta and coronary arteries was measured. Moreover, the image quality of 9 coronary segments was graded on a scale of 1-5, where grade 4 or 5 was considered to be diagnostic. Image quality parameters and radiation dose were compared using a t-test or Chi-squared test. Results: Vessel attenuation in group A was significantly higher than in groups B or C (group A, 592 {+-} 85 HU; group B, 437 {+-} 46 HU; group C, 469 {+-} 62 HU, p<0.001). Image noise was similar in group A and group B (23 {+-} 5 HU versus 22 {+-} 6 HU, p=0.427), but significantly higher in group A compared to group C (23 {+-} 5 HU versus 17 {+-} 4 HU, p<0.001). A significant difference was observed in the signal-to-noise ratio between the three groups (group A, 24 {+-} 6; group B, 19 {+-} 3; group C, 27 {+-} 5: p<0.05). Moreover, the contrast-to-noise ratio was significantly higher in group A than group B (group A 18 {+-} 5 versus group B 14 {+-} 3, p < 0.001) but not significantly different between group A and group C (group C 20 {+-} 4, p=0.127). The percentage of coronary segments with diagnostic image quality was 97.9% in group A, 96.0% in group B, and 99.0% in group C. The mean image quality score was 4.5 {+-} 0.5 in group A, 4.1 {+-} 0.4 in group B, and 4.2 {+-} 0,4 in group C (p<0.001). The effective radiation doses were 8.5 {+-} 0.8 mSv in group A, 14.3 {+-} 1.3 mSv in group B, and 14.9 {+-} 1.3 mSv in group C. A 42% reduction in mean effective radiation dose in group A was observed compared with groups B and C. In patients with BMI less than 25

  13. Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system

    Science.gov (United States)

    Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.

    2016-08-01

    Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.

  14. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents

    Science.gov (United States)

    Keahey, Pelham; Ramalingam, Preetha; Schmeler, Kathleen

    2016-01-01

    Fiber optic microendoscopy has shown promise for visualization of molecular contrast agents used to study disease in vivo. However, fiber optic microendoscopes have limited optical sectioning capability, and image contrast is limited by out-of-focus light generated in highly scattering tissue. Optical sectioning techniques have been used in microendoscopes to remove out-of-focus light but reduce imaging speed or rely on bulky optical elements that prevent in vivo imaging. Here, we present differential structured illumination microendoscopy (DSIMe), a fiber optic system that can perform structured illumination in real time for optical sectioning without any opto-mechanical components attached to the distal tip of the fiber bundle. We demonstrate the use of DSIMe during in vivo fluorescence imaging in patients undergoing surgery for cervical adenocarcinoma in situ. Images acquired using DSIMe show greater contrast than standard microendoscopy, improving the ability to detect cellular atypia associated with neoplasia. PMID:27621464

  15. Calculating Contrast Stretching Variables in Order to Improve Dental Radiology Image Quality

    Science.gov (United States)

    Widodo, Haris B.; Soelaiman, Arief; Ramadhani, Yogi; Supriyanti, Retno

    2016-01-01

    Teeth are one of the body's digestive tract that serves as a softener food that can be digested easily. One branch of science that was instrumental in the treatment and diagnosis of teeth is Dental Radiology. However, in reality many dental radiology images has low resolution, thus inhibiting in making diagnosis of dental disease perfectly. This research aims to improve low resolution dental radiology image using image processing techniques. This paper discussed the use of contrast stretching method to improve the dental radiology image quality, especially relating to the calculation of the variable contrast stretching method. The results showed that contrast stretching method is promising for use in improving the image quality in a simple but efficient.

  16. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    Science.gov (United States)

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  17. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness.

    Science.gov (United States)

    Seifert, M; Kaeppler, S; Hauke, C; Horn, F; Pelzer, G; Rieger, J; Michel, T; Riess, C; Anton, G

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  18. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness

    Science.gov (United States)

    Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G.

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  19. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    Science.gov (United States)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  20. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom

    NARCIS (Netherlands)

    Irwan, Roy; Russel, Inis K.; Sijens, Paul E.

    2006-01-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par

  1. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom

    NARCIS (Netherlands)

    Irwan, Roy; Russel, Inis K.; Sijens, Paul E.

    2006-01-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par

  2. Effect of injection rate on contrast-enhanced MR angiography image quality: Modulation transfer function analysis.

    Science.gov (United States)

    Clark, Toshimasa J; Wilson, Gregory J; Maki, Jeffrey H

    2017-07-01

    Contrast-enhanced (CE)-MRA optimization involves interactions of sequence duration, bolus timing, contrast recirculation, and both R1 relaxivity and R2*-related reduction of signal. Prior data suggest superior image quality with slower gadolinium injection rates than typically used. A computer-based model of CE-MRA was developed, with contrast injection, physiologic, and image acquisition parameters varied over a wide gamut. Gadolinium concentration was derived using Verhoeven's model with recirculation, R1 and R2* calculated at each time point, and modulation transfer curves used to determine injection rates, resulting in optimal resolution and image contrast for renal and carotid artery CE-MRA. Validation was via a vessel stenosis phantom and example patients who underwent carotid CE-MRA with low effective injection rates. Optimal resolution for renal and carotid CE-MRA is achieved with injection rates between 0.5 to 0.9 mL/s and 0.2 to 0.3 mL/s, respectively, dependent on contrast volume. Optimal image contrast requires slightly faster injection rates. Expected signal-to-noise ratio varies with both contrast volume and cardiac output. Simulated vessel phantom and clinical carotid CE-MRA exams at an effective contrast injection rate of 0.4 to 0.5 mL/s demonstrate increased resolution. Optimal image resolution is achieved at intuitively low, effective injection rates (0.2-0.9 mL/s, dependent on imaging parameters and contrast injection volume). Magn Reson Med 78:357-369, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Nauer, Claude Bertrand [University Hospital Berne, Institute of Diagnostic and Interventional Neuroradiology, Berne (Switzerland); Zentrales Roentgeninstitut, Kantonsspital Graubuenden, Chur (Switzerland); Zubler, Christoph; Weisstanner, Christian [University Hospital Berne, Institute of Diagnostic and Interventional Neuroradiology, Berne (Switzerland); Stieger, Christof [University Berne, Group for Artificial Hearing Research, ARTORG Center, Berne (Switzerland); Senn, Pascal [University Hospital Berne, Department of ENT, Head and Neck Surgery, Berne (Switzerland); Arnold, Andreas [University Berne, Group for Artificial Hearing Research, ARTORG Center, Berne (Switzerland); University Hospital Berne, Department of ENT, Head and Neck Surgery, Berne (Switzerland)

    2012-03-15

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols. (orig.)

  4. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase......-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...

  5. Addition of methyl cellulose enema to double-contrast barium imaging of sigmoid diverticulosis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, R. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Adnerhill, I. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Bjoerkdahl, P. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Ekberg, O. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Fork, F.T. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology

    1997-01-01

    Double-contrast barium enema has a reduced sensitivity in patients with severe sigmoid diverticulosis. Therefore a carboxy methyl cellulose enema was employed after the conventional double-contrast examination in 15 patients with sigmoid diverticulosis. A significant increase in lumen diameter and a superior removal of barium residue from the diverticulas facilitated the interpretation of the sigmoid loops. Conclusion: The addition of methyl cellulose enema to double-contrast barium imaging improves diagnostic imaging in diverticulosis by expanding the lumen and emptying the diverticulas. (orig.).

  6. Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo

    Science.gov (United States)

    Liu, Rong; Qin, Jia; Wang, Ruikang K.

    2013-06-01

    Laser speckle imaging is widely used to monitor functional blood perfusion within tissue beds in vivo but traditionally has difficulty visualizing small blood vessels even when the exposure time of the detector is long. We report a simple method that uses the motion contrast of dynamic speckle patterns to noninvasively visualize the distribution of blood flow within tissue beds in vivo. We experimentally demonstrate that the motion contrast can significantly suppress the effect of static scattering, leading to enhanced visibility of the functional blood vessels, including capillaries when compared to the traditional laser speckle contrast imaging.

  7. Application of image processing techniques for contrast enhancement in dense breast digital mammograms

    Science.gov (United States)

    Nunes, Fatima d. L. d. S.; Schiabel, Homero; Benatti, Rodrigo H.

    1999-05-01

    Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.

  8. Contrast-enhanced dynamic MR imaging of postmolar gestational trophoblastic disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Torashima, M. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Takahashi, M. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Mizutani, H. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Miyazaki, K. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Matsuura, K. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Okamura, H. [Depts. of Radiology and Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan)

    1995-03-01

    Conventional spin-echo (SE) and contrast-enhanced dynamic MR imaging were performed on a 1.5 T superconductive unit for evaluation of myometrial lesions in postmolar gestational trophoblastic disease (GTD) in 10 women. MR imaging was done at the time of the initial examination (n=10), during (n=6), and after repeated courses of chemotherapy (n=10). The T2-weighted SE image revealed an enlarged uterus (n=7), disappearance of zonal anatomy (n=6), and heterogeneous signal intensities (n=8) with prominent flow voids (n=7). However, these abnormalities remained after repeated courses of chemotherapy, when the S-{beta}-HCG level returned to the normal range. Myometrial lesions characteristically had marked enhancement with areas of unenhancement on dynamic MR images in patients with highly elevated S-{beta}-HCG. Areas of contrast enhancement correlated with changes in S-{beta}-HCG level. The enhancement was reduced with decrease in S-{beta}-HCG level after repeated courses of chemotherapy. Six of 8 masses seen on T2-weighted images proved to be active trophoblastic lesions and 2 masses proved to be hematoma or necrosis. In 2 patients, abnormal myometrial lesions were detected only on contrast-enhanced dynamic MR imaging. These preliminary data indicate that contrast-enhanced dynamic MR imaging more clearly demonstrates myometrial involvement of postmolar GTD than conventional SE imaging. (orig.).

  9. X-ray phase contrast imaging of biological specimens with tabletop synchrotron radiation

    CERN Document Server

    Kneip, S; Dollar, F; Bloom, M S; Chvykov, V; Kalintchenko, G; Krushelnick, K; Maksimchuk, A; Mangles, S P D; Matsuoka, T; Najmudin, Z; Palmer, C A J; Schreiber, J; Schumaker, W; Thomas, A G R; Yanovsky, V

    2011-01-01

    Since their discovery in 1896, x-rays have had a profound impact on science, medicine and technology. Here we show that the x-rays from a novel tabletop source of bright coherent synchrotron radiation can be applied to phase contrast imaging of biological specimens, yielding superior image quality and avoiding the need for scarce or expensive conventional sources.

  10. Micron-scale voltage and [Ca2+]i imaging in the intact heart

    Directory of Open Access Journals (Sweden)

    Xiao-long eLu

    2014-12-01

    Full Text Available Studies in isolated cardiomyocytes have provided tremendous information at the cellular and molecular level concerning regulation of transmembrane voltage (Vm and intracellular calcium ([Ca2+]i. The ability to use the information gleaned to gain insight into the function of ion channels and Ca2+ handling proteins in a more complex system, e. g., the intact heart, has remained a challenge. We have developed laser scanning fluorescence microscopy-based approaches to monitor, at the sub-cellular to multi-cellular level in the immobilized, Langendorff-perfused mouse heart, dynamic changes in [Ca2+]i and Vm. This article will review the use of single- or dual-photon laser scanning microscopy [Ca2+]i imaging in conjunction with transgenic reporter technology to a interrogate the extent to which transplanted, donor-derived myocytes or cardiac stem cell-derived de novo myocytes are capable of forming a functional syncytium with the pre-existing myocardium, using entrainment of [Ca2+]i transients by the electrical activity of the recipient heart as a surrogate for electrical coupling, and b characterize the Ca2+ handling phenotypes of cellular implants. Further, we will review the ability of laser scanning fluorescence microscopy in conjunction with a fast-response voltage-sensitive to resolve, on a subcellular level in Langendorff-perfused mouse hearts, Vm dynamics that typically occur during the course of a cardiac action potential. Specifically, the utility of this technique to measure microscopic-scale voltage gradients in the normal and diseased heart is discussed.

  11. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    Energy Technology Data Exchange (ETDEWEB)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C. [Charite - Universitatsmedizin Berlin, Charite Campus Mitte, Berlin (Germany). Dept. of Radiology

    2006-11-15

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences.

  12. Phase-contrast imaging using a scanning-double-grating configuration.

    Science.gov (United States)

    Nesterets, Ya I; Wilkins, S W

    2008-04-14

    A new double-grating-based phase-contrast imaging technique is described. This technique differs from the conventional double-grating imaging method by the image acquisition strategy. The novelty of the proposed method is in lateral scanning of both gratings simultaneously while an image is collected. The collected image is not contaminated by a Moiré pattern and can be recorded even by using a high-spatial-resolution integrating detector (e.g. X-ray film), thus facilitating improved resolution and/or contrast in the image. A detailed theoretical analysis of image formation in the scanning-double-grating method is carried out within the rigorous wave-optical formalism. The transfer function for the scanning-double-grating imaging system is derived. An approximate geometrical-optics solution for the image intensity distribution is derived from the exact wave-optical formula using the stationary-phase approach. Based on the present formalism, the effects of finite source size on the preferred operating conditions and of polychromaticity on the image contrast and resolution are investigated.

  13. Integrated Spectral Low Noise Image Sensor with Nanowire Polarization Filters for Low Contrast Imaging

    Science.gov (United States)

    2015-11-05

    filters and investigate their integration with the spectral image sensors. In addition, I will investigate image processing algorithms that will take...are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters ... filters and investigate their integration with the spectral image sensors. In addition, I will investigate image processing algorithms that will take

  14. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement.

    Science.gov (United States)

    Huang, Shih-Chia; Chen, Wen-Chieh

    2014-10-01

    Contrast enhancement is crucial when generating high quality images for image processing applications, such as digital image or video photography, liquid crystal display processing, and medical image analysis. In order to achieve real-time performance for high-definition video applications, it is necessary to design efficient contrast enhancement hardware architecture to meet the needs of real-time processing. In this paper, we propose a novel hardware-oriented contrast enhancement algorithm which can be implemented effectively for hardware design. In order to be considered for hardware implementation, approximation techniques are proposed to reduce these complex computations during performance of the contrast enhancement algorithm. The proposed hardware-oriented contrast enhancement algorithm achieves good image quality by measuring the results of qualitative and quantitative analyzes. To decrease hardware cost and improve hardware utilization for real-time performance, a reduction in circuit area is proposed through use of parameter-controlled reconfigurable architecture. The experiment results show that the proposed hardware-oriented contrast enhancement algorithm can provide an average frame rate of 48.23 frames/s at high definition resolution 1920 × 1080.

  15. CW-THz image contrast enhancement using wavelet transform and Retinex

    Science.gov (United States)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  16. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    Science.gov (United States)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  17. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    Science.gov (United States)

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Focal plane wave-front sensing algorithm for high-contrast imaging

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star.A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system.We derive an algorithm for the wave-front measurement directly from 3 focal plane images.The 3 images are achieved through a deformable mirror to provide specific phases for the optics system.We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front,which is a critical procedure for wave-front sensing.The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically,which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.

