WorldWideScience

Sample records for voltage concentrator solar

  1. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions

    Science.gov (United States)

    Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur

    2004-01-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  2. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same......One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...

  3. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  4. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  5. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  6. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  7. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  8. Concentrating Solar Power. Report April 2009

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, Erik (Chalmers Univ. of Technology, Enery and Environment, Goeteborg (Sweden))

    2009-04-15

    Concentrating solar power (CSP) technologies offer ways to utilise solar radiation by concentrating the light. In a concentrated form, the light can be utilised more cost efficiently. It is focused with mirrors or lenses and used either as a heat source in thermal power cycles (thermal CSP) or as a light source for high efficiency photovoltaic cells (concentrating photovoltaics, CPV). All concentrating systems use tracking to follow the movement of the sun, in two or three dimensions, and require direct sunlight (no diffusing clouds). CSP plants are often more complex, component wise than those based on flat PV. The extra cost of complexity is generally more than offset by the larger scales, the less need for expensive materials such as purified silicon and a better fit with the current energy infrastructure. Some thermal CSP plants offer great possibilities to deal with the intermittency of solar energy, as the heat generated can be stored in the form of a heated liquid in large tanks for many hours with little additional cost, and drive the thermal power generation also during cloudy periods or at night. CSP is growing rapidly and can be an important portion of future low-carbon energy systems. A prerequisite is that expected cost reductions are, at least largely, realised. In regions with good solar conditions (Mediterranean countries, US Southwest, Middle East, Australia etc), CSP systems already in the short-term future can satisfy significant shares of the power demand, to decrease CO{sub 2} emissions. Less solar-intensive regions (Northern Europe, much of North America etc) can be supplied with CSP power from solar-rich regions by using long distance power grids, for instance the high voltage DC cables being deployed and developed today

  9. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  10. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  11. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  12. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  13. Consciousness can reduce the voltage of the output signal of solar cell

    Science.gov (United States)

    Cao, Dayong

    2010-10-01

    When the sun's light radiate on the solar cell, the solar cell can produce the output signal as the photocurrent. We use the Data Acquisition Modules to record the voltage of the output signals. The v1 is voltage of the output signal of solar cell1; The v2 is the one of solar cell2. And these two solar cells stay side by side. When we record the voltage of the output signal from the morning to the noon, the voltage of the output signals will go up, and the v1 is bigger than the v2 during this time. But when the experimenter use consciousness to reduce the voltage of the output signals. That is to say: not only natural light ratiade on two solar cells, but also consciousness act on two solar cells. Not only I can use consciousness to reduce the growth voltage of the output signals, but also can change the v1 to be littler than the v2. The experiment was conducted on Sep. 2010. There is the physical system of the mass, energy, space and time-MEST; There is the spirited system of the mind, consciousness, emotion and desire-MECD; the information system is the code system. We can use them to develop photoelectric principle, life technology and Nanotech of semiconductor for consciousness effect.

  14. Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location

  15. Consciousness can reduce the voltage of the output signal of solar cell

    Science.gov (United States)

    Cao, Dayong

    2011-03-01

    When the sun's light radiate on the solar cell, it can produce the output signal as the pho- tocurrent. We use the Data Acquisition Modules to record the voltage of the output signals. The v1 is voltage of the photocurrent of solar cell1; The v2 is the one of solar cell2. And these two solar cells stay side by side. When we record the voltages from the morning to the noon, the voltages will go up, and the v1 is bigger than the v2 during this time. But in other experi- menter, not only sun's light ratiade on two solar cells, but also consciousness act on two solar cells. Not only I can use consciousness to reduce the growth voltage of the output signals, but also can change the v1 to be littler than the v2. The experiment was conducted on Sep. 2010. When light of lamp radiate on two solar cells, I can reduce v1, at the same time, can augment v2. These experiments had been finished in Los Angeles, Oct. 26th. And the experiment show that the consciousness active function differ from the passive function of conditioned reflex (of Pavlov). There is the physical system of the mass, energy, space and time-MEST; There is the spirited system of the mind, consciousness, emotion and desire-MECD; the information system is the code system. We can use the consciousness change the electron-structure of solar cell by the interaction of the information.

  16. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Field test of thermoelectric generator using parabolic trough solar concentrator for power generation

    Science.gov (United States)

    Viña, Rommel R.; Alagao, Feliciano B.

    2018-03-01

    A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.

  18. Type II GaSb quantum ring solar cells under concentrated sunlight.

    Science.gov (United States)

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  19. New Packing Structure of Concentration Solar Receiver

    International Nuclear Information System (INIS)

    Tsai, Shang-Yu; Lee, Yueh-Mu; Shih, Zun-Hao; Hong, Hwen-Fen; Shin, Hwa-Yuh; Kuo, Cherng-Tsong

    2010-01-01

    This paper presents a solution to the temperature issue in High Concentration Photovoltaic (HCPV) module device by using different thermal conductive material and packing structure. In general, the open-circuited voltage of a device reduces with the increase of temperature and therefore degrades its efficiency. The thermal conductive material we use in this paper, silicon, has a high thermal conductive coefficient (149 W/m·K) and steady semiconductor properties which are suitable for the application of solar receiver in HCPV module. Solar cell was soldered on a metal-plated Si substrate with a thicker SiO 2 film which acts as an insulating layer. Then it was mounted on an Al-based plate to obtain a better heat dissipating result.

  20. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  1. Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage ...

    African Journals Online (AJOL)

    Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage Source Inverter Using Fixed-Band Hysteresis Current Controller Method. ... with the conversion of solar energy into electrical energy; boosting the dc power; inversion of the dc to ac and then synchronization of the inverter output with the utility, and consequently, ...

  2. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  3. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  4. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  5. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    Science.gov (United States)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  6. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  7. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  8. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Science.gov (United States)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  9. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    2017-06-01

    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.

  10. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  12. An Optimized Reactive Power Control of Distributed Solar Inverters in Low Voltage Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    This study examines the reactive power ancillary services of solar inverters which are connected to low voltage (LV) distribution networks by giving attention to the grid voltage support service and grid losses. Two typical reference LV distribution network models as suburban and farm...... are introduced from the literature in order to evaluate contribution of two static droop strategies cosφ(P) and Q(U) on the grid voltage. Photovoltaic (PV) hosting capacities of the suburban and farm networks are estimated and the most predominant limitations of connecting more solar inverters are emphasized...... for each network type. Regarding the overloading of MV/LV distribution transformers, overloading of lines and the grid overvoltage limitations, new local grid voltage support methods (cosφ(P,U) and Q(U,P)) are also proposed. Resulting maximum allowable penetration levels with different reactive power...

  13. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  14. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  15. Theoretical modelling of solar dish concentrator

    International Nuclear Information System (INIS)

    Yaaseen Rafeeu; Mohd Zainal Abidin Abdul Kadir; Senan Mohamed Abdulla; Nor Mariah Adam

    2009-01-01

    Full text: Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using different size and depth of solar dish concentrators to improve solar fraction using the aluminium foil as reflector. In this paper, different measurement of solar concentrators is investigated and aims to aims to introducing an improved methodology for solar fraction on incoming solar energy in wet climate. (author)

  16. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  17. Dynamic voltage stability of a distribution system with high penetration of grid-connected photovoltaic type solar generators

    Directory of Open Access Journals (Sweden)

    Zetty Adibah Kamaruzzaman

    2016-06-01

    Full Text Available This paper presents the impact of grid-connected photovoltaic (PV generator on dynamic voltage stability of a power distribution system by considering solar intermittency, PV penetration level, and contingencies such as line outage and load increase. The IEEE 13 node test feeder is used as a test system, and a solar PV of 0.48 kV/0.5 MVA is integrated into the test system. Test results show that system voltage is stable at high PV penetration levels. Increase in load causes voltage instability, in which voltage drops below its allowable operating limit. Thus, increase in PV penetration level does not improve system voltage stability because the system experiences voltage collapse during line outage.

  18. Pushing concentration of stationary solar concentrators to the limit.

    Science.gov (United States)

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.

  19. Experimental Study of Arcing on High-voltage Solar Arrays

    Science.gov (United States)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  20. Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells

    Science.gov (United States)

    Ullbrich, Sascha; Fischer, Axel; Tang, Zheng; Ávila, Jorge; Bolink, Henk J.; Reineke, Sebastian; Vandewal, Koen

    2018-05-01

    Solar panels easily heat up upon intense solar radiation due to excess energy dissipation of the absorbed photons or by nonradiative recombination of charge carriers. Still, photoinduced self-heating is often ignored when characterizing lab-sized samples. For light-intensity-dependent measurements of the open-circuit voltage (Suns-VO C ), allowing us to characterize the recombination mechanism, sample heating is often not considered, although almost 100% of the absorbed energy is converted into heat. Here, we show that the frequently observed stagnation or even decrease in VOC at increasingly high light intensities can be explained by considering an effective electrothermal feedback between the recombination current and the open-circuit voltage. Our analytical model fully explains the experimental data for various solar-cell technologies, comprising conventional inorganic semiconductors as well as organic and perovskite materials. Furthermore, the model can be exploited to determine the ideality factor, the effective gap, and the temperature rise from a single Suns-VOC measurement at ambient conditions.

  1. Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K.; Okullo, W.; van Dyk, E.E.; Vorster, F.J. [Physics Department, Nelson Mandela Metropolitan University, P O Box 77000, Port Elizabeth 6031 (South Africa)

    2010-12-15

    Focused sunlight can act as a localized source of excess minority carriers in a solar cell. Current signal generated by these carriers gives considerable information about the electrical properties of the cell's material. Point by point current-voltage data were measured for a back point-contact concentrator photovoltaic cell when illuminated by focused sunlight. Two numerical curve fitting procedures: a non-linear two-point interval division and particle swarm optimization algorithm were then applied to extract local parameters (i.e. as function of position) from the current-voltage data at each measurement point. Extracted parameters plotted yields relative spatial information about the electrical properties of a solar cell in a two or three dimensional mapping. The curve fitting routines applied to current-voltage data reveal that performance parameters: short circuit current, open circuit voltage, maximum power and fill factor show distinct variations in the vicinity of the observed current reducing feature. The relative values of the diode ideality factors, series resistance, shunt resistance and reverse saturation currents from both methods showed no significant measurable features that could be distinguished. This shows that the observed reduction in photo-induced current was due to severe recombination in the bulk or around the highly diffused point contacts and not the quality of the multiple p-n junctions of the cell. These approaches allow one to obtain a set of parameters at each local point on the cell which are reasonable and representative of the physical system. (author)

  2. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  3. Subcell Light Current-Voltage Characterization of Irradiated Multijunction Solar Cell

    Directory of Open Access Journals (Sweden)

    Walker Don

    2017-01-01

    Full Text Available The degradation of individual subcell J-V parameters, such as short circuit current, open circuit voltage, fill factor, and power of a GaInP/GaInAs/Ge triple junction solar cell by 1 MeV electrons were derived utilizing the spectral reciprocity relation between electroluminescence and external quantum efficiency. After exposure to a fluence of 1 × 1015 1 MeV electrons, it was observed that up to 67% of the voltage loss is from the middle, GaInAs subcell. Also, the dark saturation current of the Ge and GaInAs subcells increased but a simultaneous decrease in ideality factor caused a reduction of the open circuit voltage. The reduced ideality factor further indicates a change in the primary recombination mechanism.

  4. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    Science.gov (United States)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  5. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai

    2017-12-18

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest-energy charge-transfer (CT) states at the donor-acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum-mechanical rate formula is employed within the framework of time-dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT-state nonradiative recombinations in several model systems, which include small-molecule and polymer donors as well as fullerene and nonfullerene acceptors.

  6. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  7. Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection

    Science.gov (United States)

    Smrity, Manu; Dhariwal, S. R.

    2018-05-01

    The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.

  8. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  9. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  10. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  11. Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids

    DEFF Research Database (Denmark)

    Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.

    2011-01-01

    on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...

  12. Concentrator-solar-cell development

    Science.gov (United States)

    Grenon, L.

    1982-07-01

    A program is described which is a continuation of earlier programs for the development of high-efficiency, low-cost, silicon concentrator solar cells. The base-line process steps and process sequences identified in these earlier contracts were evaluated and specific processes reviewed. In particular, emphasis on the use of Czochralski-grown silicon wafers rather than float-zone wafers were examined. Additionally, a study of the trade-offs between textured and nontextured cells was initiated, and the limits within which the low-cost plated nickel copper metallization can be used in concentrator solar cell applications was identified.

  13. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  14. Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); France, Ryan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McMahon, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-06

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  15. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    Science.gov (United States)

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  16. Parabolic solar concentrator

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.

    2006-08-01

    In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.

  17. Investigation of the open-circuit voltage in wide-bandgap InGaP-host InP quantum dot intermediate-band solar cells

    Science.gov (United States)

    Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2018-04-01

    To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.

  18. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  19. Development of solar concentrators for high-power solar-pumped lasers.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  20. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  1. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  2. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  3. Nonimaging concentrators for solar thermal energy

    Science.gov (United States)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  4. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  5. Nonimaging fresnel lenses. Design and performance of solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R. [Tokyo Univ. of Agriculture and Technology, Koganei-shi (Japan). BASE; Suzuki, A. [UNESCO, Paris (France). Natural Science Sector

    2001-07-01

    This book offers a detailed and comprehensive account of the engineering of the world's first nonimaging Fresnel lens solar concentrator. The book closes a gap in solar concentrator design, and describes nonimaging refractive optics and its numerical mathematics. The contents follow a systems approach that is absent in standard handbooks of optics or solar energy. The reader is introduced to the principles, theories, and advantages of nonimaging optics from the standpoint of concentrating sunlight (the solar concentrator idea). The book shows the reader how to find his or her own optical solution using the rules and methodologies covering the design and the assessment of the nonimaging lens. This novel solar concentrator is developed within the natural constraints presented by the sun and in relation to competitive solutions offered by other concentrators. (orig.)

  6. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  7. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  8. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  9. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  10. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  11. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  12. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  13. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  14. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  16. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  17. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  18. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai; Bredas, Jean-Luc

    2017-01-01

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain

  19. Nonimaging solar concentrator with uniform irradiance

    Science.gov (United States)

    Winston, Roland; O'Gallagher, Joseph J.; Gee, Randy C.

    2004-09-01

    We report results of a study our group has undertaken under NREL/DOE auspices to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators.

  20. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  1. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  2. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  3. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    Science.gov (United States)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  4. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives

    Science.gov (United States)

    Shang, Aixue; An, Yidan; Ma, Dong; Li, Xiaofeng

    2017-08-01

    Photocurrent and voltage losses are the fundamental limitations for improving the efficiency of photovoltaic devices. It is indeed that a comprehensive and quantitative differentiation of the performance degradation in solar cells will promote the understanding of photovoltaic physics as well as provide a useful guidance to design highly-efficient and cost-effective solar cells. Based on optoelectronic simulation that addresses electromagnetic and carrier-transport responses in a coupled finite-element method, we report a detailed quantitative analysis of photocurrent and voltage losses in solar cells. We not only concentrate on the wavelength-dependent photocurrent loss, but also quantify the variations of photocurrent and operating voltage under different forward electrical biases. Further, the device output power and power losses due to carrier recombination, thermalization, Joule heat, and Peltier heat are studied through the optoelectronic simulation. The deep insight into the gains and losses of the photocurrent, voltage, and energy will contribute to the accurate clarifications of the performance degradation of photovoltaic devices, enabling a better control of the photovoltaic behaviors for high performance.

  5. Simple Moving Voltage Average Incremental Conductance MPPT Technique with Direct Control Method under Nonuniform Solar Irradiance Conditions

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available A new simple moving voltage average (SMVA technique with fixed step direct control incremental conductance method is introduced to reduce solar photovoltaic voltage (VPV oscillation under nonuniform solar irradiation conditions. To evaluate and validate the performance of the proposed SMVA method in comparison with the conventional fixed step direct control incremental conductance method under extreme conditions, different scenarios were simulated. Simulation results show that in most cases SMVA gives better results with more stability as compared to traditional fixed step direct control INC with faster tracking system along with reduction in sustained oscillations and possesses fast steady state response and robustness. The steady state oscillations are almost eliminated because of extremely small dP/dV around maximum power (MP, which verify that the proposed method is suitable for standalone PV system under extreme weather conditions not only in terms of bus voltage stability but also in overall system efficiency.

  6. Some characteristics of heat production by stationary parabolic, cylindrical solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Bojic, M.; Marjanovic, N.; Miletic, I.; Mitic, A. [Kragujevac Univ., Kragujevac (Serbia). Faculty of Mechanical Engineering; Stefanovic, V. [Nis Univ., Nis (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    The use of solar energy for heating, cooling and electricity production was discussed with particular reference to the use of a stationary, asymmetric solar concentrator for conversion of solar energy to heat using a reflector and absorber. The infinite length CP-0A type stationary parabolic, cylindrical solar concentrator for heat production consists of the absorber (with water pipes) and parabolic, cylindrical reflector (with a metal surface). It has a geometrical concentration ratio of up to 4. This paper reported on a study that used the CATIA computer software to investigate how direct solar radiation approaches the concentrator aperture and the concentrator reflector. The propagation of light rays inside the concentrator to reach the absorber surface was examined. The study showed that the solar ray either hits the absorber directly or it bounces one or several time from the concentrator reflector. The efficiency of light rays was also calculated as a function of angles of incident of solar rays and type of reflector surface. 5 refs., 8 figs.

  7. Heat-rejection design for large concentrating solar arrays

    Science.gov (United States)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  8. Novel concept of nonimaging single reflection solar energy concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovsky, D.

    2004-07-01

    Many solar applications require temperatures higher than those that can be achieved by common flat-plate collectors. Temperatures over 100 C are necessary e.g. for industrial process heat. Such temperatures can be obtained by means of solar energy concentrators. Advantages of concentrating the solar radiation can bring in addition to higher temperatures also decrease in heat losses and material savings due to smaller size of absorber, if taking into account that costs for material absorber per square meter can be possibly higher than costs for e.g. concentrating mirrors. On the other hand, using the concentration, two other kinds of losses will raise: losses of diffuse radiation and optical losses. There exist a variety of solar energy concentrators for different purposes. For lowtemperature applications, inexpensive concentrators of diffuse radiation can be used. For these concentrators, acceptance angle A defines the ability to concentrate the diffuse radiation and also its concentration factor C. To this class of concentrators belongs e.g. nonimaging types like CPC (Compound Parabolic Concentrator), V-trough types, cylindrical concentrators etc. This paper deals with development of a new type of concentrator, novel concept of which is based on functionality of CPC by means of flat mirrors, primarily designed for needs of SME's (Small and Medium Enterprises). The CLON project is being ellaborated under the 5th Framework Programme of the EU. (orig.)