  19. Focal plane wave-front sensin8 algorithm for high-contrast imaging

    Institute of Scientific and Technical Information of China (English)

    DOU JiangPei; REN DeQing; ZHU YongTian; ZHANG Xi

    2009-01-01

    High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.

  20. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization

    Science.gov (United States)

    Al-Ameen, Zohair; Sulong, Ghazali; Rehman, Amjad; Al-Dhelaan, Abdullah; Saba, Tanzila; Al-Rodhaan, Mznah

    2015-12-01

    Image contrast is an essential visual feature that determines whether an image is of good quality. In computed tomography (CT), captured images tend to be low contrast, which is a prevalent artifact that reduces the image quality and hampers the process of extracting its useful information. A common tactic to process such artifact is by using histogram-based techniques. However, although these techniques may improve the contrast for different grayscale imaging applications, the results are mostly unacceptable for CT images due to the presentation of various faults, noise amplification, excess brightness, and imperfect contrast. Therefore, an ameliorated version of the contrast-limited adaptive histogram equalization (CLAHE) is introduced in this article to provide a good brightness with decent contrast for CT images. The novel modification to the aforesaid technique is done by adding an initial phase of a normalized gamma correction function that helps in adjusting the gamma of the processed image to avoid the common errors of the basic CLAHE of the excess brightness and imperfect contrast it produces. The newly developed technique is tested with synthetic and real-degraded low-contrast CT images, in which it highly contributed in producing better quality results. Moreover, a low intricacy technique for contrast enhancement is proposed, and its performance is also exhibited against various versions of histogram-based enhancement technique using three advanced image quality assessment metrics of Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). Finally, the proposed technique provided acceptable results with no visible artifacts and outperformed all the comparable techniques.

  1. High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope.

    Science.gov (United States)

    Summers, J A; Yang, T; Tuominen, M T; Hudgings, J A

    2010-01-01

    We have developed a depth-resolved confocal thermal imaging technique that is capable of measuring the temperature distribution of an encapsulated or semi-obstructed device. The technique employs lock-in charge coupled device-based thermoreflectance imaging via a Nipkow disk confocal microscope, which is used to eliminate extraneous reflections from above or below the imaging plane. We use the confocal microscope to predict the decrease in contrast and dynamic range due to an obstruction for widefield thermoreflectance, and we demonstrate the ability of confocal thermoreflectance to maintain a high contrast and thermal sensitivity in the presence of large reflecting obstructions in the optical path.

  2. Gadolinium contrast agent selection and optimal use for body MR imaging.

    Science.gov (United States)

    Guglielmo, Flavius F; Mitchell, Donald G; Gupta, Shiva

    2014-07-01

    Proper selection of a gadolinium-based contrast agent (GBCA) for body magnetic resonance imaging (MRI) cases requires understanding the indication for the MRI exam, the key features of the different GBCAs, and the effect that the GBCA has on the selected imaging protocol. The different categories of GBCAs require timing optimization on postcontrast sequences and adjusting imaging parameters to obtain the highest T1 contrast. Gadoxetate disodium has many advantages when evaluating liver lesions, although there are caveats and limitations that need to be understood. Gadobenate dimeglumine, a high-relaxivity GBCA, can be used for indications when stronger T1 relaxivity is needed.

  3. Zero-loss image formation and modified contrast transfer theory in EFTEM.

    Science.gov (United States)

    Angert, I; Majorovits, E; Schröder, R R

    2000-04-01

    For a weak phase/weak amplitude object the information transfer in the imaging process of TEM is described by the common formalism of the contrast transfer function (CTF). So far the effects of inelastic scattering were not accounted for in this formalism. In conventional imaging they were simply neglected. In energy filtering TEM (EFTEM), where removal of inelastic electrons leads to higher specimen contrast, they were modelled by a global increase of the elastic amplitude contrast. Thus, the description of inelastic and elastic scattering was mixed. Here a new ansatz is proposed which treats elastic and inelastic contrast transfer separately by adding an inelastic contribution to the scattering potentials. In EFTEM this has the effect of adding a filter contrast which depends on the characteristics of the inelastic scattering. For samples with dominant plasmon loss the additional filter contrast is restricted to low resolution. Because of its strong dependence on the nature of the inelastic scattering process, the filter contrast cannot in general be unified with the conventional elastic amplitude contrast. The modified CTF theory for EFTEM was tested experimentally on a variety of samples. Images of amorphous layers of copper, aluminium, and carbon films, as well as zero-loss images of proteins embedded in amorphous ice were evaluated. The values of the parameters of the additional filter contrast were determined for carbon film and proteins embedded in vitrified ice. Comparison of different CTF models used to reconstruct 3D volumes from zero-loss images confirmed that best agreement with the atomic model is attained with the new, modified CTF theory.

  4. Value of MR contrast media in image-guided body interventions.

    Science.gov (United States)

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  5. Contrast-enhanced harmonic endoscopic ultrasound imaging: basic principles, present situation and future perspectives.

    Science.gov (United States)

    Alvarez-Sánchez, María-Victoria; Napoléon, Bertrand

    2014-11-14

    Over the last decade, the development of stabilised microbubble contrast agents and improvements in available ultrasonic equipment, such as harmonic imaging, have enabled us to display microbubble enhancements on a greyscale with optimal contrast and spatial resolution. Recent technological advances made contrast harmonic technology available for endoscopic ultrasound (EUS) for the first time in 2008. Thus, the evaluation of microcirculation is now feasible with EUS, prompting the evolution of contrast-enhanced EUS from vascular imaging to images of the perfused tissue. Although the relevant experience is still preliminary, several reports have highlighted contrast-enhanced harmonic EUS (CH-EUS) as a promising noninvasive method to visualise and characterise lesions and to differentiate benign from malignant focal lesions. Even if histology remains the gold standard, the combination of CH-EUS and EUS fine needle aspiration (EUS-FNA) can not only render EUS more accurate but may also assist physicians in making decisions when EUS-FNA is inconclusive, increasing the yield of EUS-FNA by guiding the puncture with simultaneous imaging of the vascularity. The development of CH-EUS has also opened up exciting possibilities in other research areas, including monitoring responses to anticancer chemotherapy or to ethanol-induced pancreatic tissue ablation, anticancer therapies based on ultrasound-triggered drug and gene delivery, and therapeutic adjuvants by contrast ultrasound-induced apoptosis. Contrast harmonic imaging is gaining popularity because of its efficacy, simplicity and non-invasive nature, and many expectations are currently resting on this technique. If its potential is confirmed in the near future, contrast harmonic imaging will become a standard practice in EUS.

  6. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    Science.gov (United States)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  7. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    Science.gov (United States)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, books/NBK5330/">), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  8. Evaluation of a new reconstruction algorithm for x-ray phase-contrast imaging

    Science.gov (United States)

    Seifert, Maria; Hauke, Christian; Horn, Florian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-04-01

    X-ray grating-based phase-contrast imaging might open up entirely new opportunities in medical imaging. However, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, vibrations or distortions of the system lead to inaccuracies within the phase-stepping procedure. Given insufficient stability of the phase-step positions, up to now, artifacts in phase-contrast images occur, which lower the image quality. This is a problem with regard to the intended use of phase-contrast imaging in clinical routine as for example tiny structures of the human anatomy cannot be observed. In this contribution we evaluate an algorithm proposed by Vargas et.al.1 and applied to X-ray imaging by Pelzer et.al. that enables us to reconstruct a differential phase-contrast image without the knowledge of the specific phase-step positions. This method was tested in comparison to the standard reconstruction by Fourier analysis. The quality of phase-contrast images remains stable, even if the phase-step positions are completely unknown and not uniformly distributed. To also achieve attenuation and dark-field images the proposed algorithm has been combined with a further algorithm of Vargas et al.3 Using this algorithm, the phase-step positions can be reconstructed. With the help of the proper phase-step positions it is possible to get information about the phase, the amplitude and the offset of the measured data. We evaluated this algorithm concerning the measurement of thick objects which show a high absorbency.

  9. SR biomedical imaging with phase-contrast and fluorescent x-ray CT

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Yoneyama, Akio; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Hirai, Yasuharu; Kuroe, Taichi; Yuasa, Tetsuya; Hyodo, Kazuyaki; Dilmanian, F. A.; Akatsuka, Takao

    2004-10-01

    New synchrotron x-ray CT system with phase-contrast and fluorescent techniques are being developed for biomedical researches with the high-contrast and high-spatial resolution. We have applied these techniques for in-vivo and ex-vivo imaging. The phase-contrast x-ray CT (PCCT) was a highly sensitive imaging technique to depict the morphological information of the soft tissue in biological object, whereas fluorescent x-ray CT (FXCT) could depict the functional information concerning to specific heavy atomic number elements at very low content. Thus, the success of in-vivo imaging by PCCT and FXCT allows starting new approach to bio-imaging researches.

  10. Comparison of laboratory grating-based and speckle-tracking x-ray phase-contrast imaging

    Science.gov (United States)

    Romell, J.; Zhou, T.; Zdora, M.; Sala, S.; Koch, F. J.; Hertz, H. M.; Burvall, A.

    2017-06-01

    Phase-contrast imaging with x-rays is a developing field for imaging weakly absorbing materials. In this work, two phase-contrast imaging methods, grating- and speckle-based imaging, that measure the derivative of the phase shift, have been implemented with a laboratory source and compared experimentally. It was found that for the same dose conditions, the speckle-tracking differential phase-contrast images have considerably higher contrast-to-noise ratio than the grating-based images, but at the cost of lower resolution. Grating-based imaging performs better in terms of resolution, but would require longer exposure times, mainly due to absorption in the grating interferometer.

  11. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    Directory of Open Access Journals (Sweden)

    Aqib H Zehri

    2014-01-01

    Full Text Available Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM, two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.

  12. Influence of metal screens on contrast in megavoltage x-ray imaging.

    Science.gov (United States)

    Droege, R T; Bjärngard, B E

    1979-01-01

    The radiographic contrast of metal screen-film detectors was investigated in order to determine the contrast capabilities of these detectors applied to megavoltage x-ray imaging. The film contrast gamma was found to be independent of the metal screen composition. Measurement of the scatter-to-primary film dose ratio in contact geometry demonstrated that a thick front screen of either 1.5 g/cm2 copper of 2.5 g/cm2 lead provides optimum contrast for the photon energies studied (60Co and 4- and 8-MV x rays). The same thickness were also found to be suitable in an air gap geometry which significantly improved the contrast compared to the contact geometry. Rear lead screens were found to provide no contrast improvement.

  13. Multi-scale contrast enhancement of oriented features in 2D images using directional morphology

    Science.gov (United States)

    Das, Debashis; Mukhopadhyay, Susanta; Praveen, S. R. Sai

    2017-01-01

    This paper presents a multi-scale contrast enhancement scheme for improving the visual quality of directional features present in 2D gray scale images. Directional morphological filters are employed to locate and extract the scale-specific image features with different orientations which are subsequently stored in a set of feature images. The final enhanced image is constructed by weighted combination of these feature images with the original image. While construction, the feature images corresponding to progressively smaller scales are made to have higher proportion of contribution through the use of progressively larger weights. The proposed method has been formulated, implemented and executed on a set of real 2D gray scale images with oriented features. The experimental results visually establish the efficacy of the method. The proposed method has been compared with other similar methods both on subjective and objective basis and the overall performance is found to be satisfactory.

  14. Momentum transfer Monte Carlo model for the simulation of laser speckle contrast imaging (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-03-01

    Laser speckle imaging (LSI) enables measurement of relative blood flow in microvasculature and perfusion in tissues. To determine the impact of tissue optical properties and perfusion dynamics on speckle contrast, we developed a computational simulation of laser speckle contrast imaging. We used a discrete absorption-weighted Monte Carlo simulation to model the transport of light in tissue. We simulated optical excitation of a uniform flat light source and tracked the momentum transfer of photons as they propagated through a simulated tissue geometry. With knowledge of the probability distribution of momentum transfer occurring in various layers of the tissue, we calculated the expected laser speckle contrast arising with coherent excitation using both reflectance and transmission geometries. We simulated light transport in a single homogeneous tissue while independently varying either absorption (.001-100mm^-1), reduced scattering (.1-10mm^-1), or anisotropy (0.05-0.99) over a range of values relevant to blood and commonly imaged tissues. We observed that contrast decreased by 49% with an increase in optical scattering, and observed a 130% increase with absorption (exposure time = 1ms). We also explored how speckle contrast was affected by the depth (0-1mm) and flow speed (0-10mm/s) of a dynamic vascular inclusion. This model of speckle contrast is important to increase our understanding of how parameters such as perfusion dynamics, vessel depth, and tissue optical properties affect laser speckle imaging.

  15. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  16. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  17. Flow quantification with nakagami parametric imaging for suppressing contrast microbubbles attenuation.

    Science.gov (United States)

    Gu, Xiaolin; Wei, Min; Zong, Yujin; Jiang, Hujie; Wan, Mingxi

    2013-04-01

    Flow quantification with contrast-enhanced ultrasound is still limited by the effects of contrast microbubble attenuation. Nakagami parametric imaging (NPI) based on the m parameter, which is related to the statistical property of echo envelope, is implemented to suppress contrast attenuation. Flow velocity (FV) and volumetric flow rate (VFR) are estimated through the least square fitting of burst depletion kinetic model to time m parameter curves (TMCs). A non-recirculating flow phantom is imaged as contrast microbubbles are infused at 10, 15, 20, 25, and 30 mL/min. Contrast microbubbles with two different concentrations are used to generate variations of contrast microbubble attenuation. The results suggest that 4 × 4 mm(2) is the optimal size of a sliding window of NPI for flow quantification under current experiment condition. At a lower microbubble concentration, the FV calculated from TMCs correlates strongly with actual FV in both unattenuated (R(2) = 0.97; p < 0.01) and attenuated regions (R(2) = 0.92; p < 0.01) within phantom. And there is a strong correlation (R(2) = 0.98; p < 0.01; slope = 0.96; intercept = 0.68) between VFR calculated from TMCs and actual VFR within the whole phantom. Similar results are obtained at higher microbubble concentrations. Compared with conventional ultrasound imaging that is intensity dependent, NPI achieves better performance on flow quantification in the presence of contrast microbubble attenuation.

  18. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    Energy Technology Data Exchange (ETDEWEB)

    Sriwayu, Wa Ode [Physics Departement, Haluoleo University Indonesia (Indonesia); Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar [Physics Departement, ITB Indonesia email : ayoe-fisika@yahoo.com (Indonesia)

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  19. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  20. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  1. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators

    Science.gov (United States)

    Chen, Yun-Sheng; Yoon, Soon Joon; Frey, Wolfgang; Dockery, Mary; Emelianov, Stanislav

    2017-06-01

    Molecular photoacoustic imaging has shown great potential in medical applications; its sensitivity is normally in pico-to-micro-molar range, dependent on exogenous imaging agents. However, tissue can produce strong background signals, which mask the signals from the imaging agents, resulting in orders of magnitude sensitivity reduction. As such, an elaborate spectral scan is often required to spectrally un-mix the unwanted background signals. Here we show a new single-wavelength photoacoustic dynamic contrast-enhanced imaging technique by employing a stimuli-responsive contrast agent. Our technique can eliminate intrinsic background noises without significant hardware or computational resources. We show that this new contrast agent can generate up to 30 times stronger photoacoustic signals than the concentration-matched inorganic nanoparticle counterparts. By dynamically modulating signals from the contrast agents with an external near-infrared optical stimulus, we can further suppress the background signals leading to an additional increase of more than five-fold in imaging contrast in vivo.