  9. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  10. Luminescent Solar Concentrators with Fibre Geometry

    NARCIS (Netherlands)

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  11. Bias-dependent high saturation solar LBIC scanning of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-06-15

    A light beam-induced current measurement system that uses concentrated solar radiation as a beam probe to map spatially distributed defects on a solar cell has been developed and tested [F.J. Vorster, E.E. van Dyk, Rev. Sci. Instrum., submitted for review]. The induced current response from a flat plate EFG Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. This paper examines the issues relating to transient capacitive effects as well as the electrical behaviour of typical solar cell defect mechanisms under spot illumination. By examining the bias dependence of the S-LBIC maps, various defect mechanisms of photovoltaic (PV) cells under concentrated solar irradiance may be identified. The techniques employed to interpret the spatially distributed IV curves as well as initial results are discussed. (author)

  12. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  13. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  14. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  15. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  16. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  17. Concentration of solar radiation by white painted transparent plates.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1982-04-01

    A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.

  18. Modular Distributed Concentrator for Solar Furnace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  19. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  20. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    Science.gov (United States)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  1. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  2. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  3. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...

  4. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  5. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  6. CT angiography of intracranial arterial vessels: impact of tube voltage and contrast media concentration on image quality

    International Nuclear Information System (INIS)

    Ramgren, Birgitta; Holtaas, Stig; Siemund, Roger; Dept. of Radiology, Lund Univ., Lund

    2012-01-01

    Background Computed tomography angiography (CTA) of intracranial arteries has high demands on image quality. Important parameters influencing vessel enhancement are injection rate, concentration of contrast media and tube voltage. Purpose To evaluate the impact of an increase of contrast media concentration from 300 to 400 mg iodine/mL (mgI/mL) and the effect of a decrease of tube voltage from 120 to 90 kVp on vessel attenuation and image quality in CT angiography of intracranial arteries. Material and Methods Sixty-three patients were included into three protocol groups: Group I, 300 mgI/mL 120 kVp; Group II, 400 mgI/mL 120 kVp; Group III, 400 mgI/mL 90 kVp. Hounsfield units (HU) were measured in the internal carotid artery (ICA) and the M1 and M2 segments of the middle cerebral artery. Image quality grading was performed regarding M1 and M2 segments, volume rendering and general image impression. Results The difference in mean HU in ICA concerning the effect of contrast media concentration was statistically significant (P = 0.03) in favor of higher concentration. The difference in ICA enhancement due to the effect of tube voltage was statistically significant (P < 0.01) in favor of lower tube voltage. The increase of contrast medium concentration raised the mean enhancement in ICA with 18% and the decrease of tube voltage raised the mean enhancement with 37%. Image quality grading showed a trend towards improved grading for higher contrast concentration and lower tube voltage. Statistically significant better grading was found for the combined effect of both measures except for general impression (P 0.01-0.05). Conclusion The uses of highly concentrated contrast media and low tube voltage are easily performed measures to improve image quality in CTA of intracranial vessel

  7. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  8. Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Cho, S.E. [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of); Jeong, J.H. [Solar Cell Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of)

    2015-05-01

    The behavior of deep level defects by a voltage-induced stress for CuInGaSe{sub 2} (CIGS) solar cells has been investigated. CIGS solar cells were used with standard structures which are Al-doped ZnO/i-ZnO/CdS/CIGSe{sub 2}/Mo on soda lime glass, and that resulted in conversion efficiencies as high as 16%. The samples with the same structure were isothermally stressed at 100 °C under the reverse voltages. The voltage-induced stressing in CIGS samples causes a decrease in the carrier density and conversion efficiency. To investigate the behavior of deep level defects in the stressed CIGS cells, photo-induced current transient spectroscopy was utilized, and normally 3 deep level defects (including 2 hole traps and 1 electron trap) were found to be located at 0.18 eV and 0.29 eV above the valence band maximum (and 0.36 eV below the conduction band). In voltage-induced cells, especially, it was found that the decrease of the hole carrier density could be responsible for the increase of the 0.29 eV defect, which is known to be observed in less efficient CIGS solar cells. And the carrier density and the defects are reversible at least to a large extent by resting at room-temperature without the bias voltage. From optical capture kinetics in photo-induced current transient spectroscopy measurement, the types of defects could be distinguished into the isolated point defect and the extended defect. In this work, it is suggested that the increase of the 0.29 eV defect by voltage-induced stress could be due to electrical activation accompanied by a loss of positive ion species and the activated defect gives rise to reduction of the carrier density. - Highlights: • We investigated behavior of deep level defects by voltage-induced stress. • Defect generation could affect the decrease of the conversion efficiency of cells. • Defect generation could be electrically activated by a loss of positive ion species. • Type of defects could be studied with models of point defects

  9. Fundamentals and techniques of nonimaging optics for solar energy concentration

    Science.gov (United States)

    Winston, R.; Ogallaher, J. J.

    1980-09-01

    Recent progress in basic research into the theoretical understanding of nonimaging optical systems and their application to the design of practical solar concentration was reviewed. Work was done to extend the previously developed geometrical vector flux formalism with the goal of applying it to the analysis of nonideal concentrators. Both phase space and vector flux representation for traditional concentrators were generated. Understanding of the thermodynamically derived relationship between concentration and cavity effects led to the design of new lossless and low loss concentrators for absorbers with gaps. Quantitative measurements of the response of real collector systems and the distribution of diffuse insolation shows that in most cases performance exceeds predictions in solar applications. These developments led to improved nonimaging solar concentrator designs and applications.

  10. Capture, transformation and conversion of the solar energy by the technologies of concentration

    International Nuclear Information System (INIS)

    Ferriere, A.; Flamant, G.

    2003-01-01

    The specificities of the solar technologies at concentration are: high energy efficiency with increasing possibilities and the possibility of storage the solar energy by heat for a local and short dated utilization or by chemical storage (hydrogen for instance) for a delayed utilization or far from the capture area. This document takes stock on the concentration solar techniques, the electric power production by concentrated solar energy and the performance of concentrated solar plants, the industrial american experience of the SEGS plants, the hydrogen production by concentrated solar energy and discusses the scientific and technological locks. (A.L.B.)

  11. Multiple-Panel Cylindrical Solar Concentrator

    Science.gov (United States)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  12. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  13. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  14. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  15. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages

    KAUST Repository

    Baran, D.

    2016-11-09

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q - Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized. © The Royal Society of Chemistry 2016.

  16. Influence of negative substrate bias voltage on the impurity concentrations in Zr films

    International Nuclear Information System (INIS)

    Lim, J.-W.; Bae, J.W.; Mimura, K.; Isshiki, M.

    2006-01-01

    Zr films were deposited on Si(1 0 0) substrates without a substrate bias voltage and with substrate bias voltages of -50 V and -100 V using a non-mass separated ion beam deposition system. Secondary ion mass spectrometry and glow discharge mass spectrometry were used to determine the impurity concentrations in a Zr target and Zr films. It was found that the total amount of impurities in the Zr film deposited at the substrate bias voltage of -50 V was much lower than that in the Zr film deposited without the substrate bias voltage. It means that applying a negative bias voltage to the substrate can suppress the increase in impurities of Zr films. Furthermore, it was confirmed that dominant impurity elements such as C, N and O have a considerable effect on the purity of Zr films and these impurities can be remarkably reduced by applying the negative substrate bias voltage

  17. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  18. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  19. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  20. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  1. Color corrected Fresnel lens for solar concentration

    International Nuclear Information System (INIS)

    Kritchman, E.M.

    1979-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to the highly concentrating two focal Fresnel lens but including a correction for chromatic aberration. A solar concentration ratio as high as 80 is achieved. For wide acceptance angles the concentration nears the theoretical maximum. (author)

  2. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  3. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  4. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  5. Refractive Secondary Solar Concentrator Being Designed and Developed

    Science.gov (United States)

    Macosko, Robert P.; Donovan, Richard M.

    1998-01-01

    As the need for achieving super high temperatures (2000 K and above) in solar heat receivers has developed so has the need for secondary concentrators. These concentrators refocus the already highly concentrated solar energy provided by a primary solar collector, thereby significantly reducing the light entrance aperture of the heat receiver and the resulting infrared radiation heat loss from the receiver cavity. Although a significant amount of research and development has been done on nonimaging hollow reflective concentrators, there has been no other research or development to date on solid, single crystal, refractive concentrators that can operate at temperatures above 2000 K. The NASA Lewis Research Center recently initiated the development of single-crystal, optically clear, refractive secondary concentrators that, combined with a flux extractor, offer a number of significant advantages over the more conventional, hollow, reflective concentrators at elevated temperatures. Such concentrators could potentially provide higher throughput (efficiency), require no special cooling device, block heat receiver material boiloff from the receiver cavity, provide for flux tailoring in the cavity via the extractor, and potentially reduce infrared heat loss via an infrared block coating.The many technical challenges of designing and fabricating high-temperature refractive secondary concentrators and flux extractors include identifying optical materials that can survive the environment (high-temperature, vacuum and/or hydrogen atmosphere), developing coatings for enhanced optical and thermal performance, and developing crystal joining techniques and hardware that can survive launch loads.

  6. Measurement of the open-circuit voltage of individual subcells in a dual-junction solar cell

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Bonnet-Eymard, M.; Bugnon, G.; Cuony, P.; Despeisse, M.; Ballif, C.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 164-168 ISSN 2156-3381 R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : current-voltage characteristics * photovoltaic cells * solar energy Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  8. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  9. Stationary nonimaging lenses for solar concentration.

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-09-20

    A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.

  10. Experimental investigations into low concentrating line axis solar concentrators for CPV applications

    OpenAIRE

    Singh, H; Sabry, M; Redpath, DAG

    2016-01-01

    Solar photovoltaic conversion systems with integrated, low concentration ratio, non-imaging reflective concentrators, could be on south facing building roofs used to generate power at a lower cost than currently available proprietary systems. The experimental investigation presented by this research provides information on the optical and energy conversion characteristics of two geometrically equivalent non-imaging concentrators; a compound parabolic concentrator and a V-trough reflector. The...

  11. Innovation in concentrating solar power technologies: A study drawing on patent data

    OpenAIRE

    Braun, Frauke G.; Hooper, Elizabeth; Wand, Robert; Zloczysti, Petra

    2010-01-01

    Better understanding the innovative process of renewable energy technologies is important for tackling climate change. Though concentrating solar power is receiving growing interest, innovation studies so far have explored innovative activity in solar technologies in general, ignoring the major differences between solar photovoltaic and solar thermal technologies. This study relies on patent data to examine international innovative activity in concentrating solar power technologies. Our uniqu...

  12. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

    Science.gov (United States)

    Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A.

    2013-12-01

    The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55-65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170-1320°C range yielded 90 wt.% Zn.

  13. Concentrating Solar Power Projects - ISCC Duba 1 | Concentrating Solar

    Science.gov (United States)

    Solar Break Ground: 2016 Start Production: 2017 Participants Developer(s): Saudi Electricity Co. Owner(s ) (%): Saudi Electricity Co. EPC Contractor: Initec Energia Generation Offtaker(s): Saudi Electricity Co. Plant Configuration Solar Field SCA Manufacturer (Model): Flabeg (Ultimate Trough) HCE Manufacturer: Archimede Solar

  14. Origin of Non-Radiative Voltage Losses in Fullerene-Based Organic Solar Cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    The open-circuit voltage of organic solar cells (OSCs) is low as compared to the optical gap of the absorber molecules, indicating high energy losses per absorbed photon. These voltage losses arise only partly due to necessity of an electron transfer event to dissociate the excitons. A large part of these voltage losses is due to recombination of photo-generated charge carriers, including inevitable radiative recombination. In this work, we study the non-radiative recombination losses and we find that they increase when the energy difference between charge transfer (CT) state and ground state decreases. This behavior is in agreement with the \\x9Denergy gap law for non-radiative transition\\x9D, which implies that internal conversion from CT state to ground state is facilitated by skeletal molecular vibrations. This intrinsic loss mechanism, which until now has not been thoroughly considered for OSCs, is different in its nature as compared to the commonly considered inorganic photovoltaic loss mechanisms of defect, surface, and Auger recombination. As a consequence, the theoretical upper limit for the power conversion efficiency of a single junction OSC reduces by 25% as compared to the Shockley-Queisser limit for an optimal optical gap of the main absorber between (1.45-1.65) eV.

  15. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    Science.gov (United States)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  16. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    Science.gov (United States)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  17. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  18. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  19. Multistate Luminescent Solar Concentrator "Smart" Windows

    NARCIS (Netherlands)

    Sol, Jeroen A.H.P.; Timmermans, Gilles H.; Breugel, van Abraham J.; Schenning, Albertus P.H.J.; Debije, Michael G.

    2018-01-01

    A supertwist liquid crystalline luminescent solar concentrator (LSC) "smart" window is fabricated which can be switched electrically between three states: one designed for increased light absorption and electrical generation (the "dark" state), one for transparency (the "light" state), and one for

  20. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  1. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  2. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  3. Experimental study on a parabolic concentrator assisted solar desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Denkenberger, David; Velraj, R.; Sathyamurthy, Ravishankar; Tanaka, Hiroshi; Vinothkumar, K.

    2015-01-01

    Highlights: • We optimized the augmentation of condense by enhanced desalination methodology. • Parabolic concentrator has been integrated with solar distillation systems. • We measured ambient together with solar radiation intensity. - Abstract: This paper presents a modification of parabolic concentrator (PC) – solar still with continuous water circulation using a storage tank to enhance the productivity. Four modes of operation were studied experimentally: (i) PC-solar still without top cover cooling; (ii) PC-solar still with top cover cooling, PC-solar still integrated with phase change material (PCM) without top cover cooling and PC-solar still integrated PCM with cooling. The experiments were carried out for the cooling water flow rates of 40 ml/min; 50 ml/min, 60 ml/min, 80 ml/min and 100 ml/min. Diurnal variations of water temperature (T_w), ambient air temperature (T_a), top cover temperature (T_o_c) and production rate are measured with frequent time intervals. Water cooling was not cost effective, but adding PCM was.

  4. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  5. Analysis of the photo voltage decay /PVD/ method for measuring minority carrier lifetimes in P-N junction solar cells

    Science.gov (United States)

    Von Roos, O.

    1981-01-01

    The photo voltage decay (PVD) method for the measurement of minority carrier lifetimes in P-N junction solar cells with cell thickness comparable to or even less than the minority carrier diffusion length is examined. The method involves the generation of free carriers in the quasi-neutral bulk material by flashes of light and the monitoring of the subsequent decay of the induced open-circuit voltages as the carriers recombine, which is dependent on minority carrier recombination lifetime. It is shown that the voltage versus time curve for an ordinary solar cell (N(+)-P junction) is proportional to the inverse minority carrier lifetime plus a factor expressing the ratio of diffusion length to cell thickness. In the case of an ideal back-surface-field cell (N(+)-P-P(+) junction) however, the slope is directly proportional to the inverse minority carrier lifetime. It is noted that since most BSF cells are not ideal, possessing a sizable back surface recombination velocity, the PVD measurements must be treated with caution and supplemented with other nonstationary methods.

  6. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  7. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    Science.gov (United States)

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  8. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  9. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration

    NARCIS (Netherlands)

    Krumer, Zachar; van Sark, Wilfried G.J.H.M.; Schropp, Ruud E.I.; de Mello Donegá, Celso

    2017-01-01

    Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption

  10. Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells.

    Science.gov (United States)

    Handa, Taketo; Tex, David M; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-05-16

    We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells.

  11. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  12. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator

    International Nuclear Information System (INIS)

    Yeh, Naichia

    2016-01-01

    This paper illustrates details about the solar radiation distribution on the target of a two-stage solar concentrator that combines the Fresnel lens (FL) and the compound flat concentrator (CFC). The paper starts with a review of some FL development milestones such as the two-stage systems and the comparisons of flat vs. curved lenses in addition to the most noteworthy FL-based solar energy application, concentration photovoltaic (CPV). Through the review of the FL based CPV and two-stage concentrators, this study leads to the development of an algorithm to explore the spectrum distribution insight on the receiver of a two-stage (FL plus CFC) solar concentration system. It established the potential for using a correctly positioned 2nd stage reflector of right dimension to selectively redirect the desired spectrum on the target area so as to enhance the concentration flux intensity and uniformity at the same time. The study also helped to chart out the approximate locations of certain spectrum segments on the FL's target area, which is useful for exploring the spectrum control mechanism via the Fresnel lenses. - Highlights: • Map out the approximate locations of spectrum segments on FL's focal area. • Use the 2nd stage reflector to selectively reflect the desired spectrum on target. • Explore the spectrum distribution insight on FL solar concentrators' target area.

  13. Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage

    KAUST Repository

    Li, Xin

    2009-01-01

    Pivalic acid (PVA) was used as a new coadsorbent to dye-sensitized solar cells (DSCs) to modify the interface between the TiO2 films and electrolyte. The addition of PVA improved the light-to-electricity conversion efficiency of devices by 8% by enhancing the open-circuit voltage. Copyright © 2009 The Chemical Society of Japan.

  14. Solids-based concentrated solar power receiver

    Science.gov (United States)

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  15. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  16. Solar concentrator with integrated tracking and light delivery system with summation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  17. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  18. Concentrating solar power: a sustainable and renewable way to get energy from solar light

    International Nuclear Information System (INIS)

    Montecchi, Marco

    2015-01-01

    Solar light irradiating the Earth is a great sustainable and renewable power source. In concentrating solar power plants, mirrors are used to redirect the solar light toward a small area where a receiver captures and converts it into thermal-energy which can be stored. ENEA has been developing the parabolic-trough Italian technology, as well as several facilities for the component characterization. The paper reports on some of those which are purely optical instruments [it

  19. Applications of maximally concentrating optics for solar energy collection

    Science.gov (United States)

    O'Gallagher, J.; Winston, R.

    1985-11-01

    A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.

  20. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  1. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  2. Absorber design for a Scheffler-Type Solar Concentrator

    International Nuclear Information System (INIS)

    Ruelas, José; Palomares, Juan; Pando, Gabriel

    2015-01-01

    Highlights: • Receiver and absorber design methodology based in a solar image in the focal surface. • Stirling absorber dimensions based in a solar image in the focal surface of a STSC. • Comparative study of a solar image in the focal surface from different optical model. • A Monte-Carlo ray-tracing method was used to set STSC cavity receiver aperture. - Abstract: Ray tracing software, digital close range photogrammetry and the Monte-Carlo ray-tracing method have proven to be precise and efficient measurement techniques for the assessment of the shape accuracies of solar concentrators and their components. This paper presents a new method and results for the geometric aspect of a focal image for a Scheffler-Type Solar Concentrator (STSC) using ray tracing, digital close range photogrammetry and the Monte-Carlo ray-tracing method to establish parameters that allow for the design of the most suitable absorber and receiver geometry for coupling the STSC to a Stirling engine. The results of the ray tracing software, digital close range photogrammetry and Monte-Carlo ray tracing technique in STSC are associated with a Stirling receiver. When using the method to perform simulations, we found that the most suitable solar image geometry has an elliptical shape and area of 0.0065 m 2 on average. Although this result is appropriate, the geometry of the receiver is modified to fit an absorber and cavity receiver to improve the heat transfer by radiation

  3. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  4. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  5. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  6. Achievement of ultrahigh solar concentration with potential for efficient laser pumping.