  2. High contrast imaging of exoplanets on ELTs using a super-Nyquist wavefront control scheme

    CERN Document Server

    Gerard, Benjamin L

    2016-01-01

    One of the key science goals for extremely large telescopes (ELTs) is the detailed characterization of already known directly imaged exoplanets. The typical adaptive optics (AO) Nyquist control region for ELTs is ~0.4 arcseconds, placing many already known directly imaged planets outside the DM control region and not allowing any standard wavefront control scheme to remove speckles that would allow higher SNR images/spectra to be acquired. This can be fixed with super-Nyquist wavefront control (SNWFC), using a sine wave phase plate to allow for wavefront control outside the central DM Nyquist region. We demonstrate that SNWFC is feasible through a simple, deterministic, non-coronagraphic, super-Nyquist speckle nulling technique in the adaptive optics laboratory at the National Research Council of Canada. We also present results in simulation of how SNWFC using the self coherent camera (SCC) can be used for high contrast imaging. This technique could be implemented on future high contrast imaging instruments t...

  3. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.

  4. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  5. Infrared and multi-type images fusion algorithm based on contrast pyramid transform

    Science.gov (United States)

    Xu, Hua; Wang, Yan; Wu, Yujing; Qian, Yunsheng

    2016-09-01

    A fusion algorithm for infrared and multi-type images based on contrast pyramid transform (CPT) combined with Otsu method and morphology is proposed in this paper. Firstly, two sharpened images are combined to the first fused image based on information entropy weighted scheme. Afterwards, two enhanced images and the first fused one are decomposed into a series of images with different dimensions and spatial frequencies. To the low-frequency layer, the Otsu method is applied to calculate the optimal segmentation threshold of the first fused image, which is subsequently used to determine the pixel values in top layer fused image. With respect to the high-frequency layers, the top-bottom hats morphological transform is employed to each layer before maximum selection criterion. Finally, the series of decomposed images are reconstructed and then superposed with the enhanced image processed by morphological gradient operation as a second fusion to get the final fusion image. Infrared and visible images fusion, infrared and low-light-level (LLL) images fusion, infrared intensity and infrared polarization images fusion, and multi-focus images fusion are discussed in this paper. Both experimental results and objective metrics demonstrate the effectiveness and superiority of the proposed algorithm over the conventional ones used to compare.

  6. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Park, Kibeom; Kim, Dong-Hyeon; Jeon, Mansik; Kim, Jeehyun

    2016-06-01

    We conducted an initial feasibility study using real-time magneto-motive optical Doppler tomography (MM-ODT) with enhanced contrast to investigate the detection of superparamagnetic iron oxide (SPIO) magnetic nanoparticles implanted into in vivo melanoma tissue. The MM-ODT signals were detected owing to the phase shift of the implanted magnetic nanoparticles, which occurred due to the action of an applied magnetic field. An amplifier circuit-based solenoid was utilized for generating high-intensity oscillating magnetic fields. The MM-ODT system was confirmed as an effective in vivo imaging method for detecting melanoma tissue, with the performance comparable to those of conventional optical coherence tomography and optical Doppler tomography methods. Moreover, the optimal values of the SPIO nanoparticles concentration and solenoid voltage for obtaining the uppermost Doppler velocity were derived as well. To improve the signal processing speed for real-time imaging, we adopted multithread programming techniques and optimized the signal path. The results suggest that this imaging modality can be used as a powerful tool to identify the intracellular and extracellular SPIO nanoparticles in melanoma tissues in vivo.

  7. Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens

    Science.gov (United States)

    Kopriva, Ivica; Popović Hadžija, Marijana; Hadžija, Mirko; Aralica, Gorana

    2015-06-01

    Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimens, in which case the tissue components appear colorless when viewed under the light microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis from colon and gastric cancer and mouse fatty liver were used for validation. The average correlation between the spectral profiles of the tissue components was greater than 0.9985, and the worst case correlation was greater than 0.9997. The proposed method can potentially be applied to the segmentation of low-contrast multichannel images with high spatial resolution that arise in other imaging modalities.

  8. A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images

    Science.gov (United States)

    Yan, Dongmei; Zhang, Zhihong; Luo, Qingming; Yang, Xiaoquan

    2017-01-01

    With the development of hybrid imaging scanners, micro-CT is widely used in locating abnormalities, studying drug metabolism, and providing structural priors to aid image reconstruction in functional imaging. Due to the low contrast of soft tissues, segmentation of soft tissue organs from mouse micro-CT images is a challenging problem. In this paper, we propose a mouse segmentation scheme based on dynamic contrast enhanced micro-CT images. With a homemade fast scanning micro-CT scanner, dynamic contrast enhanced images were acquired before and after injection of non-ionic iodinated contrast agents (iohexol). Then the feature vector of each voxel was extracted from the signal intensities at different time points. Based on these features, the heart, liver, spleen, lung, and kidney could be classified into different categories and extracted from separate categories by morphological processing. The bone structure was segmented using a thresholding method. Our method was validated on seven BALB/c mice using two different classifiers: a support vector machine classifier with a radial basis function kernel and a random forest classifier. The results were compared to manual segmentation, and the performance was assessed using the Dice similarity coefficient, false positive ratio, and false negative ratio. The results showed high accuracy with the Dice similarity coefficient ranging from 0.709 ± 0.078 for the spleen to 0.929 ± 0.006 for the kidney. PMID:28060917

  9. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  10. Time-domain imaging with quench-based fluorescent contrast agents

    Science.gov (United States)

    Akers, Walter J.; Solomon, Metasebya; Sudlow, Gail P.; Berezin, Mikhail; Achilefu, Samuel

    2012-03-01

    Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Time-domain diffuse optical imaging was performed to assess the FRET and quenching in living mice with orthotopic breast cancer. Tumor contrast enhancement was accompanied by increased fluorescence lifetime after administration of quenched probes selective for matrix metalloproteinases while no significant change was observed for non-quenched probes for integrin receptors. These results demonstrate the utility of timedomain imaging for detection of cancer-related enzyme activity in vivo.

  11. High contrast imaging through adaptive transmittance control in the focal plane

    Science.gov (United States)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  12. Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm.

    Science.gov (United States)

    Daniel, Ebenezer; Anitha, J

    2016-04-01

    Unsharp masking techniques are a prominent approach in contrast enhancement. Generalized masking formulation has static scale value selection, which limits the gain of contrast. In this paper, we propose an Optimum Wavelet Based Masking (OWBM) using Enhanced Cuckoo Search Algorithm (ECSA) for the contrast improvement of medical images. The ECSA can automatically adjust the ratio of nest rebuilding, using genetic operators such as adaptive crossover and mutation. First, the proposed contrast enhancement approach is validated quantitatively using Brain Web and MIAS database images. Later, the conventional nest rebuilding of cuckoo search optimization is modified using Adaptive Rebuilding of Worst Nests (ARWN). Experimental results are analyzed using various performance matrices, and our OWBM shows improved results as compared with other reported literature.

  13. Synthesis and characterization of ethosomal contrast agents containing iodine for computed tomography (CT) imaging applications.

    Science.gov (United States)

    Shin, Hanjin; Cho, Young-Min; Lee, Kangtaek; Lee, Chang-Ha; Choi, Byoung Wook; Kim, Bumsang

    2014-06-01

    As a first step in the development of novel liver-specific contrast agents using ethosomes for computed tomography (CT) imaging applications, we entrapped iodine within ethosomes, which are phospholipid vesicular carriers containing relatively high alcohol concentrations, synthesized using several types of alcohol, such as methanol, ethanol, and propanol. The iodine containing ethosomes that were prepared using methanol showed the smallest vesicle size (392 nm) and the highest CT density (1107 HU). The incorporation of cholesterol into the ethosomal contrast agents improved the stability of the ethosomes but made the vesicle size large. The ethosomal contrast agents were taken up well by macrophage cells and showed no cellular toxicity. The results demonstrated that ethosomes containing iodine, as prepared in this study, have potential as contrast agents for applications in CT imaging.

  14. Contrast mechanism in superscrew dislocation images on synchrotron back-reflection topographs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.R.; Dudley, M.; Vetter, W.M.; Huang, W.; Wang, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering; Carter, C.H. Jr. [Cree Research, Inc., Durham, NC (United States)

    1998-12-31

    The topographic contrast of superscrew dislocations in 6H{single_bond}SiC crystals has been studied by synchrotron white-beam x-ray topography in the Bragg reflection geometry. The diffraction images of these dislocations are simulated using a ray-tracing method. Systematical simulations, which coincide with the dislocation images taken by back- and grazing-reflection topography, clearly reveal the kinematic diffraction mechanisms of the superscrew dislocation, and illustrate that synchrotron reflection topography is capable of providing accurate descriptions of the strain fields, the Burgers vector magnitudes, and the senses of these dislocations. In addition, the experiments and simulations demonstrate straightforwardly the relation between the topographic contrast and the lattice distortions, and therefore the general mechanisms underlying contrast formation of defect images in synchrotron reflection topographs are provided.

  15. Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed

    Science.gov (United States)

    Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-07-01

    For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

  16. Classification and basic properties of contrast agents for magnetic resonance imaging.

    Science.gov (United States)

    Geraldes, Carlos F G C; Laurent, Sophie

    2009-01-01

    A comprehensive classification of contrast agents currently used or under development for magnetic resonance imaging (MRI) is presented. Agents based on small chelates, macromolecular systems, iron oxides and other nanosystems, as well as responsive, chemical exchange saturation transfer (CEST) and hyperpolarization agents are covered in order to discuss the various possibilities of using MRI as a molecular imaging technique. The classification includes composition, magnetic properties, biodistribution and imaging applications. Chemical compositions of various classes of MRI contrast agents are tabulated, and their magnetic status including diamagnetic, paramagnetic and superparamagnetic are outlined. Classification according to biodistribution covers all types of MRI contrast agents including, among others, extracellular, blood pool, polymeric, particulate, responsive, oral, and organ specific (hepatobiliary, RES, lymph nodes, bone marrow and brain). Various targeting strategies of molecular, macromolecular and particulate carriers are also illustrated.

  17. Applications of Secondary Electron Composition Contrast Imaging Method in Microstructure Studies on Heterojunction Semiconductor Devices and Multilayer Materials

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+-Si1-xGex/p-Si heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.

  18. Laser speckle contrast imaging to measure changes in cerebral blood flow.

    Science.gov (United States)

    Winship, Ian R

    2014-01-01

    Laser speckle contrast imaging (LSCI) is a powerful tool capable of acquiring detailed maps of blood flow in arteries and veins on the cortical surface. Based on the blurring of laser speckle patterns by the motion of blood cells, LSCI can be combined with a variety of optical imaging preparations to acquire high-spatiotemporal resolution images of blood flow, and track changes in blood flow over time, using relatively simple instrumentation. Here, we describe methods for LSCI of cerebral blood flow via a thin skull imaging preparation in mice or rats. This preparation allows precise semiquantitative mapping of changes in blood flow over time using straightforward surgical protocols and equipment.

  19. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  20. In Vivo Brain MR Imaging at Subnanoliter Resolution: Contrast and Histology.

    Science.gov (United States)

    Watanabe, Takashi; Frahm, Jens; Michaelis, Thomas

    2016-01-01

    This article provides an overview of in vivo magnetic resonance (MR) imaging contrasts obtained for mammalian brain in relation to histological knowledge. Emphasis is paid to the (1) significance of high spatial resolution for the optimization of T1, T2, and magnetization transfer contrast, (2) use of exogenous extra- and intracellular contrast agents for validating endogenous contrast sources, and (3) histological structures and biochemical compounds underlying these contrasts and (4) their relevance to neuroradiology. Comparisons between MR imaging at subnanoliter resolution and histological data indicate that (a) myelin sheaths, (b) nerve cells, and (c) the neuropil are most responsible for observed MR imaging contrasts, while (a) diamagnetic macromolecules, (b) intracellular paramagnetic ions, and (c) extracellular free water, respectively, emerge as the dominant factors. Enhanced relaxation rates due to paramagnetic ions, such as iron and manganese, have been observed for oligodendrocytes, astrocytes, microglia, and blood cells in the brain as well as for nerve cells. Taken together, a plethora of observations suggests that the delineation of specific structures in high-resolution MR imaging of mammalian brain and the absence of corresponding contrasts in MR imaging of the human brain do not necessarily indicate differences between species but may be explained by partial volume effects. Second, paramagnetic ions are required in active cells in vivo which may reduce the magnetization transfer ratio in the brain through accelerated T1 recovery. Third, reductions of the magnetization transfer ratio may be more sensitive to a particular pathological condition, such as astrocytosis, microglial activation, inflammation, and demyelination, than changes in relaxation. This is because the simultaneous occurrence of increased paramagnetic ions (i.e., shorter relaxation times) and increased free water (i.e., longer relaxation times) may cancel T1 or T2 effects, whereas

  1. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  2. Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Stephanie Preuss

    Full Text Available One of the key approaches for studying neural network function is the simultaneous measurement of the activity of many neurons. Voltage-sensitive dyes (VSDs simultaneously report the membrane potential of multiple neurons, but often have pharmacological and phototoxic effects on neuronal cells. Yet, to study the homeostatic processes that regulate neural network function long-term recordings of neuronal activities are required. This study aims to test the suitability of the VSDs RH795 and Di-4-ANEPPS for optically recording pattern generating neurons in the stomatogastric nervous system of crustaceans with an emphasis on long-term recordings of the pyloric central pattern generator. We demonstrate that both dyes stain pyloric neurons and determined an optimal concentration and light intensity for optical imaging. Although both dyes provided sufficient signal-to-noise ratio for measuring membrane potentials, Di-4-ANEPPS displayed a higher signal quality indicating an advantage of this dye over RH795 when small neuronal signals need to be recorded. For Di-4-ANEPPS, higher dye concentrations resulted in faster and brighter staining. Signal quality, however, only depended on excitation light strength, but not on dye concentration. RH795 showed weak and slowly developing phototoxic effects on the pyloric motor pattern as well as slow bleaching of the staining and is thus the better choice for long-term experiments. Low concentrations and low excitation intensities can be used as, in contrast to Di-4-ANEPPS, the signal-to-noise ratio was independent of excitation light strength. In summary, RH795 and Di-4-ANEPPS are suitable for optical imaging in the stomatogastric nervous system of crustaceans. They allow simultaneous recording of the membrane potential of multiple neurons with high signal quality. While Di-4-ANEPPS is better suited for short-term experiments that require high signal quality, RH795 is a better candidate for long-term experiments

  3. Quantifying the perceived interest of objects in images: effects of size, location, blur, and contrast

    Science.gov (United States)

    Kadiyala, Vamsi; Pinneli, Srivani; Larson, Eric C.; Chandler, Damon M.

    2008-02-01

    This paper presents the results of two psychophysical experiments designed to investigate the effects of size, location, blur, and contrast on the perceived visual interest of objects within images. In the first experiment, digital composting was used to create images containing objects (humans, animals, and non-living objects) which varied in controlled increments of size, location, blur, and contrast. Ratings of perceived interest were then measured for each object. We found that: (1) As object size increases, perceived interest increases but exhibits diminished gains for larger sizes; (2) As an object moves from the center of the image toward the image's edge, perceived interest decreases nearly linearly with distance; (3) Blurring imposes a substantial initial decrease in perceived interest, but this drop is relatively lessened for highly blurred objects; (4) As an object's RMS contrast is increased, perceived interest increases nearly linearly. Furthermore, these trends were quite similar for all three categories (human, animal, non-living object). To determine whether these data can predict the perceived interest of objects in real, non-composited images, a second experiment was performed in which subjects rated the visual interest of each of 562 objects in 150 images. Based on these results, an algorithm is presented which, given a segmented image, attempts to generate an object-level interest map.

  4. Segmentation and Tracking of Lymphocytes Based on Modified Active Contour Models in Phase Contrast Microscopy Images

    Directory of Open Access Journals (Sweden)

    Yali Huang

    2015-01-01

    Full Text Available The paper proposes an improved active contour model for segmenting and tracking accurate boundaries of the single lymphocyte in phase-contrast microscopic images. Active contour models have been widely used in object segmentation and tracking. However, current external-force-inspired methods are weak at handling low-contrast edges and suffer from initialization sensitivity. In order to segment low-contrast boundaries, we combine the region information of the object, extracted by morphology gray-scale reconstruction, and the edge information, extracted by the Laplacian of Gaussian filter, to obtain an improved feature map to compute the external force field for the evolution of active contours. To alleviate initial location sensitivity, we set the initial contour close to the real boundaries by performing morphological image processing. The proposed method was tested on live lymphocyte images acquired through the phase-contrast microscope from the blood samples of mice, and comparative experimental results showed the advantages of the proposed method in terms of the accuracy and the speed. Tracking experiments showed that the proposed method can accurately segment and track lymphocyte boundaries in microscopic images over time even in the presence of low-contrast edges, which will provide a good prerequisite for the quantitative analysis of lymphocyte morphology and motility.

  5. Arrival time correction for dynamic susceptibility contrast MR permeability imaging in stroke patients.

    Directory of Open Access Journals (Sweden)

    Richard Leigh

    Full Text Available PURPOSE: To determine if applying an arrival time correction (ATC to dynamic susceptibility contrast (DSC based permeability imaging will improve its ability to identify contrast leakage in stroke patients for whom the shape of the measured curve may be very different due to hypoperfusion. MATERIALS AND METHODS: A technique described in brain tumor patients was adapted to incorporate a correction for delayed contrast delivery due to perfusion deficits. This technique was applied to the MRIs of 9 stroke patients known to have blood-brain barrier (BBB disruption on T1 post contrast imaging. Regions of BBB damage were compared with normal tissue from the contralateral hemisphere. Receiver operating characteristic (ROC analysis was performed to compare the detection of BBB damage before and after ATC. RESULTS: ATC improved the area under the curve (AUC of the ROC from 0.53 to 0.70. The sensitivity improved from 0.51 to 0.67 and the specificity improved from 0.57 to 0.66. Visual inspection of the ROC curve revealed that the performance of the uncorrected analysis was worse than random guess at some thresholds. CONCLUSIONS: The ability of DSC permeability imaging to identify contrast enhancing tissue in stroke patients improved considerably when an ATC was applied. Using DSC permeability imaging in stroke patients without an ATC may lead to false identification of BBB disruption.

  6. A new combined technique for automatic contrast enhancement of digital images

    Directory of Open Access Journals (Sweden)

    Ismail A. Humied

    2012-03-01

    Full Text Available Some low contrast images have certain characteristics makes it difficult to use traditional methods to improve it. An example of these characteristics, that the amplitudes of images histogram components are very high at one location on the gray scale and very small in the rest of the gray scale. In the present paper, a new method is described. It can deal with such cases. The proposed method is a combination of Histogram Equalization (HE and Fast Gray-Level Grouping (FGLG. The basic procedure of this method is segments the original histogram of a low contrast image into two sub-histograms according to the location of the highest amplitude of the histogram components, and achieving contrast enhancement by equalizing the left segment of the histogram components using (HE technique and using (FGLG technique to equalize the right segment of this histogram components. The results have shown that the proposed method does not only produce better results than each individual contrast enhancement technique, but it is also fully automated. Moreover, it is applicable to a broad variety of images that satisfy the properties mentioned above and suffer from low contrast.

  7. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Directory of Open Access Journals (Sweden)

    Estelrich J

    2015-03-01

    Full Text Available Joan Estelrich,1,2 María Jesús Sánchez-Martín,1 Maria Antònia Busquets1,2 1Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain; 2Institut de Nanociència I Nanotecnologia (IN2UB, Barcelona, Catalonia, SpainAbstract: Magnetic resonance imaging (MRI has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions, providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of

  8. Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion

    Science.gov (United States)

    Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.

    2013-01-01

    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem for monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots each of diameter around 7nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation respectively in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, in which the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support, but great care is needed in practice and the problem of how best to image ice-embedded biological structures in the absence of a strong, conductive support film requires more work. PMID:21185452

  9. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon [School of Medicine, Ewha Womans University, Seou (Korea, Republic of)

    2013-06-15

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  10. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    Energy Technology Data Exchange (ETDEWEB)

    Abd Ellah, Mohamed, E-mail: dr_m_hamdy2006@hotmail.co [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Kremser, Christian, E-mail: christian.kremser@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pallwein, Leo, E-mail: leo.pallwein-prettner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Aigner, Friedrich, E-mail: friedrich.Aigner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Schocke, Michael, E-mail: michael.schocke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Peschel, Reinhard, E-mail: reinhard.peschel@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pedross, Florian, E-mail: florian.pedross@i-med.ac.a [Innsbruck Medical University, Medical Statistics Dept., Anich St. 35, 6020 Innsbruck (Austria); Pinggera, Germar-Michael, E-mail: germar.pinggera@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Wolf, Christian, E-mail: christian.wolf@bkh-reutte.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Alsharkawy, Mostafa A.M., E-mail: drmostafamri@yahoo.co [Assiut University, Radiology Dept., Assiut (Egypt); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Frauscher, Ferdinand, E-mail: ferdinand.frauscher@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria)

    2010-10-15

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  11. Contrast-Enhanced Tissue Harmonic Imaging versus Phase Inversion Harmonic Sonographic Imaging for the Delineation of Hepatocellular Carcinomas.

    Science.gov (United States)

    Kono, Masashi; Minami, Yasunori; Iwanishi, Mina; Minami, Tomohiro; Chishina, Hirokazu; Arizumi, Tadaaki; Komeda, Yoriaki; Sakurai, Toshiharu; Takita, Masahiro; Yada, Norihisa; Ida, Hiroshi; Hagiwara, Satoru; Ueshima, Kazuomi; Nishida, Naoshi; Kudo, Masatoshi

    2017-01-01

    To compare contrast tissue harmonic imaging (THI) with low mechanical index (MI) and conventional contrast harmonic imaging (CHI) with respect to lesion visibility of hepatocellular carcinoma (HCC). One hundred and twenty-five patients (84 men and 41 women, age range 39-94 years, mean age 74 years) with 100 naïve HCCs and 30 lesions after radiofrequency ablation (RFA) for HCC were evaluated. One hundred and four patients had liver cirrhosis of Child-Pugh class A, and the remaining 21 had Child-Pugh class B cirrhosis. The lesion conspicuity and intratumoral echogenicity during the postvascular phase were compared using conventional CHI and contrast THI with low MI. The MI values ranged from 0.20 to 0.30 on conventional CHI and from 0.30 to 0.35 on contrast THI. Regarding HCC lesion conspicuity, contrast THI with low MI was clearer in 79 lesions (60.8%), equal in 34 lesions (26.2%), and less clear in 17 lesions (13.1%) when compared with conventional CHI. The lesion conspicuity with contrast THI was significantly better than that with conventional CHI (p imaging for the guiding of RFA. © 2016 S. Karger AG, Basel.

  12. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina;

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase...... was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations...

  13. Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    YU; Bin; PENG; Xiang; TIAN; Jindong; NIU; Hanben; DIAO; Luh

    2005-01-01

    Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IASA with TIE (transport of intensity equation). The calculations of the algorithms are based on free space propagation of the angular spectrum. The new approaches are demonstrated with numerical simulations. Comparisons with other phase retrieval algorithms are also performed. It is shown that the phase retrieval method combining the IASA and TIE is a promising technique for the application of hard X-ray phase contrast imaging.

  14. Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging.

    Science.gov (United States)

    Attia, Amalina Bte Ebrahim; Balasundaram, Ghayathri; Driessen, Wouter; Ntziachristos, Vasilis; Olivo, Malini

    2015-02-01

    There is a need for contrast agents for non-invasive diagnostic imaging of tumors. Herein, Multispectral Optoacoustic Tomography (MSOT) was employed to evaluate phthalocyanines commonly used in photodynamic therapy as photoacoustic contrast agents. We studied the photoacoustic activity of three water-soluble phthalocyanine photosensitizers: phthalocyanine tetrasulfonic acid (PcS4), Zn(II) phthalocyanine tetrasulfonic acid (ZnPcS4) and Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) in phantom and in tumor-bearing mice to investigate the biodistribution and fate of the phthalocyanines in the biological tissues. PcS4 was observed to grant good contrast between the different reticuloendothelial organs and accumulate in the tumor within an hour of post-administration. ZnPcS4 and AlPcS4 offered little contrast in photoacoustic signals between the organs. PcS4 is a promising photoacoustic contrast agent and can be exploited as a photodiagnostic agent.

  15. Region of interest extraction based on saliency detection and contrast analysis for remote sensing images

    Science.gov (United States)

    Lv, Jing; Zhang, Libao; Wang, Shuang

    2016-10-01

    Region of Interest (ROI) extraction is an important component in remote sensing images processing, which is useful for further practical applications such as image compression, image fusion, image segmentation and image registration. Traditional ROI extraction methods are usually prior knowledge-based and depend on a global searching solution which are time consuming and computational complex. Saliency detection which is widely used for ROI extraction from natural scene images in these years can effectively solve the problem of high computation complexity in ROI extraction for remote sensing images as well as retain accuracy. In this paper, a new computational model is proposed to improve the accuracy of ROI extraction in remote sensing images. Considering the characteristics of remote sensing images, we first use lifting wavelet transform based on adaptive direction evaluation (ADE) to obtain multi-scale orientation contrast feature map (MF). Secondly, the features of color are exploited using the information content analysis to provide a color information map (CIM). Thirdly, feature fusion is used to integrate multi-scale orientation contrast features and color information for generating a saliency map. Finally, an adaptive threshold segmentation algorithm is employed to obtain the ROI. Compared with existing models, our method can not only effectively extract detail of the ROIs, but also effectively remove mistaken detection of the inner parts of the ROIs.

  16. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    Science.gov (United States)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  17. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    Science.gov (United States)

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  18. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    Science.gov (United States)

    Yao, Juncai; Liu, Guizhong

    2016-07-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  19. An iterative wavefront sensing algorithm for high-contrast imaging systems *

    Institute of Scientific and Technical Information of China (English)

    Jiang-Pei Dou; De-Qing Ren; Yong-Tian Zhu

    2011-01-01

    Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems. However, the wavefront error of an optics system can be properly reconstructed only when it is very small. This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image. We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured. Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane. The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane, where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision, which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.

  20. Modeling contrast agent flow in cerebral aneurysms: comparison of CFD with medical imaging

    Science.gov (United States)

    Rayz, Vitaliy; Vali, Alireza; Sigovan, Monica; Lawton, Michael; Saloner, David; Boussel, Loic

    2016-11-01

    PURPOSE: The flow in cerebral aneurysms is routinely assessed with X-ray angiography, an imaging technique based on a contrast agent injection. In addition to requiring a patient's catheterization and radiation exposure, the X-ray angiography may inaccurately estimate the flow residence time, as the injection alters the native blood flow patterns. Numerical modeling of the contrast transport based on MRI imaging, provides a non-invasive alternative for the flow diagnostics. METHODS: The flow in 3 cerebral aneurysms was measured in vivo with 4D PC-MRI, which provides time-resolved, 3D velocity field. The measured velocities were used to simulate a contrast agent transport by solving the advection-diffusion equation. In addition, the flow in the same patient-specific geometries was simulated with CFD and the velocities obtained from the Navier-Stokes solution were used to model the transport of a virtual contrast. RESULTS: Contrast filling and washout patterns obtained in simulations based on MRI-measured velocities were in agreement with those obtained using the Navier-Stokes solution. Some discrepancies were observed in comparison to the X-ray angiography data, as numerical modeling of the contrast transport is based on the native blood flow unaffected by the contrast injection. NIH HL115267.

  1. In-line phase-contrast imaging for strong absorbing objects

    Energy Technology Data Exchange (ETDEWEB)

    De Caro, Liberato; Giannini, Cinzia [Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70125 Bari (Italy); Cedola, Alessia; Bukreeva, Inna; Lagomarsino, Stefano [Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cinto Romano 42, I-00156 Roma (Italy)

    2008-11-21

    Phase-contrast imaging is one of the most important emerging x-ray imaging techniques. In this work we analyse, from a theoretical point of view, the in-line phase-contrast image formation under general assumptions. The approach is based on wave-optical theory (Fresnel/Kirchoff diffraction integrals) and on the formalism of the mutual coherence function for the evolution of the coherence wavefield properties. Our theoretical model can be applied to phase-contrast imaging realized both by using highly coherent synchrotron radiation and micro-focus x-ray laboratory sources. Thus, the model is suitable for widespread applications, ranging from material science to medical imaging of human body parts. However, it cannot be applied to polychromatic sources, although the validity of the model does not require particularly demanding characteristics of monochromaticity. In addition, for moderate phase gradients, a useful analytical formula of the phase-contrast visibility is derived, based on the a priori knowledge of source size and distance, pixel detector size, defocus distance, material/tissue dielectric susceptibility and characteristic scales of transversal and longitudinal non-uniformities of the material/tissue dielectric susceptibility. Comparisons both with experimental results published by other authors and with simulations based on a Fourier optics approach have been reported, to confirm the validity of the proposed analytical formula.

  2. Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features

    Science.gov (United States)

    Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija

    2017-04-01

    We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.

  3. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of gliomas in optical images

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Curry, William; Yaroslavsky, Anna

    2014-09-01

    Contrast agents have shown to be useful in the detection of cancers. The goal of this study was to compare enhancement of brain cancer contrast using reflectance and fluorescence confocal imaging of two fluorophores, methylene blue (MB) and demeclocycline (DMN). MB absorbs light in the red spectral range and fluoresces in the near-infrared. It is safe for in vivo staining of human skin and breast tissue. However, its safety for staining human brain is questionable. Thus, DMN, which absorbs light in the violet spectral range and fluoresces between 470 and 570 nm, could provide a safer alternative to MB. Fresh human gliomas, obtained from surgeries, were cut in half and stained with aqueous solutions of MB and DMN, respectively. Stained tissues were imaged using multimodal confocal microscopy. Resulting reflectance and fluorescence optical images were compared with hematoxylin and eosin histopathology, processed from each imaged tissue. Results indicate that images of tissues stained with either stain exhibit comparable contrast and resolution of morphological detail. Further studies are required to establish the safety and efficacy of these contrast agents for use in human brain.