    Science.gov (United States)

    Gleckman, P

    1988-11-01

    Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.

  7. Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2018-02-01

    Full Text Available This letter presents a design for a novel voltage controller (NVC which can exhibit three different reactions using the integration of a vanadium redox battery (VRB with solar energy, and uses only electrochemical potentials with optimal external bias voltage control to carry out hydrogen production and the conversion of carbon dioxide (CO2 into methane and methanol. This NVC is simply constructed by using dynamic switch and control strategies with a time-variant control system. In this design, the interval voltage bias solutions obtained by the proposed NVC exhibit better voltage ranges and good agreement with the practical scenarios, which will bring significant benefits to operation for continuous reduction of CO2 into value-added clean fuels using the integration of a VRB with solar energy or any other renewable energy resource for future applications.

  8. Influence of carrier concentration on the performance of CIAS solar cell

    Science.gov (United States)

    Patel, Kinjal; Ray, Jaymin

    2018-05-01

    Photovoltaic research has moved beyond the use of single crystalline materials such as Group IV elemental Si and Group III-V compounds like GaAs to much more complex compounds of the Group I-III-VI2 with chalcopyrite structure. The ternary ABC2 chalcopyrites (A=Cu; B=In, Ga or Al; C= S, Se or Te) form a large group of semiconducting materials with diverse structural and electrical properties. These materials are attractive for thin film photovoltaic application for a number of reasons. The bandgap of CuInSe2 is relatively low, 1.04 eV, but it can be adjusted to better match the solar spectrum either by substituting part of In by Ga or part of Se by S. Most reported and popular Cu(In,Ga)Se2 (CIGS) is one of its derivative. Efficiency of the CIGS devices with Eg >1.3 eV is reduced by the degradation of the electronic properties of the absorber leading to losses in the fill-factor and the open-circuit voltage. Alternatively, the performance can be improved by the addition of Al to form CuInAlSe2 (CIAS) absorber layers with an increase in the bandgap energy, which matches closely with the solar spectrum. In the present work an effort was made in the direction of improving the conversion efficiency by studying the influence of carrier concentration. SCAPS simulation program is used to simulate the CIAS structure numerically. The obtained results intended the significant variation in the values of conversion efficiency. Variation in the efficiency can be considered because of the relation optical absorption and carrier concentration. Observed highest efficiency is 10 %, which can be further improved by considering actual parameters of the device as well as the operating condition.

  9. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    . The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process......Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine...

  10. Optical design of a solar flux homogenizer for concentrator photovoltaics

    Science.gov (United States)

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  11. Polypyrrole: FeOx·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions

    KAUST Repository

    Zong, Baoyu

    2014-01-01

    Organic hybrid solar cells with a large open-circuit voltage, up to above that of 1.5 V standard battery voltage, were demonstrated using blends of polypyrrole: Fe2O3·ZnO nanoparticles as active-layers. The cell active-layers were readily coated in open air from relatively stable liquid dark-color polypyrrole-based dispersions, which were synthesized using appropriate surfactants during the in situ polymerization of pyrrole with FeCl3 or both H2O2 and FeCl3 as the oxidizers. The performance of the cells depends largely on the synthesized blend phase, which is determined by the surfactants, oxidizers, as well as the reactant ratio. Only the solar cells fabricated from the stable dispersions can produce both a high open-circuit voltage (>1.0 V) and short-circuit current (up to 7.5 mA cm-2) due to the relatively uniform porous network nanomorphology and higher shunt to series resistance ratio of the active-layers. The cells also display a relatively high power-conversion efficiency of up to ∼3.8%. This journal is

  12. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  13. Medium level of direct solar radiation and energetic potential of solar concentrator in Minas Gerais State, Brazil; Niveis medios de radiacao solar direta e potencial energetico dos concentradores solares em Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    Basic concepts of solar energy, technical description of solar concentrators, its orientation and methodology of direct solar radiation measurement are discussed. An comparison of different solar radiation measurements methods, its methodology and its calculation steps are reported. Calculus and tables of the electric and thermal energy generation potential, through solar concentrators, on the state of Minas Gerais are also presented. 18 figs., 90 tabs., 12 refs.

  14. Luminescent solar concentrators with fiber geometry.

    Science.gov (United States)

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-06

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  15. The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity

    International Nuclear Information System (INIS)

    Nath, Madhumita; Roca i Cabarrocas, P.; Johnson, E.V.; Abramov, A.; Chatterjee, P.

    2008-01-01

    We have used a detailed electrical-optical computer model (ASDMP) in conjunction with the experimental characterization of microcrystalline silicon thin-film solar cells of different degrees of crystallinity (but having identical P- and N-layers) to understand the observed decrease of the open-circuit voltage with increasing crystalline fraction. In order to model all aspects of the experimental current density-voltage and quantum efficiency characteristics of cells having low (∼ 75%) and high (over 90%) crystalline fraction, we had to assume both a higher mobility gap defect density and a lower band gap for the more crystallized material. The former fact is widely known to bring down the open-circuit voltage. Our calculations also reveal that the proximity of the quasi-Fermi levels to the energy bands in the cell based on highly crystallized (and assumed to have a lower band gap) microcrystalline silicon results in higher free and trapped carrier densities in this device. The trapped hole population is particularly high at and close to the P/I interface on account of the higher inherent defect density in this region and the fact that the hole quasi-Fermi level is close to the valence band edge here. This fact results in a strong interface field, a collapse of the field in the volume, and hence a lower open-circuit voltage. Thus a combination of higher mobility gap defects and a lower band gap is probably the reason for the lower open-circuit voltage in cells based on highly crystallized microcrystalline silicon

  16. Ultra Low-Voltage Energy Harvesting

    Science.gov (United States)

    2013-09-01

    if in a solar battery charger the level of illumination were to drop due to cloud cover, the diode would prevent discharging of the battery when...the source voltage becomes lower than battery voltage. The drawback of a simple circuit like this is that once the source voltage is lower than the...longer charged when the battery voltage is above the OV setting. Figure 13. Block diagram of BQ25504 circuit . (From [10]) 18 THIS PAGE

  17. Self-tracking solar concentrator with an acceptance angle of 32°.

    Science.gov (United States)

    Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe

    2014-12-15

    Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).

  18. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  19. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  20. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  1. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  2. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  3. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  4. Study on a Mid-Temperature Trough Solar Collector with Multisurface Concentration

    Directory of Open Access Journals (Sweden)

    Zhengliang Li

    2015-01-01

    Full Text Available A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.

  5. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  6. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  7. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  8. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  9. Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis

    NARCIS (Netherlands)

    Ecker, Bernhard; Egelhaaf, Hans-Joachim; Steim, Roland; Parisi, Juergen; von Hauff', Elizabeth

    2012-01-01

    In this study we propose an equivalent circuit model to describe S-shaped current–voltage (I–V) characteristics in inverted solar cells with a TiOx interlayer between the cathode and the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester active layer. Initially the solar cells

  10. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    OpenAIRE

    Mozer, AJ; Sariciftci, NS; Osterbacka, R; Westerling, M; Juska, G; LUTSEN, Laurence; VANDERZANDE, Dirk

    2005-01-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C-61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after ...

  11. Measurement of the open circuit voltage of individual sub-cells in a dual-junction solar cell

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Bonnet-Eymard, M.; Bugnon, G.; Cuony, P.; Despeisse, M.; Ballif, C.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 164-168 ISSN 2156-3381 R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : current-voltage characteristics * photovoltaic cells * solar energy Subject RIV: BM - Solid Matter Physics ; Magnetism http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6150992

  12. Concentrating Solar Power Systems

    Science.gov (United States)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  13. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  14. A numerical model for charge transport and energy conversion of perovskite solar cells.

    Science.gov (United States)

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-14

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.

  15. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    Science.gov (United States)

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-04

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

  16. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  17. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  18. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  19. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    Science.gov (United States)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  20. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  1. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  2. Two Fixed, Evacuated, Glass, Solar Collectors Using Nonimaging Concentration

    Science.gov (United States)

    Garrison, John D.; Winston, Roland; O'Gallagher, Joseph; Ford, Gary

    1984-01-01

    Two fixed, evacuated, glass solar thermal collectors have been designed. The incorporation of nonimaging concentration, selective absorption and vacuum insulation into their design is essential for obtaining high efficiency through low heat loss, while operating at high temperatures. Nonimaging, approximately ideal concentration with wide acceptance angle permits solar radiation collection without tracking the sun, and insures collection of much of the diffuse radiation. It also minimizes the area of the absorbing surface, thereby reducing the radiation heat loss. Functional integration, where different parts of these two collectors serve more than one function, is also important in achieving high efficiency, and it reduces cost.

  3. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  4. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  5. Long term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, L.H.; Bakker, N.J.; Sommeling, P.M.; Büchtemann, A.; Wedel, A.; Sark, W.G.J.H.M. van

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today’s concentrator is made of polymer sheets

  6. Long-term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, Lenneke H.; Bakker, Nicolaas J.; Sommeling, Paul M.; Büchtemann, Andreas; Wedel, Armin; Van Sark, Wilfried G J H M

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today's concentrator is made of polymer sheets

  7. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  8. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  9. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  10. Performance comparisons of dish type solar concentrator with mirror arrangements and receiver shapes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joo Hyun; Kim, Yong; Ma, Dae Sung; Seo, Tae Beom [Graduate School, Dept. of Mechanical Engineering, Inha Univ., Inchon (Korea, Republic of); Kang, Yong Heack [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2008-07-01

    The performance comparisons of dish type solar concentrators are numerically investigated. The dish type solar concentrator considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparisons of dish type solar concentrators, six different mirror arrangements and four different receivers are considered. A parabolic-shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrangements. The other mirror arrangements consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m. Their total collecting areas, which are 1.545 m{sup 2}, are the same. Four different solar receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. In order to investigate the thermal performance of the dish type solar concentrator, the radiative heat loss in the receiver should be calculated. For calculation, the net radiation method and the Monte-Carlo method are used. Also, because the thermal performance of the dish type solar concentrator can vary as the receiver surface temperature, the various surface temperatures are considered. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrangements except the perfect mirror. (orig.)

  11. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  12. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  13. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  14. Nonimaging optics in luminescent solar concentration.

    Science.gov (United States)

    Markman, B D; Ranade, R R; Giebink, N C

    2012-09-10

    Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.

  15. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  16. Progress in luminescent solar concentrator research: solar energy for the built environment

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.

    2011-01-01

    This paper presents a concise review of recent research on the luminescent solar concentrator (LSC). The topics covered will include studies of novel luminophores and attempts to limit the losses in the devices, both surface and internal. These efforts include application of organic and

  17. Optical characterisation of 3-D static solar concentrator

    International Nuclear Information System (INIS)

    Sellami, Nazmi; Mallick, Tapas K.; McNeil, David A.

    2012-01-01

    Highlights: ► A novel static solar concentrator was designed coined the Square Elliptical Hyperboloid, SEH. ► The geometrical profile of the SEH was optimised for a low concentration ratio of 4 suns. ► The SEH has a large acceptance angle of 120° allowing 8 h of sun collection during the day. ► A prototype of the SEH was made and tested in indoors conditions. ► The experimental results validate the optical model. - Abstract: The focus of this research is to develop a solar concentrator which is compact, static and, at the same time, able to collect maximum solar energy. A novel geometry of a 3-D static concentrator has been designed and coined the Square Elliptical Hyperboloid (SEH) to be integrated in glazing windows or facades for photovoltaic application. The 4× SEH is optically optimised for different incident angles of the incoming light rays. The optimised SEH is obtained by investigating its different non-dimensional parameters such as major axis over minor axis of the elliptical entry and the height over side of the exit aperture. Evaluating the best combination of the optical efficiency and the acceptance angle, results confirm that the 4× SEH built from dielectric material, working with total internal reflection, is found to have a constant optical efficiency of 40% for an acceptance angle equal to 120° (−60°, +60°). This enables capture of the sun rays all day long from both direct beam light and diffuse light making it highly suitable for use in northern European countries. A higher optical efficiency of 70% is obtained for different dimensions of the SEH; however, the acceptance angle is only 50°. The optimised SEH concentrator has been manufactured and tested; the experimental results show an agreement with the simulation results thus validating the optical model.

  18. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  19. Diffractive flat panel solar concentrators of a novel design

    NARCIS (Netherlands)

    De Jong, T.M.; de Boer, D.K.G.; Bastiaansen, C.W.M.

    2016-01-01

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the

  20. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  1. Current Matching in Multifold DBP/C70 Organic Solar Cells With Open-Circuit Voltages of up to 6.44 V

    DEFF Research Database (Denmark)

    Ahmadpour, Mehrad; Liu, Yiming; Rubahn, Horst-Günter

    2017-01-01

    In this paper, we demonstrate a novel method for achieving high open-circuit voltages (Voc) in organic solar cells based on tetraphenyldibenzoperiflanthen (DBP) as donor and fullerene (C70) as acceptor molecules, by fabrication of multifold bilayer single cells stacked on top of each other...

  2. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  3. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  4. The potential of concentrating solar power in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Fluri, Thomas P. [Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa)

    2009-12-15

    In this paper all provinces of South Africa with a good potential for the implementation of large-scale concentrating solar power plants are identified using geographic information systems. The areas are assumed suitable if they get sufficient sunshine, are close enough to transmission lines, are flat enough, their respective vegetation is not under threat and they have a suitable land use profile. Various maps are created showing the solar resource, the slope, areas with 'least threatened' vegetation, proximity to transmission lines and areas suitable for the installation of large concentrating solar power plants. Assuming the installation of parabolic trough plants, it is found that the identified suitable areas could accommodate plants with a nominal capacity of 510.3 GW in the Northern Cape, 25.3 GW in the Free State, 10.5 GW in the Western Cape and 1.6 GW in the Eastern Cape, which gives a total potential nominal capacity of 547.6 GW for the whole country. (author)

  5. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Dominguez, César, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe, E-mail: pablo.garcia-linares@cea.fr; Besson, Pierre, E-mail: pablo.garcia-linares@cea.fr; Baudrit, Mathieu, E-mail: pablo.garcia-linares@cea.fr [CEA-LITEN, LCPV, INES, Le Bourget du Lac (France)

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  6. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    International Nuclear Information System (INIS)

    Garcia-Linares, Pablo; Dominguez, César; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu

    2014-01-01

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling

  7. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  8. Study on high concentration solar concentrator using a Fresnel lens with a secondary concentrator; Fresnel lens to niji shukokei wo mochiita solar chemistry yo kobairitsu shukokei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, T; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    A high concentration light collection system for solar chemistry was devised by using an inexpensive Fresnel lens in a primary concentration system and a conical type concentrator in a secondary concentration system. A Fresnel lens alone would not achieve sufficiently high light collecting magnification to attain high temperatures because of restrictions in the opening angle as seen from a focus. Therefore, a secondary concentration system was installed on a focus for an attempt of stopping. Reflection plane of a three-dimensional compound parabolic concentrator (CPC) is a rotary parabolic plane, whose process is expensive because of its surface processing accuracy. Therefore, a conical type concentrator was employed as a secondary concentration system. This system may not be capable of achieving as high concentration as in the CPC, but its shape is simple and it is inexpensive. In its optimization, a complete black body surface placed in vacuum atmosphere was hypothesized as a light concentrating part for the secondary concentration system to calculate heat collecting efficiencies at respective temperature settings. Using simultaneously the secondary concentration system, rather than collecting heat by using a Fresnel lens alone, has attained as high value as from 5.99% (500 degC) to 43.47% (1400 degC). Economical high-temperature heat collection of solar chemistry level may be possible by using a Fresnel lens and a conical secondary concentration system. 1 ref., 7 figs., 2 tabs.

  9. Extraction of diode parameters of silicon solar cells under high illumination conditions

    International Nuclear Information System (INIS)

    Khan, Firoz; Baek, Seong-Ho; Park, Yiseul; Kim, Jae Hyun

    2013-01-01

    Graphical abstract: We have developed an analytical method to determine the diode parameters of concentrator solar cells under high illumination conditions. The determined values of diode parameters have been used to compute the theoretical values of performance parameters. The computed values of the open circuit voltage, curve factor, and efficiency obtained using diode parameters determined with this method showed good agreement (<2% discrepancy) with their experimental values in the temperature range 298–323 K. Highlights: • An analytical method to extract the diode parameters of concentrated Si solar cells. • This method uses single I–V curve under high illumination conditions. • The theoretical values of performance parameters have been computed. • Theoretical values of parameters matched within 2% discrepancy limit. • This method gives best results among the methods used in this work. - Abstract: An analytical method has been developed to extract all four diode parameters, namely the shunt resistance, series resistance, diode ideality factor, and reverse saturation current density, using a single J–V curve, based on one exponential model of silicon solar cells under high illumination conditions. The slope of the J–V curve (dV/dJ) at a short circuit condition is used to determine the value of the shunt resistance. The slope of the J–V curve at an open circuit condition together with the short circuit current density, open circuit voltage, current density, and voltage at maximum power point have been used to determine the values of the series resistance, diode ideality factor, and reverse saturation current density. The determined values of the diode parameters have been used to compute the theoretical values of the open circuit voltage, curve factor, and efficiency of the solar cell. The theoretical J–V curves matched well with the corresponding experimental curves. This method is applied to determine the diode parameters of concentrator

  10. A new design for luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Doudart de la Gree, G.C.H.; Papadopoulos, A.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.; Reinders, A.H.M.E.; Rosemann, A.L.P.

    2015-01-01

    In our paper we explore the opportunity of combining luminescent solar concentrating (LSC) materials and crystalline PV solar cells in a new design for a roof tile by design-driven research on the energy performance of various configurations of the LSC PV device and on the aesthetic appeal in a roof

  11. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging. EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2

  12. Comparison of Two Types of Vertically Aligned ZnO NRs for Highly Efficient Polymer Solar Cells

    DEFF Research Database (Denmark)

    Gonzalez-Valls, Irene; Angmo, Dechan; Gevorgyan, Suren

    2013-01-01

    : concentration, solvent, and deposition speed. The effect of different NR electrode morphologies is analyzed on the solar cell performance and characterized by current–voltage curves and IPCE analyses. The photovoltaic performance of the solar cells was observed to be influenced by many factors, among them...

  13. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  14. Design package for concentrating solar collector panels

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

  15. Capture, transformation and conversion of the solar energy by the technologies of concentration; Captation, transformation et conversion de l'energie solaire par les technologies a concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ferriere, A.; Flamant, G

    2003-07-01

    The specificities of the solar technologies at concentration are: high energy efficiency with increasing possibilities and the possibility of storage the solar energy by heat for a local and short dated utilization or by chemical storage (hydrogen for instance) for a delayed utilization or far from the capture area. This document takes stock on the concentration solar techniques, the electric power production by concentrated solar energy and the performance of concentrated solar plants, the industrial american experience of the SEGS plants, the hydrogen production by concentrated solar energy and discusses the scientific and technological locks. (A.L.B.)

  16. Fundamentals and techniques of nonimaging optics for solar energy concentration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.

    1980-05-20

    Nonimaging optics is a new discipline with techniques, formalism and objectives quite distinct from the traditional methods of focusing optics. These new systems achieve or closely approach the maximum concentration permitted by the Second Law of Thermodynamics for a given angular acceptance and are often called ideal. Application of these new principles to solar energy over the past seven years has led to the invention of a new class of solar concentrators, the most well known version of which is the Compound Parabolic Concentrator or CPC. A new formalism for analyzing nonimaging systems in terms of a quantity called the geometrical vector flux has been developed. This has led not only to a better understanding of the properties of ideal concentrators but to the discovery of several new concentrator designs. One of these new designs referred to as the trumpet concentrator has several advantageous features when used as a secondary concentrator for a point focusing dish concentrator. A new concentrator solution for absorbers which must be separated from the reflector by a gap has been invented. The properties of a variety of new and previously known nonimaging optical configurations have been investigated: for example, Compound Elliptical Concentrators (CEC's) as secondary concentrators and asymmetric ideal concentrators. A thermodynamic model which explains quantitatively the enhancement of effective absorptance of gray body receivers through cavity effects has been developed. The classic method of Liu and Jordan, which allows one to predict the diffuse sunlight levels through correlation with the total and direct fraction was revised and updated and applied to predict the performance of nonimaging solar collectors. The conceptual design for an optimized solar collector which integrates the techniques of nonimaging concentration with evacuated tube collector technology was carried out.

  17. concentrated solar power and solar thermal Barometer - EurObserv'ER - May 2015

    International Nuclear Information System (INIS)

    2015-05-01

    European concentrated solar power capacity remained stable in 2014 and will probably post a negligible increase in 2015. Construction work on a number of new facilities in Italy that are scheduled for commissioning in 2016 and 2017 could commence in the second half of the year. The European solar thermal market for producing heat, domestic hot water and heating has not found the recipe for recovery. According to EurObserv'ER, the market contracted by a further 3.7% from its 2013 level which is the sixth decrease in a row

  18. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  19. Performance analysis of solar cell arrays in concentrating light intensity

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  20. Luminescent solar concentrators utilizing stimulated emission.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  1. Organic wavelength selective mirrors for luminescent solar concentrators

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.; Broer, D.J.; Bastiaansen, C.W.M.; Boer, de D.K.G.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    Organic polymeric chiral nematic liquid crystalline (cholesteric) wavelength selective mirrors can increase the efficiency of luminescent solar concentrators (LSCs) when they are illuminated with direct sunlight normal to the device. However, due to the angular dependence of the reflection band, at

  2. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  4. Design of a nonimaging Fresnel lens for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Akisawa, Atushi; Kashiwagi, Takao [Tokyo University of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering; Suzuki, Akio [UNESCO, Paris (France)

    1999-04-01

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens is intended for use in evacuated tube type solar concentrators, generating mid-temperature heat to drive sorption cycles, or provide industrial process heat. It can also be used along with a secondary concentrator in photovoltaic applications. (author)

  5. Design investigation and evaluation of low cost line concentrated solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    Sarvoththama Jothi, T.J. [SASTRA Deemed Univ., Tirumalaisamudram, Thanjavur (India). School of Mechanical Engineering

    2004-07-01

    Enormous amount of energy is wasted in the form of heat for the purpose of cooking all around the world. Broad ranges of technologies are required around the world to incorporate the energy required for cooking. We have efficiently designed and developed a device named Line Concentrated Solar Cooker for the purpose of cooking and heating water or even pasteurization of drinking water. It is distinct from other type of cooker that is using the same old technologies. More over this device can be constructed by means of an inexpensive, commonly available material, thus providing a low-cost option suitable for household use in the developing world. This device was mainly designed from the input taken from the houses of four members each at various places. Its design and performance were evaluated at the laboratory including the efficiency tests. A model of such device was developed which gave the maximum efficiency of around 27 %. This Line Concentrated Solar Cooker has been mainly designed to prevent tracking mechanism, which is the main draw back for other concentrated type solar cooker. In order to prevent tracking mechanism, the design has been made in such a manner that the maximum sunrays are impinging on the reflecting surface of the Line Concentrated Solar Cooker all the time. Hence, minimum of at least 35 percent of the area of the Line Concentrated Solar Cooker is exposed to the sunlight at 8:00 AM and maximum of 100 percentage by noon and gradually decreases by evening as the sun sets. This model gave us a good results leading to excellent heating effect from morning to evening. Hence the heating effect gradually increased from morning to maximum at noon. (orig.)

  6. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  7. Concentrated solar power in the built environment

    Science.gov (United States)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  8. Reversible degradation of inverted organic solar cells by concentrated sunlight

    International Nuclear Information System (INIS)

    Tromholt, Thomas; Krebs, Frederik C; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O 2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.

  9. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  10. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  11. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  12. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza [Univ. of California, Los Angeles, CA (United States); Wang, Yubo [Univ. of California, Los Angeles, CA (United States); Chu, Peter [Univ. of California, Los Angeles, CA (United States); Pota, Hemanshu R. [Univ. of California, Los Angeles, CA (United States); Gadh, Rajit [Univ. of California, Los Angeles, CA (United States)

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy of the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.

  13. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    Science.gov (United States)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  14. Fixed Nadir Focus Concentrated Solar Power Applying Reflective Array Tracking Method

    Science.gov (United States)

    Setiawan, B.; DAMayanti, A. M.; Murdani, A.; Habibi, I. I. A.; Wakidah, R. N.

    2018-04-01

    The Sun is one of the most potential renewable energy develoPMent to be utilized, one of its utilization is for solar thermal concentrators, CSP (Concentrated Solar Power). In CSP energy conversion, the concentrator is as moving the object by tracking the sunlight to reach the focus point. This method need quite energy consumption, because the unit of the concentrators has considerable weight, and use large CSP, means the existence of the usage unit will appear to be wider and heavier. The addition of weight and width of the unit will increase the torque to drive the concentrator and hold the wind gusts. One method to reduce energy consumption is direct the sunlight by the reflective array to nadir through CSP with Reflective Fresnel Lens concentrator. The focus will be below the nadir direction, and the position of concentrator will be fixed position even the angle of the sun’s elevation changes from morning to afternoon. So, the energy concentrated maximally, because it has been protected from wind gusts. And then, the possibility of dAMage and changes in focus construction will not occur. The research study and simulation of the reflective array (mechanical method) will show the reflective angle movement. The distance between reflectors and their angle are controlled by mechatronics. From the simulation using fresnel 1m2, and efficiency of solar energy is 60.88%. In restriction, the intensity of sunlight at the tropical circles 1KW/peak, from 6 AM until 6 PM.

  15. Perancangan Solar Charge Controller dan Inverter pada Aplikasi Solar Panel Berbasis Atmega8535 secara Software

    OpenAIRE

    Larasati, Devi

    2015-01-01

    The purpose of this final project is to apply the codevision AVR ATMega 8535 to process the data on the storage accumulator battery charging current from the solar panels. Value current is processed in the microcontroller is in the current detection using current sensor ACS-712. To prevent backflow from batteries to solar panels when the solar panel voltage is less than accumulator battery voltage, current flows from the solar panels through solar charge controller to the battery before. C...

  16. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    Science.gov (United States)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  17. A new optical concentrator design and analysis for rooftop solar applications

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A.

    2015-08-01

    In this paper, a new type of linear focus, linear-tracking, catadioptric concentrator system is proposed and analysed for roof-integrated solar thermal applications. The optical concentrator designs have a focal distance of less than 10cm and are analysed using optical simulation software (Zemax). The results show that a relatively high concentration ratio (4.5 ~ 5.9 times) can be obtained and that the concentrators are capable of achieving an average optical efficiency around 66 - 69% during the middle 6 hours of a sunny day (i.e. a day with ~1000W/m2 global irradiance). Optical efficiency is analysed for perfect and non-ideal optical components to predict the collector performance under different `practical' circumstances. Overall, we intend for this paper to catalyse the development of rooftop solar thermal concentrators with compact form factors, similar to PV panels.

  18. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  19. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  20. Solar thermoelectric generators fabricated on a silicon-on-insulator substrate

    International Nuclear Information System (INIS)

    De Leon, Maria Theresa; Chong, Harold; Kraft, Michael

    2014-01-01

    Solar thermal power generation is an attractive electricity generation technology as it is environment-friendly, has the potential for increased efficiency, and has high reliability. The design, modelling, and evaluation of solar thermoelectric generators (STEGs) fabricated on a silicon-on-insulator substrate are presented in this paper. Solar concentration is achieved by using a focusing lens to concentrate solar input onto the membrane of the STEG. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. This thermal model is shown to be in good agreement with actual measurement results. For a 1 W laser input with a spot size of 1 mm, a maximum open-circuit voltage of 3.06 V is obtained, which translates to a temperature difference of 226 °C across the thermoelements and delivers 25 µW of output power under matched load conditions. Based on solar simulator measurements, a maximum TEG voltage of 803 mV was achieved by using a 50.8 mm diameter plano-convex lens to focus solar input to a TEG with a length of 1000 µm, width of 15 µm, membrane diameter of 3 mm, and 114 thermocouples. This translates to a temperature difference of 18 °C across the thermoelements and an output power under matched load conditions of 431 nW. This paper demonstrates that by utilizing a solar concentrator to focus solar radiation onto the hot junction of a TEG, the temperature difference across the device is increased; subsequently improving the TEG’s efficiency. By using materials that are compatible with standard CMOS and MEMS processes, integration of solar-driven TEGs with on-chip electronics is seen to be a viable way of solar energy harvesting where the resulting microscale system is envisioned to have promising applications in on-board power sources, sensor networks, and autonomous microsystems. (paper)

  1. Optical losses due to tracking error estimation for a low concentrating solar collector

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; García de Jalón, Alberto; Torres, José-Luis; Pujol-Nadal, Ramón

    2015-01-01

    Highlights: • A solar thermal collector with low concentration and one-axis tracking was tested. • A quasi-dynamic testing procedure for IAM was defined for tracking collector. • The adequation between the concentrator optics and the tracking was checked. • The maximum and long-term optical losses due to tracking error were calculated. - Abstract: The determination of the accuracy of a solar tracker used in domestic hot water solar collectors is not yet standardized. However, while using optical concentration devices, it is important to use a solar tracker with adequate precision with regard to the specific optical concentration factor. Otherwise, the concentrator would sustain high optical losses due to the inadequate focusing of the solar radiation onto its receiver, despite having a good quality. This study is focused on the estimation of long-term optical losses due to the tracking error of a low-temperature collector using low-concentration optics. For this purpose, a testing procedure for the incidence angle modifier on the tracking plane is proposed to determinate the acceptance angle of its concentrator even with different longitudinal incidence angles along the focal line plane. Then, the impact of maximum tracking error angle upon the optical efficiency has been determined. Finally, the calculation of the long-term optical error due to the tracking errors, using the design angular tracking error declared by the manufacturer, is carried out. The maximum tracking error calculated for this collector imply an optical loss of about 8.5%, which is high, but the average long-term optical loss calculated for one year was about 1%, which is reasonable for such collectors used for domestic hot water

  2. Optimized dispatch in a first-principles concentrating solar power production model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.; Braun, Robert J.

    2017-10-01

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum and maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.

  3. Tailored solar optics for maximal optical tolerance and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Alex [Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus (Israel); Gordon, Jeffrey M. [Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus (Israel); The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beersheva (Israel)

    2011-02-15

    Recently identified fundamental classes of dual-mirror double-tailored nonimaging optics have the potential to satisfy the pragmatic exigencies of concentrator photovoltaics. Via a comprehensive survey of their parameter space, including raytrace verification, we identify champion high-concentration high-efficiency designs that offer unprecedented optical tolerance (i.e., sensitivity to off-axis orientation) - a pivotal figure-of-merit with a basic bound that depends on concentration, exit angle, and effective solar angular radius. For comparison, results for the best corresponding dual-mirror aplanatic concentrators are also presented. (author)

  4. Solar concentrator panel and gore testing in the JPL 25-foot space simulator

    Science.gov (United States)

    Dennison, E. W.; Argoud, M. J.

    1981-01-01

    The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.

  5. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  6. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  7. Preliminary temperature Accelerated Life Test (ALT) on III-V commercial concentrator triple-junction solar cells

    OpenAIRE

    Espinet González, Pilar; Algora del Valle, Carlos; Orlando Carrillo, Vincenzo; Nuñez Mendoza, Neftali; Vázquez López, Manuel; Bautista Villares, Jesus; Xiugang, He; Barrutia Poncela, Laura; Rey-Stolle Prado, Ignacio; Araki, Kenji

    2012-01-01

    A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three e...

  8. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  9. Estimating Solar Irradiation Absorbed by Photovoltaic Panels with Low Concentration Located in Craiova, Romania

    Directory of Open Access Journals (Sweden)

    Ionel L. Alboteanu

    2015-03-01

    Full Text Available Solar irradiation is one of the important parameters that should be taken into consideration for the design and utilization of a photovoltaic system. Usually, the input parameters of a photovoltaic system are solar irradiation, the ambient environment temperature and the wind speed, and as a consequence most photovoltaic systems are equipped with sensors for measuring these parameters. This paper presents several mathematical models for solar irradiation assessment. The starting point is represented by the mathematical model of extraterrestrial irradiation, and resulting finally in the model for solar irradiation, absorbed by a low concentration photovoltaic panel. These estimating models of solar irradiation have been particularized for the Craiova, Romania, and have been verified through numerical simulation. Regarding terrestrial solar irradiation, four mathematical models have been adopted, namely Adnot, Haurwitz, Kasten and Empirical (EIM. Of these, the most appropriate for the Craiova location were the models Adnot and Empirical. Consequently, for the calculation of the solar irradiation absorbed by the photovoltaic (PV panels with low concentration, these models have been taken into consideration. In this study, a comparative analysis was also carried out with respect to the solar irradiation absorbed by the PV panels without concentration and those with collectedness of the solar radiation. This analysis was based on the results of numerical simulation and experimental tests.

  10. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

    Science.gov (United States)

    Akkerman, Quinten A.; Gandini, Marina; di Stasio, Francesco; Rastogi, Prachi; Palazon, Francisco; Bertoni, Giovanni; Ball, James M.; Prato, Mirko; Petrozza, Annamaria; Manna, Liberato

    2016-12-01

    Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm-2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V.

  11. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    Science.gov (United States)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  12. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  13. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    International Nuclear Information System (INIS)

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-01-01

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ► ZnS layers were deposited with two different ways. ► The way of SILAR is more beneficial for retarding the back transfer of electrons. ► The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method

  14. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunfei [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Yang, Lili; Cao, Jian [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Gao, Ming [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Zhang, Zhiqiang; Wang, Zhe [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Song, Hang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-04-15

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ► ZnS layers were deposited with two different ways. ► The way of SILAR is more beneficial for retarding the back transfer of electrons. ► The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method.

  15. A Charge Controller Design For Solar Power System

    OpenAIRE

    Nandar Oo; Kyaw Soe Lwin; Hla Myo Tun

    2015-01-01

    This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart...

  16. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    The European concentrated solar plant market is set to mark time for a year following efforts to complete construction on 350 MW of CSP capacity in Spain in 2013. The spotlight has switched to Italy which could re-launch the European market within a couple of years. The European solar thermal market for heat and hot water production and space heating, is shrinking all the time. EurObserv'ER reports that the market is in its fifth successive year of contraction in the European Union. It now posts a 10.5% decline on its 2012 performance having struggled to install just over 3 million m 2 of collectors in 2013

  17. An assessment of the optimal timing and size of investments in concentrated solar power

    International Nuclear Information System (INIS)

    Massetti, Emanuele; Ricci, Elena Claire

    2013-01-01

    We extend the WITCH model to consider the possibility to produce and trade electricity generated by large-scale concentrated solar power plants (CSP) in highly productive areas that are connected to demand centers through High Voltage Direct Current cables. We test the attractiveness of the CSP option by imposing a global cap on Greenhouse gases concentration equal to 535 ppm CO 2 -eq in 2100, with and without constraints to the expansion of nuclear power and IGCC coal with carbon capture and storage (CCS). We find that it becomes optimal to produce with CSP from 2040 and to trade CSP electricity across the Mediterranean from 2050. Therefore projects like DESERTEC seem to be premature. After 2050, CSP electricity shares become significant. CSP has a high stabilization cost option value: depending on the constraints, it ranges between 2.1% and 4.1% of discounted GDP in the Middle East and North Africa (MENA), between 1.1. and 3.4 in China, between 0.2% and 1.2% in the USA, between 0.1 and 1.3% in Eastern Europe and between 0.1 and 0.4% in Western Europe. A moderate level of subsidy to invest more and earlier in CSP might increase welfare. However, large-scale deployment should occur after 2040. We also show that MENA countries have the incentive to form a cartel to sell electricity to Europe at a price higher than the marginal cost. This suggests that a hypothetical Mediterranean market for electricity should be carefully regulated. - Highlights: ► An extensive use of Concentrated Solar Power (CSP) will be optimal after 2050. ► Trade of CSP electricity between MENA and Europe will start in 2050. ► CSP reduces greatly the option value of nuclear power and coal with CCS. ► Learning externalities motivate moderate subsidies for earlier CSP investments. ► MENA countries have the incentive to form a cartel to sell electricity to Europe

  18. Diffractive flat panel solar concentrators of a novel design.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  19. Towards prioritizing flexibility in the design and construction of concentrating solar power plants

    DEFF Research Database (Denmark)

    Topel, Monika; Lundqvist, Mårten; Haglind, Fredrik

    2017-01-01

    In the operation and maintenance of concentrating solar power plants, high operational flexibility is required in order to withstand the variability from the inherent solar fluctuations. However, during the development phases of a solar thermal plant, this important objective is overlooked...... as a relevant factor for cost reduction in the long term. This paper will show the value of including flexibility aspects in the design of a concentrating solar power plant by breaking down their potential favorable impact on the levelized cost of electricity (LCOE) calculations. For this, three scenarios...... to include flexibility as a design objective are analyzed and their potential impact on the LCOE is quantified. The scenarios were modeled and analyzed using a techno-economic model of a direct steam generation solar tower power plant. Sensitivity studies were carried out for each scenario, in which...