  4. Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media

    OpenAIRE

    Fard, Ali M.; Mahjoubfar, Ata; Goda, Keisuke; Gossett, Daniel R.; Di Carlo, Dino; Jalali, Bahram

    2011-01-01

    High-speed high-contrast imaging modalities that enable image acquisition of transparent media without the need for chemical staining are essential tools for a broad range of applications; from semiconductor process monitoring to blood screening. Here we introduce a method for contrast-enhanced imaging of unstained transparent objects that is capable of high-throughput imaging. This method combines the Nomarski phase contrast capability with the ultrahigh frame rate and shutter speed of seria...

  5. 低管电压联合低浓度对比剂在头部CTA中的可行性研究%Feasibility of combining low tube voltage with low-concentration contrast in cerebral CTA

    Institute of Scientific and Technical Information of China (English)

    王益钢; 丁建平; 王付言; 谢沛沛

    2014-01-01

    目的:探讨用低管电压联合低浓度对比剂在头部CTA中的可行性。方法收集60例行头部CTA检查的患者,根据不同的管电压和对比剂浓度随机分为双低组和传统组。双低组采用管电压100 kV,噪声指数(NI)为10,对比剂为碘海醇(300 mgI/ml);传统组采用管电压120 kV,NI为10,对比剂为碘帕醇(370 mg I/ml)。两组均采用对比剂40 ml,注射流率4.5 ml/s,使用64层螺旋CT进行扫描。比较两组CT图像质量(包括动脉强化CT值、图像评分)及辐射剂量。使用SPSS13.0统计分析软件分别对所得的各组数据进行分析,P<0.05时认为差异有统计学意义。结果两组图像质量均能满足临床诊断要求,两组CT图像质量比较差异无统计学意义。双低组有效剂量(ED)较传统组降低15.21%,两组辐射剂量比较差异有统计学意义(P=0.021)。结论低电压联合低浓度对比剂在头部CTA检查所得图像质量能满足临床诊断需求,同时降低了辐射剂量。%Objective To investigate the feasibility of combining low tube voltage with low-concentration contrast in cerebral CTA.Methods 60 patients who underwent cerebral CTA were randomly divided into two groups using the conventional method of 120 kV tube voltage and 370 mg I/mL of iopamidol or low-dose method of 100 kV tube voltage and 300 mg I/mL of iopamidol.The CTA was performed on all patients using a 64-detector-row spiral CT scanner after intravenous injection of 40 mL of contrast at the rate of 4.5 mL/s.The image quality and radiation dosage of the two methods were compared.Results All images were satisfactory without significant difference in image quality between the two groups.The effective dose of the low-dose method was significantly lower by15.21%than that of the conventional method.Conclusion Cerebral CTA using low tube voltage and low-concentration contrast is satisfactory for clinical evaluation at reduced radiation

  6. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    Science.gov (United States)

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M

    2011-12-15

    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  7. Image Formation in High Contrast Optical Systems: The Role of Polarization

    Science.gov (United States)

    Breckinridge, James B.

    2004-01-01

    To find evidence of life in the Universe outside our solar system is one of the most compelling and visionary adventures of the 21st century. The technologies to create the telescopes and instruments that will enable this discovery are now within the grasp of mankind. Direct imaging of a very faint planet around a neighboring bright star requires high contrast or a hypercontrast optical imaging system capable of controlling unwanted radiation within the system to one part in ten to the 11th. This paper identifies several physical phenomena that affect image quality in high contrast imaging systems. Polarization induced at curved metallic surfaces and by anisotropy in the deposition process (Smith-Purcell effect) along with beam shifts introduced by the Goos-Hachen effect are discussed. A typical configuration is analyzed, and technical risk mitigation concepts are discussed.

  8. Multi-modal contrast of tissue anatomy enables correlative biomarker imaging

    Science.gov (United States)

    Garsha, Karl; Ventura, Franklin; Pestano, Gary; Otter, Michael; Nagy, Dea; Nagle, Ray B.; Roberts, Esteban; Barnes, Michael

    2015-03-01

    Optical imaging techniques are being developed that promise to increase the information content related to specific molecular reporters. Such modalities do not produce contrast in the structural context of the surrounding tissue, making it difficult to reconcile molecular information with morphological context. We report a solution that enables visualization of the tissue morphology on formalin-fixed, paraffin embedded sections prepared for analytical biomarker imaging. Our approach combines modes of transmitted darkfield and fluorescence contrast and computer visualization to produce 2-component image data analogous to the classical hematoxylin and eosin histological stain. An interferometric hyperspectral image capture mode enables measurement of multiplexed biomarkers in annotated anatomic regions. The system enables practical correlative analysis of molecular changes within areas of anatomic pathology.

  9. The use of a central beam stop for contrast enhancement in TEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands); College of Computer, National University of Defense Technology, Changsha (China); Xu, Qiang, E-mail: q.xu@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands); Peters, Peter J. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands); Antoni van Leeuwenhoek Hospital NKI AVL, Netherlands Cancer Institute, Division Cell Biology 2, NL-1066 CX Amsterdam (Netherlands); Zandbergen, Henny [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands)

    2013-11-15

    Dark field TEM imaging using a stop of the central beam (DF-000) is reported. It is shown that a strong enhancement in the contrast can be obtained for graphene as example of weak phase object and endocytic multivescilar body as example of an unstained biological sample. No charging or significant contamination of the central beam stop is observed. For graphene, a resolution beyond 1 Å{sup −1} was easily obtained. DF-000 imaging can be considered as a good and easy to use alternative of a phase plate. - Highlights: • Center stop DF imaging is a good method to improve contrast for weak phase object • Charging problem is avoided by using a Mercedes-star-like center stop • C{sub s} correction and CMOS camera improve the center stop DF imaging quality.

  10. Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, M; Preisser, S; Kitz, M; Frenz, M [Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Ferrara, D; Senegas, S; Schweizer, D, E-mail: frenz@iap.unibe.ch [Fukuda Denshi Switzerland AG, Reinacherstrasse 131, CH-4002 Basel (Switzerland)

    2011-09-21

    For real-time optoacoustic (OA) imaging of the human body, a linear array transducer and reflection mode optical irradiation is usually preferred. Such a setup, however, results in significant image background, which prevents imaging structures at the ultimate depth determined by the light distribution and the signal noise level. Therefore, we previously proposed a method for image background reduction, based on displacement-compensated averaging (DCA) of image series obtained when the tissue sample under investigation is gradually deformed. OA signals and background signals are differently affected by the deformation and can thus be distinguished. The proposed method is now experimentally applied to image artificial tumours embedded inside breast phantoms. OA images are acquired alternately with pulse-echo images using a combined OA/echo-ultrasound device. Tissue deformation is accessed via speckle tracking in pulse echo images, and used to compensate in the OA images for the local tissue displacement. In that way, OA sources are highly correlated between subsequent images, while background is decorrelated and can therefore be reduced by averaging. We show that image contrast in breast phantoms is strongly improved and detectability of embedded tumours significantly increased, using the DCA method.

  11. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    Directory of Open Access Journals (Sweden)

    Jakob Nikolas Kather

    Full Text Available Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions.In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images.To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images.Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  12. Effect of region of interest (ROI) filters on image contrast and relative detected signal

    Science.gov (United States)

    Massoumzadeh, Parinaz

    Region of interest (ROI) fluoroscopic techniques have the potential for improving image quality and greatly reducing radiation dose. The broad goal of this study is to determine the optimal filter material to be used for ROI fluoroscopic procedures using both conventional phosphor screen base and nontraditional semiconductor- based image receptors. The effects of rare earth materials (Sm, Gd, and Dy), conventional filters (Cu, Sn, and Pb), and a low-Z material (Lucite) as x-ray beam shaping ROI filters were evaluated using a computer simulation to determine their transmission and effect on radiographic image quality for a broad range of thicknesses of contrast media (iodine, barium, calcium, and fat) embedded in Lucite or muscle phantom for both conventional (CsI) and nontraditional (a-Se) image receptors as a function of kVp (40-100 kVp). Selected measurements were also performed to verify the results of the simulation. The preferred filter material should have least variation of transmission with change in kVp, and in combination with a suitable image receptor, it should have no loss (or even increase) in radiographic contrast, contrast-to-noise-ratio (CNR), and figure-of-merit (FOM) in the periphery. The results indicate that in general the rare earth filters compared to conventional filters have much less variation in transmission, much higher image contrast, higher CNR at all kVp's, and slightly better FOM at high kVp's. Low-Z material requires too thick of a filter for practical purposes. Moreover, all filter materials improve patient entrance skin exposure compared with no filter, however, conventional filters give less entrance exposure than rare earth materials for the same detected signal for all kVp's. Furthermore, a-Se image receptor provides substantially better performance compared to CsI image receptor for barium and iodinated contrast media, especially when the combination of rare earth filter and a-Se image receptor is used. Analytical results of

  13. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    Science.gov (United States)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  14. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  15. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Julia Wilhelmsen [Univ. of California, Davis, CA (United States)

    2006-01-01

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10-6 and 10-7 at angles of 4-24 λ/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10-8 contrast measurements with a prolate shaped pupil and

  16. Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images

    Science.gov (United States)

    Desailly, Yann; Tissier, Anne-Marie; Correas, Jean-Michel; Wintzenrieth, Frédéric; Tanter, Mickaël; Couture, Olivier

    2017-01-01

    Contrast enhanced ultrasound (CEUS) takes advantage of the nonlinear behaviour of injected microbubbles. If these contrast techniques yield good specificity between bubbles and tissues, they suffer some drawbacks, inherently linked to their dependence on nonlinear content. In recent years, plane-wave ultrasound reached frame rates of up to 20 000 fps. In this study we propose a linear technique for CEUS that takes advantage of these very high frame rates to separate bubbles from tissue without requiring nonlinearities. Data-driven spatiotemporal filtering operations are used to separate different features in the image on the basis of coherence both in space and time. Such filter recently proved to improve Doppler sensitivity (Demene et al 2015 IEEE Trans. Med. Imaging 34 2271-85). In contrast with bubbles, even slow moving ones, tissues are highly coherent both in space and time. Therefore, singular value decomposition (SVD) seems to be a powerful tool for the separation of contrast agents and tissues. In this paper, we apply SVD processing to linear ultrafast ultrasound images for CEUS Doppler. The contrast levels reached by this technique were compared to those of a nonlinear gold standard sequence (PMPI Doppler) through a flow phantom study. The SVD technique reached contrast-to-tissue ratios (CTR) up to 10 dB higher in vitro, and proved to be robust in terms of probe motion and slow flow. A trial was also conducted on a transplanted human kidney, already imaged by means of power Doppler (Claudon et al 1999 Am. J. Roentgenol. 173 41-6) and microbubbles (Kay et al 2009 Clin. Radiol. 64 1081-7). Contrast levels yielded by the SVD technique measured up to 13 dB higher than those of PMPI Doppler.

  17. Efficiency of Contrast-Enhanced Fat-Suppressed Proton Density Images for Shoulder MRI: Comparison with Contrast-enhanced Fat-suppressed T1 Weighted Image and Arthroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwan Sub; Ha, Doo Hoe; Lee, Sang Min; Yoo, Ko Eun; Kim, Jae Wha [Bundang CHA General Hospital, Pocheon (Korea, Republic of)

    2009-03-15

    This study was designed to evaluate the efficiency of contrast-enhanced fat-suppressed proton-density images (CE-FS-PDI) for shoulder MRI. We retrospectively reviewed 54 shoulder MR precontrast fat-suppressed proton-density images (FS-PDI), CE-FS-PDI and contrast-enhanced fat-suppressed T1 weighted images (CE-FS-T1WI). Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of the posterior labrum, infraspinatus muscle, synovium, biceps brachii long head tendon and subcutaneous fat were analyzed on each sequence. Subsequently, 53 cases were reviewed where patients had undergone both shoulder arthroscopy and shoulder MRI. We analyzed the diagnostic agreement rates between the CE-FS-PDI and CE-FS-T1WI and the diagnostic accuracy of arthroscopically proven tears of the supraspinatus tendon. On CE-FS-PDI, the SNRs and CNRs of all structures were statistically higher than on precontrast FSPDI and CE-FS-T1WI. Diagnostic agreement rates between CE-FS-PDI and CE-FS-T1WI were 70-96% in labrums and 75-96% in rotator cuffs. The diagnostic accuracy rates for a tear of the supraspinatus tendon were 83% on CE-FS-PDI and 75% on CE-FS-T1WI, respectively. The SNR and CNR on CE-FS-PDI were increased in the shoulder structures, and the diagnostic rate for a tear of the supraspinatus tendon on CE-FS-PDI was superior as compared to CE-FS-T1WI. Therefore, CE-FS-PDI will be useful for shoulder MRI.

  18. Post-contrast T1-weighted sequences in pediatric abdominal imaging: comparative analysis of three different sequences and imaging approach

    Energy Technology Data Exchange (ETDEWEB)

    Roque, Andreia; Ramalho, Miguel; AlObaidy, Mamdoh; Heredia, Vasco; Burke, Lauren M.; De Campos, Rafael O.P.; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States)

    2014-10-15

    Post-contrast T1-weighted imaging is an essential component of a comprehensive pediatric abdominopelvic MR examination. However, consistent good image quality is challenging, as respiratory motion in sedated children can substantially degrade the image quality. To compare the image quality of three different post-contrast T1-weighted imaging techniques - standard three-dimensional gradient-echo (3-D-GRE), magnetization-prepared gradient-recall echo (MP-GRE) and 3-D-GRE with radial data sampling (radial 3-D-GRE) - acquired in pediatric patients younger than 5 years of age. Sixty consecutive exams performed in 51 patients (23 females, 28 males; mean age 2.5 ± 1.4 years) constituted the final study population. Thirty-nine scans were performed at 3 T and 21 scans were performed at 1.5 T. Two different reviewers independently and blindly qualitatively evaluated all sequences to determine image quality and extent of artifacts. MP-GRE and radial 3-D-GRE sequences had the least respiratory motion (P < 0.0001). Standard 3-D-GRE sequences displayed the lowest average score ratings in hepatic and pancreatic edge definition, hepatic vessel clarity and overall image quality. Radial 3-D-GRE sequences showed the highest scores ratings in overall image quality. Our preliminary results support the preference of fat-suppressed radial 3-D-GRE as the best post-contrast T1-weighted imaging approach for patients under the age of 5 years, when dynamic imaging is not essential. (orig.)

  19. Regularized Newton Methods for X-ray Phase Contrast and General Imaging Problems

    CERN Document Server

    Maretzke, Simon; Krenkel, Martin; Salditt, Tim; Hohage, Thorsten

    2015-01-01

    Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retriev...

  20. Cerebral computed tomography angiography using a low tube voltage (80 kVp) and a moderate concentration of iodine contrast material: a quantitative and qualitative comparison with conventional computed tomography angiography.

    Science.gov (United States)

    Cho, Eun-Suk; Chung, Tae-Sub; Oh, Dae Kun; Choi, Hyun Seok; Suh, Sang Hyun; Lee, Hyeon-Kyeong; Lee, Kyung Hee

    2012-02-01

    To investigate the feasibility of an 80-kVp protocol using a moderate concentration contrast material (MC-CM) for cerebral computed tomography angiography by comparison with a conventional 120-kVp protocol using a high concentration contrast material (HC-CM). Attenuation values and signal-to-noise ratios (SNRs) were determined in a head phantom for 2 tube voltages (80 and 120 kVp) and 2 different iodine concentration contrast materials (HC-CM and MC-CM). Among 90 consecutive patients, 45 patients were scanned with 120 kVp and 150 mAs(eff) after administration of 70 mL of HC-CM (370 mg iodine [mgI]/mL), whereas the other 45 patients were scanned with 80 kVp and 370 mAs(eff) after administration of 70 mL of MC-CM (300 mgI/mL). The Hounsfield units (HU) of the internal carotid artery T junction, SNR, contrast-to-noise ratio (CNR), subjective degree of arterial enhancement, image noise, sharpness of the cerebral arterial boundary, and overall diagnostic image quality were compared between the 2 groups. The mean attenuation of the internal carotid artery T junction, SNR, and CNR was significantly higher in the 80 kVp with MC-CM group (379.2, 33.7, and 31.1 HU, respectively) than in the 120 kVp with HC-CM group (282.2, 31.1, and 27.2 HU, respectively). The 80-kVp protocol resulted in significantly higher score in arterial enhancement, sharpness of the cerebral arteries, and overall diagnostic image quality. The effective dose of 80 kVp (0.7 mSv) was 22.2% lower than that of 120 kVp (0.9 mSv). The use of 80 kVp with MC-CM improved arterial enhancement, SNR, and CNR and provided superior quality images using a smaller amount of iodine and a lower radiation dose than the conventional protocol of 120 kVp with HC-CM.

  1. Clinical use of gadobutrol for contrast-enhanced magnetic resonance imaging of neurological diseases

    Directory of Open Access Journals (Sweden)

    Cheng KT

    2012-02-01

    Full Text Available Kenneth T Cheng1, Hannah Y Cheng2, Kam Leung31Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; 2Freelance Technical Writer, New Orleans, LA, USA; 3National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USAAbstract: Contrast-enhanced magnetic resonance imaging (CE-MRI is an important clinical tool for diagnosing neurological diseases. The appropriate use of a suitable MRI contrast agent or contrast pharmaceutical is essential for CE-MRI to produce desirable diagnostic images. Currently, there are seven contrast agents (CAs or pharmaceuticals approved for clinical imaging of the central nervous system (CNS in the US, Europe, or Japan. All of the clinically approved CAs are water-soluble gadolinium-based contrast agents (GBCAs which do not penetrate the CNS blood–brain barrier (BBB. These agents are used for imaging CNS areas without a BBB, or various pathologies, such as tumors and infection that break down the BBB and allow CAs to enter into the surrounding parenchyma. Clinically, GBCAs are most useful for detecting primary and secondary cerebral neoplastic lesions. Among these CNS GBCAs, gadobutrol (Gd-BT-DO3A, Gadovist™ is a neutral, nonionic, macrocyclic compound that showed promising results from clinical trials of CNS imaging. In comparison with other GBCAs, Gd-BT-DO3A has relatively high in vitro kinetic stability and r1 relaxivity. Gd-BT-DO3A has been recently approved by the US Food and Drug Administration (FDA in 2011 for CNS imaging. A review of available literature shows that Gd-BT-DO3A exhibits similar safety and clinical efficacy profiles to other GBCAs. Gd-BT-DO3A has the distinguishing feature that it is the only clinical agent commercially available in a formulation of 1.0 M concentration with a relatively higher in vitro T1 shortening per unit volume than other clinical GBCAs which are only

  2. Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, D.; Taupitz, M.; Hamm, B. [Universitaetsklinikum Charite, Berlin (Germany). Inst. fuer Radiologie; Gehl, H.B. [Medizinische Univ. Luebeck (Germany). Inst. fuer Radiologie; Heuck, A. [Muenchen Univ. (Germany). Radiologische Klinik; Krahe, T. [Koeln Univ. (Germany). Inst. fuer Radiologische Diagnostik; Lodemann, K.P. [Bracco-Byk Gulden GmbH, Konstanz (Germany)

    1999-07-01

    Purpose: To evaluate the safety and diagnostic efficacy of two different doses of ferric ammonium citrate as a paramagnetic oral contrast agent for MR imaging of the upper abdomen. Material and methods: Ninety-nine adult patients referred for MR imaging for a known or suspected upper abdominal pathology were included in this randomized multicenter double-blind clinical trial. Imaging was performed with spin-echo (T1- and T2-weighted) and gradient-echo (T1-weighted) techniques before and after administration of either 1200 mg or 2400 mg of ferric ammonium citrate dissolved in 600 ml of water. Safety analysis included monitoring of vital signs, assessment of adverse events, and laboratory testing. Efficacy with regard to organ distension, contrast distribution, bowel enhancement and delineation of adjacent structures was graded qualitatively. Results: No serious adverse events were reported for either of the two concentrations. A total of 31 minor side effects were noted, of which significantly more occurred in the higher dose group (p<0.01). The diagnostic confidence in defining or excluding disease was graded as better after contrast administration for 48% of all images. Marked or moderate enhancement of the upper gastrointestinal tract was achieved at both doses in 69.5% of cases with no evident difference between the two doses. The higher dose tended to show better results in terms of the contrast assessment parameters. Conclusion: Ferric ammonium citrate is a safe and effective oral contrast agent for MR imaging of the upper abdomen at two different dose levels. The higher dose showed a tendency toward better imaging results while the lower dose caused significantly fewer side effects. Therefore, the 1200 mg dose can be recommended in view of the risk-to-benefit ratio. (orig.)

  3. Feasibility of contrast material volume reduction in coronary artery imaging using 320-slice volume CT

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Patrick A.; May, Juliane; Rogalla, Patrik; Hamm, Bernd; Lembcke, Alexander [Charite-University Hospital, Department of Radiology, Berlin (Germany); Butler, Craig [Charite-University Hospital, Department of Radiology, Berlin (Germany); University of Alberta, Department of Cardiology, Edmonton, Alberta (Canada)

    2010-06-15

    To assess reduced volumes of contrast agent on image quality for coronary computed tomography angiography (CCTA) by using single-beat cardiac imaging with 320-slice CT. Forty consecutive male patients (mean age: 55.8 years) undergoing CCTA with body weight {<=}85 kg, heart rate {<=}65 bpm, and ejection fraction {>=}55% were included. Image acquisition protocol was standardized (120 kV, 400 mA, and prospective ECG-triggered single-beat nonspiral CCTA). Patients were randomly assigned to one of four groups (G1: received 40 ml, G2: 50 ml, G3: 60 ml, G4: 70 ml). Groups were compared with respect to aortic attenuation, image noise, and image quality. CT values (mean {+-} standard deviation) in the aortic root were measured as 423 {+-} 38 HU in G1, and 471 {+-} 68, 463 {+-} 60, and 476 {+-} 78 HU in G2-4, respectively. There were no statistically significant differences in attenuation among the groups (P > 0.068). All 40 CT datasets were rated diagnostic, and image noise and image quality were not statistically different among groups. Using 320-slice volume CT, diagnostic image quality can be achieved with 40 ml of contrast material in CCTA in patients with normal body weight, cardiac function, and low heart rate. (orig.)

  4. An Image-Domain Contrast Material Extraction Method for Dual-Energy Computed Tomography.

    Science.gov (United States)

    Lambert, Jack W; Sun, Yuxin; Gould, Robert G; Ohliger, Michael A; Li, Zhixi; Yeh, Benjamin M

    2017-04-01

    Conventional material decomposition techniques for dual-energy computed tomography (CT) assume mass or volume conservation, where the CT number of each voxel is fully assigned to predefined materials. We present an image-domain contrast material extraction process (CMEP) method that preferentially extracts contrast-producing materials while leaving the remaining image intact. Image processing freeware (Fiji) is used to perform consecutive arithmetic operations on a dual-energy ratio map to generate masks, which are then applied to the original images to generate material-specific images. First, a low-energy image is divided by a high-energy image to generate a ratio map. The ratio map is then split into material-specific masks. Ratio intervals known to correspond to particular materials (eg, iodine, calcium) are assigned a multiplier of 1, whereas ratio values in between these intervals are assigned linear gradients from 0 to 1. The masks are then multiplied by an original CT image to produce material-specific images. The method was tested quantitatively at dual-source CT and rapid kVp-switching CT (RSCT) with phantoms using pure and mixed formulations of tungsten, calcium, and iodine. Errors were evaluated by comparing the known material concentrations with those derived from the CMEP material-specific images. Further qualitative evaluation was performed in vivo at RSCT with a rabbit model using identical CMEP parameters to the phantom. Orally administered tungsten, vascularly administered iodine, and skeletal calcium were used as the 3 contrast materials. All 5 material combinations-tungsten, iodine, and calcium, and mixtures of tungsten-calcium and iodine-calcium-showed distinct dual-energy ratios, largely independent of material concentration at both dual-source CT and RSCT. The CMEP was successful in both phantoms and in vivo. For pure contrast materials in the phantom, the maximum error between the known and CMEP-derived material concentrations was 0.9 mg

  5. Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms

    NARCIS (Netherlands)

    J.H.C. Reiber (Johan); C.J. Kooijman; P.W.J.C. Serruys (Patrick); A. den Boer (Ad)

    1985-01-01

    textabstractIn the quantitative assessment of coronary arterial dimensions from coronary cineangiograms, the contrast catheter is usually used as a scaling device, requiring the definition of the catheter contours by semi- or fully automated contour detection procedures. The image quality of the x-r

  6. Optimization of contrast resolution by genetic algorithm in ultrasound tissue harmonic imaging.

    Science.gov (United States)

    Ménigot, Sébastien; Girault, Jean-Marc

    2016-09-01

    The development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information. To overcome assumption regarding the waveform, a genetic algorithm investigated the medium thanks to the transmission of stochastic "explorer" waves. Moreover, these stochastic signals could be constrained by the type of generator available (bipolar or arbitrary). To implement it, we changed the current pulse inversion imaging system by including feedback. Thus the method optimized the contrast resolution by adaptively selecting the samples of the excitation. In simulation, we benchmarked the contrast effectiveness of the best found transmitted stochastic commands and the usual fixed-frequency command. The optimization method converged quickly after around 300 iterations in the same optimal area. These results were confirmed experimentally. In the experimental case, the contrast resolution measured on a radiofrequency line could be improved by 6% with a bipolar generator and it could still increase by 15% with an arbitrary waveform generator.

  7. Extreme Contrast Ratio Imaging of Sirius with a Charge Injection Device

    CERN Document Server

    Batcheldor, D; Bahr, C; Jenne, J; Ninkov, Z; Bhaskaran, S; Chapman, T

    2015-01-01

    The next fundamental steps forward in understanding our place in the universe could be a result of advances in extreme contrast ratio (ECR) imaging and point spread function (PSF) suppression. For example, blinded by quasar light we have yet to fully understand the processes of galaxy formation and evolution, and there is an ongoing race to obtain a direct image of an exoearth lost in the glare of its host star. To fully explore the features of these systems we must perform observations in which contrast ratios of at least one billion can be regularly achieved with sub 0.1" inner working angles. Here we present the details of a latest generation 32-bit charge injection device (CID) that could conceivably achieve contrast ratios on the order of one billion. We also demonstrate some of its ECR imaging abilities for astronomical imaging. At a separation of two arc minutes, we report a direct contrast ratio of Delta(m_v)=18.3, log(CR)=7.3, or 1 part in 20 million, from observations of the Sirius field. The atmosp...

  8. Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms

    NARCIS (Netherlands)

    J.H.C. Reiber (Johan); C.J. Kooijman; P.W.J.C. Serruys (Patrick); A. den Boer (Ad)

    1985-01-01

    textabstractIn the quantitative assessment of coronary arterial dimensions from coronary cineangiograms, the contrast catheter is usually used as a scaling device, requiring the definition of the catheter contours by semi- or fully automated contour detection procedures. The image quality of the

  9. The ZIMPOL high-contrast imaging polarimeter for SPHERE: design, manufacturing, and testing

    NARCIS (Netherlands)

    Roelfsema, R.; Schmid, H.M.; Pragt, J.; Gisler, D.; Waters, R.; Bazzon, A.; Baruffolo, A.; Beuzit, J.-L.; Boccaletti, A.; Charton, J.; Cumani, C.; Dohlen, K.; Downing, M.; Elswijk, E.; Feldt, M.; Groothuis, C.; de Haan, M.; Hanenburg, H.; Hubin, N.; Joos, F.; Kasper, M.; Keller, C.; Kragt, J.; Lizon, J.-L.; Mouillet, D.; Pavlov, A.; Rigal, F.; Rochat, S.; Salasnich, B.; Steiner, P.; Thalmann, C.; Venema, L.; Wildi, F.

    2010-01-01

    ZIMPOL is the high contrast imaging polarimeter subsystem of the ESO SPHERE instrument. ZIMPOL is dedicated to detect the very faint reflected and hence polarized visible light from extrasolar planets. ZIMPOL is located behind an extreme AO system (SAXO) and a stellar coronagraph. SPHERE is foreseen

  10. The ZIMPOL high-contrast imaging polarimeter for SPHERE: design, manufacturing, and testing

    NARCIS (Netherlands)

    Roelfsema, R.; Schmid, H.M.; Pragt, J.; Gisler, D.; Waters, R.; Bazzon, A.; Baruffolo, A.; Beuzit, J.-L.; Boccaletti, A.; Charton, J.; Cumani, C.; Dohlen, K.; Downing, M.; Elswijk, E.; Feldt, M.; Groothuis, C.; de Haan, M.; Hanenburg, H.; Hubin, N.; Joos, F.; Kasper, M.; Keller, C.; Kragt, J.; Lizon, J.-L.; Mouillet, D.; Pavlov, A.; Rigal, F.; Rochat, S.; Salasnich, B.; Steiner, P.; Thalmann, C.; Venema, L.; Wildi, F.

    2010-01-01

    ZIMPOL is the high contrast imaging polarimeter subsystem of the ESO SPHERE instrument. ZIMPOL is dedicated to detect the very faint reflected and hence polarized visible light from extrasolar planets. ZIMPOL is located behind an extreme AO system (SAXO) and a stellar coronagraph. SPHERE is foreseen

  11. Quantitative Imaging of Cell-Permeable Magnetic Resonance Contrast Agents Using X-Ray Fluorescence

    Directory of Open Access Journals (Sweden)

    Paul J. Endres

    2006-10-01

    Full Text Available The inability to transduce cellular membranes is a limitation of current magnetic resonance imaging probes used in biologic and clinical settings. This constraint confines contrast agents to extracellular and vascular regions of the body, drastically reducing their viability for investigating processes and cycles in developmental biology. Conversely, a contrast agent with the ability to permeate cell membranes could be used in visualizing cell patterning, cell fate mapping, gene therapy, and, eventually, noninvasive cancer diagnosis. Therefore, we describe the synthesis and quantitative imaging of four contrast agents with the capability to cross cell membranes in sufficient quantity for detection. Each agent is based on the conjugation of a Gd(III chelator with a cellular transduction moiety. Specifically, we coupled Gd(III–diethylenetriaminepentaacetic acid DTPA and Gd(III–1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with an 8–amino acid polyarginine oligomer and an amphipathic stilbene molecule, 4-amino-4'-(N,N-dimethylaminostilbene. The imaging modality that provided the best sensitivity and spatial resolution for direct detection of the contrast agents is synchrotron radiation x-ray fluorescence (SR-XRF. Unlike optical microscopy, SR-XRF provides two-dimensional images with resolution 103 better than 153Gd gamma counting, without altering the agent by organic fluorophore conjugation. The transduction efficiency of the intracellular agents was evaluated by T1 analysis and inductively coupled plasma mass spectrometry to determine the efficacy of each chelate-transporter combination.