  20. Dish concentrators for solar thermal energy: Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  1. Current-voltage analysis of the record-efficiency CuGaSe2 solar cell: Application of the current separation method and the interface recombination model

    International Nuclear Information System (INIS)

    Saad, M.; Kasis, A.

    2011-01-01

    Current-voltage (j-V) characteristics of the record-efficiency CuGaSe 2 solar cell measured under several illumination levels are analyzed using a two-diode equation for a more accurate description of cell behavior. The contribution of each diode to the total cell j-V characteristic under illumination was estimated using the current separation method presented recently. This is performed in an effort to identify the distinctive features of this record-efficiency cell which have led to the up-to-date highest open circuit voltage of V o c = 946 mV and fill factor of FF = 66.5% for CuGaSe 2 solar cells. Furthermore, the interface recombination component of the cell current under illumination is quantitatively discussed applying the interface recombination model presented earlier. (author)

  2. A Charge Controller Design For Solar Power System

    Directory of Open Access Journals (Sweden)

    Nandar Oo

    2015-08-01

    Full Text Available This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart is also provided.

  3. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  4. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  5. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  6. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    Science.gov (United States)

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  7. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  8. Influence of the size of facets on point focus solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Rosas, David [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Col. Copilco, Coyoacan, CP 04510 DF (Mexico); Sanchez-Gonzalez, Marcelino [Centro Nacional de Energias Renovables, c/Somera 7-9, CP 28026 Madrid (Spain); Arancibia-Bulnes, Camilo A.; Estrada, Claudio A. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Morelos (Mexico)

    2011-03-15

    It is a common practice in the development of point focus solar concentrators to use multiple identical reflecting facets, as a practical and economic alternative for the design and construction of large systems. This kind of systems behaves in a different manner than continuous paraboloidal concentrators. A theoretical study is carried out to understand the effect of the size of facets and of their optical errors in multiple facet point focus solar concentrating systems. For this purpose, a ray tracing program was developed based on the convolution technique, in which the brightness distribution of the sun and the optical errors of the reflecting surfaces are considered. The study shows that both the peak of concentration and the optimal focal distance of the system strongly depend on the size of the facets, and on their optical errors. These results are useful to help concentrator developers to have a better understanding of the relationship between manufacturing design restrictions and final optical behavior. (author)

  9. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.

    Science.gov (United States)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori

    2017-09-01

    We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.

  10. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  11. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  12. Concentration solar thermal power

    International Nuclear Information System (INIS)

    Livet, F.

    2011-01-01

    As the production of electricity by concentration solar power (CSP) installations is said to be a source of energy for the future, the author discusses past experiments (notably the French Thermis project), and the different techniques which are currently being used. He indicates the regions which appear to be the most appropriate for this technique. He presents the three main techniques: parabolic cylinder, tower, and Stirling cycle installations. He discusses the issue of intermittency. He proposes an assessment of prices and of their evolution, and indicates the investments made in different installations (in Italy, Spain, Germany and Portugal). He comments the case of hybrid installations (sun and gas), evokes the Desertec project proposed by the German industry which comprises a set of hybrid installations. He notices that there is no significant technological evolution for this process

  13. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  15. Relationship Between Erectores Spinae Voltage and Back-Lift Strength for Isometric, Concentric, and Eccentric Contractions

    Science.gov (United States)

    Ashton, T. Edwin J.; Singh, Mohan

    1975-01-01

    This study determined the maximal mean values for concentric and eccentric back-lift strength as well as isometric, and examined and compared the relationships between the mean peak voltage of the erectores spinae muscle(s) and maximal force exerted for the three types of muscle contractions. (RC)

  16. A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Hwang, Jinyeon; Ha, Heung Yong

    2016-01-01

    This study proposes a novel method for controlling the methanol concentration without using methanol sensors for DMFC (direct methanol fuel cell) systems that have a recycling methanol-feed loop. This method utilizes the amplitudes of output voltage fluctuations of DMFC as a feedback parameter to control the methanol concentration. The relationship between the methanol concentrations and the amplitudes of output voltage fluctuations is correlated under various operating conditions and, based on the experimental correlations, an algorithm to control the methanol concentration with no sensor is established. Feasibility tests of the algorithm have been conducted under various operating conditions including varying ambient temperature with a 200 W-class DMFC system. It is demonstrated that the sensor-less controller is able to control the methanol-feed concentration precisely and to run the DMFC systems more energy-efficiently as compared with other control systems. - Highlights: • A new sensor-less algorithm is proposed to control the methanol concentration without using a sensor. • The algorithm utilizes the voltage fluctuations of DMFC as a feedback parameter to control the methanol feed concentration. • A 200 W DMFC system is operated to evaluate the validity of the sensor-less algorithm. • The algorithm successfully controls the methanol feed concentration within a small error bound.

  17. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  18. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  19. Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration

    Science.gov (United States)

    Alam, Noor; Pandey, K. M.

    2017-08-01

    In this paper, work has been carried out experimentally for the investigation of the effects of variation incurrent, voltage, temperature, chemical concentration and reaction time on the amount of hydroxy gas produced. Further effects on the overall electrolysis efficiency of advance alkaline water is also studied. The hydroxy gas (HHO) has been produced experimentally by the electrolysis of alkaline water with parallel plate electrode of 316L-grade stainless steel. The electrode has been selected on the basis of corrosion resistance and inertness with respect to electrolyte (KOH). The process used for the production of HHO is conventional as compared to the other production processes because of reduced energy consumption, less maintenance and low setup cost. From the experimental results, it has been observed that with increase in voltage, temperature and electrolyte concentration of alkaline solution, the production of hydroxy gas has increased about 30 to 40% with reduction in electrical energy consumption.

  20. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  1. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.; Kirkpatrick, J.; Richardson, G.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified

  2. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  3. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  4. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Science.gov (United States)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  5. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    Science.gov (United States)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  6. The Price-Concentration Relationship in Early Residential Solar Third-Party Markets

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Jacquelyn [Univ. of Oxford (United Kingdom); Langheim, Ria [Center for Sustainable Energy, San Francisco, CA (United States); Machak, Christina [Center for Sustainable Energy, San Francisco, CA (United States); Hellow, Henar [Center for Sustainable Energy, San Francisco, CA (United States); Sigrin, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The market for residential solar photovoltaic (PV) systems in the United States has experienced tremendous growth over the past decade, with installed capacity more than doubling between 2014 and 2016 alone (SEIA, 2016). As the residential market continues to grow, it prompts new questions about the nature of competition between solar installers and how this competition, or lack thereof, affects the prices consumers are paying. It is often assumed that more competition leads to lower prices, but this is not universally true. For example, some studies have shown that factors such as brand loyalty could lead to a negative relationship between concentration and price in imperfectly competitive markets (Borenstein, 1985; Holmes, 1989). As such, the relationship between prices and market concentration is an open empirical question since theory could predict either a positive or negative relationship. Determining a relationship between prices and market concentration is challenging for several reasons. Most significantly, prices and market structure are simultaneously determined by each other -- the amount of competition a seller faces influences the price they can command, and prices determine a seller's market share. Previous studies have examined recent PV pricing trends over time and between markets (Davidson et al., 2015a; Davidson and Margolis 2015b; Nemet et al., 2016; Gillingham et al., 2014; Barbose and Darghouth 2015). While these studies of solar PV pricing are able to determine correlations between prices and market factors, they have not satisfactorily proven causation. Thus, to the best of our knowledge, there is little work to date that focuses on identifying the causal relationship between market structure and the prices paid by consumers. We use a unique dataset on third-party owned contract terms for the residential solar PV market in the San Diego Gas and Electricity service territory to better understand this relationship. Surprisingly, we find

  7. Heat transfer analysis in a calorimeter for concentrated solar radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, C.A.; Jaramillo, O.A.; Arancibia-Bulnes, C.A. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Privada Xochicalco S/N, Col. Centro. Temixco, Morelos 62580 (Mexico); Acosta, R. [Universidad de Quintana Roo, Boulevard Bahia s/n Esq. I. Comonfort, Chetumal Quintana Roo 77019 (Mexico)

    2007-10-15

    A calorimeter was built for measuring the concentrated solar power produced by a point focus solar concentrator that was developed at CIE - UNAM. In order to obtain a thermal characterization of the calorimeter a theoretical and experimental heat transfer study is carried out. This study addresses the heat transfer in the circular flat plate of the calorimeter, which acts as receiver for the concentrating system. Temperatures are measured at different points of this plate and fit with a theoretical model that considers heat conduction with convective and radiative boundary conditions. In particular, it is possible to calculate the temperature distribution on the irradiated surface. This allows to examine the validity of the assumptions of cold water calorimetry, which was the technique applied to this system in previous works. (author)

  8. Voltage unbalance mitigation in LV networks using three-phase PV systems

    DEFF Research Database (Denmark)

    Garcia Bajo, Cristina; Hashemi Toghroljerdi, Seyedmostafa; Bækhøj Kjær, Søren

    2015-01-01

    In this paper a new method is proposed to mitigate voltage unbalance caused by single-phase solar inverters in low voltage (LV) networks. The method is based on uneven reactive power absorption and injection by three-phase solar inverters. Independent control of each phase is performed to achieve...... this uneven injection. The average values of phase voltages at the connection points of the photovoltaic (PV) inverters are used as the references for the balancing algorithm. Voltage unbalance mitigation is achieved by use of this method in different scenarios with variable three-phase and single......-phase inverters penetration in a realistic LV grid. In addition, the overvoltage is reduced by using this method....

  9. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device. © 2013 AIP Publishing LLC.

  10. Financing concentrating solar power in the Middle East and North Africa-Subsidy or investment?

    International Nuclear Information System (INIS)

    Trieb, Franz; Mueller-Steinhagen, Hans; Kern, Juergen

    2011-01-01

    The paper presents a strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. - Research Highlights: → Concentrating Solar Power in the Mediterranean Region (MED-CSP 2005) (www.dlr.de/tt/med-csp). → Trans-Mediterranean Interconnection for Concentrating Solar Power (TRANS-CSP 2006) (www.dlr.de/tt/trans-csp). → Concentrating Solar Power for Seawater Desalination (AQUA-CSP 2007) (www.dlr.de/tt/aqua-csp). → Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS 2009) (http://reaccess.epu.ntua.gr/). → Combined Solar Power and Desalination in the Mediterranean (MED-CSD 2010) (www.med-csd-ec.eu).

  11. Solar panel acceptance testing using a pulsed solar simulator

    Science.gov (United States)

    Hershey, T. L.

    1977-01-01

    Utilizing specific parameters as area of an individual cell, number in series and parallel, and established coefficient of current and voltage temperature dependence, a solar array irradiated with one solar constant at AMO and at ambient temperature can be characterized by a current-voltage curve for different intensities, temperatures, and even different configurations. Calibration techniques include: uniformity in area, depth and time, absolute and transfer irradiance standards, dynamic and functional check out procedures. Typical data are given for individual cell (2x2 cm) to complete flat solar array (5x5 feet) with 2660 cells and on cylindrical test items with up to 10,000 cells. The time and energy saving of such testing techniques are emphasized.

  12. A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells

    International Nuclear Information System (INIS)

    Feron, K.; Fell, C. J.; Zhou, X.; Belcher, W. J.; Dastoor, P. C.

    2014-01-01

    We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known to remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects

  13. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na-selective membrane.2. In this state, the transepithelial voltage (V...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... of the inward facing membranes but reflects the true behaviour of P(Na).6. The steady-state P(Na) at a given (Na)(o) is smaller than the transient P(Na) observed right after a stepwise increase of (Na)(o) to this value. The time constant of P(Na)-relaxation is in the order of seconds.7. In conclusion, Na...

  14. The concentration principle applied to spaceborne solar arrays. AGORA mission: Studies synthesis

    Science.gov (United States)

    Laget, R.

    1986-01-01

    Studies that led to selection of the distributed 25 kW SARA LOUVRE concept for the solar cell generator to be flown on the AGORA asteroid mission, and the major characteristics of such a spaceborne solar array are summarized. In the SARA LOUVRE concept, a parabolic cross section reflector concentrates incident light over the rear face of the identical, preceding reflector dish. The whole set of reflectors is pivotally commanded, thus compensating the effects of depointing. Geometric concentration factor is 10. End of life power level at 2.5 AU is 4.5 kW.

  15. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  16. Patterned dye structures limit reabsorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Tsoi, S.; Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.

    2010-01-01

    This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 - 80%, the surface

  17. Concentration of solar radiation by white backed photovoltaic panels.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  18. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...

  19. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  20. Parabolic trough solar concentrators: a technology which can contribute towards pakistan's energy future

    International Nuclear Information System (INIS)

    Masood, R.

    2013-01-01

    The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)

  1. Inverse identification of intensity distributions from multiple flux maps in concentrating solar applications

    International Nuclear Information System (INIS)

    Erickson, Ben; Petrasch, Jörg

    2012-01-01

    Radiative flux measurements at the focal plane of solar concentrators are typically performed using digital cameras in conjunction with Lambertian targets. To accurately predict flux distributions on arbitrary receiver geometries directional information about the radiation is required. Currently, the directional characteristics of solar concentrating systems are predicted via ray tracing simulations. No direct experimental technique to determine intensities of concentrating solar systems is available. In the current paper, multiple parallel flux measurements at varying distances from the focal plane together with a linear inverse method and Tikhonov regularization are used to identify the directional and spatial intensity distribution at the solution plane. The directional binning feature of an in-house Monte Carlo ray tracing program is used to provide a reference solution. The method has been successfully applied to two-dimensional concentrators, namely parabolic troughs and elliptical troughs using forward Monte Carlo ray tracing simulations that provide the flux maps as well as consistent, associated intensity distribution for validation. In the two-dimensional case, intensity distributions obtained from the inverse method approach the Monte Carlo forward solution. In contrast, the method has not been successful for three dimensional and circular symmetric concentrator geometries.

  2. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  3. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  4. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  5. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  6. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  7. Parameters optimization of CIGS solar cell using 2D physical modeling

    Science.gov (United States)

    Dabbabi, Samar; Nasr, Tarek Ben; Kamoun-Turki, Najoua

    In this study, the CIGS thin film solar cell has been investigated using the two-dimensional device simulator Silvaco-Atlas. Thickness and carrier concentration effects of the cell structure were studied to optimize the solar cell performances. Our results revealed high efficiency for a cell structure of 0.15 μm ZnO:Al, 0.06 μm i-ZnO, 0.04 μm CdS and 3 μm CIGS. The carrier concentration effects of the different layers were also studied revealing a better performance for CIGS doping concentration of 1018 cm-3. The optimized CIGS solar cell characteristics were a current density of short circuit Jsc = 38.75 mA/cm2, an open-circuit voltage V0C = 804.03 mV, a fill factor FF = 74.48% and an efficiency η = 23.20%. This result is in good agreement with experimental efficiencies found in literature.

  8. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  9. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  10. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  11. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  12. Optical, geometric and thermal study for solar parabolic concentrator efficiency improvement under Tunisia environment: A case study

    International Nuclear Information System (INIS)

    Skouri, Safa; Ben Salah, Mohieddine; Bouadila, Salwa; Balghouthi, Moncef; Ben Nasrallah, Sassi

    2013-01-01

    Highlights: • Design and construction of solar parabolic concentrator. • Photogrammetry study of SPC. • Slope error and optical efficiency of SPC. • Reflector materials of SPC. • Programmed tracking solar system. - Abstract: Renewable energy generation is becoming more prevalent today. It is relevant to consider that solar concentration technologies contribute to provide a real alternative to the consumption of fossil fuels. The purpose of this work is the characterization of a solar parabolic solar concentrator (SPC) designed, constructed and tested in the Research and Technologies Centre of Energy in Tunisia (CRTEn) in order to improve the performance of the system. Photogrammetry measurement used to analyze the slope errors and to determine hence determining the geometric deformation of the SPC system, which presents an average slope error around 0.0002 and 0.0073 mrad respectively in the center and in the extremities. An optimization of the most performed reflector material has been done by an experimental study of three types of reflectors. A two axes programmed tracking system realized, used and tested in this study. An experimental study is carried out to evaluate the solar parabolic concentrator thermal efficiency after the mechanical and the optical SPC optimization. The thermal energy efficiency varies from 40% to 77%, the concentrating system reaches an average concentration factor around 178

  13. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  14. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  15. Design of a gigawatt space solar power satellite using optical concentrator system

    Science.gov (United States)

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  16. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  17. Optical efficiency of solar concentrators by a reverse optical path method.

    Science.gov (United States)

    Parretta, A; Antonini, A; Milan, E; Stefancich, M; Martinelli, G; Armani, M

    2008-09-15

    A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far screen, has been developed. It is shown that the projected light intensity is simply correlated to the angle-resolved efficiency of a concentrator, conventionally obtained by a direct illumination procedure. The method has been applied by simulating simple reflective nonimaging and Fresnel lens concentrators.

  18. Small-scale installations. Solar concentration system for architectural integration; Instalaciones de pequeno tamano. Sistema de concetracion solar para integracion arquitectonica

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, D.; Rosell, J.

    2010-07-01

    Concentration solar systems now practically limit its use in large installations with devices of considerable size, such as generator systems central tower parabolic trough concentrators for power generation. Disco-parabolic concentrators with Stirling engine or the great fans that support two-axis Fresnel lenses in combination with occasional multilayered cells with or without secondary concentrator. (Author) 11 refs.

  19. Micro solar concentrators: Design and fabrication for microcells arrays

    Science.gov (United States)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  20. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  1. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  2. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  3. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    Science.gov (United States)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  4. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  5. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    Science.gov (United States)

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  6. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  7. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    Science.gov (United States)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  8. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    Science.gov (United States)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  9. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    International Nuclear Information System (INIS)

    El-Nahass, M.M.; Kamel, M.A.; Atta, A.A.; Huthaily, S.Y.

    2013-01-01

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor–acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density–voltage (J–V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance–voltage (C–V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: ► The molecular rotors DBM dye can be used to manufacture D/A solar cells. ► Since D/A are situated in the DBM molecule, we ensure photoinduced D → A electron transfer. ► The DBM film is grown as nano-rods. ► The most of the DBM bulk of the cell contributes to the generation of external current.