  12. FEASIBILITY STUDY OF AN ULTRASOUND CONTRAST AGENT (LEVOVIST) IN COLOR DOPPLER IMAGING OF LIVER NEOPLASMS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ The purpose of this study was to determine the efficacy of using an ultrasound contrast agent(levovist)to enhance the color Doppler imaging of liver neoplasms.Thirty patients with hepatic tumors were enrolled in this study.After intravenous administration of levovist,the color Doppler signals of normal hepatic vessels were enhanced.In various hepatic tumors,the different patterns of tumor vascularity were observed,which had not been demonstrated in conventional non-contrast color Doppler imaging.In 11 of 16 patients with hepatocarcinoma,additoal color Doppler signals were observed in the central part of the tumors.On the contrary,3 patients with metastatic liver lesions the enhanced color Doppler signal appear only at the peripheral of tumors.A typical rim-like color enhancement was seen in 2 of the 3 cases.In six patients with hpatic hemangiomas contrast-enhanced color Doppler imaging demonstrated the blood vessels at the margin of the neoplasms.Contrast-enhanced color Doppler imaging improves the visualization of the hepatic neoplasm vascularity.This technique holds great promise for detecting small liver tumors and differentiating hepatic neoplasms.

  13. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics.

    Science.gov (United States)

    de la Zerda, Adam; Kim, Jin-Woo; Galanzha, Ekaterina I; Gambhir, Sanjiv S; Zharov, Vladimir P

    2011-01-01

    Various nanoparticles have raised significant interest over the past decades for their unique physical and optical properties and biological utilities. Here we summarize the vast applications of advanced nanoparticles with a focus on carbon nanotube (CNT)-based or CNT-catalyzed contrast agents for photoacoustic (PA) imaging, cytometry and theranostics applications based on the photothermal (PT) effect. We briefly review the safety and potential toxicity of the PA/PT contrast nanoagents, while showing how the physical properties as well as multiple biological coatings change their toxicity profiles and contrasts. We provide general guidelines needed for the validation of a new molecular imaging agent in living subjects, and exemplify these guidelines with single-walled CNTs targeted to α(v) β(3) , an integrin associated with tumor angiogenesis, and golden carbon nanotubes targeted to LYVE-1, endothelial lymphatic receptors. An extensive review of the potential applications of advanced contrast agents is provided, including imaging of static targets such as tumor angiogenesis receptors, in vivo cytometry of dynamic targets such as circulating tumor cells and nanoparticles in blood, lymph, bones and plants, methods to enhance the PA and PT effects with transient and stationary bubble conjugates, PT/PA Raman imaging and multispectral histology. Finally, theranostic applications are reviewed, including the nanophotothermolysis of individual tumor cells and bacteria with clustered nanoparticles, nanothrombolysis of blood clots, detection and purging metastasis in sentinel lymph nodes, spectral hole burning and multiplex therapy with ultrasharp rainbow nanoparticles.

  14. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    Science.gov (United States)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  15. Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging

    Science.gov (United States)

    Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning

    2017-04-01

    Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.

  16. Contrast enhancement of the cochlear aqueduct in MR imaging: its frequency and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Naganawa, S.; Fukatsu, H.; Sakurai, Y.; Ishigaki, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, 466-8550, Shouwa-ku, Nagoya (Japan); Aoki, I.; Ninomiya, A. [Medical Systems Company, Toshiba Corporation, Nasu Operations, Otawara-shi, Tochigi (Japan); Nakashima, T. [Department of Otorhinolaryngology, Nagoya University School of Medicine, Shouwa-ku, Nagoya (Japan)

    2003-09-01

    There have been no previous reports on contrast enhancement of the cochlear aqueduct in magnetic resonance imaging. The purpose of the present study was to evaluate the frequency and significance of this finding. Thirty-one patients (15 men and 16 women; age range 18-81 years) with otologic symptoms (sudden sensorineural hearing loss, vertigo, or tinnitus) were examined using contrast-enhanced imaging on a 1.5-T MR scanner. The normal ear served as the control. Two radiologists evaluated contrast enhancement in the area of the cochlear aqueduct. Forty-eight of 62 ears (77.4%) showed contrast enhancement of the cochlear aqueduct, but no significant differences in the frequency of contrast enhancement were observed between patients with and patients without vertigo, tinnitus, sensorineural hearing loss, cerebellopontine angle tumors, or a high-riding jugular bulb. In addition, no gender- or age-related differences were noted. Contrast enhancement of the cochlear aqueduct was frequently observed, but the frequency of enhancement in symptomatic ears was not significantly higher than in control ears. The results of this study may prove helpful in avoiding unnecessary examinations and potential diagnostic confusion. (orig.)

  17. A uniqueness result for propagation-based phase contrast imaging from a single measurement

    CERN Document Server

    Maretzke, Simon

    2014-01-01

    Phase contrast imaging seeks to reconstruct the complex refractive index of an unknown sample from scattering intensities, measured for example under illumination with coherent X-rays. By incorporating refraction, this method yields improved contrast compared to purely absorption-based radiography but involves a phase retrieval problem which, in general, allows for ambiguous reconstructions. In this paper, we show uniqueness of propagation-based phase contrast imaging for compactly supported objects in the near field regime, based on a description by the projection- and paraxial approximations. In this setting, propagation is governed by the Fresnel propagator and the unscattered part of the illumination function provides a known reference wave at the detector which facilitates phase reconstruction. The uniqueness theorem is derived using the theory of entire functions. Unlike previous results based on exact solution formulae, it is valid for arbitrary complex objects and requires intensity measurements only ...

  18. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    CERN Document Server

    Ruane, Garreth J; Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Swartzlander, Grover A

    2015-01-01

    The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^...

  19. High-contrast subcutaneous vein detection and localization using multispectral imaging

    Science.gov (United States)

    Wang, Fengtao; Behrooz, Ali; Morris, Michael; Adibi, Ali

    2013-05-01

    Multispectral imaging has shown promise in subcutaneous vein detection and localization in human subjects. While many limitations of single-wavelength methods are addressed in multispectral vein detection methods, their performance is still limited by artifacts arising from background skin reflectance and optimality of postprocessing algorithms. We propose a background removal technique that enhances the contrast and performance of multispectral vein detection. We use images acquired at visible wavelengths as reference for removing skin reflectance background from subcutaneous structures in near-infrared images. Results are validated by experiments on human subjects.

  20. Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing

    Science.gov (United States)

    Timoshina, Polina A.; Zinchenko, Ekaterina M.; Tuchina, Daria K.; Sagatova, Madina M.; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-03-01

    In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning.

  1. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  2. High sensitivity contrast enhanced optical coherence tomography for functional in vivo imaging

    Science.gov (United States)

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2017-02-01

    In this study, we developed and applied highly-scattering large gold nanorods (LGNRs) and custom spectral detection algorithms for high sensitivity contrast-enhanced optical coherence tomography (OCT). We were able to detect LGNRs at a concentration as low as 50 pM in blood. We used this approach for noninvasive 3D imaging of blood vessels deep in solid tumors in living mice. Additionally, we demonstrated multiplexed imaging of spectrally-distinct LGNRs that enabled observations of functional drainage in lymphatic networks. This method, which we call MOZART, provides a platform for molecular imaging and characterization of tissue noninvasively at cellular resolution.

  3. Interior tomography in x-ray differential phase contrast CT imaging

    Science.gov (United States)

    Thériault Lauzier, Pascal; Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2012-05-01

    Differential phase contrast computed tomography (DPC-CT) is an x-ray imaging method that uses the wave properties of imaging photons as the contrast mechanism. It has been demonstrated that DPC images can be obtained using a conventional x-ray tube and a Talbot-Lau-type interferometer. Due to the limited size of the gratings, current data acquisition systems only offer a limited field of view, and thus are prone to data truncation. As a result, the reconstructed DPC-CT image may suffer from image artifacts and increased inaccuracy in the reconstructed image values. In this paper, we demonstrate that a small region of interest (ROI) within a large object can be accurately and stably reconstructed using fully truncated projection datasets provided that a priori information on electron density is known for a small region inside the ROI. The method reconstructs an image iteratively to satisfy a group of physical conditions by using a projection onto convex set (POCS) approach. In this work, this POCS algorithm is validated using both numerical simulations and physical phantom experimental data. In both cases, the root mean square error is reduced by an order of magnitude with respect to the truncated analytic reconstructions. Truncation artifacts observed in the latter reconstructions are eliminated using the POCS algorithm.

  4. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  5. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    Science.gov (United States)

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-10-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging.

  6. High-Contrast Color-Stripe Pattern for Rapid Structured-Light Range Imaging

    CERN Document Server

    Je, Changsoo; Park, Rae-Hong

    2015-01-01

    For structured-light range imaging, color stripes can be used for increasing the number of distinguishable light patterns compared to binary BW stripes. Therefore, an appropriate use of color patterns can reduce the number of light projections and range imaging is achievable in single video frame or in "one shot". On the other hand, the reliability and range resolution attainable from color stripes is generally lower than those from multiply projected binary BW patterns since color contrast is affected by object color reflectance and ambient light. This paper presents new methods for selecting stripe colors and designing multiple-stripe patterns for "one-shot" and "two-shot" imaging. We show that maximizing color contrast between the stripes in one-shot imaging reduces the ambiguities resulting from colored object surfaces and limitations in sensor/projector resolution. Two-shot imaging adds an extra video frame and maximizes the color contrast between the first and second video frames to diminish the ambigui...

  7. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    Science.gov (United States)

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  8. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    Science.gov (United States)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  9. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    OpenAIRE

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-01-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluo...

  10. Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging.

    Science.gov (United States)

    Städele, Carola; Andras, Peter; Stein, Wolfgang

    2012-01-15

    Optical imaging using voltage-sensitive dyes (VSDs) is a promising technique for the simultaneous activity recording of many individual neurons. While such simultaneous recordings are critical for the understanding of the integral functionality of neural systems, functional interpretations on a single neuron level are difficult without knowledge of the connectivity of the underlying circuit. Central pattern generating circuits, such as the pyloric and gastric mill circuits in the stomatogastric ganglion (STG) of crustaceans, allow such investigations due to their well-known connectivities and have already contributed much to our understanding of general neuronal mechanisms. Here we present for the first time simultaneous optical recordings of the pattern generating neurons in the STG of two crustacean species using bulk loading of the VSD di-4-ANEPPS. We demonstrate the recording of firing activities and synaptic interactions of the circuit neurons as well as inter-circuit interactions in their functional context, i.e. without artificial stimulation. Neurons could be uniquely identified using simple event-triggered averaging. We tested this technique in two different species of crustaceans (lobsters and crabs), since several crustacean species are used for studying motor pattern generation. The signal-to-noise ratio of the optical signal was high enough in both species to derive phase-relationship between the network neurons, as well as action potentials and excitatory and inhibitory postsynaptic potentials. We argue that imaging of neural networks with identifiable neurons with well-known connectivity, like in the STG, is crucial for the understanding of emergence of network functionality.

  11. High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    CERN Document Server

    N'Diaye, Mamadou; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D; Wallace, J Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N Jeremy; Soummer, Rémi

    2014-01-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing o...

  12. Contrast enhancement of mid and far infrared images of subcutaneous veins

    Science.gov (United States)

    Villaseñor-Mora, Carlos; Sanchez-Marin, Francisco J.; Garay-Sevilla, Maria E.

    2008-01-01

    A simple procedure to enhance the contrast of infrared images of subcutaneous veins is presented. This procedure implies the topical application of a substance which modifies the energy transfer process from the veins to the sensor of the infrared camera. After the application of the substance, energy is transferred in such a way that the image contrast is enhanced up to more than 400% of its original value. The duration of the effect spans for more than 11 min which is enough for many practical applications. This effect is shown through a series of infrared images of the hand, the foot and the neck of human subjects. The infrared spectra of the applied substance are presented to explain the related phenomena. The proposed procedure is innocuous, easy to achieve, time efficient, and of low cost.

  13. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    Science.gov (United States)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  14. Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction

    Science.gov (United States)

    Ng, Eldon; Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    Angular domain imaging (ADI) generates a projection image of an attenuating target within a turbid medium by employing a silicon micro-tunnel array to reject photons that have deviated from the initial propagation direction. In this imaging method, image contrast and resolution are position dependent. The objective of this work was to first characterize the contrast and resolution of the ADI system at a multitude of locations within the imaging plane. The second objective was to compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. The ADI system consisted of a diode laser laser (808nm, CW, ThorLabs) with a beam expander for illumination of the sample cuvette. At the opposite side of the cuvette, an Angular Filter Array (AFA) of 80 μm x 80 μm square-shaped tunnels 1 cm in length was used to reject the transmitted scattered light. Image-forming light exiting the AFA was detected by a linear CCD (16-bit, Mightex). Our approach was to translate two point attenuators (0.5 mm graphite rod, 0.368 mm drill bit) submerged in a 0.6% IntralipidTM dilution using a SCARA robot (Epson E2S351S) to cover a 37x37 and 45x45 matrix of grid points in the imaging plane within the 1 cm path length sample cuvette. At each grid point, a one-dimensional point-spread distribution was collected and system contrast and resolution were measured. Then, the robot was used to rotate the target to collect projection images at several projection angles of various objects, and reconstructed with a filtered back projection and an iterative reconstruction algorithm.

  15. Focal Liver Lesions: Real-time 3-Dimensional Contrast-Enhanced Ultrasonography Compared With 2-Dimensional Contrast-Enhanced Ultrasonography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Lee, Jung-Chieh; Yan, Kun; Lee, San-Kan; Yang, Wei; Chen, Min-Hua

    2017-06-24

    This study sought to evaluate the application of real-time 3-dimensional (3D) contrast-enhanced ultrasonography (US) to diagnose focal liver lesions and to compare these results with those from 2-dimensional (2D) contrast-enhanced US and contrast-enhanced magnetic resonance imaging (MRI). Patients with focal liver lesions were examined by 2D contrast-enhanced US, 3D contrast-enhanced US, and contrast-enhanced MRI for lesion characterization, and biopsies and comprehensive clinical diagnoses served as reference standards. The sensitivity, specificity, area under the receiver operating characteristic curve, and intermodality agreement were assessed. The number of contrast agent injections and lesions observed per injection were calculated for 3D and 2D contrast-enhanced US. The number and display quality of the feeding arteries observed with 3D and 2D contrast-enhanced US were assessed. A total of 117 patients with 151 focal liver lesions were enrolled, including 67 cases of hepatocellular carcinoma, 51 cases of liver metastasis, and 33 cases of benign liver lesions. No significant differences were found among the modalities. The sensitivity values for 3D contrast-enhanced US, 2D contrast-enhanced US, and contrast-enhanced MRI were 96%, 95%, and 93%, respectively; the specificity values were 87%, 84%, and 89%; and the area under the receiver operating characteristic curve values were 0.92, 0.90, and 0.92. The intermodality agreement was excellent (κ > 0.77). Fewer contrast agent injections were needed, and more lesions and feeding arteries were more clearly displayed on 3D than 2D contrast-enhanced US (P < .001). Real-time 3D contrast-enhanced US is useful for diagnosing focal liver lesions and for observing feeding arteries with fewer contrast agent injections. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)

    2017-01-15

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  17. Dynamic contrast-enhanced MR imaging and MR-guided bone biopsy on a 0.23T open imager

    Institute of Scientific and Technical Information of China (English)

    R.K.Parkkola; K.T.Mattila; J.T.Heikkila; T.O.Ekfors; M.A.Kallajoki; M.E.SjKonmu; T.J.Vaara; H.T.Aro

    2002-01-01

    Objective:To assess the feasibility of MR-guided bone biopsies.Methods::Thirty-six consecutive patients with known or suspected benign or malignant bone lesions underwent comprehensive MR imaging.A dynamic contrast-enhanced sequence followed by stationary Ti-weighted sequences were obtained and MR-guided bone biopsy of the tumor at the site with fastest enhancement was performed using an open 0.23 T MR imager.Results:All MR-guided bone biopsies samples were estimated to be sufficient by the pathologists.The biopsy specimens were diagnostic in 34 of 36 cases.Conclusion:MR-guided bone biopsies combined with dynamic contrast-enhanced imaging are feasible and safe for the diagnostic investigation of equivocal bone lesions.

  18. Design of a quadratic filter for contrast - assisted ultrasonic imaging based on 2D gaussian filters

    Directory of Open Access Journals (Sweden)

    Tosaporn Nilmanee

    2010-05-01

    Full Text Available We present a novel design of quadratic filters (QFs in the frequency domain in order to improve the quality of contrastassisted ultrasound images for medical diagnosis. The QF is designed as a 2D linear-phase filter. In addition, the magnitude is based on the sum of two 2D Gaussian filters. The centers of the Gaussian filters are placed at the locations where the power strength of signals from ultrasound contrast agent over surrounding tissue is maximal. The design parameters consist of two centers and a standard deviation (SD of the Gaussian filters. The coefficients of the QF are obtained using the inverse discreteFourier transform. The QFs from the proposed design method are evaluated using in vivo ultrasound data, i.e., the kidney of aguinea pig. We find that the appropriate SD and two center points of the QF for the in vivo data are at 0.34, (3.30, 3.30 and (-3.30,-3.30 MHz, respectively. Results show that the images produced from the output signals of the new design are superior to theoriginal B-mode both in terms of contrast and spatial resolution. The quadratic image provides clear visualization of thekidney shape and large vascular structures inside the kidney. The contrast-to-tissue ratio value of quadratic image is 24.8 dBcompared to -1.5 dB from the B-mode image. In addition, we can use this new design approach as an efficient tool to furtherimprove the QF in producing better contrast-assisted ultrasound images for medical diagnostic purposes.

  19. Impacts of Filtration on Contrast-Detail Detectability of an X-ray Imaging System

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The purpose of this study is to investigate the impacts of added filtration on the contrast-detail detectability of a digital X-ray imaging system for small animal studies. A digital X-ray imaging system specifically designed for small animal studies was used. This system is equipped with a micro X-ray source with a tungsten target and a beryllium window filtration and a CCD-based digital detector. Molybdenum filters of 0 mm, 0.02 mm, and 0.05 mm in thickness were added. The corresponding X-ray spectra and contrast-detail detectabilities were measured using two phantoms of different thicknesses simulating breast tissue under different exposures. The added Mo filters reduced the low-energy as well as the high-energy photons, hence providing a narrowband for imaging quality improvement. In the experiments with a 1.15 cm phantom, the optimal image detectability was observed using 22 kVp and the 0.05 mm Mo filter. With the 2.15 cm phantom, the best detectability was obtained with 22 kVp and the 0.02 mm Mo filter. Our experiments showed that appropriate filtrations could reduce certain low- and high-energy components of X-ray spectra which have limited contributions to image contrast. At the same time, such filtration could improve the contrast-detail detectability, particularly at relatively low kVp and high filtration. Therefore, optimal image quality can be obtained with the same absorbed radiation dose by the subjects when appropriate filtration is used.

  20. Stray light correction and contrast analysis of Hinode broad band images

    CERN Document Server

    Mathew, S K; Solanki, S K

    2009-01-01

    The contrasts of features in the quiet Sun are studied using filtergrams recorded by the Broad-band Filter Imager on the Hinode/Solar Optical Telescope. In a first step, the scattered light originating in the instrument is modeled using Mercury transit data. Combinations of four two-dimensional Gaussians with different widths and weights were employed to retrieve the point-spread functions (PSF) of the instrument at different wavelengths, which also describe instrumental scattered light. The parameters of PSFs at different wavelengths are tabulated. The observed images were then deconvolved using the PSFs. The corrected images were used to obtain contrasts of features such as bright points and granulation in different wavelength bands. After correction, rms contrasts of the granulation of between 0.11 (at 668 nm) and 0.22 (at 388 nm) are obtained. Similarly, bright point contrasts ranging from 0.07 (at 668 nm) to 0.78 (at 388 nm) are found, which are a factor of 1.8 to 2.8 higher than those obtained before PS...

  1. Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis.

    Science.gov (United States)

    Calcagno, Claudia; Ramachandran, Sarayu; Millon, Antoine; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi

    2013-02-01

    Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.

  2. Enhancement Techniques for Local Content Preservation and Contrast Improvement in Images

    Directory of Open Access Journals (Sweden)

    Chelsy Sapna Josephus

    2012-02-01

    Full Text Available There are several images that do not have uniform brightness which pose a challenging problem for image enhancement systems. As histogram equalization has been successfully used to correct for uniform brightness problems, a histogram equalization method that utilizes human visual system based thresholding(human vision thresholding as well as logarithmic processing techniques were introduced later . But these methods are not good for preserving the local content of the image which is a major factor for various images like medical and aerial images. Therefore new method is proposed here. This method is referred as “Human vision thresholding with enhancement technique for dark blurred images for local content preservation”. It uses human vision thresholding together with an existing enhancement method for dark blurred images. Furthermore a comparative study with another method for local content preservation is done which is further extended to make it suitable for contrast improvement . Experimental results shows that the proposed methods outperforms the former existing methods in preserving the local content for standard images ,medical and aerial images .

  3. High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope

    CERN Document Server

    Pedichini, F; Ambrosino, A; Puglisi, A; Pinna, E; Bailey, V; Carbonaro, L; Centrone, M; Christou, J; Esposito, S; Farinato, J; Fiore, F; Giallongo, E; Hill, J M; Hinz, P M; Sabatini, L

    2016-01-01

    In February 2014, the SHARK-VIS (System for High contrast And coronography from R to K at VISual bands) Forerunner, a high contrast experimental imager operating at visible wavelengths, was installed at LBT (Large Binocular Telescope). Here we report on the first results obtained by recent on-sky tests. These results show the extremely good performance of the LBT ExAO (Extreme Adaptive Optics) system at visible wavelengths, both in terms of spatial resolution and contrast achieved. Similarly to what was done by (Amara et al. 2012), we used the SHARK-VIS Forerunner data to quantitatively assess the contrast enhancement. This is done by injecting several different synthetic faint objects in the acquired data and applying the ADI (angular differential imaging) technique. A contrast of the order of $5 \\times 10^{-5}$ is obtained at 630 nm for angular separations from the star larger than 100 mas. These results are discussed in light of the future development of SHARK-VIS and compared to those obtained by other hi...

  4. Combined effects of scattering and absorption on laser speckle contrast imaging

    Science.gov (United States)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Several variables may affect the local contrast values in laser speckle contrast imaging (LSCI), irrespective of relative motion. It has been suggested that the optical properties of the moving fluid and surrounding tissues can affect LSCI values. However, a detailed study of this has yet to be presented. In this work, we examined the combined effects of the reduced scattering and absorption coefficients on LSCI. This study employs fluid phantoms with different optical properties that were developed to mimic whole blood with varying hematocrit levels. These flow phantoms were imaged with an LSCI system developed for this study. The only variable parameter was the optical properties of the flowing fluid. A negative linear relationship was seen between the changes in contrast and changes in reduced scattering coefficient, absorption coefficient, and total attenuation coefficient. The change in contrast observed due to an increase in the scattering coefficient was greater than what was observed with an increase in the absorption coefficient. The results indicate that optical properties affect contrast values and that they should be considered in the interpretation of LSCI data.

  5. Magnetic resonance imaging of microvascular leakage induced by myocardial contrast echocardiography in rats.

    Science.gov (United States)

    Swanson, Scott D; Dou, Chunyan; Miller, Douglas L

    2006-06-01

    The extent and magnitude of microvascular leakage induced by myocardial contrast echocardiography (MCE) were characterized with contrast-aided magnetic resonance imaging (MRI). Evans blue dye, Definity ultrasound contrast agent and Omniscan magnetic resonance contrast agent were injected intravenously in anesthetized rats suspended in a water bath. Diagnostic ultrasound B mode scans with 1:4 end-systolic triggering were performed at 1.5 MHz using a cardiac phased array scanhead to provide a short axis view of the left ventricle. The in situ peak rarefactional pressure amplitude (PRPA) was 2.0 MPa. Microvascular leakage was characterized by extraction of the dye from tissue samples and by imaging the distribution and concentration of Omniscan within the myocardium. The extracted Evans blue was 2.3 times greater than in shams (Prats (after sacrifice). These results demonstrate a potential for MR mapping of capillary leakage induced by contrast-aided ultrasound, with a possible application to spatial characterization of local drug delivery.

  6. Diagnostic value of renal cortex-to-medulla contrast on magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Terrier, F.; Hricak, H.; Justich, E.; Dooms, G.C.; Grodd, W.

    1986-05-01

    The diagnostic value of magnetic resonance contrast between the renal cortex and renal medulla as an indicator of renal disease was retrospectively studied in 38 patients (ten patients with a variety of diseases affecting the renal parenchyma, nine with renal obstruction, four with diffusely infiltrating renal-cell carcinoma, one with renal hematoma, nine with normally functioning renal allograft, and five with renal allograft failure). Twelve normal volunteers served as controls. On spin-echo (SE) images (TR 0.5 sec, TE 28 msec), the cortex-to-medulla contrast was present in the kidneys of all the normal volunteers (19% contrast +-2% S.D.) and in all the normally functioning allografts (17% contrast +-2% S.D.). Decrease or absence of cortex-to-medulla contrast (SE image with TR 0.5 sec and TE 28 msec) was found to be a sensitive but nonspecific sign of renal disease. It occurred in renal diseases of various causes and was produced by different pathophysiologic mechanisms such as edema, scarring, and tissue replacement by neoplasm or hematoma. Of the calculated T1 and T2 relaxation times and spin density of the cortex and the medulla, the T1 changes most consistently reflected renal disease.

  7. Fractal coding of wavelet image based on human vision contrast-masking effect

    Science.gov (United States)

    Wei, Hai; Shen, Lansun

    2000-06-01

    In this paper, a fractal-based compression approach of wavelet image is presented. The scheme tries to make full use of the sensitivity features of the human visual system. With the wavelet-based multi-resolution representation of image, detail vectors of each high frequency sub-image are constructed in accordance with its spatial orientation in order to grasp the edge information to which human observer is sensitive. Then a multi-level selection algorithm based on human vision's contrast masking effect is proposed to make the decision whether a detail vector is coded or not. Those vectors below the contrast threshold are discarded without introducing visual artifacts because of the ignorance of human vision. As for the redundancy of the retained vectors, different fractal- based methods are employed to decrease the correlation in single sub-image and between the different resolution sub- images with the same orientation. Experimental results suggest the efficiency of the proposed scheme. With the standard test image, our approach outperforms the EZW algorithm and the JPEG method.

  8. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging

    Science.gov (United States)

    Nie, Liming; Chen, Mei; Sun, Xiaolian; Rong, Pengfei; Zheng, Nanfeng; Chen, Xiaoyuan

    2014-01-01

    A stable and efficient contrast agent is highly desirable for photoacoustic (PA) imaging applications. Recently gold nanostructures have been widely reported and studied for PA imaging and photothermal therapy. However, the structures of the nonspherical gold nanoparticles are easily destroyed after laser irradiation and thus may fail to complete the intended tasks. In this study, we propose to apply palladium nanosheets (PNSs), with strong optical absorption in the near-infrared (NIR) region, as a new class of exogenous PA contrast agents. PA and ultrasound (US) images were acquired sequentially by a portable and fast photoacoustic tomography (PAT) system with a hand-held transducer. Significant and long-lasting imaging enhancement in SCC7 head and neck squamous cell carcinoma was successfully observed in mice by PAT over time after tail vein administration of PNSs. The morphology and functional perfusion of the tumors were delineated in PA images due to the nanoparticle accumulation. PAT of the main organs was also conducted ex vivo to trace the fate of PNSs, which was further validated by inductively coupled plasma atomic emission spectrometry (ICP-AES). No obvious toxic effect was observed by in vitro MTT assay and ex vivo histological examination 7 days after PNS administration. With the combination of a portable imaging instrument and signal specificity, PNSs might be applied as stable and effective agents for photoacoustic cancer detection, diagnosis and treatment guidance.

  9. Scintigraphic image contrast-enhancement techniques: Global and local area histogram equalization

    Energy Technology Data Exchange (ETDEWEB)

    Verdenet, J.; Cardot, J.C.; Baud, M.; Chervet, H.; Bidet, R.; Duvernoy, J.

    1981-06-01

    This article develops two contrast-modification techniques for the display of scintigraphic images. Based on histogram-modification techniques, histogram equalization, where each level of gray is used to the same extent, gives maximum entropy. The first technique uses the application of histogram equalization in the whole image. To eliminate contrast attenuation in image areas that represent a statistically small but important portion of the gray scale histogram, local area histogram equalization has been applied to images with differences in intensity. Both techniques were tested using a phantom with known characteristics. The global equalization technique is more suitable to bone scintigraphies, and some well-chosen boundaries improved the difference between two comparable areas. For liver scintigraphies, where intensity is quite equal in every pixel, a local area equalization was chosen that allowed detection of heterogeneous structures. The image resulting from histogram-equalization techniques improve the readability of data, but are often far from usual images and necessitate an apprenticeship for the physician.

  10. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  11. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  12. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  13. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Melissa L.; Yaffe, Martin J. [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Mainprize, James G. [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, Răzvan; Muller, Serge [GE Healthcare, 283 rue de la Minière, Buc 78530 (France); Jong, Roberta A. [Breast Imaging, Sun