  10. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; Kamel, M.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Atta, A.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Physics Department, Faculty of Science, Taif University, Taif, 888 Taif (Saudi Arabia); Huthaily, S.Y., E-mail: s_huthaily@yahoo.com [Physics Department, Faculty of Education, Hodeidah University, Alduraihimi, 3114 Hodeidah (Yemen)

    2013-01-15

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor-acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density-voltage (J-V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance-voltage (C-V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: Black-Right-Pointing-Pointer The molecular rotors DBM dye can be used to manufacture D/A solar cells. Black-Right-Pointing-Pointer Since D/A are situated in the DBM molecule, we ensure photoinduced D {yields} A electron transfer. Black-Right-Pointing-Pointer The DBM film is grown as nano-rods. Black-Right-Pointing-Pointer The most of the DBM bulk of the cell contributes to the generation of external current.

  11. Correlation between LUMO offset of donor/acceptor molecules to an open circuit voltage in bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mola, Genene Tessema, E-mail: mola@ukzn.ac.za [School of. Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa); Abera, Newayemedhin [Addis Ababa University, Department of Physics, P.O. BOX 1176, Addis Ababa (Ethiopia)

    2014-07-15

    The correlation between the open circuit voltage and the LUMO offset of the donor and acceptor polymers in the bulkheterojunction solar cell was studied for three different thiophene derivatives. The HOMO levels of all the polymers in this investigation were chosen to be similar which results in close values of ΔE{sub DA}=E{sub HOMO}{sup D}−E{sub LUMO}{sup A}. However, the measured V{sub oc} was found to be increasing with decreasing value of the LUMO offset that exists between the donor polymer and fullerene.

  12. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  13. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  14. Analysis of bias voltage dependent spectral response in Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell

    International Nuclear Information System (INIS)

    Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka

    2014-01-01

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V bias ) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V bias for Ga 0.51 In 0.49 P/Ga 0.99 In 0.01 As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V bias measurements. The profile of SR−V bias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell

  15. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  16. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  17. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NARCIS (Netherlands)

    Sulima, Oleg V.; Chinello, Enrico; Conibeer, Gavin; Modestino, Miquel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Domine, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe

    2016-01-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been

  18. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  19. Start-up performance of parabolic trough concentrating solar power plants

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim

    2017-01-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential...

  20. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I.M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C.M. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1984-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  1. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  2. Test results on parabolic dish concentrators for solar thermal power systems

    Science.gov (United States)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  3. SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities

    International Nuclear Information System (INIS)

    Roccia, J P; Piaud, B; Coustet, C; Caliot, C; Guillot, E; Flamant, G; Delatorre, J

    2012-01-01

    In this communication, the software SOLFAST is presented. It is a simulation tool based on the Monte-Carlo method and accelerated Ray-Tracing techniques to evaluate efficiently the energy flux in concentrated solar installations.

  4. Stacking Orientation Mediation of Pentacene and Derivatives for High Open-Circuit Voltage Organic Solar Cells.

    Science.gov (United States)

    Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-05-03

    In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.

  5. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  6. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  7. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography.

    Science.gov (United States)

    Hwang, Inpyeong; Cho, Jeong Yeon; Kim, Sang Youn; Oh, Seung-June; Ku, Ja Hyeon; Lee, Joongyup; Kim, Seung Hyup

    2015-12-01

    The aim of the present study was to investigate the feasibility and image quality of excretory CT urography performed using low iodine-concentration contrast media and low tube voltage. This prospective study enrolled 63 patients who undergoing CT urography. The subjects were randomized into two groups of an excretory phase CT urography protocol and received either 240 mg I/mL of contrast media and 80 kVp of tube voltage (low-concentration protocol, n=32) or 350 mg I/mL and 120 kVp (conventional protocol, n=31). Two readers qualitatively evaluated images for sharpness of the urinary tract, image noise, streak artifact and overall diagnostic acceptability. The mean attenuation, signal-to-noise ratio, contrast-to-noise ratio and figure of merit were measured in the urinary tract. The non-inferiority test assessed the diagnostic acceptability between the two protocol groups. The low-concentration protocol showed a significantly lower effective radiation dose (3.44 vs. 5.70 mSv, Pcontrast-to-noise ratio and figure of merit were significantly higher in the low-concentration protocol along the entire urinary tract (Pcontrast media, 80 kVp tube voltage and an iterative reconstruction algorithm is beneficial to reduce radiation dose and iodine load, and its objective image quality and subjective diagnostic acceptability is not inferior to that of conventional CT urography. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems

    Energy Technology Data Exchange (ETDEWEB)

    de la Mora, M.B.; Jaramillo, O.A.; Nava, R.; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A. P. 34, 62580 Temixco, Morelos (Mexico); del Rio, J.A. [Centro Morelense de Innovacion y Transferencia Tecnologica, CCyTEM Camino Temixco a Emiliano Zapata, Km 0.3, Colonia Emiliano Zapata, 62760 Morelos (Mexico)

    2009-08-15

    In this paper we report the viability of using porous silicon photonic mirrors (PSPM) as secondary reflectors in solar concentration systems. The PSPM were fabricated with nanostructured porous silicon to reflect light from the visible range to the near infrared region (500-2500 nm), although this range could be tuned for specific wavelength applications. Our PSPM are multilayers of two alternated refractive indexes (1.5 and 2.0), where the condition of a quarter wavelength in the optical path was imposed. The PSPM were exposed to high radiation in a solar concentrator equipment. As a result, we observed a significant degradation of the mirrors at an approximated temperature of 900 C. In order to analyze the origin of the degradation of PSPM, we model the samples with a non-linear optical approach and study the effect of a temperature increase. Those theoretical and experimental studies allow us to conclude that the main phenomenon involved in the breakdown of the photonic mirrors is of thermal origin, produced by heterogeneous expansion of each layer. Our next step was to introduce a cooling system into the solar concentrator to keep the mirrors at approximately 70 C, with very good results. As a conclusion we propose the use of PSPM as selective secondary mirrors in solar concentration devices using temperature control to avoid thermal degradation. (author)

  9. Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina

    Directory of Open Access Journals (Sweden)

    Isidoro Lillo

    2017-03-01

    Full Text Available This paper evaluates the potential of solar concentration technologies—compound parabolic collector (CPC, linear Fresnel collector (LFC and parabolic trough collector (PTC—as an alternative to conventional sources of energy for industrial processes in Latin America, where high levels of solar radiation and isolated areas without energy supply exist. The analysis is addressed from energy, economic and environmental perspective. A specific application for Argentina in which fourteen locations are analyzed is considered. Results show that solar concentration technologies can be an economically and environmentally viable alternative. Levelized cost of energy (LCOE ranges between 2.5 and 16.9 c€/kWh/m2 and greenhouse gas (GHG emissions avoided range between 33 and 348 kgCO2/(m2·year. CPC technology stands out as the most recommendable technology when the working fluid temperature ranges from 373 K to 423 K. As the working fluid temperature increases the differences between the LCOE values of the CPC and LFC technologies decrease. When 523 K is reached LFC technology is the one which presents the lowest LCOE values for all analyzed sites, while the LCOE values of PTC technology are close to CPC technology values. Results show that solar concentration technologies have reached economic and environmental competitiveness levels under certain scenarios, mainly linked to solar resource available, thermal level requirements and solar technology cost.

  10. Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector

    International Nuclear Information System (INIS)

    Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang

    2016-01-01

    Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.

  11. Concentrated Solar Power as part of the European energy supply. The realization of large-scale solar power plants. Options, constraints and recommendations; Concentrated Solar Power als onderdeel van de Europese energievoorziening. De realisatie van grootschalige zonnecentrales. Mogelijkheden, obstakels en advies

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmans, I.; Carton, L.J.; Dijkema, G.P.J.; Stikkelman, R.M.; De Vries, L.J. [Energy and Industry Group, Faculty of Technology, Policy and Management, Delft University of Technology, Delft (Netherlands)

    2006-07-01

    Next to solar cells and solar collectors for decentralized power generation Concentrated Solar Power (CSP) technology is available and proven for large-scale application of solar energy. However, after 20 years of demonstration projects and semi-commercial installations, CSP is still not widely used. In this quick-scan an overview is given of strong and weak points of CSP, as well as its' options and constraints with regard to a sustainable energy supply, focusing on technical, economical and administrative constraints and chances in Europe and European Union member states. [Dutch] Naast zonnecellen en zonnecollectoren voor decentrale opwekking is er een technologie die geschikt is voor grootschalige ontsluiting van de zon: Concentrated Solar Power, kortweg CSP. Bewezen in een aantal demonstratie- en pre-commerciele installaties blijft toepassing van deze technologie ook na 20 jaar beperkt. Daarom staat in deze notitie, die het resultaat is van een quickscan, de volgende vraag centraal: Wat zijn de sterktes, zwaktes, mogelijkheden en barrieres van CSP-technologie als onderdeel van een duurzame energievoorziening en welke technisch-economische en bestuurlijke barrieres en kansen zijn er voor Europa en de lidstaten van de EU?.

  12. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  13. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  14. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  15. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    Science.gov (United States)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  16. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  17. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  18. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  19. Concentrated Solar Power as part of the European energy supply. The realization of large-scale solar power plants. Options, constraints and recommendations

    International Nuclear Information System (INIS)

    Bouwmans, I.; Carton, L.J.; Dijkema, G.P.J.; Stikkelman, R.M.; De Vries, L.J.

    2006-01-01

    Next to solar cells and solar collectors for decentralized power generation Concentrated Solar Power (CSP) technology is available and proven for large-scale application of solar energy. However, after 20 years of demonstration projects and semi-commercial installations, CSP is still not widely used. In this quick-scan an overview is given of strong and weak points of CSP, as well as its' options and constraints with regard to a sustainable energy supply, focusing on technical, economical and administrative constraints and chances in Europe and European Union member states [nl

  20. Fundamental characteristics on electric system of solar electric vehicle; Solar car no denki keito ni kansuru kiso tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, S; Sasaki, M; Kaga, T; Koyama, N [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    The electric system of a solar vehicle was removed and the fundamental characteristics examined in order to carry out a basic experiment on the electric system. Using a basic circuit with panels, batteries and loads connected, the voltage and current were measured in the presence/absence of the trackers, batteries, etc., and then, their effects were examined. Simultaneously, the quantity of solar radiation was also measured. The lowering of the output voltage was somewhat relaxed with the use of the trackers. Further, with the trackers used, the output voltage of the panel was small in spite of a large quantity of solar radiation compared to the case without the trackers, which was due to the restriction of the output voltage by the trackers. When measured without batteries, the output voltage of the panel was such that the load current was also influenced by the variation of insolation, so that, with a large decrease in insolation, the load current was decreased with the supply of current suspended from the panel. 7 figs., 1 tab.

  1. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness

    International Nuclear Information System (INIS)

    Rong-Hua, Li; Ying-Quan, Peng; Chao-Zhu, Ma; Run-Sheng, Wang; Hong-Wei, Xie; Ying, Wang; Wei-Min, Meng

    2010-01-01

    We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level E L related to the cathode work function W c at a given energy gap on the open-circuit voltage V oc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function W c for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the built-in voltage. Additionally, it is worth noting that a significant improvement to V oc could be made by selecting an organic material which has a relative high LUMO level (low |E L | value). However, V oc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exciton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices. (cross-disciplinary physics and related areas of science and technology)

  2. Double-tailored nonimaging reflector optics for maximum-performance solar concentration.

    Science.gov (United States)

    Goldstein, Alex; Gordon, Jeffrey M

    2010-09-01

    A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.

  3. Compact, Lightweight, High Voltage Propellant Isolators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  4. Parameters optimization of CIGS solar cell using 2D physical modeling

    Directory of Open Access Journals (Sweden)

    Samar Dabbabi

    Full Text Available In this study, the CIGS thin film solar cell has been investigated using the two-dimensional device simulator Silvaco-Atlas. Thickness and carrier concentration effects of the cell structure were studied to optimize the solar cell performances. Our results revealed high efficiency for a cell structure of 0.15 µm ZnO:Al, 0.06 µm i-ZnO, 0.04 µm CdS and 3 µm CIGS. The carrier concentration effects of the different layers were also studied revealing a better performance for CIGS doping concentration of 1018 cm−3. The optimized CIGS solar cell characteristics were a current density of short circuit Jsc = 38.75 mA/cm2, an open-circuit voltage V0C = 804.03 mV, a fill factor FF = 74.48% and an efficiency η = 23.20%. This result is in good agreement with experimental efficiencies found in literature. Keywords: CIGS solar cell, Electrical characteristics, Silvaco-Atlas software

  5. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  6. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  7. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  8. MEH-PPV and PCBM Solution Concentration Dependence of Inverted-Type Organic Solar Cells Based on Eosin-Y-Coated ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Riski Titian Ginting

    2013-01-01

    Full Text Available The influence of polymer solution concentration on the performance of chlorobenzene- (CB- and chloroform- (CF- based inverted-type organic solar cells has been investigated. The organic photoactive layers consisted of poly(2-methoxy-5-(2-ethyl hexyloxy-1,4-phenylenevinylene (MEH-PPV and (6,6-phenyl C61 butyric acid methyl ester (PCBM were spin coated from CF with concentrations of 4, 6, and 8 mg/mL and from CB with concentrations of 6, 8, and 10 mg/mL onto Eosin-Y-coated ZnO nanorod arrays (NRAs. Fluorine doped tin oxide (FTO and silver (Ag were used as electron collecting electrode and hole collecting electrode, respectively. Experimental results showed that the short circuit current density and power conversion efficiency increased with decrease of solution concentration for both CB and CF devices, which could be attributed to reducing charge recombination in thinner photoactive layer and larger contact area between the rougher photoactive layer and Ag contact. However, the open circuit voltage decreased with decreasing solution concentration due to increase of leakage current from ZnO NRAs to Ag as the ZnO NRAs were not fully covered by the polymer blend. The highest power conversion efficiencies of 0.54 ± 0.10% and 0.87 ± 0.15% were achieved at the respective lowest solution concentrations of CB and CF.

  9. Henna (Lawsonia inermis L.) Dye-Sensitized Nanocrystalline Titania Solar Cell

    International Nuclear Information System (INIS)

    Jasim, Kh.E.; Al-Dallal, Sh.; Hassan, A.M.

    2012-01-01

    Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs) emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs) are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed

  10. Henna (Lawsonia inermis L. Dye-Sensitized Nanocrystalline Titania Solar Cell

    Directory of Open Access Journals (Sweden)

    Khalil Ebrahim Jasim

    2012-01-01

    Full Text Available Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed.

  11. Theoretical and experimental analysis of a solar thermoelectric power generation device based on gravity-assisted heat pipes and solar irradiation

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming; Xu, Daochun

    2016-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by device is boosted from around 1 V to more than 4 V. • An output current and voltage of the device is acquired as 343 mA and 1057 mV. • The device provides output power 362.56 mW in no electricity conditions. • The economic value of device is demonstrated. - Abstract: Solar thermoelectric power generation has been widely used to solve the power supply limitation issue for low-power wireless sensors because of its light weight, high reliability, low cost, lack of noise, and environmental friendliness. A solar thermoelectric power generation system based on gravity-assisted heat pipes and solar radiation is devised in this paper, and its behavior is continuously measured in realistic outdoor circumstances. The effects of key parameters, including solar luminous flux, load resistance, a proportional coefficient, and a relative Seebeck coefficient, are analyzed. Related experimental results show that the device can output a voltage of 1057 mV and an electrical current of 343 mA, resulting in an output power of 362.56 mW. With a stable external energy conversion module under aluminous flux of 7.81 × 10"4 lx, the voltage converted from the nature solar radiation is boosted from 1057 mV to 4.40 V, which meets the rated operating voltage of low power consumption components, such as low-power wireless sensors and ZigBee modules. An economic analysis of the system shows that the solar thermoelectric power generation device is both economically and technically competitive when it is applied in a low-voltage wireless sensor network.

  12. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  13. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1976-01-01

    A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.

  14. Airport Solar Photovoltaic Concentrator Project. Phase 1 - final report, June 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The system design, analysis, and specification, site preparation, and operation and evaluation plan for a 500 kWe photovoltaic power supply to be located at the Phoenix Sky Harbor International Airport in Phoenix, Arizona, are presented. The solar cell arrays are concentrator silicon solar cells with tracking 70X Cassegrain-type concentrators. The power conditioning system, tracking system, and control systems are described in detal. Environmental impact studies are described. Component specifications and drawings are included. (WHK)

  15. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    Science.gov (United States)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  16. Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J.; Lopez, V.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Madrid (Spain); Martinez, D. [Plataforma Solar de Almeria, Tabernas Almeria (Spain)

    1998-05-12

    The present work deals with Ni alloy cladding on AISI 4140 steel samples made with high power density concentrated solar beams. The quality of the cladding is high concerning the adherence, low dilution and high hardness of the coating. Some considerations are presented concerning the future of high power density beams related to SUrface Modification of Metallic mAterials with SOLar Energy (SUMMA cum SOLE)

  17. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  18. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  19. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    International Nuclear Information System (INIS)

    Supriyanto, A.; Maya; Iriani, Y.; Ramelan, A. H.; Nurosyid, F; Rosa, E. S.

    2016-01-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10 -3 %, 2.2×10 -3 %, 5.9×10 -3 %, and 6.1×10 -3 % efficiency of organics solar cells respectively. (paper)

  20. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  1. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  2. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  3. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    Science.gov (United States)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  4. Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect

    Directory of Open Access Journals (Sweden)

    Peyman Jelodarian

    2012-01-01

    Full Text Available The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2 and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.

  5. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    Science.gov (United States)

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  6. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    Science.gov (United States)

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  7. Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Xu, Rong Ji; Zhang, Xiao Hui; Wang, Rui Xiang; Xu, Shu Hui; Wang, Hua Sheng

    2017-01-01

    Highlights: • Solar collector integrates compound parabolic concentrator and pulsating heat pipe. • Concentrator of a concentration ratio 3.4 matches well heat flux of heat pipe. • Solar collector efficiency increases with decreasing absorber thermal resistance. • Maximum 50% efficiency of the integrated solar collector has been achieved. - Abstract: The paper reports an experimental investigation of a newly proposed solar collector that integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC arrayed by 10 × 2 CPC units with the collection area of 300 × 427.6 mm 2 , a hot water tank and a glass cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating characteristics and thermal efficiency of the solar collector were experimentally studied. The steady and periodic temperature fluctuations of the evaporation and condensation sections of the PHP absorber indicate that the absorber works well with a thermal resistance of about 0.26 °C/W. It is also found that, as the main factor to the the thermal performance of the collector, thermal resistance of the PHP absorber decreases with increasing evaporation temperature. The collector apparently shows start-up, operational and shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal irradiance is 800 W/m 2 , the instantaneous thermal efficiency of the solar collector can reach up to 50%.

  8. Performance Feedback & Control of Solar Concentrators Using Wave Front Sensing Techniques (Preprint)

    National Research Council Canada - National Science Library

    Beasley, Jason N

    2007-01-01

    The major requirement for using concentrating Solar Thermal devices is the proper placement of the focal spot on the absorber to provide heating of the working fluid to produce thrust or to generate electricity...

  9. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  10. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  11. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  12. Automatic generation and analysis of solar cell IV curves

    Science.gov (United States)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  13. Mechanical design of a low concentration ratio solar array for a space station application

    Science.gov (United States)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  14. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  15. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  16. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  17. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    International Nuclear Information System (INIS)

    Velazquez, N.; Garcia-Valladares, O.; Sauceda, D.; Beltran, R.

    2010-01-01

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency.

  18. A Study of Mixed Vegetable Dyes with Different Extraction Concentrations for Use as a Sensitizer for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Ching Cho

    2014-01-01

    Full Text Available Two vegetable dyes are used for the study: chlorophyll dye from sweet potato leaf extract and anthocyanin dye from extracts of blueberry, purple cabbage, and grape. The chlorophyll and anthocyanin dyes are blended in a cocktail in equal proportions, by volume. This study determines the effect of different extraction concentrations and different vegetable dyes on the photoelectric conversion efficiency of dye-sensitized solar cells. In order to make the electrode for the experiments, P25 TiO2 powder was coated on the ITO conducting surface, using a medical blade, to form a thin film with a thickness of around 35 μm. The experimental results show that the cocktail dye blended using extracts of sweet potato leaf and blueberries, in the volumetric proportion 1 : 1, at a weight concentration of 40%, using an extraction temperature of 50°C and an extraction heating time of 10 min produces the greatest photoelectric conversion efficiency (η of up to 1.57%, an open-circuit voltage (VOC of 0.61 V, and a short-circuit current density (JSC of 4.75 mA/cm2.

  19. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    Science.gov (United States)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  20. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  1. Design optimization studies for nonimaging concentrating solar collector tubes

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1983-09-01

    The Integrated Stationary Evacuated Concentrator or ISEC solar collector panel which achieved the best high temperature performance ever measured with a stationary collector was examined. A development effort review and optimize the initial proof of concept design was completed. Changes in the optical design to improve the angular response function and increase the optical efficiency were determined. A recommended profile design with a concentration ratio of 1.55x and an acceptance angle of + - 35(0) was identified. Two alternative panel/module configurations are recommended based on the preferred double ended flow through design. Parasitic thermal and pumping losses show to be reducible to acceptable levels, and two passive approaches to the problem of ensuring stagnation survival are identified.

  2. Design factors of sensors for the optical tracking systems of solar concentrators

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Fazylov, A. K.; Orlov, S. A.; Burbo, A. V.

    2011-01-01

    Basic diagrams for the sensors of the optical tracking systems of solar concentrators are considered, the design factors that determine their accuracy are analyzed, a new sensor design is suggested, and its optimal parameters are determined. (authors)

  3. Lifetime measurements by open circuit voltage decay in GaAs and InP diodes

    International Nuclear Information System (INIS)

    Bhimnathwala, H.G.; Tyagi, S.D.; Bothra, S.; Ghandhi, S.K.; Borrego, J.M.

    1990-01-01

    Minority carrier lifetimes in the base of solar cells made in GaAs and InP are measured by open circuit voltage decay method. This paper describes the measurement technique and the conditions under which the minority carrier lifetimes can be measured. Minority carrier lifetimes ranging from 1.6 to 34 ns in InP of different doping concentrations are measured. A minority carrier lifetime of 6 ns was measured in n-type GaAs which agrees well with the lifetime of 5.7 ns measured by transient microwave reflection

  4. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  5. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  6. The solar forcing on the ground 7 Be concentration variability

    International Nuclear Information System (INIS)

    Talpos, S.; Borsan, D.H.

    2002-01-01

    7 Be, natural radionuclide, is produced by the interaction of cosmic radiation with oxygen and nitrogen molecules. 7 Be production in atmosphere depends on the intensity of cosmic radiation which is influenced by the Earth's magnetosphere. The magnetosphere shape depends on solar activity. This paper presents the influence of sunspots number (11 years period) on the ground 7 Be concentration variability. (authors)

  7. Structural concepts for very large (400-meter-diameter) solar concentrators

    Science.gov (United States)

    Mikulas, Martin M., Jr.; Hedgepeth, John M.

    1989-01-01

    A general discussion of various types of large space structures is presented. A brief overview of the history of space structures is presented to provide insight into the current state-of-the art. Finally, the results of a structural study to assess the viability of very large solar concentrators are presented. These results include weight, stiffness, part count, and in-space construction time.

  8. Evaluating the potential of concentrating solar power generation in Northwestern India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav; Shekhar, Shashaank

    2013-01-01

    To accelerate the decarburization in the Indian power sector, concentrating solar power (CSP) needs to play an important role. CSP technologies have found significant space in the Jawaharlal Nehru National Solar Mission (JNNSM) of the Indian government in which 20,000 MW grid connected solar power projects have been targeted by 2022 with 50% capacity for CSP. In this study a preliminary attempt has been made to assess the potential of CSP generation in the Northwestern (NW) regions of India; which seems a high potential area as it has the highest annual solar radiation in India, favorable meteorological conditions for CSP and large amount of waste land. The potential of CSP systems in NW India is estimated on the basis of a detailed solar radiation and land resource assessment. The energy yield exercise has been carried out for the representative locations using System Advisor Model for four commercially available CSP technologies namely Parabolic Trough Collector (PTC), Central receiver system (CRS), Linear Fresnel Reflector (LFR) and Parabolic Dish System (PDS). The financial viability of CSP systems at different locations in NW India is also analyzed in this study. On the basis of a detailed solar radiation and land resource assessment, the maximum theoretical potential of CSP in NW India is estimated over 2000 GW taking into accounts the viability of different CSP technologies and land suitability criteria. The technical potential is estimated over 1700 GW at an annual direct normal incidence (DNI) over 1800 kW h/m 2 and finally, the economic potential is estimated over 700 GW at an annual DNI over 2000 kW h/m 2 in NW India. It is expected that in near future locations with lower DNI values could also become financially feasible with the development of new technologies, advancement of materials, economy of scale, manufacturing capability along with the enhanced policy measures etc. With an annual DNI over 1600 kW h/m 2 it is possible to exploit over 2000 GW CSP

  9. Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Rahbar, Nader; Asadi, Amin

    2016-01-01

    Highlights: • Solar intensity could be explained as a linear function of voltage and ambient temperature. • The maximum output voltage is approximately 120 mV which was occurred in midday. • The average value of the heat-sink thermal resistance could be measured with this device. • The average values of total heat transfer coefficients could be measured with this device. • Two correlations were proposed to predict the solar intensity with the accuracy of 10%. - Abstract: The present study is intended to design, manufacture, and modeling an inexpensive pyranometer using a thermoelectric module. The governing equations relating the solar intensity, output voltage, and ambient temperature have been derived by applying the mathematical and thermodynamic models. According to the thermodynamics modeling, the output voltage is a function of solar intensity, ambient temperature, internal parameters of thermoelectric module, convection and radiation coefficients, and geometrical characteristics of the setup. Moreover, the solar intensity can be considered as a linear function of voltage and ambient temperature within an acceptable range of accuracy. The experiments have been carried out on a typical winter day under climatic conditions of Semnan (35°33′N, 53°23′E), Iran. The results also indicated that the output voltage is dependent on the solar intensity and its maximum value was 120 mV. Finally, based on the experimental results, two correlations, with the accuracy of 10%, have been proposed to predict the solar intensity as a function of output voltage and ambient temperature. The average values of total heat transfer coefficient and thermal resistance of the heat-sink have been also calculated according to the thermodynamic modeling and experimental results.

  10. Secondary Concentrator for a Commercial Solar Receiver System - Design and Evaluation

    International Nuclear Information System (INIS)

    Miron, G.; Weis, S.; Anteby, I.; Taragan, E.; Sagie, D.

    1998-01-01

    A 1 MWt Solar Electricity Generation Demonstration Plant test facility is scheduled for operation early next year. The plant includes a large compound parabolic secondary concentrator. Strict requirements led to a unique modular structural concentrator design. The design allows for close tolerances and ease of assembly and maintenance. Special attention was given to the thermo-mechanical design, and to the selection of reflecting surfaces and method of attachment. Calculations have shown that stresses within the glass mirrors can be controlled with proper design

  11. Breakdown voltage mapping through voltage dependent ReBEL intensity imaging of multi-crystalline Si solar cells

    Science.gov (United States)

    Dix-Peek, RM.; van Dyk, EE.; Vorster, FJ.; Pretorius, CJ.

    2018-04-01

    Device material quality affects both the efficiency and the longevity of photovoltaic (PV) cells. Therefore, identifying these defects can be beneficial in the development of more efficient and longer lasting PV cells. In this study, a combination of spatially-resolved, electroluminescence (EL), and light beam induced current (LBIC) measurements, were used to identify specific defects and features of a multi-crystalline Si PV cells. In this study, a novel approach is used to map the breakdown voltage of a PV cell through voltage dependent Reverse Bias EL (ReBEL) intensity imaging.

  12. Luminescent solar concentrators for building-integrated photovoltaics

    Science.gov (United States)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  13. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...

  14. An optimized metal grid design to improve the solar cell performance under solar concentration using multiobjective computation

    International Nuclear Information System (INIS)

    Djeffal, F.; Bendib, T.; Arar, D.; Dibi, Z.

    2013-01-01

    Highlights: ► A new MOGA-based approach to design the solar cell metal grid is proposed. ► The cell parameters have been ascertained including the high illumination effects. ► An improved electrical behavior of the solar cell is found. ► The proposed optimized metal grid design is suitable for photovoltaic applications. -- Abstract: In this paper, a new multiobjective genetic algorithm (MOGA)-based approach is proposed to optimize the metal grid design in order to improve the electrical performance and the conversion efficiency behavior of the solar cells under high intensities of illumination. The proposed approach is applied to investigate the effect of two different metal grid patterns (one with 2 busbars outside the active area (linear grid) and another one with a circular busbar surrounding the active area (circular grid)) on the electrical performance of high efficiency c-Si solar cells under concentrated light (up to 150 suns). The dimensional and electrical parameters of the solar cell have been ascertained, and analytical expressions of the power losses and conversion efficiency, including high illumination effects, have been presented. The presented analytical models are used to formulate different objective functions, which are the prerequisite of the multiobjective optimization. The optimized design can also be incorporated into photovoltaic circuit simulator to study the impact of our approach on the photovoltaic circuit design

  15. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  16. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor

    International Nuclear Information System (INIS)

    Kamble, Sanjay P.; Sawant, Sudhir B.; Pangarkar, Vishwas G.

    2007-01-01

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation

  17. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  18. Characteristic and comparison of different submounts on concentrating photovoltaic module

    Science.gov (United States)

    Lee, Yueh-Mu; Shih, Zun-Hao; Hong, Hwen-Fen; Shin, Hwa-Yuh; Kuo, Cherng-Tsong

    2014-09-01

    High concentration photovoltaics systems employ concentrating optics consisting of dish reflectors or fresnel lenses that concentrate sunlight to 500 suns or more. In general, under concentrating light operation condition, the device temperature rises quickly and the open-circuit voltage of solar cell will decrease with increasing temperature; therefore, the system output power or energy-conversion efficiency will decrease while temperature of solar cell increased. In this study, we analyze the ceramic thermal resistance and propose a direct temperature measurement method of the solar cell. The direct temperature measurement of the cell and the ceramic was achieved by utilizing buried thermocouples with a diameter of 50 μm between the cell/ceramic and aluminum plate. The different light flux densities ranging from 500 to 800 W/m2 at 100 W/m2 interval by solar simulator are provided to measure temperature, and the cell temperatures measured are 39.8 °C, 41 °C, 45 °C and 48 °C, respectively. The temperature differences between the cell and aluminum plate of the light flux densities from 500 W/m2 to 800 W/m2 are in the range of 4.2 °C to 8 °C. Accordingly we can obtain the temperature distribution of HCPV module at difference region. The results can help us to optimize module package technology and to choose better material applied to the module to improve conversion efficiency of the cell.

  19. A Novel Concentrator Photovoltaic (CPV System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-09-01

    Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided

  20. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  1. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  2. Design of the support structure, drive pedestal, and controls for a solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. (WG Associates, Dallas, TX (United States))

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  3. Investigations on quinquethiophenes as donor materials in organic solar cells

    International Nuclear Information System (INIS)

    Schulze, Kerstin

    2008-01-01

    Organic photovoltaics could in the future represent a possibility for energy production from renewable energy sources. The advance consists here first of all in the potential of a very reasonable fabrication, for instance a production in the role-to-role procedurre, which can be prusued so on flexible substrates like for instance foils. Although the material costs are low, until the commercialization of organic solar cells among others an increasement of their power efficiency is necessary. Preferably in organic solar cells donor and acceptor materials should be applied, the absorption spectra and energy levels of which are ideally matched, because so can high zero-current voltages be reached. Additionally high absorption coefficents of the materials over a large spectral range can lead to high current densities in these photovoltaic components. In this thesis novel quinquethiophenes as donors in organic solar cells are studied, which consist as basic unit of five thiophene rings as well as dicyanovinyl end groups and alkyl side chains. The studied materials possess a high absorption coefficient and reach because of the high ionization potential high zero-current voltages in organic solar cells under application of the fullerenet C 60 as acceptor. Simultaneously a efficient separation of the excitons on the acceptor-donor interface occurs. However the high ionization potential of the quinquethiophenes puts special requirements to the further solar-cell structure. Within this thesis it is shown that adifference between internal voltage and zero-current voltage influences decidingly the shape of the solar-cell characteristic and can generate a S-shape in the neighbourhood of the zero-current voltage. The internal voltage is hereby determined by the contacting of the photoactive layers. An increasement of the internal voltage of the solar cell can be reached by a corresponding material choice. So in this thesis it is shown that organic solar cells based on these

  4. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    Science.gov (United States)

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe 2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  5. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    Science.gov (United States)

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  6. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  7. Ruthenium based redox flow battery for solar energy storage

    International Nuclear Information System (INIS)

    Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung; Saleem, Muhammad

    2011-01-01

    Research highlights: → Undivided redox flow battery employing porous graphite felt electrodes was used. → Ruthenium acetylacetonate dissolved in acetonitrile was the electrolyte. → Charge/discharge conditions were determined for both 0.02 M and 0.1 M electrolytes. → Optimum power output of 0.180 W was also determined for 0.1 M electrolyte. → 55% voltage efficiency was obtained when battery was full of electrolytes. -- Abstract: The technical performance for the operation of a stand alone redox flow battery system for solar energy storage is presented. An undivided reactor configuration has been employed along with porous graphite felt electrodes and ruthenium acetylacetonate as electrolyte in acetonitrile solvent. Limiting current densities are determined for concentrations of 0.02 M and 0.1 M ruthenium acetylacetonate. Based on these, operating conditions for 0.02 M ruthenium acetylacetonate are determined as charging current density of 7 mA/cm 2 , charge electrolyte superficial velocity of 0.0072 cm/s (through the porous electrodes), discharge current density of 2 mA/cm 2 and discharge electrolyte superficial velocity of 0.0045 cm/s. An optimum power output of 35 mW is also obtained upon discharge at 2.1 mA/cm 2 . With an increase in the concentration of ruthenium species from 0.02 M to 0.1 M, the current densities and power output are higher by a factor of five approximately (at same superficial velocities) due to higher mass transport phenomenon. Moreover at 0.02 M concentration the voltage efficiency is better for battery full of electrolytes prior to charging (52.1%) in comparison to an empty battery (40.5%) due to better mass transport phenomenon. Voltage efficiencies are higher as expected at concentrations of 0.1 M ruthenium acetylacetonate (55% when battery is full of electrolytes and 48% when empty) showing that the all-ruthenium redox flow battery has some promise for future applications in solar energy storage. Some improvements for the

  8. Coronary Computed Tomographic Angiography at Low Concentration of Contrast Agent and Low Tube Voltage in Patients with Obesity:: A Feasibility Study.

    Science.gov (United States)

    Pan, Yu-Ning; Li, Ai-Jing; Chen, Xiao-Min; Wang, Jian; Ren, Da-Wei; Huang, Qiu-Li

    2016-04-01

    Using lower tube voltage can reduce the exposure to radiation and the dose of contrast agent. However, lower tube voltage is often linked to more noise and poor image quality, which create a need for more effective technology to resolve this problem. To explore the feasibility of coronary computed tomographic angiography (CCTA) in patients with obesity at low tube voltage (100 kV) and low contrast agent concentration (270 mg/mL) using iterative reconstruction. A total of 48 patients with body mass index greater than 30 kg/m(2) were included and randomly divided into two groups. Group A received a traditional protocol (iopromide 370 mg/mL + 120 kV); group B received a protocol with low tube voltage (100 kV), low contrast agent concentration (270 mg/mL), and iterative reconstruction. The effective dose (ED), average attenuation values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the figure of merit (FOM), image quality scores, and the total iodine intake were compared. No significant differences in average CT attenuations, SNR, CNR, and subjective scores were noticed between the two groups (P > 0.05), whereas the FOM of group B was significantly higher than that of group A. Effective radiation dose, total iodine, and iodine injection rate in group B were lower than those of group A (P contrast agent with low iodine concentration and low-dose CCTA were feasible. Substantial reduction in radiation dose and the iodine intake could be achieved without compromising the image quality. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Parametric analysis of the curved slats fixed mirror solar concentrator for medium temperature applications

    International Nuclear Information System (INIS)

    Pujol-Nadal, Ramon; Martínez-Moll, Víctor

    2014-01-01

    Highlights: • We thermally modeled the Curved Slats Fixed Mirror Solar Concentrator (CSFMSC). • A parametric analysis for three climates and two axial orientations are given. • The optimum values are determined for a range of the design parameters. • The CSFMSC has been well characterized for medium range temperature operation. - Abstract: The Curved Slats Fixed Mirror Solar Concentrator (CSFMSC) is a solar concentrator with a static reflector and a moving receiver. An optical analysis using ray-tracing tools was presented in a previous study in function of three design parameters: the number of mirrors N, the ratio of focal length and reflector width F/W, and the aperture concentration C a . However, less is known about the thermal behavior of this geometry. In this communication, the integrated thermal output of the CSFMSC has been determined in order to find the optimal values for the design parameters at a working temperature of 200 °C. The results were obtained for three different climates and two axial orientations (North–South, and East–West). The results show that CSFMSC can produce heat at 200 °C with an annual thermal efficiency of 41, 47, and 51%, dependent of the location considered (Munich, Palma de Mallorca, and Cairo). The best FMSC geometries in function of the design parameters are exhibited for medium temperature applications

  10. Advances in High-Efficiency III-V Multijunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Richard R. King

    2007-01-01

    Full Text Available The high efficiency of multijunction concentrator cells has the potential to revolutionize the cost structure of photovoltaic electricity generation. Advances in the design of metamorphic subcells to reduce carrier recombination and increase voltage, wide-band-gap tunnel junctions capable of operating at high concentration, metamorphic buffers to transition from the substrate lattice constant to that of the epitaxial subcells, concentrator cell AR coating and grid design, and integration into 3-junction cells with current-matched subcells under the terrestrial spectrum have resulted in new heights in solar cell performance. A metamorphic Ga0.44In0.56P/Ga0.92In0.08As/ Ge 3-junction solar cell from this research has reached a record 40.7% efficiency at 240 suns, under the standard reporting spectrum for terrestrial concentrator cells (AM1.5 direct, low-AOD, 24.0 W/cm2, 25∘C, and experimental lattice-matched 3-junction cells have now also achieved over 40% efficiency, with 40.1% measured at 135 suns. This metamorphic 3-junction device is the first solar cell to reach over 40% in efficiency, and has the highest solar conversion efficiency for any type of photovoltaic cell developed to date. Solar cells with more junctions offer the potential for still higher efficiencies to be reached. Four-junction cells limited by radiative recombination can reach over 58% in principle, and practical 4-junction cell efficiencies over 46% are possible with the right combination of band gaps, taking into account series resistance and gridline shadowing. Many of the optimum band gaps for maximum energy conversion can be accessed with metamorphic semiconductor materials. The lower current in cells with 4 or more junctions, resulting in lower I2R resistive power loss, is a particularly significant advantage in concentrator PV systems. Prototype 4-junction terrestrial concentrator cells have been grown by metal-organic vapor-phase epitaxy, with preliminary measured

  11. Optical analysis and performance evaluation of a solar parabolic dish concentrator

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics

  12. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  13. Effect of Plasma, RF, and RIE Treatments on Properties of Double-Sided High Voltage Solar Cells with Vertically Aligned p-n Junctions

    Directory of Open Access Journals (Sweden)

    Mykola O. Semenenko

    2016-01-01

    Full Text Available Si-based solar cells with vertically aligned p-n junctions operating at high voltage were designed and fabricated. The plasma treatments and antireflection coating deposition on the working surfaces of both single- and multijunction cells were made using the special holders. It was shown that additional treatment of solar cells in argon plasma prior to hydrogen plasma treatment and deposition of diamond-like carbon antireflection films led to the improvement of the cell efficiency by up to 60%. Radio frequency waves support plasma generation and improve photoelectric conversion mainly due to reduction of internal stresses at the interfaces. Application of reactive ion etching technique removes the broken layer, reduces elastic strain in the wafer, decreases recombination of charge carriers in the bulk, and provides cell efficiency increase by up to ten times.

  14. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  15. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  16. Analysis of bias voltage dependent spectral response in Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, Tomah, E-mail: Sogabe@mbe.rcast.u-tokyo.ac.jp; Ogura, Akio; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan)

    2014-02-21

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V{sub bias}) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V{sub bias} for Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V{sub bias} measurements. The profile of SR−V{sub bias} curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

  17. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  18. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  19. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes

    International Nuclear Information System (INIS)

    Jäger, Timo; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-01-01

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se 2 (CIGS) solar cells, leading to an open circuit voltage V OC enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V OC . Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V OC . Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V OC increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V OC of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability

  20. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  1. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  2. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    Science.gov (United States)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  3. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  4. Measured efficiency of a luminescent solar concentrator PV module called Leaf Roof

    NARCIS (Netherlands)

    Reinders, Angèle H.M.E; Debije, Michael G.; Rosemann, Alexander

    2017-01-01

    A functional prototype of a luminescent solar concentrator photovoltaic (LSC PV) module, called Leaf Roof, aims at demonstrating the design features of LSC PV technologies such as coloring, transparency, and flexibility in physical shape. In this paper, the prototype is presented and the first

  5. Biogas from Agricultural Residues as Energy Source in Hybrid Concentrated Solar Power

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.

    2016-01-01

    This paper explores the possibilities of sustainable biogas use for hybridisation of Concentrated Solar Power (HCSP) in Europe. The optimal system for the use of biogas from agricultural residues (manure and crop residues) in HCSP involves anaerobic digestion with upgrading of biogas to

  6. The solar forcing on the 7Be-air concentration variability at ground level

    International Nuclear Information System (INIS)

    Talpos, Simona

    2004-01-01

    This paper analyses the correlation between the temporal and spatial variability of 7 Be-air concentration at ground level and the amount of precipitation. There were used the measured data from 26 stations distributed on North America, South America, Australia and Antarctica. The variability study was made using EOF and principal components analysis. The presented results show that the variability of 7 Be air concentration at ground level is simultaneously influenced by the solar cycle and some atmospheric processes like precipitation, turbulent transport, advection, etc. The solar forcing on the 7 Be variability at ground level was outlined for time-scales longer than 1 year and can be considered a global phenomenon. The atmospheric processes influence the 7 Be variability for scale shorter than one year and can be considered a local phenomenon. (author)

  7. The use of simulated or concentrated natural solar radiation for the TiO2-mediated photodecomposition of Basagran, diquat, and diuron

    Energy Technology Data Exchange (ETDEWEB)

    Kinkennon, A. E.; Green, D. B.; Hutchinson, B. [Department of Chemistry, Duke University Durham, NC 27708 (United States)

    1995-07-01

    Suspensions of TiO{sub 2} were illuminated with simulated or concentrated solar radiation to mineralize solutions of the herbicides Basagran, Diquat, and Diuron. The design of a functional recirculating system is reported. Decomposition rates were significantly increased when concentrated solar radiation was used. Decomposition rates also depend on the compound studied. This study demonstrates the possibility of using high intensity concentrated solar radiation for the TiO{sub 2}-mediated photocatalytic decomposition of water-borne organic wastes. (author)

  8. The use of simulated or concentrated natural solar radiation for the TiO2-mediated photodecomposition of Basagran, diquat, and diuron

    International Nuclear Information System (INIS)

    Kinkennon, A.E.; Green, D.B.; Hutchinson, B.

    1995-01-01

    Suspensions of TiO 2 were illuminated with simulated or concentrated solar radiation to mineralize solutions of the herbicides Basagran, Diquat, and Diuron. The design of a functional recirculating system is reported. Decomposition rates were significantly increased when concentrated solar radiation was used. Decomposition rates also depend on the compound studied. This study demonstrates the possibility of using high intensity concentrated solar radiation for the TiO 2 -mediated photocatalytic decomposition of water-borne organic wastes. (author)

  9. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials

    International Nuclear Information System (INIS)

    Zhu, Jiaoyan; Yang, Yuehua; Gao, Yuping; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2014-01-01

    Interface states influence the operation of nanocrystal (NC) solar cell carrier transport, recombination and energetic mechanisms. In a typical CdTe NC solar cell with a normal structure of a ITO/p-CdTe NCs/n-acceptor (or without)/Al configuration, the contact between the ITO and CdTe is a non-ohm contact due to a different work function (for an ITO, the value is ∼4.7 eV, while for CdTe NCs, the value is ∼5.3 eV), which results in an energetic barrier at the ITO/CdTe interface and decreases the performance of the NC solar cells. This work investigates how interface materials (including Au, MoO x and C 60 ) affect the performance of NC solar cells. It is found that devices with interface materials have shown higher V oc than those without interface materials. For the case in which we used Au as an interface, we obtained a high open-circuit voltage of 0.65 V, coupled with a high fill factor (62%); this resulted in a higher energy conversion efficiency (ECE) of 5.3%, which showed a 30% increase in the ECE compared with those without the interlayer. The capacitance measurements indicate that the increased V oc in the case in which Au was used as the interface is likely due to good ohm contact between the Au’s and the CdTe NCs’ thin film, which decreases the energetic barrier at the ITO/CdTe interface. (paper)

  11. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  12. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    Directory of Open Access Journals (Sweden)

    L. Shen

    2014-02-01

    Full Text Available Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 1020 cm−3 and 7.78 × 1020 cm−3 and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%abs compared to conventional emitters with 50 Ω/□ sheet resistance.

  13. Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-09-28

    We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.

  14. Optimal year-round operation of a concentrated solar energy plant in the south of Europe

    International Nuclear Information System (INIS)

    Martín, Lidia; Martín, Mariano

    2013-01-01

    We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies

  15. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    International Nuclear Information System (INIS)

    García-Linares, Pablo; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-01-01

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I SC ) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications

  16. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    Energy Technology Data Exchange (ETDEWEB)

    García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Dominguez, César [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Instituto de Energía Solar - Universidad Politécnica de Madrid, Madrid (Spain); Dellea, Olivier; Fugier, Pascal [CEA-LITEN, Laboratoire de Surfaces Nanostructurées, Grenoble (France)

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  17. Fast and accurate methods for the performance testing of highly-efficient c-Si photovoltaic modules using a 10 ms single-pulse solar simulator and customized voltage profiles

    International Nuclear Information System (INIS)

    Virtuani, A; Rigamonti, G; Friesen, G; Chianese, D; Beljean, P

    2012-01-01

    Performance testing of highly efficient, highly capacitive c-Si modules with pulsed solar simulators requires particular care. These devices in fact usually require a steady-state solar simulator or pulse durations longer than 100–200 ms in order to avoid measurement artifacts. The aim of this work was to validate an alternative method for the testing of highly capacitive c-Si modules using a 10 ms single pulse solar simulator. Our approach attempts to reconstruct a quasi-steady-state I–V (current–voltage) curve of a highly capacitive device during one single 10 ms flash by applying customized voltage profiles–-in place of a conventional V ramp—to the terminals of the device under test. The most promising results were obtained by using V profiles which we name ‘dragon-back’ (DB) profiles. When compared to the reference I–V measurement (obtained by using a multi-flash approach with approximately 20 flashes), the DB V profile method provides excellent results with differences in the estimation of P max (as well as of I sc , V oc and FF) below ±0.5%. For the testing of highly capacitive devices the method is accurate, fast (two flashes—possibly one—required), cost-effective and has proven its validity with several technologies making it particularly interesting for in-line testing. (paper)

  18. Microcontroller-based system for analyzing and characterizing solar panels

    International Nuclear Information System (INIS)

    Jabbar, Muhandis Abdul; Prawito

    2016-01-01

    A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET device for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.

  19. Microcontroller-based system for analyzing and characterizing solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Muhandis Abdul, E-mail: muhandis.abdul@sci.ui.ac.id; Prawito [System and Instrumentation, Departemen Fisika, FMIPA Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET device for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.

  20. Construction and Study of Hetreojunction Solar Cell Based on Dodecylbenzene Sulfonic Acid-Doped Polyaniline/n-Si

    Directory of Open Access Journals (Sweden)

    I. Morsi

    2012-01-01

    Full Text Available Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag structure was investigated by using current-voltage (I-V, capacitance-voltage (C-V, and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (oc, short-circuit current density (sc, fill factor (FF, and energy conversion efficiency (η were calculated. The highest sc, oc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is 3.5×1014 and 1.0×1015/cm3 for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.

  1. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  2. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  3. Relationship between open-circuit voltage in Cu(In,Ga)Se2 solar cell and peak position of (220/204) preferred orientation near its absorber surface

    International Nuclear Information System (INIS)

    Chantana, J.; Minemoto, T.; Watanabe, T.; Teraji, S.; Kawamura, K.

    2013-01-01

    Cu(In,Ga)Se 2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V OC ) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V OC before solar cell fabrication

  4. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  5. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  6. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  7. Effect of applied voltage and initial concentration to desalting NaCl solution using electrodialysis

    International Nuclear Information System (INIS)

    Boubakri, Ali; Gzara, Lassaad; Dhahbi, Mahmoud; Bouguecha, Salah

    2009-01-01

    The desalination process of electrodialysis is one of membrane separation that competes with reverse osmosis for desalination of brackish water and seawater. In this work water desalination using a laboratory electrodialysis was performed and evaluated to desalting aqueous solutions containing 5000, 10000 and 20000 mg/L NaCl at different applied potential (10, 15 and 20 V) and at a constant flow rate of 3 L/min. Nine electrodialysis runs were performed. The results showed that the increasing of applied potential and decreasing of NaCl concentration have an important effect to enhance the electrodialysis performance. The efficiencies of each experiment were evaluated as function of specific power consumption with the electrical energy consumed in electrodialysis stack. It was obtained that the specific power consumption increased when the salt concentration and applied voltage increased. A laboratory electrodialysis stack containing fifteen cation exchange membranes and fifteen anion exchange membranes of 0,716 m 2 total effective area was used.

  8. Reversible electron–hole separation in a hot carrier solar cell

    International Nuclear Information System (INIS)

    Limpert, S; Bremner, S; Linke, H

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices. (paper)

  9. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Elkelawy, Medhat; Alm El Din, Hagar; Alghrubah, Adel

    2017-01-01

    Highlights: • The impact of PCM and solar concentrator on the production of solar still studied experimentally under Egyptian conditions. • Exergetic analysis studied for passive solar still in winter and summer at different water depth. • Experimental study of water depth effect on solar still with PCM and solar concentrator. • A comparison between improved still with and usual still is carried out for winter and summer. - Abstract: In the present study, two solar stills were assembled and experienced to evaluate the yield and energy performance of an improved passive solar desalination system compared to a conventional one. The improved still is incorporated with a latent heat thermal energy storage medium and a parabolic solar concentrator. A parabolic solar concentrator was added to concentrate and increase the amount of solar irradiance absorbed by the still basin. Paraffin wax was applied as phase change material (PCM) in the solar still bottom plate. In the current study also, the effect of impure water profundity inside the still on still’s accumulated yield have been assessed. The following study involved a mathematical analysis for calculation of the exergetic proficiency as an efficient tool for the optimization, and yield evaluation of any energy systems and solar stills as well. Experimental research conducted in steady days of summer and winter at six different values of impure water profundity inside the solar still basin. The salinity of the impure water tested was about 3000–5000 ppm, while the salinity for the resulted drinkable water was about 550–500 ppm. The performed outcomes revealed that during summer, exergetic efficiency is higher than its qualified value in winter with approximately (10–15%) for the same water profundity. Results also disclosed that, the exergetic efficiency is higher when the water profundity in the basin is lower with approximately (6–9%). The experimental findings reveals that, the solar still with

  10. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility

    International Nuclear Information System (INIS)

    Li Zhigang; Tang Dawei; Du Jinglong; Li Tie

    2011-01-01

    Uniform heater temperature and high optical-thermal efficiency are crucial for the reliable and economical operation of a Solar Dish/Stirling engine facility. The Monte-Carlo ray-tracing method is utilized to predict the radiation flux distributions of the concentrator-receiver system. The ray-tracing method is first validated by experiment, then the radiation flux profiles on the solar receiver surface for faceted real concentrator and ideal paraboloidal concentrator, irradiated by Xe-arc lamps and real sun, for different aperture positions and receiver shapes are analyzed, respectively. The resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the fluid flow and conjugate heat transfer in the receiver cavity by coupling the radiation, natural convection and heat conduction together, and the CFD method is also validated through experiment. The results indicate that a faceted concentrator in combination with a solar simulator composed of 12 Xe-arc lamps is advantageous to drive the solar Stirling engine for all-weather indoor tests. Based on the simulation results, a solar receiver-Stirling heater configuration is designed to achieve a considerably uniform temperature distribution on the heater head tubes while maintaining a high efficiency of 60.7%. - Highlights: → Radiation flux in Dish/Stirling system is analyzed by validated ray-tracing method. → Temperature field on the solar receiver is analyzed by a validated CFD method. → Effects of Xe-arc lamp solar simulator and faceted real concentrator are analyzed. → Effects of different receiver positions and receiver shapes are investigated. → A Stirling heater configuration is presented with uniform temperature field.

  11. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N. [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Schwenk, Johannes [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Nanoscale Materials Science, Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  12. Investigation of Technological Operations Affecting the Determination of Concentration of Ionol Additive in Insulating Oil in High-Voltage Equipment

    Directory of Open Access Journals (Sweden)

    Korobeynikov S.M.

    2018-04-01

    Full Text Available Ionol oxidation inhibitor level control is included into normative indicators list for diagnostics of internal insulation condition of any oil-filled high voltage device. Concentration of oxidation inhibitor in dielectric liquid should be from 0,08 % to 0,40 % mass. Power supply network chemistry laboratories use such methods as spectroscopy, spectrometry, chromatography and many others. Russian insulation service specialists use the method of ionol concentration measurement in oils based on gas-liquid chromatography. In the first place it is related to the fact that gas chromatographs are installed for several tasks, including definition of inhibitor’s mass concentration. However, as practice shows, the use of this method for additive analysis, especially in old acidified mineral oils is linked to some difficulties. The aim of this work is identify technologic faults that may occur during definition of ionol inhibitive additive in dielectric liquid with gas-liquid chromatography method, and, as a consequence, may lead to incorrect calculation of ionol additional concentration to oil, necessary for its antioxygenic properties maintenance and high insulation quality provision during high voltage device functioning. The object of the research is insulating oil with more than 35 years’ operating cycle, presenting a complex multiplex matrix of hydrocarbons and oxygenates preventing reliable determination of ionol additive with gas-liquid chromatography method. Executed researches show that the main input into “correct” final result obtention during calculation of additional additive concentration was made by such technological operations as water content in extractant and technology of sample introduction into chromatograph’s evaporation tank

  13. Concentrated solar power (CSP innovation analysis in South Africa

    Directory of Open Access Journals (Sweden)

    Craig, Toyosi Onalapo

    2017-08-01

    Full Text Available South Africa aims to generate 42 per cent of its electricity from renewable energy technology sources by 2030. Concentrating solar power (CSP is one of the major renewable energy technologies that have been prioritised by South Africa, given the abundant solar resources available in the region. Seven CSP plants have been, or are being, built; three of them are already connected to the national grid. However, the impacts of this technology on South African research, development, and innovation have not been investigated to date. This paper thus analyses the CSP technologies in South Africa in terms of the existing technology adoption models and diffusion strategies, used by government and its agencies, to improve the development and deployment of these technologies. It is found that CSP has been treated generally like other renewable energy technologies through the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP, although a tariff plan for CSP plants of the future has been made. No specific technology diffusion or adoption model for CSP was found; so this paper explores how it can be developed.

  14. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  15. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  16. Evaluation of the optical quality of compound parabolic concentrator solar collectors; Avaliacao da qualidade otica de coletores solares concentradores parabolicos compostos

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica

    1990-12-31

    This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.

  17. Investigation of Defects Origin in p-Type Si for Solar Applications

    Science.gov (United States)

    Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek

    2017-07-01

    In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.

  18. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    Science.gov (United States)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  19. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    Science.gov (United States)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  20. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    International Nuclear Information System (INIS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-01-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells