WorldWideScience

Sample records for voltage bandgap reference

  1. INVESTIGATION ON EMI EFFECTS IN BANDGAP VOLTAGE REFERENCES

    OpenAIRE

    Fiori, Franco; Crovetti S., Paolo

    2002-01-01

    International audience; In this paper the susceptibility of integrated bandgap voltage references to Electromagnetic Interference (EMI) is investigated by on-chip measurements carried out on Kuijk and Tsividis bandgap circuits. These measurements highlight the offset in the reference voltage induced by continuous wave (CW) EMI and the complete failures which may be experienced by bandgap circuits. The role of the susceptibility of the startup circuit and of the operational amplifier which are...

  2. Low voltage bandgap reference with closed loop curvature compensation

    Science.gov (United States)

    Tao, Fan; Bo, Du; Zheng, Zhang; Guoshun, Yuan

    2009-03-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5 μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5 μm CMOS technology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/°C and 1.2 mV/V, respectively.

  3. Low voltage bandgap reference with closed loop curvature compensation

    Institute of Scientific and Technical Information of China (English)

    Fan Tao; Du Bo; Zhang Zheng; Yuan Guoshun

    2009-01-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5μm CMOS tech-nology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/℃ and 1.2 mV/V, respectively.

  4. Negative voltage bandgap reference with multilevel curvature compensation technique

    Science.gov (United States)

    Xi, Liu; Qian, Liu; Xiaoshi, Jin; Yongrui, Zhao; Lee, Jong-Ho

    2016-05-01

    A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compensation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165 °C (-40 to 125 °C) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm BCD technology demonstrates an accurate voltage of -1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/°C over the TR of 165 °C at a -5.0 V power supply; the line regulation is 3 mV/V from a -5 to -2 V supply voltage. The active area of the presented NBGR is 370 × 180 μm2. Project supported by the Fund of Liaoning Province Education Department (No. L2013045).

  5. A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. It generates a wide range of voltage reference ranging from sub- 1V to 1.221 7 V and has a low temperature coefficient of 2.3 × 10 - 5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1.221 685 ± 0.055 mV.

  6. A sub-1 V high-precision CMOS bandgap voltage reference

    Institute of Scientific and Technical Information of China (English)

    廖峻; 赵毅强; 耿俊峰

    2012-01-01

    A third-order,sub-1 V bandgap voltage reference design for low-power supply,high-precision applications is presented.This design uses a current-mode compensation technique and temperature-dependent resistor ratio to obtain high-order curvature compensation.The circuit was designed and fabricated by SMIC 0.18μm CMOS technology.It produces an output reference of 713.6 mV.The temperature coefficient is 3.235 pprn/℃ in the temperature range of-40 to 120 ℃,with a line regulation of 0.199 mV/V when the supply voltage varies from 0.95 to 3 V.The average current consumption of the whole circuit is 49 μA at the supply voltage of 1 V.

  7. High-PSRR High-Order Curvature-Compensated CMOS Bandgap Voltage Reference

    Institute of Scientific and Technical Information of China (English)

    Qianneng Zhou; Yunsong Li; Jinzhao Lin; Hongjuan Li; Yu Pang; Wei Luo

    2015-01-01

    A high⁃PSRR high⁃order curvature⁃compensated CMOS bandgap voltage reference (BGR), which has the performances of high power supply rejection ratio ( PSRR) and low temperature coefficient, is designed in SMIC 0�18 μm CMOS process. Compared to the conventional curvature⁃compensated BGR which adopted a piecewise⁃linear current, the temperature characterize of the proposed BGR is effectively improved by adopting two kinds of current including a piecewise⁃linear current and a current proportional 1�5 party to the absolute temperature T. By adopting a low dropout ( LDO) regulator whose output voltage is the operating supply voltage of the proposed BGR core circuit instead of power supply voltage VDD , the proposed BGR with LDO regulator achieves a well PSRR performance than the BGR without LDO regulator. Simulation results show that the proposed BGR with LDO regulator achieves a temperature coefficient of 2�1 × 10-6/℃ with a 1�8 V power supply voltage and a line regulation of 4�9 μV/V at 27 ℃. The proposed BGR with LDO regulator at 10 Hz, 100 Hz, 1 kHz, 10 kHz and 100 kHz have the PSRR of -106�388, -106�388, -106�38, -105�93 and-88�67 dB respectively.

  8. A band-gap voltage reference for interface circuit of microsensor

    Institute of Scientific and Technical Information of China (English)

    CAO Yi-jiang; XIAO Fei; ZHANG Er-dong

    2010-01-01

    A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsenser and compatible with 0.6 μm (double poly) mix process is proposed in this paper.The circuit can be employed in the range of 1.8-8 V and carry out the first-order PTAT (proportional to absolute temperature) temperature compensation.Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR (power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased.Results from HSPICE simulation show that the PSRR is -72.76 dB in the condition of low-frequency,the temperature coefficient is 2.4×10-6 in the temperature range from-10 ℃ to 90℃ and the power dissipation is only 14 μW when the supply voltage is 1.8 V.

  9. Low Supply Bandgap Voltage Reference%低电压基准电压源

    Institute of Scientific and Technical Information of China (English)

    毛静文; 陈廷乾; 陈诚; 任俊彦; 杨励

    2006-01-01

    A low power and high precision CMOS bandgap voltage reference circuit is presented. Prototype of the circuit is fabricated using the 0.18 μm CMOS process. It fulfills the first order PTAT (Proportion To Absolute Temperature) temperature curvature compensation with a good PSRR (Power Supply Rejection Ratio). The measured results of this circuit at 1.5 V show that the PSRR is 47 dB. And the output voltage varies from 1. 114-1. 117 V which is constant within 0. 269 % over the temperature range of 0 - 80 ℃. The power dissipation is 0.22 mW and the active area is 0. 057 mm2.%设计了一个低电源电压的高精密的CMOS带隙电压基准源,采用SMIC 0.18μm CMOS工艺.实现了一阶温度补偿,具有良好的电源抑制比.测试结果表明,在1.5 V电源电压下,电源抑制比为47 dB,在0~80℃的温度范围内,输出电压变化率为0.269%,功耗为0.22 mW,芯片核面积为0.057 mm2.

  10. A 150-nA 13.4-ppm/℃ switched-capacitor CMOS sub-bandgap voltage reference*

    Institute of Scientific and Technical Information of China (English)

    Yan Wei; Li Wenhong; Liu Ran

    2011-01-01

    A nanopower switched-capacitor CMOS sub-bandgap voltage reference has been implemented using a Chartered 0.35-μm 3.3-V/5-V dual gate mixed-signal CMOS process The proposed circuit generates a precise sub-bandgap voltage of l V. The temperature coefficient of the output voltage is 13.4 ppm/℃ with the temperature varying from-20 to 80 ℃ The proposed circuit operates properly with the supply voltage down to 1.3 V, and consumes 150 nA at room temperature. The line regulation is 0.27%/V The power supply rejection ratio at 100 Hz and l MHz is -39 dB and 51 dB, respectively. The chip area is 0.2 mm2.

  11. A bandgap design of reference voltage source%一种带隙基准电压源设计

    Institute of Scientific and Technical Information of China (English)

    冯新宇; 蒋洪波

    2012-01-01

    基准电压源是在电路系统中为其它功能模块提供高精度的电压基准.它是模拟集成电路和混合集成电路中非常重要的模块。文中主要研究了带隙基准基本原理的基础上。设计了一款应用于折叠插值ADC中粗量化电路部分CMOS带隙基准源。最后通过Pspice仿真给出了实验仿真的结果。%The voltage reference is provided high-precision voltage for the other functional modules of reference circuit system. It is a very important module of analog integrated circuits and hybrid integrated circuits. In this paper, the basic principle of the bandgap reference on the design of a folding and interpolation ADC circuit part of the coarse quantization CMOS bandgap reference. At last, it gets the results of experimental simulation of Pspice simulation.

  12. A New High Precision Low Voltage CMOS Bandgap Reference%一种新型高精度低压CMOS带隙基准电压源

    Institute of Scientific and Technical Information of China (English)

    陈迪平; 吴旭; 黄嵩人; 季惠才; 王镇道

    2012-01-01

    为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生△Vbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18 μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8 ppm/℃,电源抑制比达到-130 dB,并成功运用于16位高速ADC芯片中.%The offset voltage of the OP directly influences the precision of the output voltage reference. To cancel the offset voltage, this paper adopts NPN to produce △Vbe and designs a new feedback loop structure to produce a low voltage bandgap reference. The circuit is designed in SMIC 0. 18 μm CMOS process. The temperature coefficient of this low voltage bandgap reference is 8 ppm/℃ The PSRR is -130 dB and the design output voltage is 0. 5 V. The circuit has been successfully applied at a high speed, 16 bit ADC.

  13. A New Opamp-less CMOS Bandgap Voltage Reference Circuit%一种新型无运放CMOS带隙基准电路

    Institute of Scientific and Technical Information of China (English)

    冯树; 王永禄; 张跃龙

    2012-01-01

    Theory of bandgap reference voltage and conventional bandgap reference circuits were presented, and a novel bandgap reference circuit without op-amp was designed. In the circuit, MOS current mirrors and negative feedback clamping technique were used to avoid the use of operational amplifier, thus eliminating effects of offset and power supply rejection ratio (PSRR) of the operational amplifier on accuracy of bandgap voltage reference. Based on 0. 18 μm standard CMOS process, the circuit was simulated using Spectre of Cadence. Simulation results showed that the bandgap voltage reference circuit had a temperature coefficient of 6. 73 ×10-6/℃ in the temperature range from -40 °C to 125 ℃, and a PSRR of 54. 8 dB, and it consumed 0. 25 mW of power from 2. 5 V supply.%介绍了带隙基准原理和常规的带隙基准电路,设计了一种新型无运放带隙基准电路.该电路利用MOS电流镜和负反馈箝位技术,避免了运放的使用,从而消除了运放带隙基准电路中运放的失调电压和电源抑制比等对基准源精度的影响.该新型电路比传统无运放带隙基准电路具有更高的精度和电源抑制比.基于0.18μm标准CMOS工艺,在Cadence Spectre环境下仿真.采用2.5V电源电压,在-40℃~125℃温度范围的温度系数为6.73×10-6/℃,电源抑制比为54.8dB,功耗仅有0.25 mW.

  14. Adjustable low-voltage bandgap reference on chip%在芯片可调低电压带隙基准源设计

    Institute of Scientific and Technical Information of China (English)

    孙峥; 石会; 马光彦; 徐勇; 黄颖

    2014-01-01

    With the development of CMOS process and wide application of low-voltage bandgap reference, the low-voltage bandgap reference design based on CMOS process has great practical significance.An ad-j ustable low-voltage bandgap reference based on bandgap core was presented in this paper,and an adj usta-ble output voltage with zero temperature coefficient at room temperature needed by the high speed dual-modulus divider could be realized by paralleling minimum number of resistors next to the bipolar tran-sistor.In addition,some influencing factors such as feedback loop,offset voltage and open-loop gain of OPA were discussed,and correlative analysis formulas given.The circuit is fabricated in 0.18μm standard CMOS process and simulation results show that the power supply rejection ratio (PSRR)is -48 dB,and that the temperature coefficient is 8.3×10-6/℃ in the temperature range from-40 ℃ to+125 ℃.Above data demonstrate that the circuit gains good comprehensive performance including low- temperature drift,high- precision and so on which can meet the demands of system design completely.%为高速双模预分频器提供所需的稳定的参考电平,提出了一种基于带隙基准核的在芯片可调低电压带隙基准源电路设计方法,通过在双极型晶体管的附近并联少量电阻,获得数值可调的、常温下具有零温度系数的低电压基准。讨论了运放的反馈环路、失调电压以及开环增益等各项因素对基准电压精度的影响,并给出了相关的分析公式。设计采用0.18μm 数模混合 CMOS 工艺。仿真结果表明,电路的电源抑制比(PSRR)为-48 dB,-40℃~+125℃温度变化范围内的温漂系数为8.3×10-6/℃。电路综合性能良好,能满足低温漂、高精度的设计要求。

  15. Design of CMOS bandgap voltage reference circuit with high PSR%一种高PSR CMOS带隙基准电路设计

    Institute of Scientific and Technical Information of China (English)

    贺志伟; 姜岩峰

    2014-01-01

    为了降低芯片电路功耗,电源电压需要不断的减小,这将导致电源噪声对基准电压产生严重影响。为此针对这一问题进行相关研究,采用SMIC 0.18μm工艺,设计出一种低功耗、低温度系数的高PSR带隙基准电压源。仿真结果表明,该设计带隙基准源的PSR在50 kHz与100 kHz分别为-65.13 dB和-53.85 dB;在2~6 V电源电压下,工作电流为30μA,温度系数为30.38 ppm/℃,电压调整率为71.47μV/V。该带隙基准适用于在低功耗高PSR性能需求的LDOs电路中应用。%The power supply voltage needs to be constantly decreased to meet the requirement of reducing the low-power consumption of IC,but it may lead to the negative impact of power supply noise on the reference voltage. A low-power consump-tion bandgap voltage reference with high PSR (power supply rejection) and low-temperature coefficent was design based on in SMIC0.18μm process. The simulation results show that the PSR of the bandgap reference source is -65.13 dB at 50 kHz and -53.85 dB at 100 kHz respectively;at 2~6 V supply voltage,the supply current is 30 μA,the temperature coefficient is 30.38 ppm/℃,and the voltage regulation rate is 71.47 μV/V. The bandgap voltage reference is suitable for LDOs circuit which has the requirements of low-power consumption and high PSR.

  16. A Second-Order Curvature-Compensated Band-Gap Voltage Reference%一种二阶曲率补偿带隙基准电压源

    Institute of Scientific and Technical Information of China (English)

    张宗航; 赵毅强; 耿俊峰

    2012-01-01

    利用CMOS工艺中Poly电阻和N-well电阻温度系数的不同,设计了一种输出可调的二阶曲率补偿带隙基准电压源.采用Chartered0.35μmCMOS工艺模型,使用Cadence工具对电路进行了仿真,结果表明电路在电源电压为1.8V时可正常工作,当其在1.8-3V范围内变化时,基准电压变化仅有3.8mV;工作电压为2V时,输出基准电压在-40℃到80℃的温度范围内温度系数为1.6ppm/℃,工作电流为24μA,低频下的电源抑制比为-47dB该带隙基准电压源的设计可以满足低温漂、高稳定性、低电源电压以及低功耗的要求.%A second-order curvature-compensated bandgap voltage reference with adjustable output voltage is presented, which employs the different temperature coefficients between poly resistor and N-well resistor in the CMOS process. The circuit was simulated by Cadence tool with Chartered 0.35μm CMOS model. The results show that the circuit can operate down to a 1.8V supply, the variation of the output voltage is only 3.8 mV. The temperature coefficient of the output voltage reference is 1.6 ppm℃ from -40 ℃ to 80 ℃and the current is 24μA at supply voltage of 2 V, and the power supply rejection ratio (PSRR) is-47 dB at low-frequency. The bandgap voltage reference meets the need of low temperature coefficient, high stability, low supply voltage and low power consumption.

  17. A Low Temperature Coefficient Bandgap Voltage Reference Source%一种低温度系数带隙基准电压源

    Institute of Scientific and Technical Information of China (English)

    孙大开; 李斌桥; 徐江涛; 李晓晨

    2012-01-01

    描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路.基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路.采用SMIC 0.18 μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5 mV,温度系数不超过7×1006/℃.低频下的电源抑制比为-107 dB,在10 kHz下,电源抑制比可达到-90 dB.整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05 mW.%A bandgap voltage reference source with high PSRR and low temperature coefficient was presented, in which low temperature coefficient was achieved by switching between bandgap voltages at different zero-temperature coefficient points, and a power noise rejection circuit was designed. The circuit was simulated with Spectre of Cadence based on SMIC's 0. 18 祄 CMOS process. Simulation results showed that the circuit had a voltage swing less the 0. 5 mV, a max temperature coefficient of 7X 10-6/?in the temperature range from -20 'C to 120 ?, a PSSR of -107 dB and -90 dB at DC power supply and 10 kHz of AC frequency, respectively. The bandgap reference source could start properly at a supply voltage higher than 2. 3 V, and it dissipated 1. 05 mW of power from a 3. 3 V supply.

  18. 基于LDO电压调整器的带隙基准电压源设计%Based on the LDO voltage regulator of design of band-gap voltage reference

    Institute of Scientific and Technical Information of China (English)

    张颖斐; 姜生瑞; 郭丽芳

    2012-01-01

    设计一款应用于电压调整器(LDO)的带隙基准电压源。电压基准是模拟电路设计必不可缺少的一个单元模块,带隙基准电压源为LDO提供一个精确的参考电压,是LDO系统设计关键模块之一。本文设计的带隙基准电压源采用0.5μm标准的CMOS工艺实现。为了提高电压抑制性,采用了低压共源共栅的电流镜结构,并且在基准内部设计了一个运算放大器,合理的运放设计进一步提高了电源抑制性。基于Cadence的Spectre进行前仿真验证,结果表明该带隙基准电压源具有较低的变化率、较小的温漂系数和较高的电源抑制比,其对抗电源变化和温度变化特性较好。%Design of an applied voltage regnlator ( LDO ) to the bandgap reference voltage source. Voltage reference is indispensable to a unit module to analog circuit design, Bandgap reference voltage source to provide a precise reference voltage for the LDO, It Is one of the key modules of the LDO system design. In this paper, the design of bandgap voltage reference with 0.5 pL m standard CMOS technology. In order to improve the voltage suppressor, adopts a low-voltage cascode current mirror structure, and in the base internal design of an operational amplifier, a reasonable operational amplifier design further improve power s suppressor. Based on the Cadence Spectre simulation validation, The results show that the band gap reference voltage source has a low rate of change, small temperature drift coefficient and high power supply, its combat power change and temperature change characteristics of good.

  19. 斩波调制的1.25V CMOS带隙基准电压源%1.25V Chopped CMOS Bandgap Voltage Reference Source

    Institute of Scientific and Technical Information of China (English)

    黄灿灿

    2014-01-01

    带隙基准电压源广泛应用在模拟集成电路中,为集成电路芯片系统提供稳定的直流参考电压,是电路设计中不可或缺的一个单元模块。设计了1.25V CMOS 带隙基准电压源电路,采用斩波调制技术改进了电路结构,以提高输出基准电压的精度。基于CSMC 0.5μm CMOS 工艺,使用Cadence工具对未采用斩波调制的电路和采用斩波调制的电路的输出电压分别在typical工艺角下进行仿真。仿真结果显示,采用斩波调制后,输出基准电压由1.05V变化到1.21V,误差由16%减小到了3.28%。%As one of the most important unit or module, bandgap voltage reference source is widely used in analog integrated circuits, in order to provide stable DC reference for the integrated circuits (IC) chip systems. A 1.25V CMOS bandgap voltage reference source is designed and the schematic diagram is restructured by adding chopper structure to improve the accuracy of output reference voltage. In this paper, based on CSMC’s 0.5μm CMOS process, the output voltages of the circuit without chopped structure and the chopped circuit is respectively simulated under typical process corner with Cadence tools. The simulation results show that output voltage of circuit changes from 1.06V to 1.21V by adding chopped structure;the error of output accuracy is decreased from16%to 3.28%.

  20. 一种高电源抑制比的带隙基准电压源的设计%Design of a High PSRR Bandgap Voltage Reference

    Institute of Scientific and Technical Information of China (English)

    屠莉敏; 何颖; 易峰

    2014-01-01

    提出一种采用BiCMOS工艺的低功耗、高电源抑制比、低温度系数的带隙基准电压源(BGR)设计。该模块基本原理是利用具有正温度系数的热电压VT和具有负温度系数的双极型晶体管VBE叠加产生与温度和电源电压无关的基准电压VREF。该设计中带隙基准电压在25℃时,为1.242 V左右。温度从-40~120℃变化时,带隙基准电压变化10 mV,可以计算出温度系数为60×10-6℃-1。%A high PSRR and low temperature coefifcient BiCMOS bandgap reference was presented. In the design, the cascade current mirror is used in the circuit, and the output of the OPAMP is used for the bias of itself and to drive the next stage, in the same time PTAT temperature compensate is carried out. In the design of the paper, the output voltage is 1.242 V, while the temperature is 25℃. With the temperature range of-40~120℃, the bandgap reference voltage difference is 10 mV, which demonstrates the 60×10-6℃-1 temperature ratio.

  1. 一种高性能带隙基准电压源设计%A High-Performance CMOS Bandgap Voltage Reference

    Institute of Scientific and Technical Information of China (English)

    杨霄垒; 张沁枫; 蒋颖丹

    2015-01-01

    Compared with the structure of conventional CMOS bandgap voltage reference circuits, a high-performance circuit based on first-order temperature compensation is designed in the paper. A differential amplifier is used for the bandgap reference negative feedback amplifier, while the output biases the PMOS current source to achieve high power supply rejection ratio. The Spectre simulation results show that the circuit has temperature coefficient of 4.18×10-6℃/ from -55℃ to 125℃, and PSRR of -94 dB. It is implemented in SMIC 65 nm CMOS process with area of 0.5×0.1mm2 and power consumption of 0.56 mW.%对比分析传统的CMOS带隙基准电压源电路结构,基于一阶温度补偿设计一种高性能带隙基准电压源。电路采用基本差分放大器作为电路负反馈运放,运放输出用作PMOS电流源偏置,提高共模抑制比。Spectre仿真结果显示在-55~125℃温度范围内温度系数为4.18×10-6/℃,低频下电源抑制比达到-94 dB。在SMIC 65 nm CMOS工艺下,芯片面积为0.5×0.1 mm2,功耗为0.56 mW。

  2. 基于低压高精度运放的带隙基准电压源设计%Design of Band-Gap Voltage Reference Based on Low Voltage and High Precision Operational Amplifier

    Institute of Scientific and Technical Information of China (English)

    黄静; 唐路; 陈庆; 施敏

    2012-01-01

    基于传统带隙基准源的电路结构,采用电平移位的折叠共源共栅输入级和甲乙类互补推挽共源输出级改进了其运算放大器的性能,并结合一阶温度补偿、电流负反馈技术设计了一款低温度系数、高电源电压抑制比(PSRR)的低压基准电压源.利用华润上华公司的CSMC 0.35 μm标准CMOS工艺对电路进行了Hspice仿真,该带隙基准源电路的电源工作范围为1.5~2.3 V,输出基准电压为(600±0.2) mV;工作温度为10 ~130 ℃,输出电压仅变化8μV,温度系数为1.86×10-6/℃,低频时PSRR为- 72 dB.实际流片进行测试,结果表明达到了预期结果.%A low voltage band-gap voltage reference with good temperature characteristics and high power supply rejection ratio ( PSRR) was designed by temperature compensation, current negative feedback and high performance operational amplifier technology. The improved operational amplifier, the core circuit of the voltage reference, was constituted with a folded-cascade input and a common-source output gain stage. This band-gap voltage reference was simulated by Hspice software with CSMC 0. 35 (xm CMOS process technology model. The results show that the output voltage of voltage reference is (600 ±0. 2) mV with the power operating from 1.5 V to 2. 3 V. The temperature coefficient is 1. 86 × 10-6/℃ with the temperature range from 10 ℃ to 130 ℃ and the output voltage only change is 8 μV. And the PSRR is -72 dB at low frequency. Test results are very consistent with the expected results.

  3. Design of Bandgap Reference in Switching Power Supply

    Institute of Scientific and Technical Information of China (English)

    XU Li; NIU Ping-juan; FU Xian-song; DING Ke; PENG Xiao-lei

    2009-01-01

    A bandgap voltage reference is designed to meet the requirements of low power loss,low temperature coefficient and high power source rejection ratio(PSRR) in the intergrated circuit.Based on the analysis of conventional bandgap reference circuit,and combined with the integral performance of IC,the specific design index of the bandgap reference is put forward.In the meantime,the circuit and the layout are designed with Chartered 0.35 μm dual gate CMOS process.The simulation result shows that the coefficient is less than 30ppm/℃ with the temperature from -50℃ to 150℃. The bandgap reference has the characteristics of low power and high PSRR.

  4. A high PSRR CMOS bandgap voltage reference%一种高电源抑制比的CMOS带隙基准电压源

    Institute of Scientific and Technical Information of China (English)

    周前能; 段晓忠; 李红娟

    2013-01-01

    A high power supply rejection ratio (PSRR) CMOS bandgap reference (BGR),which adopt a pre-regulator,is designed in this paper.To facilitate comparison,BGRs with-and without-pre-regulator are,respectively,design and simulate in the CSMC O.5 μm standard CMOS process technology.Simulation results show that PSRR of designed BGR with preregulator achieves,respectively,-117.3 dB,-106.2 dB and-66.2 dB at 100 Hz,1 kHz and 100 kHz,while PSRR of BGR without pre-regulator had only,respectively,-81.8 dB,-80.1 dB and-44.9 dB at 100 Hz,1 kHz and 100 kHz.The BGR with pre-regulator achieve the temperature coefficient of 6.39 ppm/℃ in temperature range from-15 ℃ to 90 ℃.When power supply voltage Vdd changes from 2.2 to 8V,output voltage deviation of the BGR with pre-regulator is only 9.73 μV.%设计了一种采用前调整器的高电源抑制比的CMOS带隙基准电压源.基于CSMC 0.5 μm标准CMOS工艺,分别对有前调整器与没有前调整器的CMOS带隙基准电压源进行了设计与仿真验证.仿真结果显示,采用前调整器的带隙基准在100 Hz、1 kHz、100 kHz处分别获得了-117.3 dB、-106.2 dB、-66.2 dB的高电源抑制比,而没有采用前调整器的CMOS带隙基准在100 Hz、1 kHz、100 kHz处仅分别获得了-81.8、-80.1、-44.9 dB的电源抑制比;在-15 ~90℃范围内,采用前调整器的带隙基准的温度系数为6.39 ppm/℃;当电源电压在2.2 ~8 V变化时,采用调整器的带隙基准的输出电压变化仅9.73μV.

  5. High PSRR bandgap reference used in boost circuit

    Science.gov (United States)

    Li, Yi; Duan, Baoxing; Wang, Yong; Yang, Yintang

    2017-03-01

    Based on pre-regulated voltage structure, a voltage bandgap reference with high power supply rejection ratio (PSRR) is presented in this paper. A pre-regulated voltage structure is used in the circuit to achieve isolating the supply voltage of the bandgap core circuit from VDD to reach a high PSRR. The circuit was designed and simulated in 0.35um BCD technology. The results show the output voltage variation versus temperature (-50°C -100°C) is 8.8 ppm/°C, bandgap reference voltage is 1.236V, current consumption is 30.3 µA. Noise is 53.54 µV/Hz-1/2 at 1Hz. PSRR is -91dB at low frequency, -90.3dB at 1 kHz and -30.3dB at 1MHz. thus, the circuit maintains a good performance in PSRR through a broad frequency.

  6. 一种高电源抑制比全工艺角低温漂CMOS基准电压源%A bandgap voltage reference with high PSRR and low temperature drift at the all process corners

    Institute of Scientific and Technical Information of China (English)

    方圆; 周凤星; 张涛; 张迪

    2012-01-01

    A bandgap voltage reference circuit which has high PSRR and low temperature drift at all Process Corners was presented based on SMIC's 0.35μm CMOS process. First, a high PSRR voltage reference is amplified by a voltage amplifier to get a stabilized voltage, which then is provided to bandgap core as power supply, so as to get high PSRR. Besides, set the key resistor tunable to adjust the positive voltage temperature coefficient, so as to meeting the negative voltage temperature coefficient change under different processes, and ultimately getting a bandgap voltage reference with low temperature coefficient at all processe. Cadence virtuoso simulation results showed that the circuit had a PSRR -109 dB (10 Hz)and --64 dB (10 kHz) at 27℃ and a temperature coefficient below 3.2×10^-6/℃ at all processes under 4 V supply voltage from-40-80℃.%基于SMIC0.35μm的CMOS工艺.设计了一种高电源抑制比,同时可在全工艺角下的得到低温漂的带隙基准电路。首先采用一个具有高电源抑制比的基准电压。通过电压放大器放大得到稳定的电压,以提供给带隙核心电路作为供电电源.从而提高了电源抑制比。另外,将电路中的关键电阻设置为可调电阻,从而可以改变正温度电压的系数,以适应不同工艺下负温度系数的变化,最终得到在全工艺角下低温漂的基准电压。Cadencevirtuoso仿真表明:在27℃下.10Hz时电源抑制比(ISRR)-109dB,10kHz时(esRR)达到-64dB;在4V电源电压下,在-40~80℃范围内的不同工艺角下.温度系数均可达到5.6×10^-6 V/℃以下。

  7. Design of 0.18 μm CMOS bandgap reference voltage source%0.18μm CMOS带隙基准电压源的设计

    Institute of Scientific and Technical Information of China (English)

    陈双文; 刘章发

    2011-01-01

    Reference voltage source can be used broadly in ADC, DAC, RAM, flash memory and other integrated circuit. This paper designed a high stability, low temperature coefficient and 0.6 V output bandgap reference voltage source using 0.18 μm CMOS.%基准电压源可广泛应用于A/D、D/A转换器、随机动态存储器、闪存以及系统集成芯片中.使用0.18 μm CMOS工艺设计了具有高稳定度、低温漂、低输出电压为0.6 V的CMOS基准电压源.

  8. 一种采用斩波调制的高精度带隙基准源的设计%Design of High Precision Bandgap Voltage Reference with Chopped Modulator

    Institute of Scientific and Technical Information of China (English)

    杨晓春; 于奇; 宋文青; 董铸祥; 郑志威

    2013-01-01

    为了抑制运算放大器的输入失调电压对带隙基准源的影响,提高输出电压的精度,基于斩波调制技术,设计了一种高精度带隙基准源电路.通过0.25 μm BiCMOS工艺模型仿真验证,结果表明,运算放大器的差分输入对管的失配为±2%时,该基准源的输出电压波动峰峰值为0.38 mV,与传统带隙基准源相比,相对精度提高了113倍.当电源电压在2.5~6.0V内,基准电压源的波动小于0.085 mV,温度为-40~125℃时,电路的温度系数为19ppm/℃.%A high precision bandgap voltage reference with chopped modulator is presented in this paper. The chopper modulator is used to compensate the Random error caused by the offset of the opamp and improve the accuracy of the bandgap refrence. In the 0. 25 μm BiCMOS models, Results from simulation showed that, Considering ±2% mismatch of input pairs respectively, the peak-to-peak value of the output ripple is 0. 38 mV. The relative accuracy is increased by 113 times compared with the traditional bandgap voltage reference. With supply voltage range from 2. 5 V to 6. 0 V, the variation of the output is approximately 0. 085 mV. In the temperature range from -40℃ to 125℃ ,the bandgap voltage reference had a temperature coefficient of 19 ppm/℃.

  9. Design of a Bandgap Voltage Reference with a Low Temperature Coefficient%一种低温度系数的带隙基准电压源设计

    Institute of Scientific and Technical Information of China (English)

    张瑛; 王剑; 周洪敏

    2016-01-01

    基准电压源是集成电路系统中的重要组成部分,其性能直接影响系统的稳定性和鲁棒性。温度系数是基准电压源的重要性能指标之一,而高阶温度补偿技术是降低基准源温度系数的有效方法。基于标准0.18μm CMOS工艺,设计了一种低温度系数的带隙基准电压源,采用电流模结构的带隙基准电路实现了低电源电压工作,并通过VBE线性化补偿技术实现了在低压下的高阶温度补偿。所设计的 CMOS 带隙基准电压源在-40~125℃的范围内,温度系数为6.855 ppm/℃,低频时电源电压抑制比达到了-95 dB,而电源电压在0.6~1.8 V范围内变化时线性调整率仅为0.2%。仿真实验结果表明,该电路结构能够有效提升带隙基准电压源的温度性能。%The reference voltage source is an important part of the integrated circuit system,and it has a direct impact on the stability and robustness of the system. The temperature coefficient is one of the important performances of the reference voltage source,and the high-order temperature compensation technology is an effective way to reduce the temperature coefficient. A bandgap voltage reference with a low temperature coefficient is designed based on standard 0. 18μm Complementary Metal Oxide Semiconductor ( CMOS) process. The current mode structure is used to make the circuit working under the low power supply voltage,and the linear compensation technology is applied to complete the high order temperature compensation. The designed voltage reference gives a good low temperature coefficient of 6. 855 ppm/℃ in the temperature range from-40 to 125 degree,and provides a good Power Supply Rejection Ratio (PSRR) of-95 dB in the low frequency band. The voltage linear regulation of the bandgap voltage reference is only 0. 2% while the supply voltage changes from 0. 6 V to 1. 8 V. The simulation results show that the circuit structure can improve the temperature performance of the bandgap

  10. 用于开关电源的高精度多基准带隙电压源设计%Design of High-Precision Multi-Bandgap Voltage Reference Circuit for Switching Power Supply

    Institute of Scientific and Technical Information of China (English)

    唐宁; 赵荣建; 李书馨

    2012-01-01

    Based on the analysis of conventional band-gap reference circuit, a novel multi-voltage band-gap reference source for switching power supply was proposed using curvature compensation, high power gain feedback and buffer isolation technologies. The circuit achieved a high power supply rejection ratio (PSRR) and low temperature drift coefficient. Simulation based on 0. 5 μm CMOS technology at process corner TT, showed that, in the temperature range from -25 °C to 150 ℃, the multi-voltage reference circuit had a temperature drift coefficient less than 3×106/℃ and a PSRR of -78 dB, and it was capable of delivering four reference voltages: -3 V, 1. 2 V, 1 V and 0. 2 V.%带隙基准源是开关电源的重要组成部分.在对传统带隙基准源电路进行分析的基础上,结合曲率校正技术、高增益反馈技术和缓冲隔离技术,提出了一款应用于开关电源的高电源抑制比、低温漂系数和多基准输出新型基准源电路.基于0.5μm CMOS工艺,对电路进行仿真.结果表明,在-25℃~150℃范围内和典型(TT)工艺角下,设计的基准源温漂系数小于3×10-6/℃,PSRR为-78 dB,可产生3V,1.2 V,1V,0.2V四个基准输出电压.

  11. 一种三阶曲率补偿带隙基准电压源的设计%A bandgap voltage reference with third-order curvature compensation

    Institute of Scientific and Technical Information of China (English)

    张献中; 张涛

    2015-01-01

    在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。%A simple third‐order curvature compensated bandgap voltage reference is designed through improving the traditional bandgap reference with current summing mode .It consists of starting cir‐cuit ,two‐stage operational amplifier with low voltage and high gain ,core circuit and high‐order cur‐vature compensation circuit .The second‐order curvature compensation in low temperature section and the third‐order curvature compensation in high temperature section are provided by a PM OS transistor and a PTAT2 current , respectively . The reference circuit is simulated based on CSMC 0 .35 μm CMOS process by using Cadence software .Results show that ,at 5 V supply voltage ,the bandgap reference has an output voltage of 1 .226 V ,w hich only changes 0 .51 mV over a temperature range from -40 ℃ to 125 ℃ ,a temperature coefficient of 2 .5 × 10-6/℃ ,and a power supply rejection ratio of -67 dB at low frequency .

  12. 高电源抑制比低温漂带隙基准源设计%Design of Low Temperature-Drift Bandgap Voltage Reference with High PSRR

    Institute of Scientific and Technical Information of China (English)

    胡佳俊; 陈后鹏; 蔡道林; 宋志棠; 周桂华

    2012-01-01

    根据带隙基准的基本原理,结合含三条支路负反馈的电流源,设计了一种高阶补偿的带隙基准源电路.实现了对温度的2阶补偿和3阶补偿,获得了一种高电源抑制比、低温漂、不受电源变化影响的电压基准源.设计采用0.35μm CMOS工艺,仿真结果表明,在-40℃~125℃温度范围内,输出电压的温度系数为7.70×10-7/℃,在1 kHz时,电源抑制比为-82.3 dB.%Based on the principle of bandgap reference and current reference source with 3-branch negative feedback, a bandgap voltage reference source with 2nd-order and 3rd -order temperature compensation was designed. The circuit had a high PSKR and low temperature-drift The design was based on 0. 35 μm CMOS process. Simulation results showed that the bandgap reference source had a temperature coefficient below 7. 70 X 10-7/℃ when the temperature varied from -40 ℃ to 125 ℃, and a PSRR of -82. 3 dB at 1 kHz.

  13. A CMOS bandgap voltage reference source for audio Σ-ΔA/D converter%一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源

    Institute of Scientific and Technical Information of China (English)

    张吉左

    2012-01-01

    在传统带隙基准电压源电路结构的基础上,通过在运放中引入增益提高级,实现了一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源。在一阶温度补偿下实现了较高的电源抑制比(PSRR)和较低的温度系数。该电路采用SIMC 0.18-μm CMOS工艺实现。利用Cadence/Spectre仿真器进行仿真,结果表明,在1.8 V电源电压下,-40~125℃范围内,温度系数为9.699 ppm/℃;在27℃下,10 Hz时电源抑制比为90.2 dB,20 kHz时为74.97 dB。%An optimized PSR enhance stage was inserted in OPAMP of the classic CMOS bandgap voltage reference source, and one CMOS bandgap voltage reference source for audio Σ-ΔA/D converter was designed. It featured high power supply rejection ratio (PSRR) and low temperature coefficient with first-order temperature compensation. The circuit was implemented in SMIC 0.18-μm CMOS process. The simulation results in Cadence/Spectre showed that the circuit had a temperature coefficient of 9.699ppm/℃ at 1.8V supply voltage from -40℃ to 125℃ and a PSRR up to 90.2 dB (10 Hz) and 74.97 dB(20 kHz) at 27℃.

  14. 采用分段曲率补偿的新型带隙基准电压源设计%New Type of Bandgap Reference Voltage Resource Design Using Piecewise Curvature Compensating

    Institute of Scientific and Technical Information of China (English)

    宗永玲; 陈中良

    2014-01-01

    This paper presents a high precision bandgap reference voltage circuit,which utilizes MOS transistors to generate positive and negative TC(temperature coefficient)currents. A piecewise curvature compensation technique is used to reduce the temperature coefficient within wider temperature range. The proposed circuit is designed by TMSC 0.6 um standard CMOS process. Cadence Spectre simulations demonstrate that the reference voltage temperature coefficient is 4.28 ppm/℃with compensation and 125 ppm/℃without compensation in the temperature range from-15℃to 95℃under a 1.5 V supply voltage.%设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计, Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.

  15. Design of multi-output CMOS bandgap reference voltage source with low cost%低成本多路输出CMOS带隙基准电压源设计

    Institute of Scientific and Technical Information of China (English)

    蔡元; 张涛

    2012-01-01

    在传统Brokaw带隙基准源的基础上,提出一种采用自偏置结构和共源共栅电流镜的低成本多路基准电压输出的CMOS带隙基准源结构,省去了一个放大器,并减小了所需的电阻阻值,大大降低了成本,减小了功耗和噪声.该设计基于华虹1 μm的CMOS工艺,进行了设计与仿真实现.Cadence仿真结果表明,在-40~140℃的温度范围内,温度系数为23.6 ppm/℃,静态电流为24μA,并且能够产生精确的3V,2V,1V和0.15V基准电压,启动速度快,能够满足大多数开关电源的设计需求与应用.%Based on the traditional Brakaw bandgap reference source, a CMOS bandgap reference source structure of low-cost multi-path reference voltage output is presented, which adopts a self-biased structure and cascode current mirror instead of an amplifier. It decreases the demands of the resistance value, and reduces the cost, power consumption and noise greatly. The circuit was implemented with Hua Hong lμm CMOS technology. Cadence simulation results show that its temperature coefficient is 23. 6 ppm/℃ and the quiescent current is 24 μA at the range of - 40~140℃ , it can generate accurate reference vultages of 3 V, 2 V, 1 V and 0.15 V, has a advantage of fast start-up, and meets the design requirements of the most switching power supplies.

  16. Higher-Order Curvature-Compensated Bandgap Voltage Reference with High PSRR%高电源抑制比和高阶曲率补偿带隙电压基准源

    Institute of Scientific and Technical Information of China (English)

    张万东; 陈宏; 王一鹏; 于奇; 宁宁; 王向展

    2011-01-01

    基于分段线性补偿原理,提出了一种新的带隙基准源高阶曲率补偿方法,使电压基准源的温度特性曲线在整个工作温度范围内具有多个极值,显著提高了电压基准源的精度.采用0.5μm CMOS工艺模型进行仿真.结果表明,在-40℃~135℃的温度范围内,电压基准源的温度系数为5.8×107/℃.设计了具有提高电源抑制比功能的误差放大器,在5V电源电压下,电压基准源的电源抑制比在低频时为-95.4dB,在1kHz时为-92.4dB.%Based on the principle of piecewise compensation, a novel higher-order curvature compensation method for bandgap reference was presented. This method focused on forming multiple local extrema of reference voltage curve in the entire operating temperature range, which significantly improves the temperature independence. Results from simulation based on 0. 5 μm CMOS process showed that the circuit had a temperature coefficient of 5. 8 × 10-7 /℃ in the temperature range from -40 ℃ to 135 ℃. By using an error amplifier with improved PSRR, the reference source, which operated at 5 Ⅴ supply power, had a PSRR of -95.4 dB and -92.4 dB at dc and 1 kHz, respectively.

  17. DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE

    OpenAIRE

    Abhisek Dey; Tarun Kanti Bhattacharyya

    2011-01-01

    A high precision temperature compensated CMOS bandgap reference is presented. The proposed circuit employs current-mode architecture that improves the temperature stability of the output reference voltage as well as the power supply rejection when compared to the conventional voltage-mode band gap reference.Using only first order compensation the new architecture can generate an output reference voltage of 550 mV with a peak-to-peak variation of 400μV over a wide temperature range from -25oC ...

  18. Long term characterization of voltage references

    CERN Document Server

    Halloin, Hubert; Brossard, Julien

    2013-01-01

    We report here the characterization (temperature coefficients and noise level) of selected voltage references in the frequency range from 10^(-5) to 10 Hz. The goal of this work is to update previous studies, with a characterization at lower frequencies, and find voltage references that may be suitable for the space-based interferometry mission eLISA. The requirements of relative output stability of 1 ppm/$\\sqrt{\\text{Hz}}$ down to 0.1 mHz were not met by any of the tested devices, but 4 references approaches the objective : the AD587UQ, the MAX6126AASA50, the LT1021-BCN8-5 and the LT6655BHM. While the first three were already identified as potential devices in previous studies, the later is a new promising candidate using a different technology (bandgap).

  19. 失配电流控制的高阶带隙基准工艺健壮性研究%Process Robust of High -Order Curvature -Compensated Bandgap Voltage Reference Controlled By Mismatch Current

    Institute of Scientific and Technical Information of China (English)

    朱光荣; 尹岱; 聂卫东; 于宗光

    2014-01-01

    分析了基于失配电流控制的高阶补偿带隙基准的补偿原理,并研究了工艺偏移对基准电压温度系数的影响。基于失配电流控制的补偿策略具有结构简单、控制精度高,而且可以通过调整失配电流和多晶电阻阻值,使带隙基准具有较低的温度系数,同时具有较强的工艺健壮性。模拟分析表明,在-25℃-125℃温度范围内,在 TT(Typical -Typical)工艺角下,带隙基准的温度系数为4.8ppm /℃,同时在其他工艺角下,带隙基准的温度系数都可控制在9.0ppm /℃以下。通过无锡上华科技(CSMC)0.18μm CMOS 工艺实验验证,采用这种简单失配电流控制的高阶补偿带隙基准,在3V 电源电压下,在-20℃-120℃温度范围内,带隙基准的温度系数最低为6.9ppm /℃。%The principle of high -order curvature -compensated CMOS bandgap voltage reference controlled by mismatch current is analyzed and the influence of process variation on the temperature coef-ficient (TC)is studied.The circuit is of the simple structure and high control accuracy.Meanwhile the bandgap reference with low TC and strong process robust is achieved by adjusting the values of mismatch current and poly resistor.The simulation result shows that the TC in the temperature range of -25℃ to 125℃ is 4.8ppm /℃ with the model of TT (Typical -Typical),and it is below 9.0ppm /℃ with other models.The circuit is fabricated in 0.18μm CMOS process from CSMC and the tested minimum TC,at 3V power supply in the temperature range of -20℃ to 120℃,is 6.9ppm/°C which confirms the analysis.

  20. A high precision high PSRR bandgap reference with thermal hysteresis protection

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yintang; Li Yani; Zhu Zhangming, E-mail: yanili@mail.xidian.edu.c [Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of the Ministry of Education, Institute of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-09-15

    To meet the accuracy requirement for the bandgap voltage reference by the increasing data conversion precision of integrated circuits, a high-order curvature-compensated bandgap voltage reference is presented employing the characteristic of bipolar transistor current gain exponentially changing with temperature variations. In addition, an over-temperature protection circuit with a thermal hysteresis function to prevent thermal oscillation is proposed. Based on the CSMC 0.5 {mu}m 20 V BCD process, the designed circuit is implemented; the active die area is 0.17 x 0.20 mm{sup 2}. Simulation and testing results show that the temperature coefficient is 13.7ppm/K with temperature ranging from -40 to 150 {sup 0}C, the power supply rejection ratio is -98.2 dB, the line regulation is 0.3 mV/V, and the power consumption is only 0.38 mW. The proposed bandgap voltage reference has good characteristics such as small area, low power consumption, good temperature stability, high power supply rejection ratio, as well as low line regulation. This circuit can effectively prevent thermal oscillation and is suitable for on-chip voltage reference in high precision analog, digital and mixed systems. (semiconductor integrated circuits)

  1. SEMICONDUCTOR INTEGRATED CIRCUITS: A high precision high PSRR bandgap reference with thermal hysteresis protection

    Science.gov (United States)

    Yintang, Yang; Yani, Li; Zhangming, Zhu

    2010-09-01

    To meet the accuracy requirement for the bandgap voltage reference by the increasing data conversion precision of integrated circuits, a high-order curvature-compensated bandgap voltage reference is presented employing the characteristic of bipolar transistor current gain exponentially changing with temperature variations. In addition, an over-temperature protection circuit with a thermal hysteresis function to prevent thermal oscillation is proposed. Based on the CSMC 0.5 μm 20 V BCD process, the designed circuit is implemented; the active die area is 0.17 × 0.20 mm2. Simulation and testing results show that the temperature coefficient is 13.7ppm/K with temperature ranging from -40 to 150 °C, the power supply rejection ratio is -98.2 dB, the line regulation is 0.3 mV/V, and the power consumption is only 0.38 mW. The proposed bandgap voltage reference has good characteristics such as small area, low power consumption, good temperature stability, high power supply rejection ratio, as well as low line regulation. This circuit can effectively prevent thermal oscillation and is suitable for on-chip voltage reference in high precision analog, digital and mixed systems.

  2. Novel start-up circuit with enhanced power-up characteristic for bandgap references

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    This paper presents a new start-up circuit for low-power bandgap reference (BGR) voltage generators. The BGR is designed for providing a stable 0.3 V power supply for application in low power wireless sensor nodes. The BGR has an enhanced power-up characteristic and demonstrates a reduction...... of the total stand-by current. Simulated results confirm that the proposed start-up circuit does not affect the performance of the BGR even though the supply voltage (VDD) is higher and has more stable power-up characteristic than the conventional start-up circuits. The new start-up circuit is designed with 65...

  3. Novel start-up circuit with enhanced power-up characteristic for bandgap references

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre;

    This paper presents a new start-up circuit for low-power bandgap reference (BGR) voltage generators. The BGR is designed for providing a stable 0.3 V power supply for application in low power wireless sensor nodes. The BGR has an enhanced power-up characteristic and demonstrates a reduction...... of the total stand-by current. Simulated results confirm that the proposed start-up circuit does not affect the performance of the BGR even though the supply voltage (VDD) is higher and has more stable power-up characteristic than the conventional start-up circuits. The new start-up circuit is designed with 65...

  4. Development of Radiation-hard Bandgap Reference and Temperature Sensor in CMOS 130 nm Technology

    CERN Document Server

    Kuczynska, Marika; Bugiel, Szymon; Firlej, Miroslaw; Fiutowski, Tomasz; Idzik, Marek; Michelis, Stefano; Moron, Jakub; Przyborowski, Dominik; Swientek, Krzysztof

    2015-01-01

    A stable reference voltage (or current) source is a standard component of today's microelectronics systems. In particle physics experiments such reference is needed in spite of harsh ionizing radiation conditions, i.e. doses exceeding 100 Mrads and fluences above 1e15 n/cm2. After such radiation load a bandgap reference using standard p-n junction of bipolar transistor does not work properly. Instead of using standard p-n junctions, two enclosed layout transistor (ELTMOS) structures are used to create radiation-hard diodes: the ELT bulk diode and the diode obtained using the ELTMOS as dynamic threshold transistor (DTMOS). In this paper we have described several sub-1V references based on ELTMOS bulk diode and DTMOS based diode, using CMOS 130 nm process. Voltage references the structures with additional PTAT (Proportional To Absolute Temperature) output for temperature measurements were also designed. We present and compare post-layout simulations of the developed bandgap references and temperature sensors, w...

  5. A New Digital to Analog Converter Based on Low-Offset Bandgap Reference

    Directory of Open Access Journals (Sweden)

    Jinpeng Qiu

    2017-01-01

    Full Text Available This paper presents a new 12-bit digital to analog converter (DAC circuit based on a low-offset bandgap reference (BGR circuit with two cascade transistor structure and two self-contained feedback low-offset operational amplifiers to reduce the effects of offset operational amplifier voltage effect on the reference voltage, PMOS current-mirror mismatch, and its channel modulation. A Start-Up circuit with self-bias current architecture and multipoint voltage monitoring is employed to keep the BGR circuit working properly. Finally, a dual-resistor ladder DAC-Core circuit is used to generate an accuracy DAC output signal to the buffer operational amplifier. The proposed circuit was fabricated in CSMC 0.5 μm 5 V 1P4M process. The measured differential nonlinearity (DNL of the output voltages is less than 0.45 LSB and integral nonlinearity (INL less than 1.5 LSB at room temperature, consuming only 3.5 mW from a 5 V supply voltage. The DNL and INL at −55°C and 125°C are presented as well together with the discussion of possibility of improving the DNL and INL accuracy in future design.

  6. Analysis and Design Procedure of LVLP Sub-bandgap Reference - Development and Results

    Directory of Open Access Journals (Sweden)

    T. Urban

    2011-04-01

    Full Text Available This work presents an thorough analysis and design of a low-voltage low-power voltage reference circuit with sub-bandgap output voltage. The outcome of the analysis and the resulting design rules are universal and it is supposed to be general and suitable for similar topologies with just minor modifications. The general analysis is followed by a selection of specific topology. The given topology is analyzed for particular parameters which are standard industrial circuit specifications. These parameters are mathematically expressed, some are simplified and equivalent circuits are used. The analysis and proposed design procedure focuses mainly on versatility of the IP block. The features of the circuit suit to low-voltage low-power design with less than 10μA supply current draw at 1.3V supply voltage. For testing purposes a complex transistor level design was created and verified in wide range of supply voltages (1.3 to 3.3V and temperatures (-45 to 95°C all in concrete 0.35μm IC design process using Mentor Graphics® and Cadence® software.

  7. Characterization of bandgap reference circuits designed for high energy physics applications

    Science.gov (United States)

    Traversi, G.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Mattiazzo, S.; Ratti, L.; Re, V.; Riceputi, E.

    2016-07-01

    The objective of this work is to design a high performance bandgap voltage reference circuit in a standard commercial 65 nm CMOS technology capable of operating in harsh radiation environments. A prototype circuit based on three different devices (diode, bipolar transistor and MOSFET) was fabricated and tested. Measurement results show a temperature variation as low as ±3.4 mV over a temperature range of 170 ° C (-30 °C to 140 °C) and a line regulation at room temperature of 5.2%/V. Measured VREF is 690 mV±15 mV (3σ) for 26 samples on the same wafer. Circuits correctly operate with supply voltages in the range from 1.32 V down to 0.78 V. A reference voltage shift of only 7.6 mV (around 1.1%) was measured after irradiation with 10 keV X-rays up to an integrated dose of 225 Mrad (SiO2).

  8. An Azulene-Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Open-Circuit Voltage.

    Science.gov (United States)

    Chen, Yao; Zhu, Youqin; Yang, Daobin; Zhao, Suling; Zhang, Lei; Yang, Lin; Wu, Jianglin; Huang, Yan; Xu, Zheng; Lu, Zhiyun

    2016-10-01

    A simple azulene-containing squaraine dye (AzUSQ) showing bandgap of 1.38 eV and hole mobility up to 1.25×10(-4)  cm(2)  V(-1)  s(-1) was synthesized. With its low bandgap, an organic photovoltaic (OPV) device based on it has been made that exhibits an impressive open-circuit voltages (Voc ) of 0.80 V. Hence, azulene might be a promising structural unit to construct OPV materials with simultaneous low bandgap, high hole mobility and high Voc .

  9. The correlation of open-circuit voltage with bandgap in amorphous silicon-based pin solar cells

    Science.gov (United States)

    Crandall, R. S.; Schiff, E. A.

    1996-01-01

    We briefly review the correlation of open-circuit voltages VOC with the bandgap of the intrinsic layer in amorphous silicon based pin solar cells. We discuss two mechanisms which limit VOC: intrinsic layer recombination, and the built-in potential VBI. In particular we discuss Li's proposal that the open-circuit voltages in higher bandgap cells (EG>1.9 eV) are VBI-limited. Based on computer simulations of pin solar cells we propose that VBI limitation occurs when the recombination limit to VOC exceeds the cell's field-reversal voltage VR. For a-Si:H based cells this field-reversal voltage occurs at about VBI-0.3 V. This proposal would account for the observation that VBI limitation occurs for VOC significantly smaller than VBI.

  10. A High-Order Temperature Compensated CMOS Bandgap Reference%一种高阶温度补偿的CMOS带隙参考源

    Institute of Scientific and Technical Information of China (English)

    陈江华; 倪学文; 莫邦燹

    2008-01-01

    A high-order temperature compensated bandgap reference (BGR) based on CSMC 0.5-μm 2P3M n-well mixed signal CMOS process is presented. This novel proposed CMOS bandgap reference takes advantage of both a Bucks voltage transfer cell and a temperature independent current, to provide a high-order temperature compensation of the base-emitter voltage VBE. Cascode structures are also introduced in this CMOS bandgap reference to improve the power supply rejection ratio (PSRR). This circuit achieves 5.6 ppm/℃ of temperature coefficient with temperature range from -20 to 100℃ at 5 V power supply. The variation in the output voltage of the bandgap reference is 0.4 mV when power supply changes from 4 V to 6 V.%介绍了一种基于CSMC 0.5-μm 2P3M n-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源.该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压VBE的高阶温度补偿.它还采用共源共栅结构以提高电源抑制比.在5 V电源电压下,温度变化范围为-20~100℃时,该带隙参考源的温度系数为5.6 ppm/℃.当电源电压变化范围为4~6 V时,带隙参考源输出电压的变化为0.4 mV.

  11. Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells.

    Science.gov (United States)

    Chuang, Chia-Hao Marcus; Maurano, Andrea; Brandt, Riley E; Hwang, Gyu Weon; Jean, Joel; Buonassisi, Tonio; Bulović, Vladimir; Bawendi, Moungi G

    2015-05-13

    Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These sub-bandgap states are most likely the origin of the high open-circuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs.

  12. The correlation of open-circuit voltage with bandgap in amorphous silicon-based {ital pin} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Schiff, E.A. [Department of Physics, Syracuse University, Syracuse, New York 13244-1130 (United States)

    1996-01-01

    We briefly review the correlation of open-circuit voltages {ital V}{sub OC} with the bandgap of the intrinsic layer in amorphous silicon based {ital pin} solar cells. We discuss two mechanisms which limit {ital V}{sub OC}: intrinsic layer recombination, and the built-in potential {ital V}{sub BI}. In particular we discuss Li{close_quote}s proposal that the open-circuit voltages in higher bandgap cells ({ital E}{sub G}{gt}1.9 eV) are {ital V}{sub BI}-limited. Based on computer simulations of {ital pin} solar cells we propose that {ital V}{sub BI} limitation occurs when the recombination limit to {ital V}{sub OC} exceeds the cell{close_quote}s field-reversal voltage {ital V}{sub R}. For {ital a}-Si:H based cells this field-reversal voltage occurs at about {ital V}{sub BI}-0.3 V. This proposal would account for the observation that {ital V}{sub BI} limitation occurs for {ital V}{sub OC} significantly smaller than {ital V}{sub BI}. {copyright} {ital 1996 American Institute of Physics.}

  13. 高性能可配置带隙基准源的设计%Design of a high performance and configurable bandgap reference source

    Institute of Scientific and Technical Information of China (English)

    尹勇生; 权磊; 邓红辉

    2012-01-01

    A configurable, low temperature coefficient and high power supply rejection ratio bandgap voltage reference is designed for different reference voltages in high performance analog and mixed integrated circuits. Four different reference voltages are generated which are controlled by the digital logic circuit. A Brokaw bandgap reference is employed, and the output voltage is 0.5 V. The whole circuits are simulated by Spectre based on chartered 0.18μm 1P5M 1.8V CMOS technology. It's clear from the simulation result that four different reference voltages are obtained, the temperature coefficient of the bandgap reference core can be reach 9.2 x 10-6/℃ over the military temperature range and the power supply rejection ratio(PSRR) approaches 107.2 dB at low frequency in TT corner, and the proposed circuits meet the design requirements.%为满足高性能模拟及数模混合集成电路中多种基准电压的需求,设计了可配置,低温度系数和高电源抑制比的带隙基准电压源.通过逻辑电路控制,可配置电路使带隙基准源输出4种不同的参考电压;带隙基准源核心电路采用改进的Brokaw结构,输出电压为0.5 V.基于Chartered 0.18μm Mixed Signal 1P5M工艺模型,在电源电压1.8 V下,对设计的电路进行了仿真验证.仿真结果显示,可配置基准电压源可以实现4种不同的参考电压;在TT工艺角下,-40~ 125℃的温度范围内,基准源核心输出电压的温度系数达到9.2×10-6/℃;低频时,电源抑制比为107.2 dB,满足了设计指标要求.

  14. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Gomes, Henrique L. [Instituto de Telecomunicações, Av. Rovisco, Pais 1, 1049-001 Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M. [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany and King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  15. A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector

    Science.gov (United States)

    Wei, Liu; Tingcun, Wei; Bo, Li; Lifeng, Yang; Yongcai, Hu

    2016-01-01

    An on-chip reference voltage has been designed in capacitor-resister hybrid SAR ADC for CZT detector with the TSMC 0.35 μm 2P4M CMOS process. The voltage reference has a dynamic load since using variable capacitors and resistances, which need a large driving ability to deal with the current related to the time and sampling rate. Most of the previous articles about the reference for ADC present only the bandgap part for a low temperature coefficient and high PSRR. However, it is not enough and overall, it needs to consider the output driving ability. The proposed voltage reference is realized by the band-gap reference, voltage generator and output buffer. Apart from a low temperature coefficient and high PSRR, it has the features of a large driving ability and low power consumption. What is more, for CZT detectors application in space, a radiation-hardened design has been considered. The measurement results show that the output reference voltage of the buffer is 4.096 V. When the temperature varied from 0 to 80 °C, the temperature coefficient is 12.2 ppm/°C. The PSRR was -70 dB @ 100 kHz. The drive current of the reference can reach up to 10 mA. The area of the voltage reference in the SAR ADC chip is only 449 × 614 μm2. The total power consumption is only 1.092 mW. Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (No. 61376034), and the Shaanxi Province Science and Technology Innovation Project (No. 2015KTZDGY03-03).

  16. CMOS voltage references an analytical and practical perspective

    CERN Document Server

    Kok, Chi-Wah

    2013-01-01

    A practical overview of CMOS circuit design, this book covers the technology, analysis, and design techniques of voltage reference circuits.  The design requirements covered follow modern CMOS processes, with an emphasis on low power, low voltage, and low temperature coefficient voltage reference design. Dedicating a chapter to each stage of the design process, the authors have organized the content to give readers the tools they need to implement the technologies themselves. Readers will gain an understanding of device characteristics, the practical considerations behind circuit topology,

  17. Low-power low-voltage superior-order curvature corrected voltage reference

    Science.gov (United States)

    Popa, Cosmin

    2010-06-01

    A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.

  18. Design of high performance voltage source with low voltage CMOS bandgap%一种高性能的低压CMOS带隙基准电压源的设计

    Institute of Scientific and Technical Information of China (English)

    安胜彪; 侯洁; 魏月婷; 陈书旺; 文环明

    2012-01-01

    提出一种新型的芯片内基准电压源的设计方案,基准电压源是当代数模混合集成电路以及射频集成电路中极为重要的组成部分.为满足大规模低压CMOS集成电路中高精度比较器、数模转换器、高灵敏RF等电路对基准电压源的苛刻需要,芯片内部基准电压源大部分采用基准带隙电压源.研究并设计了一种低功耗、超低温度系数和较高的电源抑制比的高性能低压CMOS带隙基准电压源.其综合了一级温度补偿、电流反馈技术、偏置电路温度补偿技术、RC相位裕度补偿技术.该电路采用台积电(TSMC)0.18 μm工艺,并利用Specture进行仿真,仿真结果表明了该设计方案的合理性以及可行性,适用于在低电压下电源抑制比较高的低功耗领域应用.%This article proposed a new design of a chip benchmark power sourse, which is a very important component of mixed signal IC and RF integrated circuit. To meet the requirement of low voltage and large-scale integrated CMOS circuit of high-precision, the use of reference source is rigors for A/D and D/A converter, high sensitive RF circuits and so on. Most parts of the benchmark source employ benchmark bandgap voltage source on chip, so a low power consumption, low temperature coefficient and high performance low pressure CMOS bandgap benchmark voltage source with higher PSRR is designed. It uses one level temperature compensation, current feedback technology, offset circuit temperature compensation technology and RC phase margin compensation technology. This circuit adopts the 0. 18 urn process of TSMC, and uses the Specture to simulate. The simulation result verifies the feasibility and rationality of the design. The circuit can be uesd for low voltage and tow power consumption with higher PSRR.

  19. 一种新型无源UHF RFID带隙基准电路%New type bandgap reference for UHF RFID tag

    Institute of Scientific and Technical Information of China (English)

    杜永乾; 庄奕琪; 李小明; 景鑫; 戴力

    2013-01-01

    设计了一种适用于无源超高频射频识别芯片的电流模带隙基准电路,其中负温度系数电流利用BJT管的基射极电压的负温度特性产生,正温度系数电流利用偏置在亚阈值区的MOS器件其漏源电流与栅源电压呈指数关系的特性产生.该基准电路采用TSMC 0.18μm工艺库仿真并投片验证,基准电压的绝对值偏差最大不超过1.75%.测试结果表明,该电路功耗仅为0.65 μW,最低工作电压为0.829V,温度系数为±63×10-6/℃,芯片有效面积为0.04 mm2.该基准电路已成功应用于一款无源超高频射频识别芯片中,其读取灵敏度为-16 dBm.%A novel low-voltage, low-power current mode bandgap reference circuit for the passive UHF RFID tag is presented. The ICTAT current is generated by VBE of the BJT transistor. The 1PTAT current is generated by the MOSFET biased in the sub-threshold region, based on the theory that the I-V curve of the sub-threshold MOSFET shows an exponential relationship. The circuit is designed and implemented by TSMC 0. 18 μm CMOS technology. The biggest variation of Vref of the reference is smaller than 1. 75% . Test results show that the power of the circuit is 0. 65μW, and that the minimum operating voltage is 0. 829 V. The active area of the circuit is about 0. 04 mm2. As a result, the read sensitivity of the tag with the proposed bandgap reference circuit is — 16dBm.

  20. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Li, Yang [Business and Vocational College of Hainan, Haikou 570203 (China); Li, Ding; Hu, Xiaodong [Research Center for Wide Band Gap Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Li, Hongru, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn [State Key Laboratory for Medicinal Chemistry and Biology, College of Pharmacy, Nankai University, Tianjin 300071 (China)

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  1. Design of a Low Temperature Coefficient Bandgap Reference with High PSRR%低温度系数高电源抑制比带隙基准源的设计

    Institute of Scientific and Technical Information of China (English)

    张长春; 吕超群; 郭宇锋; 方玉明; 陈德媛; 李卫

    2013-01-01

    Based on SMIC's 0.18 μm CMOS process,a bandgap circuit with low temperature coefficient and high PSRR is proposed. The circuit is applied in mixed-signal circuits such as DAC or ADC. In view of the operating voltage limitation in the conventional bandgap reference, the design adopts the current mode structure so as to work in low supply voltage,and the output reference voltage adjustable. In order to improve PSRR,the cascode current source is applied. It utilizes common two stage operational amplifier with high gain and high output swing. Cadence simulation showed that, at 1.8 V supply, the proposed bandgap reference had an output reference voltage of 534 mV; It achieved a temperature coefficient of 4. 8 ppm/℃ in the temperature range from - 25 ~ 100℃ ,and a PSRR of - 84 dB ,with a line voltage regulation at 1.6-2.0 V.%基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.

  2. 基于ΔVGS高阶温度补偿的高精度CMOS带隙基准源%A High Precision Bandgap Reference with High-Order Temperature Compensation byΔVGS

    Institute of Scientific and Technical Information of China (English)

    陈培腾; 王卫东; 黎官华

    2016-01-01

    利用两个工作在亚阈区的MOS管的栅源电压差ΔVGS产生高阶补偿量,对传统的BJT带隙基准源进行高阶温度补偿。设计一种基于ΔVGS高阶温度补偿的高精度CMOS带隙基准。电路基于CSMC 0.5μm标准CMOS工艺设计,仿真结果表明:在5 V电源电压下,基准输出电压为1.258 V;在-40℃~125℃的温度范围内,温度系数为1.24×10-6/℃;低频时电源抑制比PSRR为-68 dB;电源电压在3.5 V~6.5 V范围内工作,线性调整率为0.4 mV/V。适用于高精度带隙基准源。%The difference in the gate-source voltageΔVGS by two MOS that work in the weak inversion,produces the high-end compensation ,which carries on high-order temperature compensation for the traditional BJT bandgap reference. A high precision bandgap reference with high-order temperature compensation can be designed byΔVGS. And the circuit is designed by using CSMC 0.5 μm standard CMOS process. The simulation shows that:when the supply voltage is 5 V,the output reference voltage is 1.258 V;during the range of temperature-40℃~125℃,the temperature coefficient is 1.24×10-6/℃;the PSRR is-68 dB at low frequency;when the voltage works during 3.5 V~6.5 V,linear regulation is 0.4 mV/V. It is suitable for high precision bandgap voltage reference.

  3. A High PSRR ,High-Order Temperature Compensation CMOS Bandgap Reference%一种高电源抑制比、高阶温度补偿CMOS带隙基准源

    Institute of Scientific and Technical Information of China (English)

    李盛林

    2012-01-01

    A high PSRR bandgap reference ( BGR ) in CMOS technology,with high-order temperature compensation is presented. The core of this bandgap consists of the conventional Brokaw bandgap reference and a simple voltage subtractor circuit.The curvature compensation is achieved by using a second Opamp that generates a inversely proportional to absolute temperature (IPTAT) current,which is subsequently used to enhance the curvature compensation, furthermore, the IPTAT current add the PTAT current that generates form bandgap core circuit get a temperature independent current,which is used as bias current of Opamps. The result show PSRR is 88dB at lkHz and the temperature coefficient is 1.03 ppm/℃ over a temperature range of -40 to 125 for 0.35um CMOS technology.%本文提出一种高电源抑制比、高阶温度补偿CMOS带隙基准电压源。该基准源的核心电路结构由传统的Brokaw带隙基准源和一个减法器构成。文中采用第二个运放产生一个负温度系数的电流来增强曲率补偿,同时把该负温度系数电流与核心基准源电路产生的正温度系数电流求和得到一个与温度无关的电流给运放提供偏置电流。该电路采用0.35umCMOS工艺实现,仿真结果表明PSRR在1kHz时达到88dB,-40—125℃的范围内温度系数为1.03ppm/℃。

  4. A high-accuracy bandgap reference source used for curvature compensation of ADC%一种应用于ADC带曲率补偿的高精度带隙基准源

    Institute of Scientific and Technical Information of China (English)

    朱晓宇; 居水荣

    2015-01-01

    设计了一种应用于工作电压为1.8 V的流水型模数转换器(ADC)的带隙基准源。与传统电流模式带隙基准源不同,该带隙基准源采用曲率补偿技术,降低了温度系数,提高了精度。分析提高电源抑制比的方法,设计低压共源共栅电流镜偏置的折叠式共源共栅运放,提高了带隙基准源的电源抑制比。采用CSMC 0.18μm CMOS工艺,获得了900 mV的带隙基准, Spectre仿真结果表明,带隙基准源正常启动,在-40~125℃温度范围内温度系数低至3 ppm/℃,低频时的电源抑制比达89 dB。%A high⁃accuracy bandgap reference source used for curvature compensation of 1.8 V pipeline ADC was designed. Different from traditional current⁃mode bandgap reference source,the curvature compensation technology was adopted in this bandgap reference source,which reduced low temperature coefficient and improved precision. The methods to improve PSRR are analyzed in this paper. A folded cascode amplifier with the bias of high⁃swing cascode current mirrors was designed,which im⁃proved PSRR of bandgap reference source. Based on the CSMC 0.18 μm CMOS process,the bandgap reference gains an output voltage of 900 mV. Simulation results indicate that the circuit can start up normally,the temperature coefficient is 3 ppm/℃ be⁃tween -40 ℃ and 125 ℃ and the PSRR is 89 dB at low frequency.

  5. 带隙基准源电路工艺鲁棒性设计%Process robust design of band-gap reference circuits

    Institute of Scientific and Technical Information of China (English)

    姜岩峰; 张东; 蒋常斌; 李杰

    2013-01-01

    Performances and characteristics of devices and circuits would be influenced by the changing of fabrication technology,power voltage and environmental temperature.The tendency appears much more severely with increasing integrated density.This deviation would influent IC’s yield and increase circuit design’s complexity and cost.Based on typical PTAT band-gap voltage reference,some alternations have been carried out,including curve rate and frequency compensation.In this way,the circuit appears much more robust to its fabrication technology.The revised circuit appears much more stability within PVT variation scope.%在电路设计中,器件和电路的性能和参数会随着制造工艺,电源电压,环境温度的改变而发生变化,随着集成度不断提高,这种偏差严重影响电路的成品率,增加了电路设计的复杂性和成本等。采用基于典型的PTAT带隙基准源,对它进行适当修改后,增加了曲率校正和频率补偿功能,达到增强其工艺鲁棒性的目的,所设计的电路在满足原功能基础上,在指定的PVT变化范围内,电路稳定性得到明显提高。

  6. 一种低温漂、高精度CMOS带隙基准源设计%Design of a Low Temperature Float High Precision CMOS Bandgap Reference

    Institute of Scientific and Technical Information of China (English)

    王宇星; 曹校军; 姜盛瑜; 吴金

    2012-01-01

    Based on the basic principles of linear segmented compensation and the output branch structure of the internal temperature of negative feedback, this paper proposes a novel structure which is simple and adapts to high order compensation methods of different opening directions. It also designs a low temperature float high precision voltage reference circuit based on the current mirror structure. Simulation by the CSMC 0. 35 μm CMOS process in- dicates this bandgap reference can reach a temperature coefficient of 2. 84 ℃ from -40 to125 ℃. PSRR can reach -70. 6 dB and -63.36 dB at 100 Hz and 10 kHz PSRR, respectively. When the power supply voltage is in the range 2 ~ 3 V, the voltage fluctuation value is 3 mV/V. The proposed BGR has good overall performance.%基于线性分段补偿的基本原理,依据输出支路内部的温度负反馈结构,提出了一种结构简单、适应不同开口方向的高阶补偿方法。并设计了一种基于电流镜结构的低温漂、高精度的电压基准电路。CSMC0.35p,mCMOS工艺的仿真结果表明,经高阶补偿的电压模基准,在-40~125℃温区范围内温度系数为2.84×10^-6/℃.低频100Hz时的PSRR达到-70.6dB,10kHz为一63.36dB。当电源电压在2—3V范围内变化时,其电压值波动为3mV/V。整个带隙基准电压源具有较好的综合性能。

  7. Fast Robust Gate-Drivers with Easy Adjustable Voltage Ranges for Driving Normally-On Wide-Bandgap Power Transistors

    OpenAIRE

    Jacqmaer, Pieter; Everts, Jordi; Gelagaev, Ratmir; Tant, Peter; Driesen, Johan

    2010-01-01

    Wide-bandgap (WBG) semiconductors, such as gallium nitride (GaN), are more and more being used in switching power devices. An AlGaN/GaN/AlGaN Double Heterojunction Field Effect transistor (DHFET) was developed in previous work and needed to be tested. The used test circuit was a buck converter. This type of converter, in addition with the normally-on switching behaviour of the GaN-based transistors, requires dedicated gate drive circuitry, resulting in the development of three types of gate-d...

  8. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

  9. Optimization of Temperature Coefficient and Noise Analysis of MOSFET- Only Voltage Reference Circuit

    Directory of Open Access Journals (Sweden)

    Arathi.p

    2016-09-01

    Full Text Available The optimization of temperature coefficient and comparison of output noise of two MOSFET only voltage references are introduced. The circuit behavior is analytically described and the performance of the proposed circuits are confirmed through 180nm CMOS technology in virtuoso and the simulation results are presented. Both the circuits can be operated with supply voltage varies from 0.5-1.2V.The output voltage references varied over a temperature range of -25℃ to 50℃.

  10. 一种高电源抑制比的CMOS带隙基准电压源设计%A high PSRR bandgap reference circuit design

    Institute of Scientific and Technical Information of China (English)

    程刚; 白忠臣; 王超; 秦水介

    2013-01-01

    A novel Banba bandgap reference circuit was presented based on CSMC0.5 Process . In this paper, on the basis of the original circuit, by using cascade current mirror structure, and introduce a negative feedback loop method. Greatly improves the overall circuit power supply rejection ratio, the Spectre simulation results showed that in the -40-100 ℃ temperature range,output voltage swing is only 1.7 mV .at low frequency is more than 100 dB power supply rejection ratio (PSRR) ,the entire circuit power only 30 μA.%介绍一种基于CSMC0.5 μm工艺的低温漂高电源抑制比带隙基准电路.本文在原有Banba带隙基准电路的基础上,通过采用其源共栅电流镜结构和引入负反馈环路的方法,大大提高了整体电路的电源抑制比.Spectre仿真分析结果表明:在-40~100℃的温度范围内,输出电压摆动仅为1.7 mV,在低频时达到100 dB以上的电源抑制比(PSRR),整个电路功耗仅仅只有30 μA.可以很好地应用在低功耗高电源抑制比的LDO芯片设计中.

  11. 一种高电源抑制比低噪声的带隙基准源%A High Power Supply Rejection Ratio Low Noise Voltage Reference

    Institute of Scientific and Technical Information of China (English)

    张涛; 陈远龙; 王影; 张国俊

    2016-01-01

    基于SMIC 0.18μm CMOS工艺,设计了一种高电源抑制比低噪声的带隙基准源。此电路在3.3V电源电压下具有较好的温度系数,-40℃~125℃范围内的温度系数为8.6 ppm/℃,带隙基准电路输出电压约为1.195V。通过在基准中运放加入电源抑制比增强级电路提高中低频范围PSRR性能,在电路输出端再引入低通滤波器电路以提高中高频范围PSRR性能,并且低通滤波器有助于降低整个电路的噪声。采用Spectre软件进行仿真,结果显示,电源抑制比为-130.4@dc,-77.6@100KHz,输出噪声为24.8nV@100KHz。该带隙基准源电路非常适合于应用在高电源电压抑制比、低噪声的LDO电路中。%Based on SMIC 0.18μm CMOS process, a high power supply rejection ratio (PSRR) low noise bandgap voltage reference was designed. The temperature coefficient of this circuit achieved 8.6ppm/℃ in the -40℃~125℃ temperature range when the input voltage was 3.3V, and the output voltage of the bandgap reference circuit wad 1.195V. A PSRR enhance stage was inserted into op-amp to enhance PSRR in low frequency range, and low pass filter was inserted in voltage reference to improve PSRR performance in high frequency range, besides the low pass filter was helpful to reduce noise of the whole circuit. The circuit was simulated with Spectre software. Simulation results showed that the PSRR was -130.4dB at dc and -77.6dB at 100KHz respectively, and output noise at 100KHz was 24.8nV. The bandgap voltage reference circuit was suitable for the high PSRR and low noise LDO.

  12. 高电源电压抑制比基准电压源的设计%Design of reference voltage source with high power supply rejection ratio

    Institute of Scientific and Technical Information of China (English)

    李承蓬; 许维胜; 王翠霞

    2014-01-01

    在此通过对带隙基准电压源电路进行建模分析,针对逆变电路的中低频使用环境,设计了一个应用于高压逆变器电路中的高电源电压抑制比,低温度系数的带隙基准电压源。该电路采用1μm,700 V高压CMOS工艺,在5 V供电电压的基础上,采用一阶温度补偿,并通过设计高开环增益共源共栅两级放大器来提高电源电压抑制比,同时使用宽幅镜像电流偏置解决因共源共栅引起的输出摆幅变小的问题。基准电压源正常输出电压为2.394 V,温度系数为8 ppm/℃,中低频电压抑制比均可达到-112 dB。%Based on modeling and analysis of the bandgap reference voltage source circuit,a bandgap reference voltage source with high power supply rejection ratio and low temperature coefficient was designed for high-voltage low-frequency inverter circuit. CMOS process of 1 μm and 700 V high-voltage is used in this circuit,which adopts first-order temperature compensa-tion at 5 V voltage. A cascode two-stage amplifier with high open-loop gain was designed to improve the power supply rejection ratio. The wide mirror current bias circuit is used to solve the problem that the output swing becomes smaller due to the cascode circuit. The normal output voltage of the reference voltage source is 2.394 V,its temperature coefficient is 8 ppm/℃,and its low-medium frequency voltage rejection ratio can reach -112 dB.

  13. A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE

    Science.gov (United States)

    Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao

    2016-05-01

    A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source-gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate-source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base-emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from -40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is -31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).

  14. An extremely low power voltage reference with high PSRR for power-aware ASICs

    Science.gov (United States)

    Jihai, Duan; Dongyu, Deng; Weilin, Xu; Baolin, Wei

    2015-09-01

    An extremely low power voltage reference without resistors is presented for power-aware ASICs. In order to reduce the power dissipation, an Oguey current reference source is used to reduce the static current; a cascode current mirror is used to increase the power supply rejection ratio (PSRR) and reduce the line sensitivity of the circuit. The voltage reference is fabricated in SMIC 0.18-μm CMOS process. The measured results for the voltage reference demonstrate that the temperature coefficient of the voltage is 66 ppm/°C in a range from 25 to 100 °C. The line sensitivity is 0.9% in a supply voltage range of 1.8 to 3.3 V, and PSRR is -49 dB at 100 Hz. The power dissipation is 200 nW. The chip area is 0.01 mm2. The circuit can be used as an elementary circuit block for power-aware ASICs. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  15. Progress towards fabrication of Th:229-doped high energy band-gap crystals for use as a solid-state optical frequency reference

    CERN Document Server

    Rellergert, Wade G; DeMille, D; Greco, R R; Hehlen, M P; Jackson, R A; Torgerson, J R; Hudson, Eric R

    2010-01-01

    We have recently described a novel method for the construction of a solid-state optical frequency reference based on doping $^{229}$Th into high energy band-gap crystals. Since nuclear transitions are far less sensitive to environmental conditions than atomic transitions, we have argued that the $^{229}$Th optical nuclear transition may be driven inside a host crystal resulting in an optical frequency reference with a short-term stability of $3\\times10^{-17}<\\Delta f/f <1\\times10^{-15}$ at 1 s and a systematic-limited repeatability of $\\Delta f/f \\sim 2 \\times 10^{-16}$. Improvement by $10^2-10^3$ of the constraints on the variability of several important fundamental constants also appears possible. Here we present the results of the first phase of these experiments. Specifically, we have evaluated several high energy band-gap crystals (Th:NaYF, Th:YLF, Th:LiCAF, Na$_2$ThF$_6$, LiSAF) for their suitability as a crystal host by a combination of electron beam microprobe measurements, Rutherford Backscatte...

  16. A reference voltage source with complementary temperature compensation by reference current core%一种用电流基准核作温度互补性补偿的基准电压源

    Institute of Scientific and Technical Information of China (English)

    欧龙振; 李琦; 刘云

    2012-01-01

    In order to overcome defects of the conventional bandgap reference in temperature performance, a bandgap reference circuit with low temperature coefficient was designed. High-level compensation is achieved in this circuit by introducing a current generated by reference current nuclear working in subthreshold region based on the traditional structure of current-mode bandgap reference. Temperature coefficient was greatly reduced by further compensation of compensatory current based on the first-order compensation. Designed with 0. 18 μm standard CMOS process, and simulated with Spectre simulation tools of Cadence, the circuit exhibits a reference voltage 1. 265 V with a voltage change only 0. 2 mV in the temperature range from —40 to 125 ℃ at 2. 7 V supply voltage, compared to the change(about 2. 5 mV) of first-order compensation, accuracy of which is improved by 10 times. When supply voltage ranges from 1. 8 to 3. 5 V, the reference voltage changes 4. 5 mV. With the excellent temperature performance and good anti-disturbance, the requirements of high-performance reference are met.%为克服传统带隙基准源在温度性能上的缺陷,设计了一种低温度系数的带隙基准电路.该电路在传统电流模基准结构的基础上,引入一个工作在亚阈值区电流基准核产生的电流来达到高阶补偿的目的.在一阶补偿的基础上,补偿电流的进一步补偿,大大降低了基准输出的温度系数.电路设计采用0.18 μm的CMOS工艺,利用Cadence软件的Spectre仿真工具对电路进行仿真,仿真结果表明,在2.7V电源电压下,基准输出电压为1.265 V,温度在-40~125℃变化时,基准输出电压仅变化0.2 mV,相比一阶补偿的变化(约为2.5 mV),精度提升了10多倍;电源电压在1.8~3.5 V变化时,基准输出电压变化4.5 mV;在出色的温度性能下有良好的抗干忧性,满足了高性能基准源的要求.

  17. Design of low temperature drift and low power consumption bandgap reference source with curvature compensation%一种带曲率补偿的低温漂低功耗带隙基准源设计

    Institute of Scientific and Technical Information of China (English)

    张龙; 冯全源; 王丹

    2015-01-01

    基于OKI(冲电气工业株式会社)0.5μm BCD(Bipolar, CMOS and DMOS)工艺,设计了一种带曲率补偿的低温漂低功耗带隙基准电压源。采用放大器钳位的传统实现方式,将一个类指数性质的电流叠加到基准源的核心部分,达到曲率补偿的效果。仿真结果表明,在5 V供电电压下,223~423 K (–50~+150℃)内,基准电压的波动范围为1.175~1.182 V,温漂为2.15×10–6/K,具有较高精度,低频时电路电源抑制比为–64 dB,整体静态电流仅为5.6μA。%Based on OKI 0.5μm BCD process, a low temperature drift and low power consumption bandgap reference voltage source with curvature compensation was designed. With traditional amplifier clamping method, a quasi exponent property current was added up the core part of the reference to achieve curvature compensation effect. Simulation results show that under the power supply voltage of 5 V from 223 K to 423 K, the output reference voltage range is from 1.175 V to 1.182 V, with a temperature drift of about 2.15×10–6/K. The power supply rejection ratio (PSRR) is–64 dB when the reference source is high precision and low frequency;the static current of the reference source is only 5.6μA.

  18. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.;

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  19. Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.

  20. Design of nonlinear compensated bandgap reference based on mismatch control%基于失配控制的非线性补偿带隙基准电路设计

    Institute of Scientific and Technical Information of China (English)

    吴金; 聂卫东; 常昌远; 渠宁; 李浩

    2011-01-01

    在一阶线性补偿基准非线性温度特性分析基础上,提出了利用基准电路内部可控非线性失调电压实现高阶补偿的方法,即利用3路互偏结构代替传统基准电路中的2路自偏置结构,在宽温度范围内,理想状态下的基准温度系数相比一阶线性补偿明显降低.与其他类型的分段高阶补偿相比,基于失配补偿的带隙基准不仅结构简单,而且工艺稳定性更好.基于CSMC 0.18μmCMOS工艺完成了该基准电路的MPW验证,在-20~120℃温度范围内,基准温度系数的测试结果最低为6.2×10-6/℃.基于理论与实测结果误差产生原因的分析,提出了电阻修调以及面积功耗折中方面的改进措施.%Based on the analysis of the nonlinear-temperature characteristics of the first-order linear compensated bandgap reference (BGR), a high-order nonlinear compensation method is proposed by utilizing the controllable systemic nonlinear offset voltage within the bandgap circuit, where the three-branches coupling biasing structures are used to replace the traditional two-branches self-biasing structures, and the ideal temperature coefficient within a wide temperature range is reduced significantly as compared to that of the first-order linear compensation one. Besides, compared with other types of segmental high-order compensated circuit, the mismatch compensated BGR is not only simple in circuit structure but also more stable in manufacture process. The proposed reference is fabricated in CSMC 0. 18 μm CMOS process, and the tested minimum temperature coefficient within a temperature range from -20 to 120 ℃ is 6. 2 × 10-6/℃. Finally, based on the error analysis between theory and experimental results, improvements in resistor trimming and tradeoffs between area and power are proposed.

  1. Low Noise Bias Current/Voltage References Based on Floating-Gate MOS Transistors

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    The exploitation of floating-gate MOS transistors as reference current and voltage sources is investigated. Test structures of common source and common drain floating-gate devices have been implemented in a commercially available 0.8 micron double-poly CMOS process. The measurements performed...... promise a good maintenance of the operating point of the floating-gate devices. Examples of utilizing of such bias sources in low-noise sensor preamplifiers are discussed....

  2. Low Noise Bias Current/Voltage References Based on Floating-Gate MOS Transistors

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    The exploitation of floating-gate MOS transistors as reference current and voltage sources is investigated. Test structures of common source and common drain floating-gate devices have been implemented in a commercially available 0.8 micron double-poly CMOS process. The measurements performed...... promise a good maintenance of the operating point of the floating-gate devices. Examples of utilizing of such bias sources in low-noise sensor preamplifiers are discussed....

  3. A novel low-voltage high precision current reference based on subthreshold MOSFETs

    Institute of Scientific and Technical Information of China (English)

    YU Guo-yi; ZOU Xue-cheng

    2007-01-01

    A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference current by a proper combination current of two first-order temperature-compensation current References , which exploit the temperature characteristics of integrated poly2 resistors and the Ⅰ- Ⅴ transconductance characteristics of MOSFET operating in the subthreshold region. The circuit, designed with the 1st silicon 0.35 μm standard CMOS logic process technology, exhibits a stable current of about 2.25 μA with much low temperature coefficient of 3 ×10-4 μA/℃ in the temperature range of -40~150 ℃ at 1 V supply voltage, and also achieves a better power supply rejection ratio (PSRR) over a broad frequency. The PSRR is about -78 dB at DC and remains -42dB at the frequency higher than 10 MHz. The maximal process error is about 6.7% based on the Monte Carlo simulation. So it has good process compatibility.

  4. Design of a High Precision and Low Temperature Drift Bandgap Reference%一种高精度低温漂带隙基准源设计

    Institute of Scientific and Technical Information of China (English)

    李帅人; 周晓明; 吴家国

    2012-01-01

    基于TSMC40nmCMOS工艺设计了一种高精度带隙基准电路。采用Spectre工具仿真,结果表明,带隙基准输出电压在温度为-40—125℃的范围内具有10×10^-6/℃的温度系数,在电源电压在1.5-5.5V变化时,基准输出电压随电源电压变化仅为0.42mV,变化率为0.23mv/V,采用共源共栅电流镜后,带隙基准在低频下的电源电压抑制比为-72dB。%A High Precision CMOS voltage reference circuit is designed by the TSMC 40 nm CMOS process. Spectre simulation shows that the temperature coefficient is 10×10^-6/℃ in the temperature range from -40 to 125. The change of the voltage reference is 0. 42 mV, and the ehange rate is 0. 23 mV/V in the power supply voltage range of 1.5 -3.3 V. PSRR is 72 dB after using the cascode current mirror.

  5. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  6. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  7. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  8. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  9. A High-Order Curvature-Compensated Bandgap Reference with Trimming Resistive Circuits%可修调的高阶曲率补偿基准电压源

    Institute of Scientific and Technical Information of China (English)

    万文艳; 程新红; 宁振球; 董春雷

    2014-01-01

    设计了一款带有误差放大器和电阻修调电路的分段曲率补偿基准电压源.通过分段电流补偿降低了温度系数;采用数字修调网络和熔丝修调网络,减小了电阻随机误差;采用误差放大器提高了电源抑制比,使基准电压精度得到显著提高.电路基于XFAB 0.35 μm高压CMOS工艺设计,仿真结果显示,在-40℃~125℃的温度范围内和多种工艺角下,当输出基准电压为3.0875V时,温度系数为4.1×10-6/℃,低频电源抑制比达到-70 dB.该电路的性能指标大大优于同类型产品,是一款适用于汽车电子芯片的高精度电压基准源.%A curvature-compensated bandgap reference with an error amplifier and trimming resistive circuits was proposed.In the circuit,the current compensation was made respectively at low and high operation temperature ranges to achieve a low temperature coefficient.Trimming resistive circuits were designed to reduce the mismatch error of resistors.Also,an error amplifier was designed to improve the power supply rejection ratio.The circuit was designed in XFAB 0.35 μm HV CMOS process.Simulated results showed that the temperature coefficient was 4.1 × 10-6/℃,the PSRR at low frequency was-70 dB for the output voltage of 3.0875 V,the temperature range of-40 ℃ ~125 ℃,and various process corners.Its simulated performance was better than that of the existing products published.It can be used as an accurate voltage reference for analog and/or mixed analog/digital ICs in automotive electronic applications.

  10. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    damping and improve both transient and steady-state performances, a voltage decoupling feedforward to improve the system robustness, and a multi-resonant harmonic compensator to prevent low-order load current harmonics to distort the inverter output voltage. Since, the voltage loop works......Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  11. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  12. Temperature- and supply voltage-independent time references for wireless sensor networks

    CERN Document Server

    De Smedt, Valentijn; Dehaene, Wim

    2015-01-01

    This book investigates the possible circuit solutions to overcome the temperature- and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations.  Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface.All 6 implementations are subject to an elaborate study of frequency stability, phase noise, and power consumption. In the final chapter all blocks are compared to the state of the art. The main goals of this book are: • to provide a comprehensive overview of timing issues and solutions in wireless sensor networks; • to gain understanding of all underlying mechanisms by starti...

  13. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  14. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm(-2) , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 高阶分段非线性曲率校正带隙基准源%High-order piecewise nonlinear curvature correcting bandgap reference

    Institute of Scientific and Technical Information of China (English)

    李景虎; 张兴宝; 周斌; 沙学军

    2013-01-01

    By adding two current branches to a conventional first-order BGR (bandgap reference),a BGR for high-order piecewise nonlinear curvature correction was formed.In the lower temperature range (TR),the curvature correction circuit will subtract the current from the output branch of the first-order BGR to decrease its positive temperature dependence.While in the higher temperature range,the circuit will inject current to the output branch of the first-order BGR to compensate its negative temperature dependence.The proposed BGR was designed in Global Foundry 0.35 μm mixedsignal CMOS process with chip area of 0.14 mm2 and current of 47 μA.Simulation result shows the proposed BGR achieves four extrema in the TR of-40~125 ℃,which means the simulated temperature coefficient (TC) is only 0.7 × 10-6 ℃-1.Measurement result shows the TC,line regulation in the supply range of 2~4 V and low frequency PSR (power supply rejection) are 7.8 × 10-6℃-1,0.8mV · V-1,and-69.5 dB,respectively.%提出了一种高阶分段非线性曲率校正带隙基准源,其特征在于在传统一阶带隙基准源上增加了两条支路电流.在低温段,曲率校正电路从一阶基准源输出支路抽取电流,降低其输出的正温度系数;在高温段,曲率校正电路向一阶基准源注入电流,对其负温度系数进行补偿.该带隙基准源采用Global Foundry 0.35 μm混合信号CMOS工艺设计,芯片面积为0.14 mm2,电源电流为47 μA.仿真结果表明:提出的曲率校正带隙基准源在-40~125℃范围内实现了四个温度系数的极值点,其温度系数为0.7×10-6℃-1.温度系数、2~4 V内的线性调整率和低频电源抑制测试结果分别为7.8×10-6℃-1,0.8 mY· V-1和-69.5 dB.

  16. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    Science.gov (United States)

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi;

    2013-01-01

    Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops and the mat......Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops...... and the mathematical models of the VSIs are based on the stationary reference frame. A hierarchical control scheme for the paralleled VSI system is developed comprising two levels. The primary control includes the droop method and the virtual impedance loops, in order to share active and reactive power. The secondary...... control restores the frequency and amplitude deviations produced by the primary control. Also, a synchronization algorithm is presented in order to connect the MicroGrid to the grid. Experimental results are provided to validate the performance and robustness of the parallel VSI system control...

  18. A 5 V-to-3.3 V CMOS Linear Regulator with Three-Output Temperature-Independent Reference Voltages

    Directory of Open Access Journals (Sweden)

    San-Fu Wang

    2016-01-01

    Full Text Available This paper presents a 5 V-to-3.3 V linear regulator circuit, which uses 3.3 V CMOS transistors to replace the 5 V CMOS transistors. Thus, the complexity of the manufacturing semiconductor process can be improved. The proposed linear regulator is implemented by cascode architecture, which requires three different reference voltages as the bias voltages of its circuit. Thus, the three-output temperature-independent reference voltage circuit is proposed, which provides three accurate reference voltages simultaneously. The three-output temperature-independent reference voltages also can be used in other circuits of the chip. By using the proposed temperature-independent reference voltages, the proposed linear regulator can provide an accurate output voltage, and it is suitable for low cost, small size, and highly integrated system-on-chip (SoC applications. Moreover, the proposed linear regulator uses the cascode technique, which improves both the gain performance and the isolation performance. Therefore, the proposed linear regulator has a good performance in reference voltage to output voltage isolation. The voltage variation of the linear regulator is less than 2.153% in the temperature range of −40°C–120°C, and the power supply rejection ratio (PSRR is less than −42.8 dB at 60 Hz. The regulator can support 0~200 mA output current. The core area is less than 0.16 mm2.

  19. 一种无运放电流模式带隙基准设计%Design of Current Mode Bandgap Voltage Reference without Opamp

    Institute of Scientific and Technical Information of China (English)

    胡养聪; 周伟; 周长胜

    2010-01-01

    为满足集成电路中低功耗/低温度系数的要求,基于负反馈钳位原理,采用分段线性补偿技术,通过在高低温度段分别插入非线性电流修正项对基准进行了曲率补偿,得到一种新型的无需运放的曲率补偿电流模式带隙电压基准源.仿真得到典型工艺下电路在室温27℃,工作电压4.5 V下输出电压1.250 62 V,工作电流小于38μA,功耗小于170μW.在-40~+150℃.宽温度范围内,基准电压在1.250 18~1.250 86 V之间变化,温度系数约为2.86 ppm/℃.

  20. 一种适用于bipolar LDO的带隙基准电压源设计%Design of bandgap voltage reference for bipolar LDO

    Institute of Scientific and Technical Information of China (English)

    黄虎; 李进; 朱可斌; 王松林

    2007-01-01

    针对Bipolar线性稳压器(LDO),设计了一款高性能的带隙基准电压源,采用5 μm 40 V的Bipolar工艺,Hspice仿真验证,其基准电压值的温度系数为30 ppm/℃,电源抑制比(PSRR)为70 dB,在电源电压从2.5~30 V变化的过程中,基准变化仅为7 mV.

  1. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  2. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS) Silicon-on-Insulator (SOI) Voltage Reference

    OpenAIRE

    El Hafed Boufouss; Francis, Laurent A.; Valeriya Kilchytska; Pierre Gérard; Pascal Simon; Denis Flandre

    2013-01-01

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40–200 °C and for differ...

  3. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  4. A Low Voltage High PSRR Reference Source Based on Regulated Current Mode Structure%基于电流控制模式的低压、高PSRR基准源

    Institute of Scientific and Technical Information of China (English)

    张慧敏; 周云; 王璐霞; 袁凯

    2011-01-01

    A new bandgap voltage reference circuit with low voltage .high power supply rejection ratio (PSRR) based on a regulated current mode structure is presented. The proposed circuit utilizes a regulated current mode structure and some feedback loops to improve the overall PSRR. Using resistive subdivision reaches a low voltage and provides the bias voltage of transistors,simplified bias circuit. The circuit was designed with 0. 5μn complementary metal oxide semiconductor transistor (CMOS) N - well technology, which worked at 1.5V power voltage. Cadence Spectre simulation results show PSRR is 107dB at low frequencies, the temperature coefficient from - 10°C to 125°C temperature range is 7.17 ppm/°C and the power consumption is only 0. 525mW. This circuit shows robustness against process variation.%基于可调电流控制模式设计出一种低压、高电源抑制比的带隙基准电压源电路.采用电流控制模式和多反馈环路,提高电路的整体电源抑制比;通过电阻分压的方式,使电路达到低压,同时提供偏压,简化偏置电路.采用0.5μmCMOS N阱工艺,电路可在电源电压为1.5V时正常工作.使用Cadence Spectre进行仿真结果表明,低频时电源抑制比(PSRR)高达107dB.- 10℃~125℃温度范围内,平均温度系数约7.17ppm/℃,功耗仅为0.525mW.此电路能有效地抑制制程变异.

  5. Contact and Bandgap Engineering in Two Dimensional Crystal

    Science.gov (United States)

    Chu, Tao

    Hs DOS at the band edge of bilayer graphene, was experimentally observed in transport for the first time. (2) The bandgap of bilayer MoS2 is also predicted to be continuously tuned to zero by applying a perpendicular electric field. Here, the first experimental realization of tuning the bandgap of bilayer MoS2 by a vertical electric field is presented. An analytical approach utilizing the threshold voltages from ambipolar characteristics is employed to quantitatively extract bandgaps, which is further benchmarked by temperature dependent bandgap measurements and photoluminescence measurements. (3) Few layer graphene is employed as an example to demonstrate a novel self-aligned edge contacting scheme for layered material systems.

  6. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    Science.gov (United States)

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  7. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS Silicon-on-Insulator (SOI Voltage Reference

    Directory of Open Access Journals (Sweden)

    El Hafed Boufouss

    2013-12-01

    Full Text Available This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40–200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si performed at three different temperatures (room temperature, 100 °C and 200 °C. The maximum drift of the reference voltage VREF depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μ W at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of VREF and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  8. High Thermal and Electrical Tunability of Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Scolari, Lara; Weirich, Johannes;

    2008-01-01

    We infiltrate photonic crystal fibers with negative dielectric liquid crystals. 400nm bandgap shift is obtained in the range 22ºC-80ºC and 119nm shift of the long-wavelength bandgap edge is achieved by applying a voltage of 200V....

  9. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  10. A low voltage CMOS low drop-out voltage regulator

    Science.gov (United States)

    Bakr, Salma Ali; Abbasi, Tanvir Ahmad; Abbasi, Mohammas Suhaib; Aldessouky, Mohamed Samir; Abbasi, Mohammad Usaid

    2009-05-01

    A low voltage implementation of a CMOS Low Drop-Out voltage regulator (LDO) is presented. The requirement of low voltage devices is crucial for portable devices that require extensive computations in a low power environment. The LDO is implemented in 90nm generic CMOS technology. It generates a fixed 0.8V from a 2.5V supply which on discharging goes to 1V. The buffer stage used is unity gain configured unbuffered OpAmp with rail-to-rail swing input stage. The simulation result shows that the implemented circuit provides load regulation of 0.004%/mA and line regulation of -11.09mV/V. The LDO provides full load transient response with a settling time of 5.2μs. Further, the dropout voltage is 200mV and the quiescent current through the pass transistor (Iload=0) is 20μA. The total power consumption of this LDO (excluding bandgap reference) is only 80μW.

  11. A Novel 800mV Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems

    Science.gov (United States)

    Kwon, Oh Jun; Kwack, Kae Dal

    In this paper, a novel 800mV beta-multiplier reference current source circuit is presented. In order to cope with the narrow input common-mode range of the Opamp in the reference circuit, the resistive voltage divider was employed. High gain Opamp was designed to compensate for the intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18µm CMOS process with nominal Vth of 420mV and -450mV for n-MOS and p-MOS transistor, respectively. The total power consumption including Opamp is less than 50µW.

  12. SEMICONDUCTOR INTEGRATED CIRCUITS: A current-mode voltage regulator with an embedded sub-threshold reference for a passive UHF RFID transponder

    Science.gov (United States)

    Zhongqi, Liu; Chun, Zhang; Yongming, Li; Zhihua, Wang

    2010-06-01

    This paper presents a current-mode voltage regulator for a passive UHF RFID transponder. The passive tag power is extracted from RF energy through the RF-to-DC rectifier. Due to huge variations of the incoming RF power, the rectifier output voltage should be regulated to achieve a stable power supply. By accurately controlling the current flowing into the load with an embedded sub-threshold reference, the regulated voltage varies in a range of 1-1.3 V from -20 to 80 °C, and a bandwidth of about 100 kHz is achieved for a fast power recovery. The circuit is fabricated in UMC 0.18 μm mixed-mode CMOS technology, and the current consumption is only 1 μA.

  13. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2011-01-01

    and discussed. Experimental results are provided to validate the performance and robustness of the VSIs functionality during Islanded and grid-connected operations, allowing a seamless transition between these modes through control hierarchies by regulating frequency and voltage, main-grid interactivity......Power electronics based microgrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of three-phase VSIs are derived. The proposed voltage and current inner control loops and the mathematical models...... the frequency and amplitude deviations produced by the primary control. And the tertiary control regulates the power flow between the grid and the microgrid. Also, a synchronization algorithm is presented in order to connect the microgrid to the grid. The evaluation of the hierarchical control is presented...

  14. High-precision Sub-threshold CMOS Voltage Reference with PVT Invariant%PVT恒定高精度亚阈值CMOS电压基准源

    Institute of Scientific and Technical Information of China (English)

    吴瑶; 龚敏; 高博

    2015-01-01

    The paper presents a pure CMOS high precision voltage reference circuit based on the sub-threshold MOSFETs with the SMIC 65 nm standard CMOS process technique. Three different types of NMOSFETs and further resister-less temperature compensation are used to reduce process, voltage and temperature(PVT)sensitivity. Simulation result shows that voltage and temperature varies have little effect on the current according different process corners(Vref variation is only ±1.36%). Temperature and power supply sensitivity of the reference voltage is 4.5×10-6℃-1(-500~1500℃)and 2.1% mV·V-1. In addition, the supply voltage is about 0.56 V.%提出一种基于SMIC 65 nm标准CMOS工艺库的高精度电压参考源电路。对3种不同类型偏置于亚阈值区的NMOSFET进行了讨论,采用无电阻温度补偿对温度进行高阶补偿,可以减小对工艺、电压、温度的敏感性。仿真结果表明:在不同工艺角下,电源电压、温度使基准电压Vref的变化仅为±1.36%。电压参考源的温度系数大约为4.5×10-6℃-1,电源线性调制率为2.1% mV·V-1,最小工作电压仅为0.56 V。

  15. 一种1.03ppm/℃的高阶补偿带隙基准源%A 1.03ppm/℃ Bandgap Reference with High-Order Compensation

    Institute of Scientific and Technical Information of China (English)

    李盛林

    2012-01-01

    Uses a core circuit structure based on resistor matching in the curvature compensation and uses the second OPAMP to produce a negative temperature coefficient current to enhance the curvature compensation. While makes the sum of the negative temperature coefficient current and the core reference circuit to produce a positive temperature coefficient current to get to the OPAMP to provide a temperature independent current bias current, which will improve the robustness of the OPAMP and reference sources.This circuit uses a 0.35urn CMOS process to achieve,under typical conditions ,the simulation result shows that within the range of-40℃to 125℃ temperature coefficient of 1.03ppm/℃, supply voltage just greater than 1.25V will be stable output voltage of 1.205V.%在曲率补偿方面。采用一种基于电阻匹配的核心电路结构。采用第二个运放产生一个负温度系数的电流来增强曲率补偿.同时把该负温度系数电流与核心基准源电路产生的正温度系数电流求和得到一个与温度无关的电流给运放提供偏置电流。这将提高运放和基准源的鲁棒性。该电路采用0.35umCMOS工艺实现,典型条件下仿真结果表明,在-40-125℃范围内温度系数为1.03ppm/℃电源电压只需大于1.25V便得到1.205V的稳定输出电压。

  16. Narrow bandgap host material for high quantum efficiency yellow phosphorescent organic light-emitting diodes doped with iridium(III) bis(4-phenylthieno[3,2-c]pyridine)acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@skku.edu

    2015-05-15

    A narrow bandgap host material, 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN), was used as a bipolar host material to improve the device performances of yellow phosphorescent organic light-emitting diodes(PHOLEDs). The device performances of the yellow PHOLEDs were optimized at a low doping concentration of 1%. A low turn-on voltage of 3.0 V and high quantum efficiency of 19.3% were achieved using the 2CzPN host material and no efficiency roll-off of the device was observed up to 1000 cd/m{sup 2} compared with 25% of reference device. - Highlights: • High quantum efficiency in yellow phosphorescent organic light-emitting diodes. • Narrow bandgap host material with donor–acceptor structure for low driving voltage. • Low optimum doping concentration of 1% for high quantum efficiency and power efficiency.

  17. A Fresh Look at the Semiconductor Bandgap Using Constant Current Data

    Science.gov (United States)

    Ocaya, R. O.; Luhanga, P. V. C.

    2011-01-01

    It is shown that the well-known linear variation of p-n diode terminal voltage with temperature at different fixed forward currents allows easy and accurate determination of the semiconductor ideality factor and bandgap from only two data points. This is possible if the temperature difference required to maintain the same diode voltage drop can be…

  18. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  19. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    Science.gov (United States)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  20. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  1. 基于双dq坐标变换的三相电压锁相环的研究%Study of three-phase voltage phase locked loop based on double dq transformation synchronous reference frame

    Institute of Scientific and Technical Information of China (English)

    辛业春; 李国庆; 王尧; 王振浩

    2014-01-01

    This paper proposes a kind of method of three-phase voltage phase locked loop under three-phase unbalanced voltage. When the positive dq synchronous reference frame transforms, the dq axis voltage component will contain AC component caused by negative sequence voltage component which leads to the error of the three-phase voltage phase locked loop (PLL) based on the dq synchronous reference frame transformation. After the dq axis DC voltage component extracted from negative sequence dq synchronous reference frame transformation compensates positive sequence dq transformation synchronous reference frame q axis voltage component, the positive sequence voltage phase can be locked accurately and quickly. By the way of the negative sequence dq synchronous reference frame d axis and q axis DC voltage component detecting negative sequence voltage initial phase angle, the negative sequence voltage phase can be locked. The simulation results show that, this method can achieve the purpose that three-phase power supply frequency, positive sequence voltage phase and the negative sequence voltage phase can be fast and accurately locked in case of unbalanced three-phase voltage.%提出了一种三相电压不平衡情况下,三相电压基波频率、正序电压分量和负序电压分量相位锁定方法。正序dq坐标变换时,负序电压分量将在dq轴电压分量上产生交流分量,导致基于dq坐标变换的三相电压锁相环存在误差;通过提取负序dq坐标变换中dq轴的直流电压分量,对正序dq坐标变换q轴电压分量进行补偿,从而准确快速锁定正序基波电压相位。通过负序dq坐标中d轴和q轴的直流电压分量检测负序电压初相角,锁定负序电压相位。仿真结果表明,该方法能够快速准确地锁定三相电源在不对称情况下的基波频率、正序电压相位和负序电压相位。

  2. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    Energy Technology Data Exchange (ETDEWEB)

    So, Franky [University of Florida

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH

  3. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2000-01-01

    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  4. Calibration of piezoelectric positioning actuators using a reference voltage-to-displacement transducer based on quartz tuning forks

    CERN Document Server

    Castellanos-Gomez, Andres; Agraït, Nicolás; Rubio-Bollinger, Gabino; 10.1017/S1431927611012839

    2012-01-01

    We use a piezoelectric quartz tuning fork to calibrate the displacement of ceramic piezoelectric scanners which are widely employed in scanning probe microscopy. We measure the static piezoelectric response of a quartz tuning fork and find it to be highly linear, non-hysteretic and with negligible creep. These performance characteristics, close to those of an ideal transducer, make quartz transducers superior to ceramic piezoelectric actuators. Furthermore, quartz actuators in the form of a tuning fork have the advantage of yielding static displacements comparable to those of local probe microscope scanners. We use the static displacement of a quartz tuning fork as a reference to calibrate the three axis displacement of a ceramic piezoelectric scanner. Although this calibration technique is a non-traceable method, it can be more versatile than using calibration grids because it enables to characterize the linear and non-linear response of a piezoelectric scanner in a broad range of displacements, spanning fro...

  5. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  6. Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Eskildsen, Lars; Weirich, Johannes;

    2009-01-01

    We infiltrate photonic crystal fibers with a negative dielectric anisotropy liquid crystal. 396nm bandgap shift is obtained in the temperature range 22°C-80°C, and 67 nm shift of long-wavelength bandgap edge is achieved by applying a voltage of 200Vrms. The polarization sensitivity and correspond...

  7. Variable band-gap semiconductors as the basis of new solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [Centro de Investigacion y de Estudios Avanzados del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, DF (Mexico)

    2009-09-15

    Some basic concepts related to variable band-gap absorbing semiconductors in solar cell structures, such as the associated quasi-electric field, will be discussed. The effects of this quasi-electric field upon the minority carrier drift-diffusion length and the back surface recombination velocity may induce a larger generated carrier collection at the junction with the corresponding increase of the illumination current density. It will also be shown that an additional improvement of the open-circuit voltage is possible when the band-gap is reduced within the space charge region so that the dark saturation current density is reduced there. Our estimation is that in the case of a solar cell where the band-gap is changed about 0.5 eV within the space charge region, an increase of the open-circuit voltage around 115 mV will be observed with respect to the single minimum band-gap absorbing material case. A similar band-gap variation in the bulk of the material will cause an increase of the minority carrier drift-diffusion length by a factor of 10 with respect to the single band-gap material. Therefore, based on these physical concepts, two possible structures with variable band-gap layers are proposed in order to have higher efficiencies than for cells without any band-gap grading. It will be shown that these concepts can be applied to II-VI, III-V chalcopyrite and even amorphous semiconductor solar cells. (author)

  8. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  9. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  10. Photonic Bandgaps in Photonic Molecules

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  11. Temperature influence on electrically controlled liquid crystal filled photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    We experimentally investigate the temperature influence on electrically controlled liquid crystal filled photonic bandgap fiber device. The phase shift in the wavelength range 1520nm-1600nm for realizing quarter and half wave plates at different temperatures by applying a certain voltage...

  12. Structure and optical bandgap relationship of π-conjugated systems.

    Science.gov (United States)

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  13. Structure and optical bandgap relationship of π-conjugated systems.

    Directory of Open Access Journals (Sweden)

    André Leitão Botelho

    Full Text Available In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  14. Machine learning bandgaps of double perovskites

    National Research Council Canada - National Science Library

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-01

    .... While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning...

  15. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  16. SEMICONDUCTOR INTEGRATED CIRCUITS: A full on-chip CMOS low-dropout voltage regulator with VCCS compensation

    Science.gov (United States)

    Leisheng, Gao; Yumei, Zhou; Bin, Wu; Jianhua, Jiang

    2010-08-01

    A full on-chip CMOS low-dropout (LDO) voltage regulator with high PSR is presented. Instead of relying on the zero generated by the load capacitor and its equivalent series resistance, the proposed LDO generates a zero by voltage-controlled current sources for stability. The compensating capacitor for the proposed scheme is only 0.18 pF, which is much smaller than the capacitor of the conventional compensation scheme. The full on-chip LDO was fabricated in commercial 0.35 μm CMOS technology. The active chip area of the LDO (including the bandgap voltage reference) is 400 × 270 μm2. Experimental results show that the PSR of the LDO is -58.7 dB at a frequency of 10 Hz and -20 dB at a frequency of 1 MHz. The proposed LDO is capable of sourcing an output current up to 50 mA.

  17. Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2009-01-15

    A simple model for the generation of carriers by photons incident on a (linearly) decreasing band-gap material, such as has been described in recent CIGS solar cells, is developed. The model can be generalized for different cases such as increasing band-gap grading or for having a more complex band-gap profile. The model developed for direct band semiconductors such as CIGS or AlGaAs allows us to define an effective absorption coefficient, so that the ideal photocurrent density can be calculated in a similar manner as for solar cells with non-graded band-gap materials. We show that this model gives completely different results as those expected from intuitive approaches for calculating this ideal photocurrent density. We also show that grading of the band-gap of the absorbing material in solar cells makes the photocurrent less sensitive to the total band-gap change, in such a way that the design of the band-gap variation can be more flexible in order to have other advantages such as higher built-in voltage or higher back surface field in the device structure. (author)

  18. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian;

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  19. Wide Bandgap Nanostructured Space Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable...

  20. Porous-core honeycomb bandgap THz fiber

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2011-01-01

    In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0:35-THz......-wide fundamental bandgap centered at 1:05 THz. The calculated minimum loss of the fiber is 0:25 dB=cm....

  1. 高电源抑制比、低温飘带隙基准电压源的设计%Design of high PSRR low temperature coefficient band gap voltage reference

    Institute of Scientific and Technical Information of China (English)

    高献坤; 雷君召; 丁赪璐; 周西军; 李遂亮; 余泳昌

    2011-01-01

    Based on the TSMC 0.18μm CMOS process design kit,a band gap voltage reference circuitwith high power supply rejection ratio and low temperature coefficient is presented in this paper,where power supply voltage and output reference voltage is 3 V and 1.25 V respectively. The simulation results for this circuit using Cadence' s Spectre indicate that temperature coefficient from-40 to 125℃ is 3.5 x10-6·℃-1',and the voltage regulation is 72μV·V-1 during the supply voltage linear changed from 2.7 to 3.6 V. The circuit has good PSSR,top point reaching 89 dB,and being 45 dB at 10 kHz.%采用TSMC 0.18 μm CMOS工艺,设计了一种电源电压为3V、基准输出为1.25 V的高电源抑制比、低温度系数的带隙基准电压源电路.Cadence Spectre仿真结果表明,该基准源具有较好的温度特性,在-40~125℃温度范围内,温度系数为3.5×10-6·℃-1;电源电压在2.7~3.6V范围内波动时,电源电压调整率为72 μV·V-1;具有良好的电源电压抑制特性,最高抑制比可达89 dB,在10 kHz处可实现45 dB的电源电压抑制比.

  2. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Tayebeh; Min, Jie; Li, Ning; Machui, Florian; Baran, Derya [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Forster, Michael; Schottler, Kristina J.; Dolfen, Daniel; Scherf, Ullrich [FB C - Mathematik and Naturwissenschaften, Fachgebiet Makromolekulare Chemie and Institut fuer Polymertechnologie, Bergische Universitaet Wuppertal (Germany); Brabec, Christoph J. [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany)

    2012-10-15

    A smart strategy to significantly improve the energy conversion efficiency of the wide-bandgap polymer P3HT blended in PCBM is demonstrated through NIR sensitization with a low-bandgap polymer. An efficiency of over 4% is achieved by adding 30-40% of the low bandgap polymer Si-PCPDTBT to the binary P3HT:PCBM blend, corresponding to an efficiency improvement of 25% compared to the P3HT:PCBM reference binary blend. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Current regulators for I/SUP 2/L circuits to be operated from low-voltage power supplies

    DEFF Research Database (Denmark)

    Bruun, Erik; Hansen, Ole

    1980-01-01

    A new bandgap current reference is described which can be used to control the injector current of I/SUP 2/L circuits for supply voltages down to about 1 V. For small currents the total injector current is obtained as a mirror of the reference current. For large injector currents the current control...... is performed by a series regulator which compares the injector current of one I/SUP 2/L gate to the reference current. The described reference current can be adjusted to give a variation with temperature of about 60 ppm/°C over the temperature range -10 to +70°C. However, in some applications a nonzero......, but well controlled temperature coefficient is desired. It is shown how a temperature stable ring oscillator with I/SUP 2/L gates can be constructed by tailoring the temperature dependence of the supply current appropriately....

  4. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  5. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Science.gov (United States)

    Kirk, Alexander P.; Kirk, Wiley P.

    2013-11-01

    Direct bandgap InP, GaAs, CdTe, and Ga0.5In0.5P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga0.5In0.5P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga0.5In0.5P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  6. Band-gap narrowing in the space-charge region of heavily doped silicon diodes

    Science.gov (United States)

    Lowney, Jeremiah R.

    1985-02-01

    The densities of states of the valence and conduction bands have been calculated in the space-charge region of a heavily doped linearly graded p- n junction silicon diode. Both the donor and acceptor densities were chosen to be equal to 6.2 × 10 18 cm -3. The results showed the emergence of band tails which penetrated deeply into the energy gap and accounted for the band-gap narrowing observed in such a diode by analysis of capacitance vs voltage measurements of the built-in voltage.

  7. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  9. A novel on-chip high to low voltage power conversion circuit

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Wang Songlin; Lai Xinquan; Ye Qiang; Mou Zaixin; Li Xianrui; Guo Baolong

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/℃. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  10. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    . For the fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  11. Thermal modeling of wide bandgap materials for power MOSFETs

    Science.gov (United States)

    Manandhar, Mahesh B.; Matin, Mohammad A.

    2016-09-01

    This paper investigates the thermal performance of different wide bandgap (WBG) materials for their applicability as semiconductor material in power electronic devices. In particular, Silicon Carbide (SiC) and Gallium Nitride (GaN) are modeled for this purpose. These WBG materials have been known to show superior intrinsic material properties as compared to Silicon (Si), such as higher carrier mobility, lower electrical and thermal resistance. These unique properties have allowed for them to be used in power devices that can operate at higher voltages, temperatures and switching speeds with higher efficiencies. Digital prototyping of power devices have facilitated inexpensive and flexible methods for faster device development. The commercial simulation software COMSOL Multiphysics was used to simulate a 2-D model of MOSFETs of these WBG materials to observe their thermal performance under different voltage and current operating conditions. COMSOL is a simulation software that can be used to simulate temperature changes due to Joule heating in the case of power MOSFETs. COMSOL uses Finite Element/Volume Analysis methods to solve for variables in complex geometries where multiple material properties and physics are involved. The Semiconductor and Heat Transfer with Solids modules of COMSOL were used to study the thermal performance of the MOSFETs in steady state conditions. The results of the simulations for each of the two WBG materials were compared with that of Silicon to determine relative stability and merit of each material.

  12. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  13. 一种0.18μm CMOS 1.0 V高精度电压基准源%A high precision 1.0 V voltage reference based on 0.18 μm CMOS

    Institute of Scientific and Technical Information of China (English)

    李惊东

    2015-01-01

    在此基于SMIC 0.18μm CMOS工艺,设计一种高精度低温漂的低压基准电压源。该基准源的供电电源电压为1.8 V,输出电压为1.0 V,电路的总电流小于5μA。在-40~80℃范围内的温度系数为5.7 ppm/℃。当频率在100 kHz以内时,电源抑制比始终保持在-75 dB以下。该基准电压源具有低功耗、低温度系数、高电源抑制的特性,能够很好地应用于低压供电的集成电路设计中。%A high⁃accuracy low voltage reference with low temperature drift is designed in this paper based on SMIC 0.18 μm CMOS process. Its power supply is 1.8 V and output voltage is 1.0 V. The total current in its circuit is less than 5 μA. The tem⁃perature coefficient is 5.7 ppm/℃ under the condition of operation temperature at ⁃40oC~80 oC. The PSRR is less than ⁃75 dB when the frequency is lower than 100 kHz. This reference has the characteristics of low power consumption,low temperature co⁃efficient and high PSRR,and can be used in design of integrated circuits with low⁃voltage power supply.

  14. Programmable Multiple Reference Voltage Generation Integrated in LCoS Chip%集成LCoS芯片内的可编程多通道参考电压产生器

    Institute of Scientific and Technical Information of China (English)

    刘会刚; 耿卫东; 刘艳艳; 黄茜; 代永平; 许长亮

    2008-01-01

    Integrated reference voltage generator in LCoS(Liquid Crstal on Silicon) display chip can produce more accurate reference voltage, wireless of LCoS screen interface, lower power consumption and higher reliability of the overall LCoS display system, and so on. This paper proposes a design of programmable multiple reference voltage generator integrated in LCoS chip, analyses the role of the reference voltage in LCoS display system, and gives part circuits of schematic, layout, lower-power method. The whole circuit is composed of I2C interface circuit, multi-channel registers, control circuit, multi-channel DAC(Digital to Analog Convertor) and multi-channel buffer. This paper focuses on multi-channel DAC and multi-channel buffer of the reference voltage generator. EDA(Electronic Design Automation) design tools are used to complete part of the circuit schematic design and simulation. The CMOS processes of SMIC are used to complete the circuit layout design and follow-up of ERC(Electrical Rules Check), DRC (Design Rule Check),LVS(Lagout Vesus Schematic) inspected and verified. The final results show that the output of the circuit can completely satisfy the requirements of LCoS display.%在LCoS显示芯片内集成参考电压产生器有很多优点,能产生更精确的参考电压、LCOS屏接口的外围引线更少、芯片系统的整体功耗更低、可靠性更高等.提出了集成LCOS芯片内的可编程多通道参考电压产生器的设计,分析了 LCoS 显示系统中参考电压的作用,给出了部分电路的原理图、版图以及电路低功耗的实现方法.整个电路系统有I2C接口电路、多通道寄存器、控制电路、多通道 DAC 以及多通道缓冲器组成.重点介绍了参考电压产生器中多通道 DAC 和多通道缓冲器的设计,并且用EDA设计工具完成了对部分电路原理图的设计和仿真.最后用SMIC CMOS工艺完成了电路版图的设计以及后续的ERC、DRC和LVS检测和验证.最后结果

  15. Double-graded bandgap in Cu(In,Ga)Se2 thin film solar cells by low toxicity selenization process

    Science.gov (United States)

    Wang, Yi-Chih; Shieh, Han-Ping D.

    2014-08-01

    A low-toxic selenization with post gallium diffusion (PGD) treatment has been demonstrated to increase the bandgap in the surface Cu(In,Ga)Se2 (CIGSe) absorbers and to form double-graded bandgap profiles to improve the cell efficiency. The CIGSe absorber with PGD for 5 min increased open-circuit voltage from 0.49 to 0.66 V and efficiency from 9.2% to 13.2%, contributed by the enhancement of carrier recombination in the space-charge region. The reduction in short-circuit current from 30.8 to 29.9 mA/cm2, attributed to the absorption loss in long-wavelength regions, can be potentially improved by further optimization of the minimum bandgap value in gradient valley.

  16. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference

    Science.gov (United States)

    Slowik, Daria; Henderson, Richard

    2015-01-01

    With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3 > hNaV1.2 > hNaV1.1 > hNaV1.6 > hNaV1.3 > hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel. PMID:25838126

  17. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference.

    Science.gov (United States)

    Slowik, Daria; Henderson, Richard

    2015-07-01

    With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.

  18. Correlation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks.

    Science.gov (United States)

    Schulte-Braucks, C; Narimani, K; Glass, S; von den Driesch, N; Hartmann, J M; Ikonic, Z; Afanas'ev, V V; Zhao, Q T; Mantl, S; Buca, D

    2017-03-15

    The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4-0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance-voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at. % and Si-contents from 0 to 10 at. % particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0-12.5 at. %). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer nonradiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action.

  19. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented...... in this thesis addresses these two fundamental properties in both hollow core photonic crystal fibers and solid photonic bandgap fibers. Transmission loss in hollow core photonic crystal fibers is dominated by light scattering at the silica surfaces inside the fiber. In the current work it has been...... experimentally demonstrated that the minimum loss wavelength is located in the spectral region around 2000 nm, where the transmission loss in these fibers is significantly lower than in conventional solid silica fibers. Additionally it has been shown that transmission loss can be lowered roughly 40...

  20. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  1. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  2. Novel Photonic Bandgap Structure and Its Application in Amplifier

    Institute of Scientific and Technical Information of China (English)

    PANGYunbo; GAOBaoxin

    2003-01-01

    A novel compact photonic bandgap (PBG)structural element, which is etched in the ground plane of the microstrip line, is proposed in this paper. A forbid-den gap, which is about 200MHz wide, is measured at the center frequency of 8.6GHz. The measured results agree with finite difference time domain (FDTD) simulations. A harmonic-suppression amplifier is fabricated by utilizing this novel structural element. The suppression of the sec-ond order harmonic has been enhanced about 17dB when compared with a reference amplifier. Since no filters are needed and the structural element is etched in the ground plane, the whole circuit is compact.

  3. Design of benchmark voltage source based on single N-type process%基于N型工艺的基准电压源设计

    Institute of Scientific and Technical Information of China (English)

    李仲秋

    2011-01-01

    A kind of generating benchmark voltage circuit is designed integrating with only n-type active device and passive components process by using op-amp of the feedback closed-loop control method to generate benchmark voltage based on the traditional complementary type bandgap benchmark voltage source in only n-type active device technology.It provides a good power supply rejection ratio characteristics and the benchmark voltage source circuit of effectively compensating the negative temperature coefficient on n-type device pressure drop changes for only existing n-type MOS or NPN transistor,no P type device,difficultly using conventional bandgap voltage source structure to produt specific technology of accurate reference voltage,and the measures to improve the feedback loop stability are put forward.%针对传统互补型带隙基准电压源在只有N型有源器件工艺中的局限性,采用运放反馈的闭环控制方法来产生基准电压,设计了一种可以集成于只有N型有源器件和无源元件工艺中的基准电压源产生电路。为只存在N型MOS或者NPN型晶体管、没有P型器件、难以用传统的带隙电压源结构来产生精确参考电压的特定工艺,提供了一种具有良好的电源抑制比特性和有效地补偿N型器件结压降变化的负温度系数的基准电压源电路;并提出了提高反馈回路稳定性的措施。

  4. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  5. Wide bandgap matrix switcher, amplifier and oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  6. Novel Approaches to Wide Bandgap CuInSe2 Based Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    William N. Shafarman

    2011-04-28

    This project targeted the development of high performance wide bandgap solar cells based on thin film alloys of CuInSe2 to relax constraints on module design and enable tandem solar cell structures. This addressed goals of the Solar Energy Technologies Program for Next Generation PV to develop technology needed for higher thin film module efficiency as a means to reduce costs. Specific objectives of the research project were: 1) to develop the processes and materials required to improve the performance of wide bandgap thin film solar cells based on alloys of CuInSe2, and 2) to provide the fundamental science and engineering basis for the material, electronic, and device properties required to effectively apply these processes and materials to commercial manufacture. CuInSe2-based photovoltaics have established the highest efficiencies of the thin film materials at both the cell and module scales and are actively being scaled up to commercialization. In the highest efficiency cells and modules, the optical bandgap, a function of the CuInSe2-based alloy composition, is relatively low compared to the optimum match to the solar spectrum. Wider bandgap alloys of CuInSe2 produce higher cell voltages which can improve module performance and enable the development of tandem solar cells to boost the overall efficiency. A focus for the project was alloying with silver to form (AgCu)(InGa)Se2 pentenary thin films deposited by elemental co-evaporation which gives the broadest range of control of composition and material properties. This alloy has a lower melting temperature than Ag-free, Cu-based chalcopyrite compounds, which may enable films to be formed with lower defect densities and the (AgCu)(InGa)Se2 films give improved material properties and better device performance with increasing bandgap. A comprehensive characterization of optical, structural, and electronic properties of (AgCu)(InGa)Se2 was completed over the complete compositional range 0 ≤ Ga/(In+Ga) ≤ 1 and

  7. Control of VIENNA rectifier with reference voltage assisted sector judgment based SVPWM%VIENNA 整流器的指令电压辅助区间判断SVPWM 控制

    Institute of Scientific and Technical Information of China (English)

    牛利勇; 高瑞雪; 王晓强

    2016-01-01

    Focused on control of three-phase three-switch three-level rectifier ( VIENNA rectifier ) with space vector pulse width modulation ( SVPWM) ,a reference voltage assisted sector judgment based SVP-WM method was presented.According to the VIENNA rectifier topology and mathematical model,the re-alization process of conventional SVPWM control method was studied.The relationship of AC side phasor under unity power factor was analyzed and the fixed relationship between current vector and voltage vector was presented.The reference voltage assisted sector judgment based SVPWM control method and its reali-zation process were presented,following the sector division of the voltage space vector plane.Experimen-tal results verified the presented method’ s validity and effectiveness.The presented method doesn’ t need current sector judgment and simplifies realization process of the control method.Also,the presented meth-od increases the sector numbers of the voltage space vector plane,which improves the current control reso-lution.This method can be widely used in the input rectifier modules in switch power supplies.%针对三相三开关三电平整流器( VIENNA整流器)的空间矢量脉宽调制( SVPWM )控制问题,提出了一种指令电压辅助区间判断的SVPWM控制方法。依据VIENNA整流器的拓扑结构和数学模型,研究了传统SVPWM 控制方法的实现流程。分析了单位功率因数工况下的交流侧相量关系,给出了电流矢量和电压矢量的固定关系。通过对电压空间矢量平面进行扇区划分,给出了指令电压辅助区间判断SVPWM 控制方法的实现流程。实验结果验证了该方法的正确性和有效性。该方法不需要进行电流区间判断,简化了控制算法实现过程,并且该方法提高了电压空间矢量平面扇区的划分数量,提高了电流控制分辨率。该方法可广泛应用于开关电源的输入整流模块中。

  8. A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate

    Institute of Scientific and Technical Information of China (English)

    林青春; 朱方明; 何赛灵

    2004-01-01

    A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical results for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A comparison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.

  9. High temperature performance of Wide Bandgap Semiconductors Devices for High Power Applications

    OpenAIRE

    2010-01-01

    Wide bandgap III-Nitride semiconductor materials possess superior properties as compared to silicon and other IIIV compound materials. GaN has recently attracted a lot of interest for applications in high power electronics capable of operation at elevated temperatures. Modeling of the drift region properties of GaN Schottky rectifiers and power MOSFET to achieve breakdown voltages ranging from 200 to 5kV is presented. 1kV and 3kV Schottky rectifiers are simulated and the characteristics of th...

  10. Polarizing 50micrometers Core Yb-Doped Photonic Bandgap Fiber

    Science.gov (United States)

    2015-02-08

    properly. Recent reports demonstrate that the birefringence in photonic bandgap fibers (PBFs) can provide single-polarization operation by shifting the...add ref]. Here, we demonstrate a 50µm core Yb-doped polarizing photonic bandgap fiber (PBF) for single-polarization operation 1. REPORT DATE (DD-MM...19-08-2015 Approved for public release; distribution is unlimited. Polarizing 50µm core Yb-doped photonic bandgap fiber The views, opinions and/or

  11. Structure-property relationships of small bandgap conjugated polymers for solar cells.

    Science.gov (United States)

    Hellström, Stefan; Zhang, Fengling; Inganäs, Olle; Andersson, Mats R

    2009-12-01

    Conjugated polymers as electron donors in solar cells based on donor/acceptor combinations are of great interest, partly due to the possibility of converting solar light with a low materials budget. Six small bandgap polymers with optical bandgap ranging from 1.0-1.9 eV are presented in this paper. All polymers utilize an electron donor-acceptor-donor (DAD) segment in the polymer backbone, creating a partial charge-transfer, to decrease the bandgap. The design, synthesis and the optical characteristics as well as the solar cell characteristics of the polymers are discussed. The positions of the energy levels of the conjugated polymer relative to the electron acceptor are of significant importance and determine not only the driving force for exciton dissociation but also the maximum open-circuit voltage. This work also focuses on investigating the redox behavior of the described conjugated polymers and electron acceptors using square wave voltammetry. Comparing the electrochemical data gives important information of the structure-property relationships of the polymers.

  12. Built-in voltage of a silicon p-n junction having a heavily doped region

    Science.gov (United States)

    Sinha, Amitabha

    1984-01-01

    An analysis of the built-in voltage of a silicon p-n junction has been done, taking into account the band-gap narrowing effects in the heavily doped region. It has been observed that much lower values of built-in voltage are obtained when heavy doping effects are considered. Also, the magnitude of built-in voltage decreases when the temperature of the p-n junction is increased.

  13. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  14. Air-guiding Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Hansen, Theis Peter

    2005-01-01

    Photonic bandgap fibers that guide light in an air core have attracted much interest since their first demonstration in 1999. The prospect of low-loss guiding of light in air has importance for a multitude of applications, such as data transmission, gas sensors, dispersion compensation and guiding...... of high-power pulses. The low overlap between light and glass affects both the loss and nonlinear properties of the fiber. At the same time, the strong overlap between light and air provides a mean for creating convenient gas-filled devices with extremely long interaction lengths. In this project...

  15. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  16. Gas sensing using air-guiding photonic bandgap fibers

    DEFF Research Database (Denmark)

    Ritar, Tuomo; Tuominen, J.; Ludvigsen, Hanne

    2004-01-01

    We demonstrate the high sensitivity of gas sensing using a novel air-guiding photonic bandgap fiber. The bandgap fiber is spliced to a standard single-mode fiber at the input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied...

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  18. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Science.gov (United States)

    Sanz, Mikel; Rebollar, Esther; Ganeev, Rashid A.; Castillejo, Marta

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3-3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  19. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Mikel, E-mail: mikel.sanz@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Rebollar, Esther [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, Rashid A. [Voronezh State University, Voronezh 394006 (Russian Federation); Castillejo, Marta [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3–3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  20. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  1. Quantum electrodynamics near a photonic bandgap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew A.

    2017-01-01

    Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.

  2. Novel 1-D Sandwich Photonic Bandgap Structure

    Institute of Scientific and Technical Information of China (English)

    庞云波; 高葆新

    2004-01-01

    A sandwich photonic bandgap (PBG) structure is a novel PBG structure whose periodic lattice is buried in the middle of a substrate. Neither drilling nor suspending the substrate is required, and the integrity of the ground plane is maintained. This paper presents several modification techniques for sandwich PBG structure fabrication. The forbidden gap can be improved by adopting the chirping technique, applying the tapering technique, enlarging the periodic elements, adjusting the location of the periodic lattice in the substrate, and using different dielectric media H-shape elements. A finite difference time domain method is applied to analyze the structures. Deep and wide stopbands can be obtained using the modified sandwich structures. Experimental measurement results agree well with the theoretical analysis.

  3. Bandgap engineering of GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Bang-Ming; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Computational Science Research Center, Beijing, 100094 (China); Yam, Chi-Yung, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, Beijing, 100094 (China); Xu, Li-Chun [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing, 100094 (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu, Sichuan, 610207 (China)

    2016-05-15

    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, while it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.

  4. Jacquard-woven photonic bandgap fiber displays

    CERN Document Server

    Sayed, Imran; Skorobogatiy, Maksim

    2010-01-01

    We present an overview of photonic textile displays woven on a Jacquard loom, using newly discovered polymer photonic bandgap fibers that have the ability to change color and appearance when illuminated with ambient or transmitted light. The photonic fiber can be thin (smaller than 300 microns in diameter) and highly flexible, which makes it possible to weave in the weft on a computerized Jacquard loom and develop intricate double weave structures together with a secondary weft yarn. We demonstrate how photonic crystal fibers enable a variety of color and structural patterns on the textile, and how dynamic imagery can be created by balancing the ambient and emitted radiation. Finally, a possible application in security ware for low visibility conditions is described as an example.

  5. Photovoltaic efficiency of an indirect bandgap material

    Science.gov (United States)

    Tomasik, Michelle; Mangan, Niall; Grossman, Jeffrey

    2015-03-01

    Photovoltaic materials with direct band gap transitions absorb light more readily than those with indirect gaps, allowing for thinner devices. However, direct bands also suffer faster rates of radiative recombination than indirect bandgap materials. Some novel photovoltaic absorber materials, such as tin sulfide, have both direct and indirect gaps. Such materials raise the question of whether the multiple energy states benefit or harm device efficiency. We develop a model for current in a device with direct and indirect band gaps using detailed balance, similar to the Shockley-Quiesser model for direct band photovoltaics. We explore the effects of the following on device performance: transition probability of carriers between the direct and indirect state, and relative transport rate in each band.

  6. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    Science.gov (United States)

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA0.83Cs0.17Pb(I0.66Br0.34)3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  7. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  8. Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors

    Science.gov (United States)

    Patel, Nishant; Choudhary, Sudhanshu

    2017-10-01

    Double gate silicene field effect transistor is investigated using Density Functional Theory (DFT) and Non-Equilibrium Green's Function (NEGF) formalism. The results suggest that with an increase in gate bias, bandgap is introduced in silicene which results in reduction in device current. The increase in silicene bandgap is also related to the reduction in channel length. It is observed that drain to source current (IDS) saturates on increasing drain to source voltage (VDS). On increasing VDS beyond saturation region, at some value of VDS kink effect is seen which is due to switching in the type of carriers at the drain end due to ambipolar channel. Transconductance (gm) is seen to reduce with reduction in channel length, however, gm improves with reduced oxide thickness due to better gate controllability. The output characteristics do not change much with oxide thickness.

  9. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  10. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  11. Computer simulation and modeling of graded bandgap CuInSe{sub 2}/CdS based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dhingra, A.; Rothwarf, A. [Drexel Univ., Philadelphia, PA (United States). Dept. of Electrical and Computer Engineering

    1996-04-01

    This paper proposes the use of graded bandgap absorber material, to improve the low open-circuit voltage (V{sub oc}) seen in CuInSe{sub 2}/CdS solar cells, without sacrificing the short-circuit current density (J{sub sc}). It also proposes a p-i-n model for the CuInSe{sub 2}/CdS solar cell, where the intrinsic region is the graded bandgap CIS. Reflecting surfaces are provided at the p-i and n-i interfaces to trap the light in the narrow intrinsic region for maximum generation of electron and hole pairs (EHP`s). This optical confinement results in a 25--40% increase in the number of photons absorbed. An extensive numerical simulator was developed, which provides a 1-D self-consistent solution for Poisson`s equation and the two continuity equations for electrons and holes. This simulator was used to generate J-V curves to delineate the effect of different grading profiles on cell performance. The effects of a uniform bandgap, normal grading, reverse grading, and a low bandgap notch have been considered. Having established the inherent advantages to these grading profiles an optimal doubly graded structure is proposed. Replacing the thick CdS (2.42ev) layer assumed in the simulations with a wide gap semiconductor such as ZnO (3.35ev) increases all current densities by about 5 mA/cm{sup 2}, and increases the optimal calculated efficiency from 17.9% to roughly 21% for a doubly graded structure with a thickness of 1 {micro}m and bandgaps ranging from 1.3 eV to 1.5 eV.

  12. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    Science.gov (United States)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  13. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dewei; Yu, Yue; Wang, Changlei; Liao, Weiqiang; Shrestha, Niraj; Grice, Corey R.; Cimaroli, Alexander J.; Guan, Lei; Ellingson, Randy J.; Zhu, Kai; Zhao, Xingzhong; Xiong, Ren-Gen; Yan, Yanfa

    2017-03-01

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm-2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskite solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. When mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.

  14. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  15. High Power Wide Bandgap Engineered MMW MMIC Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this phase I SBIR effort unique proven lattice and bandgap engineering techniques will be utilized to epitaxially grow InAlAs / InGaAs on GaN substrate for...

  16. Wide-bandgap III-Nitride based Second Harmonic Generation

    Science.gov (United States)

    2014-10-02

    Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Wide-bandgap III - Nitride based Second Harmonic Generation The views...Report: Wide-bandgap III - Nitride based Second Harmonic Generation Report Title It was demonstrated that GaN, AlGaN and AlN lateral polar structures can...research have been socialized to the III - Nitride Optoelectronics Center of Excellence (ARL SEDD) and to the 2013 ARO Staff Research Symposium and at

  17. Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air.

    Science.gov (United States)

    Fonseca, Jose J; Tongay, Sefaattin; Topsakal, Mehmet; Chew, Annabel R; Lin, Alan J; Ko, Changhyun; Luce, Alexander V; Salleo, Alberto; Wu, Junqiao; Dubon, Oscar D

    2016-08-01

    A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

  18. Large-area single-mode photonic bandgap vcsels

    DEFF Research Database (Denmark)

    Birkedal, Dan; Gregersen, N.; Bischoff, S.;

    2003-01-01

    We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device.......We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device....

  19. Degenerate four wave mixing in solid core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2008-01-01

    Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nmm. the possibility of tuning the effi...... the efficency of the parametric gain by varying the temperature is also considered. The sults are verified by numerical simultations of pulse propagation....

  20. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  1. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    of Cs, CH3NH3, and HC(NH2)2 as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities...

  2. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  3. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  4. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.

    Science.gov (United States)

    Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong

    2017-07-01

    Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (VOC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low bandgap polymers synthesized by FeCl{sub 3} oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tianqi [Materials and Surface Chemistry/Polymer Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai (China); Zhou, Yi; Zhang, Fengling; Inganaes, Olle [Biomolecular and Organic Electronics, IFM, and Centre of Organic Electronics, Linkoeping University, SE-581 83 Linkoeping (Sweden); Wang, Ergang; Hellstroem, Stefan [Materials and Surface Chemistry/Polymer Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Xu, Shiai [School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai (China); Andersson, Mats R. [Materials and Surface Chemistry/Polymer Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Biomolecular and Organic Electronics, IFM, and Centre of Organic Electronics, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-07-15

    Four low bandgap polymers, combining an alkyl thiophene donor with benzo[c][1,2,5]thiadiazole, 2,3-diphenylquinoxaline, 2,3-diphenylthieno[3,4-b]pyrazine and 6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline acceptors in a donor-acceptor-donor architecture, were synthesized via FeCl{sub 3} oxidative polymerization. The molecular weights of the polymers were improved by introducing o-dichlorobenzene (ODCB) as the reaction solvent instead of the commonly used solvent, chloroform. The photophysical, electrochemical and photovoltaic properties of the resulting polymers were investigated and compared. The optical bandgaps of the polymers vary between 1.0 and 1.9 eV, which is promising for solar cells. The devices spin-coated from an ODCB solution of P1DB:[70]PCBM showed a power conversion efficiency of 1.08% with an open-circuit voltage of 0.91 V and a short-circuit current density of 3.36 mA cm{sup -2} under irradiation from an AM1.5G solar simulator (100 mW cm{sup -2}). (author)

  6. Low bandgap semiconducting polymers for polymeric photovoltaics.

    Science.gov (United States)

    Liu, Chang; Wang, Kai; Gong, Xiong; Heeger, Alan J

    2016-08-22

    In order to develop high performance polymer solar cells (PSCs), full exploitation of the sun-irradiation from ultraviolet (UV) to near infrared (NIR) is one of the key factors to ensure high photocurrents and thus high efficiency. In this review, five of the effective design rules for approaching LBG semiconducting polymers with high molar absorptivity, suitable energy levels, high charge carrier mobility and high solubility in organic solvents are overviewed. These design stratagems include fused heterocycles for facilitating π-electron flowing along the polymer backbone, groups/atoms bridging adjacent rings for maintaining a high planarity, introduction of electron-withdrawing units for lowering the bandgap (Eg), donor-acceptor (D-A) copolymerization for narrowing Eg and 2-dimensional conjugation for broadened absorption and enhanced hole mobility. It has been demonstrated that LBG semiconducting polymers based on electron-donor units combined with strong electron-withdrawing units possess excellent electronic and optic properties, emerging as excellent candidates for efficient PSCs. While for ultrasensitive photodetectors (PDs), which have intensive applications in both scientific and industrial sectors, sensing from the UV to the NIR region is of critical importance. For polymer PDs, Eg as low as 0.8 eV has been obtained through a rational design stratagem, covering a broad wavelength range from the UV to the NIR region (1450 nm). However, the response time of the polymer PDs are severely limited by the hole mobility of LBG semiconducting polymers, which is significantly lower than those of the inorganic materials. Thus, further advancing the hole mobility of LBG semiconducting polymers is of equal importance as broadening the spectral response for approaching uncooled ultrasensitive broadband polymer PDs in the future study.

  7. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)

    2017-01-04

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for

  8. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  9. Considerations of dopant-dependent bandgap narrowing for accurate device simulation in abrupt HBTs

    Institute of Scientific and Technical Information of China (English)

    Zhou Shouli; Xiong Deping; Qin Yali

    2009-01-01

    Heavy doping of the base in HBTs brings about a bandgap narrowing(BGN)effect,which modifies the intrinsic carrier density and disturbs the band offset,and thus leads to the change of the currents.Based on a thermionic-field-diffusion model that is used to the analyze the performance of all abrupt HBT with a heavydoped base,the conclusion is made that,although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density,the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs.In addition,the BGN effect changes the bias voltage for the onset of Kirk effects.

  10. Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion

    Science.gov (United States)

    Krier, A.; Yin, M.; Marshall, A. R. J.; Krier, S. E.

    2016-06-01

    The practical realization of thermophotovoltaic (TPV) cells, which can directly convert heat into electric power, is of considerable technological interest. However, most existing TPV cells require heat sources at temperatures of ˜1800°C. Here we report a low bandgap mid-infrared cell based on InAs and demonstrate TPV operation with heat sources at temperatures in the range 500-950°C. The maximum open circuit voltage ( V oc) and short circuit current density ( J sc) were measured as 0.06 V and 0.89 A cm-2 for a blackbody temperature of 950°C and an incident power density of 720 mW cm-2 without antireflection coating or electrode optimisation. TPV operation was obtained with heat sources at temperatures as low as 500°C, which represents progress towards energy scavenging and waste heat recovery applications.

  11. Voltage-controlled nanoscale reconfigurable magnonic crystal

    Science.gov (United States)

    Wang, Qi; Chumak, Andrii V.; Jin, Lichuan; Zhang, Huaiwu; Hillebrands, Burkard; Zhong, Zhiyong

    2017-04-01

    A nanoscale reconfigurable magnonic crystal is designed using voltage-controlled perpendicular magnetic anisotropy (PMA) in ferromagnetic-dielectric heterostructures. A periodic array of gate metallic strips is placed on top of a MgO/Co structure in order to apply a periodic electric field and to modify the PMA in Co. It is numerically demonstrated that the introduction of PMA, which can be realized experimentally via applying a voltage, modifies the spin-wave propagation and leads to the formation of band gaps in the spin-wave spectrum. The band gaps can be controlled, i.e., it is possible to switch band gaps on and off within a few tens of nanoseconds. The width and the center frequency of the band gaps are defined by the applied voltage. Finally, it is shown that the introduction of PMA to selected, rather than to all gate strips allows for a predefined modification of the band-gap spectra. The proposed voltage-controlled reconfigurable magnonic crystal opens a way to low power consumption magnonic applications.

  12. Enhanced current-rectification in bilayer graphene with an electrically tuned sloped bandgap.

    Science.gov (United States)

    Aparecido-Ferreira, Alex; Miyazaki, Hisao; Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-12-21

    We propose a novel sloped dielectric geometry in graphene as a band engineering method for widening the depletion region and increasing the electrical rectification effect in graphene pn junctions. Enhanced current-rectification was achieved in a bilayer graphene with a sloped dielectric top gate and a normal back gate. A bias was applied to the top gate to induce a spatially modulated and sloped band configuration, while a back-gate bias was applied to open a bandgap. The sloped band can be tuned to separate n- and p-type regions in the bilayer graphene, depending on a suitable choice of gate voltage. The effective depletion region between the n- and p-type regions can be spatially enlarged due to the proposed top-gate structure. As a result, a strong non-linear electric current was observed during drain bias sweeping, demonstrating the expected rectification behavior with an on/off ratio higher than all previously reported values for graphene pn junctions. The observed rectification was modified to a linear current-voltage relationship by adjusting the biases of both gates to form an nn- or pp-type junction configuration. These results demonstrate that an external voltage can control the current flow in atomic film diodes.

  13. Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures

    Science.gov (United States)

    Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin

    2017-02-01

    Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.

  14. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Energy Technology Data Exchange (ETDEWEB)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  15. High-Efficiency Solar Cells Using Photonic-Bandgap Materials

    Science.gov (United States)

    Dowling, Jonathan; Lee, Hwang

    2005-01-01

    Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.

  16. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    Science.gov (United States)

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-04-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s.

  17. Bandgap renormalization in single-wall carbon nanotubes.

    Science.gov (United States)

    Zhu, Chunhui; Liu, Yujie; Xu, Jieying; Nie, Zhonghui; Li, Yao; Xu, Yongbing; Zhang, Rong; Wang, Fengqiu

    2017-09-11

    Single-wall carbon nanotubes (SWNTs) have been extensively explored as an ultrafast nonlinear optical material. However, due to the numerous electronic and morphological arrangements, a simple and self-contained physical model that can unambiguously account for the rich photocarrier dynamics in SWNTs is still absent. Here, by performing broadband degenerate and non-degenerate pump-probe experiments on SWNTs of different chiralities and morphologies, we reveal strong evidences for the existence of bandgap renormalization in SWNTs. In particularly, it is found that the broadband transient response of SWNTs can be well explained by the combined effects of Pauli blocking and bandgap renormalization, and the distinct dynamics is further influenced by the different sensitivity of degenerate and non-degenerate measurements to these two concurrent effects. Furthermore, we attribute optical-phonon bath thermalization as an underlying mechanism for the observed bandgap renormalization. Our findings provide new guidelines for interpreting the broadband optical response of carbon nanotubes.

  18. Sub-bandgap absorption in polymer-fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Presselt, Martin; Herrmann, Felix; Seeland, Marco; Baerenklau, Maik; Roesch, Roland; Shokhovets, Sviatoslav; Hopp, Harald; Gobsch, Gerhard [Experimental Physics I, Institute of Physics and Institute of Micro- und Nanotechnologies, Ilmenau University of Technology, Ilmenau (Germany); Beenken, Wichard J.D.; Runge, Erich [Theoretical Physics I, Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We present external quantum efficiency (EQE) studies of P3HT:PCBM based bulk heterojunction polymer solar cells with improved intensity resolution in the sub-bandgap (SBG) region, i.e. the energy range below the optical bandgaps of the pristine materials. Varying the P3HT:PCBM blending ratio, we find that in addition to a Gaussian profile an exponential tail is needed for a quantitative description of the SBG EQE spectra. To gain insights into the origin of the single contributions, absorption and emission spectra covering several decades of intensity and SBG EQE signals are discussed in detail.

  19. Ultrasensitive twin-core photonic bandgap fiber refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham; Bang, Ole

    2009-01-01

    We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift.......We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift....

  20. Recent ROB developments on wide bandgap based UV sensors

    Science.gov (United States)

    Giordanengo, B.; Ben Moussa, A.; Hochedez, J.-F.; Soltani, A.; de Moor, P.; Minoglou, K.; Malinowski, P.; Duboz, J.-Y.; Chong, Y. M.; Zou, Y. S.; Zhang, W. J.; Lee, S. T.; Dahal, R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    The next ESA spatial mission planned to study the Sun, Solar Orbiter (SO), necessitates very innovative EUV detectors. The commonly used silicon detectors suffer important limitations mainly in terms of UV robustness and dark current level. An alternative comes from diamond or III-nitride materials. In these materials, the radiation hardness, solar blindness and dark current are improved due to their wide bandgap. This paper presents the new developments on wide bandgap materials at the Royal Observatory of Belgium (ROB). We present also the LYRA instrument, the BOLD project, and the EUI instrument suite.

  1. The density matrix method in photonic bandgap and antiferromagnetic materials

    Science.gov (United States)

    Barrie, Scott B.

    In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal

  2. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  3. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    Science.gov (United States)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  4. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    Science.gov (United States)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  5. Transient Voltage Recorder

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    2002-01-01

    A voltage transient recorder can detect lightning induced transient voltages. The recorder detects a lightning induced transient voltage and adjusts input amplifiers to accurately record transient voltage magnitudes. The recorder stores voltage data from numerous monitored channels, or devices. The data is time stamped and can be output in real time, or stored for later retrieval. The transient recorder, in one embodiment, includes an analog-to-digital converter and a voltage threshold detector. When an input voltage exceeds a pre-determined voltage threshold, the recorder stores the incoming voltage magnitude and time of arrival. The recorder also determines if its input amplifier circuits clip the incoming signal or if the incoming signal is too low. If the input data is clipped or too low, the recorder adjusts the gain of the amplifier circuits to accurately acquire subsequent components of the lightning induced transients.

  6. Effect of Dielectric Constant Contrast and Filling Factor to Photonic Bandgap

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of dielectric constant contrast and the filling factor to the photonic bandgap in a 2-D square lattice photonic crystal is discussed. The location, width and number of photonic bandgap can be modulated.

  7. High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm

    DEFF Research Database (Denmark)

    Shirakawa, A; Maruyama, H; Ueda, K

    2009-01-01

    Ytterbium-doped solid-core photonic bandgap fiber amplifiers operating at the long-wavelength edge of the ytterbium gain band are reported. The low-loss bandgap transmission window is formed in the very low gain region, whilst outside the bandgap, large attenuation inhibits the exponential growth...... knowledge, these are the highest output powers generating from active photonic bandgap fibers, as well as from ytterbium-doped fiber lasers at these wavelengths. (C) 2009 Optical Society of America...

  8. Optically controlled photonic bandgap structures for microstrip circuits

    CERN Document Server

    Cadman, D A

    2003-01-01

    This thesis is concerned with the optical control of microwave photonic bandgap circuits using high resistivity silicon. Photoconducting processes that occur within silicon are investigated. The influence of excess carrier density on carrier mobility and lifetime is examined. In addition, electron-hole pair recombination mechanisms (Shockley-Read-Hall, Auger, radiative and surface) are investigated. The microwave properties of silicon are examined, in particular the variation of silicon reflectivity with excess carrier density. Filtering properties of microstrip photonic bandgap structures and how they may be controlled optically are studied. A proof-of-concept microstrip photonic bandgap structure with optical control is designed, simulated and measured. With no optical illumination incident upon the silicon, the microstrip photonic bandgap structure's filtering properties are well-defined; a 3dB stopband width of 2.6GHz, a 6dB bandwidth of 2GHz and stopband depth of -11.6dB at the centre frequency of 9.9GHz...

  9. AlN Bandgap Temperature Dependence from its Optical Properties

    Science.gov (United States)

    2008-06-07

    AlN bandgap temperature dependence from its optical properties E. Silveira a,, J.A. Freitas b, S.B. Schujman c, L.J. Schowalter c a Depto. de Fisica ...range. The energy gap in semiconductors in general changes due to contributions from the electron–phonon interaction and due to the lattice thermal

  10. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  11. Spontaneous emission and nonlinear effects in photonic bandgap materials

    Science.gov (United States)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  12. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....

  13. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applicatio...

  14. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...

  15. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  16. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  17. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  18. Automating Energy Bandgap Measurements in Semiconductors Using LabVIEW

    Science.gov (United States)

    Garg, Amit; Sharma, Reena; Dhingra, Vishal

    2010-01-01

    In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…

  19. Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption

    DEFF Research Database (Denmark)

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis

    2010-01-01

    fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory...

  20. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...

  1. Electrically controllable liquid crystal photonic bandgap fiber with dual-frequency control

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically tunable liquid crystal photonic bandgap fiber device based on a dual frequency liquid crystal with pre-tilted molecules that allows the bandgaps to be continuously tuned. The frequency dependent behavior of the liquid crystal enables active shifting of the bandgaps toward...

  2. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids.

    Science.gov (United States)

    Kawabata, Kohsuke; Saito, Masahiko; Osaka, Itaru; Takimiya, Kazuo

    2016-06-22

    The introduction of quinoidal character to π-conjugated polymers is one of the effective approaches to reducing the bandgap. Here we synthesized new π-conjugated polymers (PBTD4T and PBDTD4T) incorporating thienoquinoids 2,2'-bithiophene-5,5'-dione (BTD) and benzo[1,2-b:4,5-b']dithiophene-2,6-dione (BDTD) as strong electron-deficient (acceptor) units. PBTD4T showed a deep LUMO energy level of -3.77 eV and a small bandgap of 1.28 eV, which are similar to those of the analog using thieno[3,2-b]thiophene-2,5-dione (TTD) (PTTD4T). PBDTD4T had a much deeper LUMO energy level of -4.04 eV and a significantly smaller bandgap of 0.88 eV compared to those of the other two polymers. Interestingly, PBDTD4T showed high transparency in the visible region. The very small bandgap of PBDTD4T can be rationalized by the enhanced contribution of the resonance backbone structure in which the p-benzoquinodimethane skeleton in the BDTD unit plays a crucial role. PBTD4T and PBDTD4T exhibited ambipolar charge transport with more balanced mobilities between the hole and the electron than PTTD4T. We believe that the very small bandgap, i.e., the high near-infrared activity, as well as the well-balanced ambipolar property of the π-conjugated polymers based on these units would be of particular interest in the fabrication of next-generation organic devices.

  3. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  4. A robust and fast generic voltage sag detection technique

    DEFF Research Database (Denmark)

    L. Dantas, Joacillo; Lima, Francisco Kleber A.; Branco, Carlos Gustavo C.;

    2015-01-01

    In this paper, a fast and robust voltage sag detection algorithm, named VPS2D, is introduced. Using the DSOGI, the algorithm creates a virtual positive sequence voltage and monitories the fundamental voltage component of each phase. After calculating the aggregate value in the o:;3-reference frame......, the algorithm can rapidly identify the starting and the ending of symmetric and asymmetric voltage sags, even if there are harmonics on the grid. Simulation and experimental results are given to validate the proposed algorithm....

  5. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  6. Mixed voltage VLSI design

    Science.gov (United States)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  7. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor.

    Science.gov (United States)

    Liu, Feng; Zhou, Zichun; Zhang, Cheng; Zhang, Jianyun; Hu, Qin; Vergote, Thomas; Liu, Feng; Russell, Thomas P; Zhu, Xiaozhang

    2017-06-01

    Inspired by the remarkable promotion of power conversion efficiency (PCE), commercial applications of organic photovoltaics (OPVs) can be foreseen in near future. One of the most promising applications is semitransparent (ST) solar cells that can be utilized in value-added applications such as energy-harvesting windows. However, the single-junction STOPVs utilizing fullerene acceptors show relatively low PCEs of 4%-6% due to the limited sunlight absorption because it is a dilemma that more photons need to be harvested in UV-vis-near-infrared (NIR) region to generate high photocurrent, which leads to the significant reduction of device transparency. This study describes the development of a new small-bandgap electron-acceptor material ATT-2, which shows a strong NIR absorption between 600 and 940 nm with an Eg(opt) of 1.32 eV. By combining with PTB7-Th, the as-cast OPVs yield PCEs of up to 9.58% with a fill factor of 0.63, an open-circuit voltage of 0.73 V, and a very high short-circuit current of 20.75 mA cm(-2) . Owing to the favorable complementary absorption of low-bangap PTB7-Th and small-bandgap ATT-2 in NIR region, the proof-of-concept STOPVs show the highest PCE of 7.7% so far reported for single-junction STOPVs with a high transparency of 37%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Graded-Bandgap Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Thin-Films

    Directory of Open Access Journals (Sweden)

    Obi K. Echendu

    2015-05-01

    Full Text Available A 3-layer graded-bandgap solar cell with glass/FTO/ZnS/CdS/CdTe/Au structure has been fabricated using all-electrodeposited ZnS, CdS and CdTe thin layers. The three semiconductor layers were electrodeposited using a two-electrode system for process simplification. The incorporation of a wide bandgap amorphous ZnS as a buffer/window layer to form glass/FTO/ZnS/CdS/CdTe/Au solar cell resulted in the formation of this 3-layer graded-bandgap device structure. This has yielded corresponding improvement in all the solar cell parameters resulting in a conversion efficiency >10% under AM1.5 illumination conditions at room temperature, compared to the 8.0% efficiency of a 2-layer glass/FTO/CdS/CdTe/Au reference solar cell structure. These results demonstrate the advantages of the multi-layer graded-bandgap device architecture over the conventional 2-layer structure. In addition, they demonstrate the effective application of the two-electrode system as a simplification to the conventional three-electrode system in the electrodeposition of semiconductors with the elimination of the reference electrode as a possible impurity source.

  9. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  10. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  11. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  12. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  13. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  14. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  15. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    for molecular electronics with parallel CVD graphene bottom electrodes with SiO2 passivation was successfully fabricated and electronically characterized. A functioning Carbon Burger was not achieved. Along the work on the Carbon Burger, the scope was broadened and focus was put on implementing graphene......Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... was a graphene-C60 monolayergraphene vertical transistor named the Carbon Burger. The fabrication of such device proved increasingly difficult to achieve and many experimental methods to handle graphene were implemented and improved in attempt to fabricate the Carbon Burger. In the end, a device platform...

  16. Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials.

    Science.gov (United States)

    Deng, Xin-Hua; Liu, Jiang-Tao; Huang, Jie-Hui; Zou, Liner; Liu, Nian-Hua

    2010-02-10

    The band structure and bandgaps of one-dimensional Fibonacci quasicrystals composed of epsilon-negative materials and mu-negative materials are studied. We show that an omnidirectional bandgap (OBG) exists in the Fibonacci structure. In contrast to the Bragg gaps, such an OBG is insensitive to the incident angle and the polarization of light, and the width and location of the OBG cease to change with increasing Fibonacci order, but vary with the thickness ratio of both components, and the OBG closes when the thickness ratio is equal to the golden ratio. Moreover, the general formulations of the higher and lower band edges of the OBG are obtained by the effective medium theory. These results could lead to further applications of Fibonacci structures.

  17. Bandgap narrowing in moderately to heavily doped silicon

    Science.gov (United States)

    Lanyon, H. P. D.; Tuft, R. A.

    1979-01-01

    A theoretical model of bandgap narrowing in silicon at high doping levels has been developed. The model takes into account the electrostatic energy of interaction between a minority carrier and the majority carriers surrounding it, which reduces the thermal energy necessary for creation of an electron-hole pair. A pair energy similar to the excitonic binding energy of bound electron-hole pairs in insulators is obtained. Theoretical results are in excellent agreement with experimental results in the doping range from 3 times 10 to the 17th to 1.5 times 10 to the 20th/cu cm at room temperature. These results indicate that at high injection levels such as a transistor biased into the conductivity-modulation regime or a solar cell whose surface is established by ion implantation into an oxide layer, the bandgap narrowing is determined by the injected carrier concentration rather than by the doping level.

  18. Composition and bandgap-graded semiconductor alloy nanowires.

    Science.gov (United States)

    Zhuang, Xiujuan; Ning, C Z; Pan, Anlian

    2012-01-03

    Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.

  19. Design techniques for superposition of acoustic bandgaps using fractal geometries

    CERN Document Server

    Castiñeira-Ibáñez, S; Sánchez-Pérez, J V; Garcia-Raffi, L M

    2010-01-01

    Research into properties of heterogeneous artificial materials, consisting of arrangements of rigid scatterers embedded in a medium with different elastic properties, has been intense throughout last two decades. The capability to prevent the transmission of waves in predetermined bands of frequencies -called bandgaps- becomes one of the most interesting properties of these systems, and leads to the possibility of designing devices to control wave propagation. The underlying physical mechanism is destructive Bragg interference. Here we show a technique that enables the creation of a wide bandgap in these materials, based on fractal geometries. We have focused our work in the acoustic case where these materials are called Phononic/Sonic Crystals (SC) but, the technique could be applied any types of crystals and wave types in ranges of frequencies where the physics of the process is linear.

  20. Band structure of germanium carbides for direct bandgap silicon photonics

    Science.gov (United States)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  1. Treating temperature effect on bandgap in polymer opal photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The optical reflective spectra and microstruc- tures of polystyrene opal photonic crystals treated with dif- ferent temperatures have been investigated. With tempera- ture increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spec- trum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.

  2. Feasibility of detecting single atoms using photonic bandgap cavities

    OpenAIRE

    Lev, Benjamin; Srinivasan, Kartik; Barclay, Paul; Painter, Oskar; Mabuchi, Hideo

    2004-01-01

    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped...

  3. Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution.

    Science.gov (United States)

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; Chueh, Chu-Chen; Williams, Spencer; Huang, Chun-Chih; Katahara, John K; Hillhouse, Hugh W; Jen, Alex K-Y

    2016-12-14

    Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb(2+) with Sn(2+) and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Therefore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.

  4. Defect-induced bandgap narrowing in low-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Shohet, J. L. [Plasma Processing & Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Afanas' ev, V. V. [Department of Physics, University of Leuven, B-3001 Leuven (Belgium); Baklanov, M. R.; Marneffe, J.-F. de [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-24

    In this work, core-level X-ray photoelectron spectroscopy was utilized to determine the surface bandgap for various porous and non-porous low-k a-SiCOH dielectrics before and after ion sputtering. By examining the onset of inelastic energy loss in O 1s core-level spectra, the gap narrowing was universally found in Ar{sup +} ion sputtered low-k dielectrics. The reduction of the bandgap ranges from 1.3 to 2.2 eV depending on the film composition. We show that the bandgap narrowing in these low-k dielectrics is caused by development of the valence-band tail as evidenced by the presence of additional electronic states above the valence-band maximum. Electron-spin-resonance measurements were made on a-SiCOH films to gain atomic insight into the nature of the sputtering-induced defects and reveal formation of carbon-related defects as the most probable origin of the gap states.

  5. Hollow multilayer photonic bandgap fibers for NIR applications

    Science.gov (United States)

    Kuriki, Ken; Shapira, Ofer; Hart, Shandon D.; Benoit, Gilles; Kuriki, Yuka; Viens, Jean F.; Bayindir, Mehmet; Joannopoulos, John D.; Fink, Yoel

    2004-04-01

    Here we report the fabrication of hollow-core cylindrical photonic bandgap fibers with fundamental photonic bandgaps at near-infrared wavelengths, from 0.85 to 2.28 μm. In these fibers the photonic bandgaps are created by an all-solid multilayer composite meso-structure having a photonic crystal lattice period as small as 260 nm, individual layers below 75 nm and as many as 35 periods. These represent, to the best of our knowledge, the smallest period lengths and highest period counts reported to date for hollow PBG fibers. The fibers are drawn from a multilayer preform into extended lengths of fiber. Light is guided in the fibers through a large hollow core that is lined with an interior omnidirectional dielectric mirror. We extend the range of materials that can be used in these fibers to include poly(ether imide) (PEI) in addition to the arsenic triselenide (As2Se3) glass and poly(ether sulfone) (PES) that have been used previously. Further, we characterize the refractive indices of these materials over a broad wavelength range (0.25 - 15 μm) and incorporated the measured optical properties into calculations of the fiber photonic band structure and a preliminary loss analysis.

  6. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  7. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

    Science.gov (United States)

    Lee, Jhinhwan; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Young

    2002-02-01

    Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes, transistors, and random access memory cells. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of ~0.5eV is narrowed down to ~0.1eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics and nano-optoelectronics.

  8. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  9. Voltage control of DC islanded microgrids

    DEFF Research Database (Denmark)

    Tucci, Michele; Riverso, Stefano; Quintero, Juan Carlos Vasquez

    2015-01-01

    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC) of the correspond......We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC...

  10. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states are consi......We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... Zn to passivate those surface states. Focusing future research on Zn-based buffers is expected to significantly improve the open circuit voltage and efficiency of pure-sulfide Cu2ZnSnS4 solar cells....

  11. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  12. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  13. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    OpenAIRE

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar; Cecati, Carlo

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbala...

  14. Dynamic Performance of Grid Converters using Adaptive DC Voltage Control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Sun, Bo; Guerrero, Josep M.;

    2014-01-01

    This paper investigates a controller that ensures minimum operating dc-link voltage of a back-to-back converter system. The dc-link voltage adapts its reference based on the system state, reference given by an outer loop to the dc-link voltage controller. The operating dc-link voltage should...... be kept as low as possible to increase the power conversion efficiency and increase the reliability of converters. The dynamic performance of the proposed controller is investigated by simulations and experiments....

  15. Silicon solar cells with high open-circuit voltage

    Science.gov (United States)

    Minnucci, J. A.; Matthei, K. W.; Kirkpatrick, A. R.; Mccrosky, A.

    1980-01-01

    Open-circuit voltages as high as 0.645 V (AM0-25 C) have been obtained by a new process developed for low-resistivity silicon. The method utilizes high-dose phosphorus implantation, followed by furnace annealing and simultaneous oxide growth to form high-efficiency, shallow junctions. The effect of the thermally grown oxide is a reduction of surface recombination velocity; the oxide also acts as a moderately efficient AR coating. Boron doped silicon with resistivities from 0.1 to 0.3 ohm-cm has been processed according to this sequence; results show highest open-circuit voltage is attained with 0.1-ohm-cm starting material. The effects of bandgap narrowing, caused by high doping concentrations in the junction, were also investigated by implanting phosphorus over a wide range of dose levels.

  16. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators

    CERN Document Server

    Sharma, Bhisham

    2015-01-01

    We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.

  17. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-08-09

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  18. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  19. Voltage verification unit

    Science.gov (United States)

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  20. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  1. Efficient photovoltaic cells from low band-gap fluorene-based copolymer

    Institute of Scientific and Technical Information of China (English)

    Tian Ren-Yu; Yang Ren-Qiang; Peng Jun-Biao; Cao Yong

    2005-01-01

    Polymer photovoltaic cells based on low band-gap copolymer, poly [2,7-(9,9-dioctyl) fluorene-co-5,5'-(4,7-diselenophenyl)-2,2'-yl-2,1,3-benzothiadiazole] (PFSeBT) are investigated, focusing on the effects of cathode and blend concentration on device performance. The best device, with active layer from PFSeBT:PCBM=1:2 blend and with LiF/Al as cathode, achieves an open-circuit voltage of 1.00V, a short-circuit current density of 4.42mA/cm2, and energy conversion efficiency of 1.67% under AM1.5 illumination (100mW/cm2).The short-circuit current density indicates the dependence of power law on the incident light intensity with a power index of 0.887. All devices have a spectral response up to 680nm. The results indicate that PFSeBT is a potential polymer functioning as an electron donor in polymer photovoltaic cells.

  2. Monolithic mode locked DBR laser with multiple-bandgap MQW structure realized by selective area growth

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, M.; Bouayad-Amine, J.; Feeser, T.; Haisch, H.; Kuehn, E.; Lach, E.; Satzke, K.; Weber, J.; Zielinski, E. [Alcatel Telecom, Stuttgart (Germany). Research Div.

    1996-12-31

    The realization of novel monolithically integrated multiple-segment pulse laser sources in InGaAsP MQW technology is reported. The MQW layers for all functional sections of these devices, the modulator, the active (gain) and the passive waveguide, as well as the Bragg section were grown in a single selective area growth (SAG) step by LP-MOVPE on SiO{sub 2} patterned 2 inch InP substrates. Due to a properly selected pattern geometry 3 different bandgap regions with smooth interfaces are thereby formed along the laser cavity. The more than 4 mm long DBR lasers which exhibit a threshold current as low as 30 mA were mode locked by an intra-cavity electroabsorption modulator applying a sinusoidal voltage at around 10 GHz. In this way an optical pulse train with pulse widths < 13 ps (measured with a streak camera) and high extinction ratio was generated. A time-bandwidth product of 0.5 close to the Fourier limit is obtained. This device is very attractive for signal generation in 40 Gb/s OTDM transmission systems at 1.55 {micro}m wavelength.

  3. The Effect of LUMO Level Offset on the Electron Dissociation Rates in Low Bandgap Polymer Heterostructures

    Science.gov (United States)

    Sfeir, Matthew; Rodovsky, Deanna; Azoulay, Jason; Bazan, Guillermo; Peet, Jeffrey

    2012-02-01

    In order to maximize the efficiency of polymer/fullerene bulk heterojunction solar cells, the voltage lost when the electron transfers from the polymer to the fullerene must be minimized. While the magnitude of this loss will significantly impact the maximum attainable efficiency of this technology, there have been relatively few attempts to quantify the dependence of the electron transfer rate and yield on the driving force for electron transfer. In order to isolate the effect of electrochemical potential difference on the exciton dissociation rate, we present results of photophysical measurements of a low bandgap copolymer mixed with a series of fullerene based acceptor materials in a bulk heterojunction geometry. The LUMO level of the acceptor material is varied relative to the polymer's so that the effect of the energy offset on the electron dissociation rate can be determined. Using photoluminescence and transient absorption measurements, we find that the exciton quenching rate varies systematically with increasing energy offset. We examine the mechanism of charge carrier generation by correlating the exciton quenching with charge carrier generation.

  4. Maximizing bandgaps in two-dimensional photonic crystals a variational algorithm

    CERN Document Server

    Paul, P; Paul, Prabasaj; Ndi, Francis C.

    2002-01-01

    We present an algorithm for the maximization of photonic bandgaps in two-dimensional crystals. Once the translational symmetries of the underlying structure have been imposed, our algorithm finds a global maximal (and complete, if one exists) bandgap. Additionally, we prove two remarkable results related to maximal bandgaps: the so-called `maximum contrast' rule, and about the location in the Brillouin zone of band edges.

  5. Application of pressure to shift the bandgap in polystyrene-based photonic crystals

    Science.gov (United States)

    Johnson, Nigel P.; Khokhar, Ali Z.; McLachlan, Martyn A.; McComb, David W.; De La Rue, Richard M.

    2004-09-01

    We describe a simple technique for the selective area modification of the bandgap in planar 3-D photonic crystals (PhC). The PhCs are grown by controlled drying of monosized polystyrene spheres. Uniaxial pressure of 41 MPa can produce a shift in the bandgap of ~90 nm from 230 nm spheres. An unexpected broadening of the bandgap is attributed to the change in topology associated with large necks formed between spheres at pressures greater than 10 MPa.

  6. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  7. 100-Period InGaAsP/InGaP Superlattice Solar Cell with Sub-Bandgap Quantum Efficiency Approaching 80%

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sayed, Islam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bedair, S. M. [North Carolina State University

    2017-08-25

    InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In0.49Ga0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with a rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (Woc) of 0.4 V.

  8. 具有带隙结构的迟滞比较器电路设计%Circuit Design of Hysteresis Comparator with Band-Gap Structure

    Institute of Scientific and Technical Information of China (English)

    徐静萍

    2011-01-01

    According to the requirement of low voltage and high stability, a circuit for the hysteresis comparator with band-gap structure is designed based on micropower consumption DC-DC converter drived by LED. Its minimum input voltage is 1. 2 V. Its core circuits consists of Band-gap comparator, emitter follower and hysteresis comparator. The bipolar technology is adopted in the circuit design. The circuit designed with the tecnology was simulated and verified with HSpice software.The results show that the hysteresis voltage of the hysteresis comparator is 8 mV, and the variation of the overturn threshold voltage with input voltage and temperature is small.%基于LED驱动的微功耗DC-DC转换器,针对低压高稳定性的要求设计了一款具有带隙结构的迟滞比较器电路,它的最低输入电压为1.2 V,其核心电路有带隙基准比较器、射极跟随器和迟滞比较器.整个电路采用Bipolar工艺设计,利用HSpice软件对所设计的电路进行了仿真与验证.结果表明,迟滞比较器的迟滞电压为8 mV.翻转门限电压随输入电压和温度的变化均很小.

  9. Exploring Direct to Indirect Bandgap Transition in Silicon Nanowires: Size Effect

    Science.gov (United States)

    Shi, Lihong; Zhang, Gang

    2016-10-01

    We have investigated the electronic band structure of [110] silicon nanowires (SiNWs) using first-principles calculations. We find that, in the ultrathin diameter regime, SiNWs have a direct bandgap, but the energy difference between the indirect and direct fundamental bandgaps decreases as the nanowire diameter increases. This indicates that larger [110] SiNWs could have an indirect bandgap. Fundamentally, a series of quantitative direct-indirect bandgap transitional diameters are obtained for different cross-sectional geometries, with the largest values for SiNWs with triangular cross section.

  10. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  11. High bandgap III-V alloys for high efficiency optoelectronics

    Science.gov (United States)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  12. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  13. Surface band-gap narrowing in quantized electron accumulation layers.

    Science.gov (United States)

    King, P D C; Veal, T D; McConville, C F; Zúñiga-Pérez, J; Muñoz-Sanjosé, V; Hopkinson, M; Rienks, E D L; Jensen, M Fuglsang; Hofmann, Ph

    2010-06-25

    An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.

  14. Accurate modelling of fabricated hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Sandoghchi, Seyed Reza; Chen, Yong; Jasion, Gregory T; Wheeler, Natalie V; Baddela, Naveen K; Hayes, John R; Petrovich, Marco N; Richardson, David J; Poletti, Francesco

    2015-09-07

    We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

  15. Liquid-impermeable inverse opals with invariant photonic bandgap.

    Science.gov (United States)

    Kang, Hyelim; Lee, Joon-Seok; Chang, Won Seok; Kim, Shin-Hyun

    2015-02-18

    Omniphobic inverse opals are created by structurally and chemically modifying the surface of inverse opals through reactive ion etching. During the etching, void arrays of the inverse opal surface evolves to a triangular post array with re-entrant geometry. The elaborate structure can efficiently pin the air-liquid interface and retain air cavities against water and oil, thereby providing liquid-impermeable inverse opals with invariant photonic bandgap. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optoelectronic devices based on graded bandgap structures utilising electroplated semiconductors

    OpenAIRE

    2016-01-01

    The main aim of the work presented in this thesis is to develop low-cost multi-junction graded bandgap solar cells using electroplated semiconductors. The semiconductor materials explored in this research are CdSe, ZnTe, CdS, CdMnTe and CdTe thin films. These layers were characterised for their structural, compositional, morphological, optical, and electrical features using XRD, Raman spectroscopy, EDX, SEM, UV-Vis spectroscopy, PEC cell, C-V, I-V and UPS measurement techniques respectively. ...

  17. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  18. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil;

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction...

  19. High Voltage Distribution

    Science.gov (United States)

    Norbeck, Edwin; Miller, Michael; Onel, Yasar

    2010-11-01

    For detector arrays that require 5 to 10 kV at a few microamps each for hundreds of detectors, using hundreds of HV power supplies is unreasonable. Bundles of hundreds of HV cables take up space that should be filled with detectors. A typical HV module can supply 1 ma, enough current for hundreds of detectors. It is better to use a single HV module and distribute the current as needed. We show a circuit that, for each detector, measures the current, cuts off the voltage if the current exceeds a set maximum, and allows the HV to be turned on or off from a control computer. The entire array requires a single HV cable and 2 or 3 control lines. This design provides the same voltage to all of the detectors, the voltage set by the single HV module. Some additional circuitry would allow a computer controlled voltage drop between the HV and each individual detector.

  20. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  1. Graded bandgap semiconduc-tor thin film photoelectrodes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A graded bandgap oxide semiconductor thin film electrode was designed in order to obtain a photoelectrochemically stable photoelectrode, with wide absorption range. The graded bandgap Ti1-xVxO2 film electrode was prepared by heating the stacked layers of V/Ti in varying ratios, which were coated on the substrate by the sol-gel method using the starting solution with various V/Ti ratios. XPS result showed that the composition gradient was achieved for the film. The Ti1-xVxO2 film electrode was found to be photoelectrochemically stable. Its photovoltage was about 360 mV. Obvious visible light photoresponse was observed for the Ti1-xVxO2 film electrode. Compared with the pure TiO2 electrode, the photocurrent onset potential of the Ti1-xVxO2 film electrode was shifted positively, probably because the accumulation of vanadium at the electrode sur-face causes the recombination of the electrons and holes, and the lowest level of the conduction band of Ti1-xVxO2 is lower than that of TiO2. Impedance analysis showed that the donor density of the Ti1-xVxO2 film electrode was higher than that of TiO2 film electrode.

  2. Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures

    Science.gov (United States)

    Kissel, Glen J.

    2011-10-01

    Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.

  3. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    Science.gov (United States)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  4. Petahertz optical drive with wide-bandgap semiconductor

    Science.gov (United States)

    Mashiko, Hiroki; Oguri, Katsuya; Yamaguchi, Tomohiko; Suda, Akira; Gotoh, Hideki

    2016-08-01

    High-speed photonic and electronic devices at present rely on radiofrequency electric fields to control the physical properties of a semiconductor, which limits their operating speed to terahertz frequencies (1012 Hz ref. ). Using the electric field from intense light pulses, however, could extend the operating frequency into the petahertz regime (1015 Hz ref. ). Here we demonstrate optical driving at a petahertz frequency in the wide-bandgap semiconductor gallium nitride. Few-cycle near-infrared pulses are shown to induce electric interband polarization though a multiphoton process. Dipole oscillations with a periodicity of 860 as are revealed in the gallium nitride electron and hole system by using the quantum interference between the two transitions from the valence and conduction band states, which are probed by an extremely short isolated attosecond pulse with a coherent broadband spectrum. In principle, this shows that the conductivity of the semiconductor can be manipulated on attosecond timescales, which corresponds to instantaneous light-induced switching from insulator to conductor. The resultant dipole frequency reaches 1.16 PHz, showing the potential for future high-speed signal processing technologies based on wide-bandgap semiconductors.

  5. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  6. Low-voltage gyrotrons

    Science.gov (United States)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  7. A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings

    Institute of Scientific and Technical Information of China (English)

    Fang Hong; Lou Shu-Qin; Guo Tie-Ying; Yao Lei; Li nong-Lei; Jian ShuiSheng

    2008-01-01

    A simple model for approximate bandgap structure caculation of all-solid photonic bandgap fibre based on an array of rings is proposed.In this model calculated are only the potential modes of a unit cell,which is a high-index ring in the low-index background for this fibre,rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap.Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method.High speed in computation is its great advantage over the other exact methods,because it only needs to find the roots of one-dimensional analytical expressions.And the results of this model,mode plots,offer an ideal environment to explore the basic properties of photonic bandgap clearly.

  8. Wind Power Plant Voltage Stability Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  9. Cryocooled Josephson standards for AC voltage metrology

    Science.gov (United States)

    Durandetto, P.; Sosso, A.; Monticone, E.; Trinchera, B.; Fretto, M.; Lacquaniti, V.

    2017-05-01

    The Josephson effect is worldwide used as a basis for constant reference voltages in national metrological institutes and in calibration laboratories of industry. Research on Josephson voltage standards is aiming at a fundamental change also in the metrology of the volt for AC and arbitrary waveforms: programmable Josephson voltage standards converting a digital code into a quantum-accurate stepwise waveform are already available in primary laboratories and even more advanced standards for converting sub-nanosecond binary coded pulses into any arbitrary signal with quantum accuracy are now actively developed and tested. A new experimental setup based on a two-stage Gifford-McMahon cryocooler has been developed at INRiM for the operation of AC-Josephson voltage standards. Among its distinct features, the possibility of employing both the aforementioned techniques (programmable and pulsed Josephson voltage standards) is particularly interesting. Quantum-based AC voltage sine waves have been synthesized with both programmable and pulse-driven arrays, although their accuracy is still limited by thermal oscillations due to the cryocooler piston motion.

  10. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables...

  11. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  12. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    Science.gov (United States)

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%.

  13. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  14. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A

    2016-11-01

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  15. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  16. Tunable bandgap in few-layer black phosphorus by electrical field

    Science.gov (United States)

    Li, Dong; Xu, Jin-Rong; Ba, Kun; Xuan, Ningning; Chen, Mingyuan; Sun, Zhengzong; Zhang, Yu-Zhong; Zhang, Zengxing

    2017-09-01

    Dynamically engineering bandgap in semiconductors may enable a flexible design and optimization of electronics and optoelectronics. Layered black phosphorus is a 2D semiconductor with a direct bandgap and promising device characteristics. Theoretical studies indicate that the bandgap in black phosphorus can be tuned by electrical field. Here, through designing a double-gated field-effect transistor device configuration, we experimentally demonstrate that the bandgap in few-layer black phosphorus can be dynamically continually tuned by perpendicular electrical field. With an electrical displacement field of 1 V nm-1, the detailed study indicates that the bandgap can reduce around 100 meV. The finding here should be helpful on the flexible design and optimization of black phosphorus electronics and optoelectronics, and may open up some other new possible applications.

  17. Compressed lead-based perovskites reaching optimal Shockley-Queisser bandgap with prolonged carrier lifetime

    CERN Document Server

    Liu, Gang; Gong, Jue; Yang, Wenge; Mao, Ho-kwang; Liu, Zhenxian; Schaller, Richard D; Zhang, Dongzhou; Xu, Tao

    2016-01-01

    Atomic structure of materials plays a decisive role in the light-matter interaction. Yet, despite its unprecedented progress, further efficiency boost of Lead-based organic-inorganic perovskite solar cells is hampered by its greater bandgap than the optimum value according to Shockley-Queisser limit. Here, we report the experimental achievement of bandgap narrowing in formamidinium lead triiodide from 1.489 to 1.337 eV by modulating the lattice constants under hydraulic compression, reaching the optimized bandgap for single-junction solar cells. Strikingly, such bandgap narrowing is accomplished with improved, instead of sacrificed carrier lifetime. More attractively, the narrowed bandgap is partially retainable after the release of pressure. This work opens a new dimension in basic science understanding of structural photonics and paves an alternative pathway towards more efficient photovoltaic materials.

  18. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2013-01-01

    Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46...... stable cubic perovskites which was found to have a finite bandgap in a previous screening-study. The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design...... rules on how to combine two cubic perovskites to generate a new combination with a larger or smaller bandgap compared with the constituent structures. Those rules are based on the type of orbitals involved in the conduction bands and on the size of the two cubic bandgaps. We also see that a change...

  19. On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves

    CERN Document Server

    Hedayatrasa, Saeid; Uddin, Mohammad

    2016-01-01

    Optimized topology of bi-material acoustic metamaterial lattice plates is studied for maximized locally resonant bandgap of flexural guided waves. Optimized layout of the two relatively stiff and compliant material phases in the design domain is explored, free from any restrictions on the topology and shape of the relevant domains. Multiobjective optimization is performed through which maximized effective stiffness or minimized overall mass of the bandgap topology is additionally ensured. Extreme and selected intermediate optimized topologies of Pareto fronts are presented and their bandgap efficiencies and effective stiffness are compared. The bi-material constitution of selected topologies are further altered and modal band structure of resultant multilateral and porous designs are evaluated. Novel, core-shell like, locally resonant bandgaps are introduced. It is shown that how the bandgap efficiency and structural mass and/or stiffness can be optimized through optimized microstructural design of the matrix...

  20. Growth references

    NARCIS (Netherlands)

    Buuren, S. van

    2007-01-01

    A growth reference describes the variation of an anthropometric measurement within a group of individuals. A reference is a tool for grouping and analyzing data and provides a common basis for comparing populations.1 A well known type of reference is the age-conditional growth diagram. The

  1. Wide bandgap GaN-based semiconductors for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S J [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Abernathy, C R [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Thaler, G T [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Frazier, R M [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Norton, D P [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Ren, F [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); Park, Y D [CSCMR and School of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Zavada, J M [US Army Research Office, Research Triangle Park, NC 27709 (United States); Buyanova, I A [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Chen, W M [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Hebard, A F [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2004-02-25

    Recent results on achieving ferromagnetism in transition-metal-doped GaN, AlN and related materials are discussed. The field of semiconductor spintronics seeks to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. There is strong potential for new classes of ultra-low-power, high speed memory, logic and photonic devices based on spintronics. The utility of such devices depends on the availability of materials with practical magnetic ordering temperatures and most theories predict that the Curie temperature will be a strong function of bandgap. We discuss the current state-of-the-art in producing room temperature ferromagnetism in GaN-based materials, the origins of the magnetism and its potential applications. (topical review)

  2. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  4. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    In this ph.d. work, an experimental and theoretical study on Liquid Crystal (LC) infiltrated Photonic Crystal Fibers (PCFs) has been carried out. PCFs usually, consists of an air/silica microstructure of air holes arranged in a triangular lattice surrounding a core defect defined by a missing air...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro...

  5. One-dimensional photonic bandgap structure in abalone shell

    Institute of Scientific and Technical Information of China (English)

    LI Bo; ZHOU Ji; LI Longtu; LI Qi; HAN Shuo; HAO Zhibiao

    2005-01-01

    @@ Photonic bandgap (PBG) materials are periodic com- posites of dielectric materials in which electromagnetic waves of certain frequency range cannot propagate in any or a special direction. Recently, there has been great inter- est in synthetic PBG materials due to their ability in ma- nipulation of photons. Since 500 million years ago, the natural world has been exploiting photonic structures for specific biological purposes[1]. Different types of biologi- cal PBG materials have been discovered in recent years, such as the one-dimension PBG structure in the sea mouse Aphrodita[2], and the fruits Elaeocarpus[3,4]; two-dimension PBG structure in the male peacock Pavo muticus feathers[5], Indonesian male Papilio palinurus butterfly[6], Thaumantis diores butterfly[7] and the male Ancyluris meliboeus Fabricius butterflies[8]; and three-dimension PBG structure in the weevil Pachyrhynchus argus[9].

  6. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  7. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  8. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  9. Analysis and Mathematical Model for Restitution of Voltage Using Dynamic Voltage Restorer

    Directory of Open Access Journals (Sweden)

    C. Gopinath

    2014-01-01

    Full Text Available Voltage sag and swell have a major concern in the distribution systems. In order to mitigate the voltage sag and swell, a custom power device called dynamic voltage restorer (DVR is used. The proposed system is a polymer electrolyte membrane (PEM fuel cell based DVR. The energy from the fuel cell is stored in the super capacitor to restitute the voltage. In this proposed DVR, Z-source inverter is used instead of traditional inverter because of buck-boost and shoot through capability. The simulation is performed using three controller topologies: PI controller, synchronous reference frame controller and fuzzy controller and the results are verified using Matlab-Simulink environment.

  10. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide.

    Science.gov (United States)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J; Ellingson, Randy J; Podraza, Nikolas J; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ∼1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm(2), and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.

  11. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R.; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J.; Ellingson, Randy J.; Podraza, Nikolas J.; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm2, and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 +/- 0.33%, indicating good reproducibility.

  12. Voltage Regulators for Photovoltaic Systems

    Science.gov (United States)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  13. Studying Voltage Transformer Ferroresonance

    Directory of Open Access Journals (Sweden)

    Hamid Radmanesh

    2012-09-01

    Full Text Available This study studies the effect of Circuit Breaker Shunt Resistance (CBSR, Metal Oxide Vaistor (MOV and Neutral earth Resistance (NR on the control of ferroresonance in the voltage transformer. It is expected that NR can controlled ferroresonance better than MOV and CBSR. Study has been done on a one phase voltage transformer rated 100 VA, 275 kV. The simulation results reveal that considering the CBSR and MOV exhibits a great mitigating effect on ferroresonance overvoltages, but these resistances cannot control these phenomena for all range of parameters. By applying NR to the system structure, ferroresonance has been controlled and its amplitude has been damped for all parameters values.

  14. 一种基于BCD工艺的新型5V基准电路设计%Design of a Novel 5V Reference Circuit Based on BCD

    Institute of Scientific and Technical Information of China (English)

    盛健健; 张国俊

    2013-01-01

    设计了一种结构简单的新型基准电路,通过对带隙基准的倍乘,无需电压转换电路,输出5V基准电压可直接用于芯片次级电源.电路设计中,运用驱动电路提高基准电压的驱动能力,通过温度补偿、电路隔离技术和反馈环路,提高基准电压的温度特性、电压抑制比和稳定性.全电路基于0.35μm BCD工艺,并通过Hspice仿真.结果表明,基准电压输出为5V,驱动能力20mA,温度系数5.1ppm/℃;室温下,电源抑制比63dB@100kHz.%A novel reference circuit with simple structure is presented. In this circuit, the output 5V reference voltage by multiplying the band-gap voltage is used directly as the chip's secondary power supply without voltage conversion circuit. In the circuit design, drive circuit is utilized to enhance the drive capability and temperature characteristics,PSRR, loop stability is improved by temperature compensation, isolation technology and feedback. Results from simulation with Hspice based on 0. 35μm BCD process indicated that the circuit has a output voltage reference of 5V,a drive capability of 20mA, a temperature Coefficient of 5. lppm/℃ ,a PSRR of 63dB@100kHz at room temperature.

  15. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the magnetic system and stabilizers asynchronous generator of electricity parameters confirmed by the patents for the invention of the Russian Federation. The proposed technical solution voltage stabilizer asynchronous generators, can reduce the weight of the block capacitors excitation and reactive power compensation, as well as to simplify the control system power circuit which has less power electronic devices. For wind power plants it is an important issue not only to stabilize the voltage of the generator, but also the frequency of the current. Recommend functionality stabilizer schemes parameters of electric power made for direct frequency converters with artificial and natural switching power electronic devices. It is also proposed as part of stabilization systems use single-phase voltage, three-phase transformers with rotating magnetic field, reduce the level of electromagnetic interference generated by power electronic devices for switching, enhance the efficiency and reliability of the stabilizer.

  16. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  17. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  18. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  19. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, A.; Chen, M.

    2010-01-01

    An ytterbium-doped photonic bandgap fiber amplifier operating at the long wavelength edge of the ytterbium gain band is investigated for high power amplification. The spectral filtering effect of the photonic bandgap efficiently suppresses amplified spontaneous emission at the conventional...... ytterbium gain wavelengths and thus enables high power amplification at 1178 nm. A record output power of 167 W, a slope efficiency of 61% and 15 dB saturated gain at 1178 nm have been demonstrated using the ytterbium-doped photonic bandgap fiber....

  20. Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence

    Science.gov (United States)

    Wagner, Joachim

    1985-07-01

    The band-gap shrinkage in heavily doped n- and p-type silicon is studied by photoluminescence both at low temperatures (20 K) and at room temperature (300 K). A line-shape analysis was performed to determine the indirect band-gap energy from the emission spectra. Within the experimental accuracy the same band-gap shift is observed at room temperature as at low temperature. The present results are compared with experimental data from other optical studies and with theoretical calculations.

  1. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard;

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...... gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27 nm/degrees C is achieved at room temperature. The insertion loss is estimated to be less than 0.5 dB and caused mainly by coupling loss between the index-guided mode and the bandgap-guided mode. (c) 2006 Optical...

  2. Synthesis and Characterization of Small Band-gap Conjugated Polymers - Poly(pyrrolyl methines)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kind of small band-gap conjugated polymers-poly (pyrrolyl methines) and their precursors-(poly pyrrolyl methanes) have been synthesized by a simple method and characterized by 1HNMR, FT-IR, TGA and UV-Vis. These polymers can be dissolved in high polar solvents such as DMSO, DMF or NMP. The results reveals that the band-gap of the synthesized conjugated polymers are in the range of 0.96~1.14 eV and they all belong to the small band-gap polymers. The conductivity of doped products with iodine is in the range of semiconductor.

  3. Reference Revolutions.

    Science.gov (United States)

    Mason, Marilyn Gell

    1998-01-01

    Describes developments in Online Computer Library Center (OCLC) electronic reference services. Presents a background on networked cataloging and the initial implementation of reference services by OCLC. Discusses the introduction of OCLC FirstSearch service, which today offers access to over 65 databases, future developments in integrated…

  4. Autonomous Operation of Low Voltage Microgrids

    Directory of Open Access Journals (Sweden)

    Irena Wasiak

    2014-12-01

    Full Text Available The article describes the possibilities of LV microgrids operation in the island mode. Control strategies of energy sources connected to the grid by means of invertors are discussed, either for a microgrid connected to the supplying network or during the island mode operation. The presented results of research were conducted at the Laboratory of Distributed Generation at Lodz University of Technology. The study was performed for two variants of reference voltage source: the battery storage and microturbine respectively.

  5. Deployment of low-voltage regulator considering existing voltage control in medium-voltage distribution systems

    Directory of Open Access Journals (Sweden)

    Hiroshi Kikusato

    2016-01-01

    Full Text Available Many photovoltaic (PV systems have been installed in distribution systems. This installation complicates the maintenance of all voltages within the appropriate range in all low-voltage distribution systems (LVDSs because the trends in voltage fluctuation differ in each LVDS. The installation of a low-voltage regulator (LVR that can accordingly control the voltage in each LVDS has been studied as a solution to this problem. Voltage control in a medium-voltage distribution system must be considered to study the deployment of LVRs. In this study, we installed LVRs in the LVDSs in which the existing voltage-control scheme cannot prevent voltage deviation and performed a numerical simulation by using a distribution system model with PV to evaluate the deployment of the LVRs.

  6. Analyzing of Dynamic Voltage Restorer in Series Compensation Voltage

    Directory of Open Access Journals (Sweden)

    Naser Parhizgar

    2012-02-01

    Full Text Available The Dynamic Voltage Restorer (DVR is a series-connected compensator to generate a controllable voltage to against the short-term voltage disturbances. The technique of DVR is an effective and cost competitive approach to improve voltage quality at the load side. This study presents a single-phase and threephase DVR system with reduced switch-count topology to protect the sensitive load against abnormal voltage conditions. Most basic function, the DVR configuration consist of a two level Voltage Source Converter (VSC, a dc energy storage device, a coupling transformer Connected in shunt with the ac system This study presents the application of Dynamic Voltage Restorer (DVR on power distribution systems for mitigation of voltage sag at critical loads. DVR is one of the compensating types of custom power devices. The DVR, which is based on forced-commutated Voltage Source Converter (VSC has been proved suitable for the task of compensating voltage sags/swells. Simulation results are presented to illustrate and understand the performances of DVR in supporting load voltages under voltage sags/swells conditions.

  7. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  8. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  9. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  10. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  11. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

    Directory of Open Access Journals (Sweden)

    Peter Feng

    2014-07-01

    Full Text Available We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs. BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM, and transmission electron microscopy (TEM. In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD, and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs.

  12. SSPA's Using Reduced Conduction Angle Techniques on Wide-Bandgap Devices for Ultra High Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for very efficient, very reliable, low weight, wide-bandgap medium power SSPAs for Space applications operating at 400 MHz and 8GHz.

  13. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    National Research Council Canada - National Science Library

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-01-01

    ...) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap...

  14. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field

    Science.gov (United States)

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-02-01

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For

  15. Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    Li, Shu-Guang; Zhou, Hong-Song; Yin, Guo-Bing

    2011-11-01

    Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method. A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps. For enlarging the bandgap width, an improved GLS HC-PCF is put forward, the normalized frequency kΛ of the improved fiber is from 7.2 to 8.5 in its first bandgap. The improved GLS HC-PCF with pitch of 4.2 μm can transmit the lights with wavelengths ranging from 3.1 μm to 3.7 μm.

  16. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method

    Science.gov (United States)

    Wu, Zhi-Jing; Li, Feng-Ming; Zhang, Chuanzeng

    2015-04-01

    The spectral element method (SEM) is extended to investigate the vibration band-gap properties of three-dimensional (3D) Kagome lattices. The dynamic stiffness matrix of the 3D element which contains bending, tensional and torsional components is derived. The spectral equations of motion of the whole 3D Kagome lattice are then established. Comparing with frequency-domain solutions calculated by the finite element method (FEM), the accuracy and the feasibility of the SEM solutions are verified. It can be shown that the SEM is suitable for analyzing the vibration band-gap properties. Due to the band-gap characteristics, the periodic 3D Kagome lattice has the performance of vibration isolation. The influences of the structural and material parameters on the vibration band-gaps are discussed and a new type of 3D Kagome lattice is designed to obtain the improved vibration isolation capability.

  17. Microresonator and associated method for producing and controlling photonic signals with a photonic bandgap delay apparatus

    Science.gov (United States)

    Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)

    2000-01-01

    By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.

  18. Bandgap engineering of graphene decorated with randomly distributed ZnO nano-seed

    Science.gov (United States)

    Al-Amin, Chowdhury; Vabbina, Phani Kiran; Karabiyik, Mustafa; Sinha, Raju; Pala, Nezih

    2016-05-01

    In this paper, we have experimentally demonstrated the engineering of semi-metal single layer CVD Graphene's bandgap by decorating with randomly distributed ZnO nano-seed grown by sonication of Zinc acetate dehydrate. The proximity of nanoparticles and Graphene breaks Graphene's sublattice symmetry and opens-up a bandgap. The 2-D/G ratio of Raman spectroscopy of decorated Graphene along with a peak at 432.39 cm-1 confirmed presence of ZnO on single layer Graphene. The introduced bandgap was measured from the slope of Arrhenius plot. Graphene with significant bandgap introduced by the proposed methods could be used for devices intended for digital and logic applications.

  19. Gap formation and guided modes in photonic bandgap fibres with high-index rods

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2004-01-01

    Photonic bandgap fibres fabricated by infiltrating the holes of a microstructured optical fibre with high-index material are investigated numerically in the low- and intermediate-frequency regime. Bandgaps, transmission windows and the distribution of field energy between high- and low-index regi......Photonic bandgap fibres fabricated by infiltrating the holes of a microstructured optical fibre with high-index material are investigated numerically in the low- and intermediate-frequency regime. Bandgaps, transmission windows and the distribution of field energy between high- and low......-index regions are investigated. It is shown that the numerical results found can be rationalized in a simple way by considering the properties of guided modes in a conventional step-index fibre....

  20. Research on micro-sized acoustic bandgap structures.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.

    2010-01-01

    Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.

  1. Angle-dependent bandgap engineering in gated graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)

    2016-03-15

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  2. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  3. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA.......Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  4. 167 W, 1178 nm Ytterbium-Doped Photonic Bandgap Fiber Amplifier with Power Scalability

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Chen, Meishin

    2010-01-01

    We have generated 167 W of output power at 1178 nm using an ytterbium-doped photonic bandgap fiber. Distributed spectral filtering efficiently suppresses amplified spontaneous emission at shorter wavelengths and enables power scalable amplification at 1178nm.......We have generated 167 W of output power at 1178 nm using an ytterbium-doped photonic bandgap fiber. Distributed spectral filtering efficiently suppresses amplified spontaneous emission at shorter wavelengths and enables power scalable amplification at 1178nm....

  5. Properties of photonic bandgap in one-dimensional multicomponent photonic crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; WANG Qi

    2006-01-01

    Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.

  6. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables...... spontaneous-emission-free power svaling. As high as 167 W power and 16 dB saturated gain at 1178 nm have been demonstrated...

  7. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.

    Science.gov (United States)

    Chen, Shuqi; Zang, Weiping; Schülzgen, Axel; Liu, Xin; Tian, Jianguo; Moloney, Jerome V; Peyghambarian, Nasser

    2009-12-01

    We propose a Z-scan theory for one-dimensional nonlinear photonic bandgap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic bandgap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effects of nonlinear absorption on reflected and transmitted Z-scan results are also discussed.

  8. Band-gap narrowing in heavily doped silicon: A comparison of optical and electrical data

    Science.gov (United States)

    Wagner, Joachim; del Alamo, Jesús A.

    1988-01-01

    The band-gap narrowing in heavily doped silicon has been studied by optical techniques—namely, photoluminescence and photoluminescence excitation spectroscopy—and by electrical measurements on bipolar transistors. The optical experiments give a consistent set of data for the band-gap narrowing in n- and p-type material at low temperatures as well as at room temperature. A good agreement is found between the optical and electrical data removing the discrepancies existing so far in the literature.

  9. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrially tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal;

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  11. Elucidating interactions and conductivity of newly synthesised low bandgap polymer with protic and aprotic ionic liquids.

    Directory of Open Access Journals (Sweden)

    Pankaj Attri

    Full Text Available In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole (PHVTT. Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.

  12. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar;

    2013-01-01

    problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0....

  13. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    . An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  14. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  15. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Zaslavsky, Alexander [Department of Physics and School of Engineering, Brown University, 182-184 Hope St., Providence, Rhode Island 02912 (United States); Longo, Paolo [Gatan, Inc., 5794 W Las Positas Blvd., Pleasanton, California 94588 (United States); Pacifici, Domenico, E-mail: Domenico-Pacifici@brown.edu [School of Engineering, Brown University, 184 Hope St., Providence, Rhode Island 02912 (United States)

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  16. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Science.gov (United States)

    Liu, Pei; Longo, Paolo; Zaslavsky, Alexander; Pacifici, Domenico

    2016-01-01

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO2 superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  17. The Search for Sub-Bandgap Optoelectronic Response in Silicon Hyperdoped with Gold

    Science.gov (United States)

    Mailoa, Jonathan; Akey, Austin; Mathews, Jay; Hutchinson, David; Simmons, Christie; Sullivan, Joseph; Winkler, Mark; Recht, Dan; Persans, Peter; Warrender, Jeffrey; Aziz, Michael; Buonassisi, Tonio

    2013-03-01

    Deep-level dopants have been long known as the lifetime-killer in microelectronic devices. Nevertheless, it has been shown that deep-level donor can facilitate strong absorption of light with energy below the semiconductor bandgap. Due to this strong sub-bandgap absorption, it is possible to engineer silicon devices exhibiting sub-bandgap optoelectronic response, such as silicon-based infrared photodetectors and intermediate-band solar cells. In this work, we show the optoelectronic response of silicon doped with a gold concentration surpassing the equilibrium solubility limit (gold-hyperdoped silicon, Au:Si). We fabricated Au:Si by ion implantation followed by nanosecond pulse laser melting, achieving a gold dopant concentration of over 1019 cm-3. UV-VIS spectrophotometry was performed to measure sub-bandgap light absorption in the Au:Si layer. Our samples with the highest gold concentration have 10-15% absorption of sub-bandgap light. We will present and discuss the sub-bandgap optoelectronic response of this gold-doped silicon.

  18. Modulation of bandgap in bilayer armchair graphene ribbons by tuning vertical and transverse electric fields

    Science.gov (United States)

    Vu, Thanh-Tra; Nguyen, Thi-Kim-Quyen; Huynh, Anh-Huy; Phan, Thi-Kim-Loan; Tran, Van-Truong

    2017-02-01

    We investigate the effects of external electric fields on the electronic properties of bilayer armchair graphene nano-ribbons. Using atomistic simulations with Tight Binding calculations and the Non-equilibrium Green's function formalism, we demonstrate that (i) in semi-metallic structures, vertical fields impact more effectively than transverse fields in terms of opening larger bandgap, showing a contrary phenomenon compared to that demonstrated in previous studies in bilayer zigzag graphene nano-ribbons; (ii) in some semiconducting structures, if transverse fields just show usual effects as in single layer armchair graphene nano-ribbons where the bandgap is suppressed when varying the applied potential, vertical fields exhibit an anomalous phenomenon that the bandgap can be enlarged, i.e., for a structure of width of 16 dimer lines, the bandgap increases from 0.255 eV to the maximum value of 0.40 eV when a vertical bias equates 0.96 V applied. Although the combined effect of two fields does not enlarge the bandgap as found in bilayer zigzag graphene nano-ribbons, it shows that the mutual effect can be useful to reduce faster the bandgap in semiconducting bilayer armchair graphene nano-ribbons. These results are important to fully understand the effects of electric fields on bilayer graphene nano-ribbons (AB stacking) and also suggest appropriate uses of electric gates with different edge orientations.

  19. Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Feng; Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, Siegen 57068 (Germany)

    2014-12-15

    In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  20. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  1. Four-Switch Three-Phase PMSM Converter with Output Voltage Balance and DC-Link Voltage Offset Suppression

    Directory of Open Access Journals (Sweden)

    Fadil Hicham

    2017-01-01

    Full Text Available High power quality, efficiency, complexity, size, cost effectiveness and switching losses of the direct current to alternating current (DC–AC conversion system are crucial aspects in industrial applications. Therefore, the four-switch three-phase inverter (4S3P has been proposed as an innovative inverter design. However, this topology has been known to have many performance limitations in the low-frequency region, because of the generation of an unbalanced voltage leading to an unbalanced current due to the fluctuation and offset of the centre tap voltage of the DC-link capacitors. Those drawbacks are investigated and solved in this paper in order to provide pure sinusoidal output voltages. The generated output voltages are controlled using proportional-integral (PI controllers to follow the desired voltages. Furthermore, the DC-link capacitor voltage offset is mitigated by subtracting the direct component from the control reference voltage using low pass filters, where this direct voltage component provides the direct current component which leads to DC-link capacitor voltage divergence. A simulation model and experimental setup are used to validate the proposed concept. Many simulation and experimental results are carried out to show the effectiveness of the proposed control scheme.

  2. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2016-01-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......-gaps are determined by means of the method of varying amplitudes. For the general symmetric corrugation shape, the width of each odd band-gap is controlled only by one harmonic in the corrugation series with its number being equal to the number of the band-gap. Widths of even band-gaps, however, are influenced by all...... the harmonics involved in the corrugation series, so that the lower frequency band-gaps can emerge. These are band-gaps located below the frequency corresponding to the lowest harmonic in the corrugation series. For the general non-symmetric corrugation shape, the mth band-gap is controlled only by one, the mth...

  3. High voltage photoconductive switch package

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, George J.

    2016-11-22

    A photoconductive switch having a wide bandgap material substrate between opposing electrodes, and a doped dielectric filler that is in contact with both the electrodes and the substrate at the triple point. The dielectric filler material is doped with a conductive material to make it partially or completely conducting, to minimize the field enhancement near the triple point both when the substrate is not conducting in the "off" state and when the substrate is rendered conducting by radiation in the "on" state.

  4. Living and Working Safely Around High-Voltage Power Lines.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  5. Pressure-induced phase transition and bandgap collapse in the wide-bandgap semiconductor InTaO4

    CERN Document Server

    Errandonea, D; Garg, A B; Botella, P; Martinez-Garcia, D; Pellicer-Porres, J; Rodriguez-Hernandez, P; Munoz, A; Cuenca-Gotor, V; Sans, J A

    2016-01-01

    A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide inf...

  6. Determination of appropriate DC voltage for switched mode power supply (SMPS) loads

    Science.gov (United States)

    Setiawan, Eko Adhi; Setiawan, Aiman; Purnomo, Andri; Djamal, Muchlishah Hadi

    2017-03-01

    Nowadays, most of modern and efficient household electronic devices operated based on Switched Mode Power Supply (SMPS) technology which convert AC voltage from the grid to DC voltage. Based on theory and experiment, SMPS loads could be supplied by DC voltage. However, the DC voltage rating to energize electronic home appliances is not standardized yet. This paper proposed certain method to determine appropriate DC voltage, and investigated comparison of SMPS power consumption which is supplied from AC and DC voltage. To determine the appropriate DC voltage, lux value of several lamps which have same specification energized by using AC voltage and the results is using as reference. Then, the lamps were supplied by various DC voltage to obtain the trends of the lux value to the applied DC voltage. After that, by using the trends and the reference lux value, the appropriate DC voltage can be determined. Furthermore, the power consumption on home appliances such as mobile phone, laptop and personal computer by using AC voltage and the appropriate DC voltage were conducted. The results show that the total power consumption of AC system is higher than DC system. The total power (apparent power) consumed by the lamp, mobile phone and personal computer which operated in 220 VAC were 6.93 VA, 34.31 VA and 105.85 VA respectively. On the other hand, under 277 VDC the load consumption were 5.83 W, 19.11 W and 74.46 W respectively.

  7. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  8. No-Voltage Meter

    Science.gov (United States)

    1976-02-01

    VW- IKft, 1/4 H4 -Wv- IK!1, I/4W INTERNAL VOLTAGE NOTE ALL TRANSISTORS ARE 2N43A OR EQUIVALENT GERMANIUM ALLOY PNP AA ALKALINE BATTERY...D-,, regardless of polarity. This signal is then full-wave rectified by the diode-connected Germanium transistor bridge, T,, T-,, T3, and T4... Transistor T5 acts as a second current limiter. Resistor R2 was selected to give 90 f# of full-scale meter deflection with an input signal of 115 volts

  9. Frequency to Voltage Converter Analog Front-End Prototype

    Science.gov (United States)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  10. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...... to guide these grid-connected distributed power generation systems. In order to verify the response of such systems for voltage disturbance, mainly for evaluation of voltage sags/dips, a Voltage Sag Generator (VSG) is needed. This paper evaluates such sag test devices according to IEC 61000 in order...... to provide cheaper solutions to test against voltage sags. Simulation and experimental results demonstrate that the shunt impedance based VSG solution is the easiest and cheapest one for laboratory test applications. The back-to-back fully controlled converter based VSG is the most flexible solution...

  11. Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Guang; ZHOU Hong-Song; YIN Guo-Bing

    2011-01-01

    Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method. A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps. For enlarging the bandgap width, an improved GLS HC-PCF is put forward, the normalized frequency kA of the improved fiber is from 7.2 to 8.5 in its first bandgap. The improved GLS HC-PCF with pitch of 4.2μm can transmit the lights with wavelengths ranging from 3.1μm to 3.7μm.%Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method.A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps.For enlarging the bandgap width,an improved GLS HC-PCF is put forward,the normalized frequency κA of the improved fiber is from 7.2 to 8.5 in its first bandgap.The improved GLS HC-PCF with pitch of 4.2μm can transmit the lights with wavelengths ranging from 3.1 μm to 3.7 μm.Photonic crystal fibers (PCFs) can be classified into total internal reflection PCFs and photonic bandgap (PBG) PCFs[1] Solid core PCFs are one kind of the total internal reflection PCFs;hollow-core PCFs (HC-PCFs) are a kind of typical PBG fibers.The conception of HC-PCFs was first proposed by Russel in 1991.[2] Later,it was theoretically demonstrated by Birks et al.[3] in 1995.A bandgap photonic crystal fiber was mde by Knight et al.[4] for the first time in 1998.On the basis of these works,the first HC-PCF was designed and made by Cregan et al.[5] in 1999.

  12. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    Science.gov (United States)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  13. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  14. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... analysis, which is simple for computation and requires moderate automation and communication infrastructure. The proposed method is suitable for a hierarchical control structure where a supervisory controller has the provision to adapt the settings of local PV inverter controllers for overall system...

  15. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  16. High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors.

    Science.gov (United States)

    Wirths, Stephan; Stange, Daniela; Pampillón, Maria-Angela; Tiedemann, Andreas T; Mussler, Gregor; Fox, Alfred; Breuer, Uwe; Baert, Bruno; San Andrés, Enrique; Nguyen, Ngoc D; Hartmann, Jean-Michel; Ikonic, Zoran; Mantl, Siegfried; Buca, Dan

    2015-01-14

    We present the epitaxial growth of Ge and Ge0.94Sn0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al2O3, 5 nm HfO2, or 1 nmAl2O3/4 nm HfO2, on strained Ge and strained Ge0.94Sn0.06. Experimental capacitance-voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations.

  17. Voltage Swells Improvement in Low Voltage Network Using Dynamic Voltage Restorer

    Directory of Open Access Journals (Sweden)

    R. Omar

    2011-01-01

    Full Text Available Problem statement: Voltage disturbances are the most common power quality problem due to the increased use of a large numbers of sophisticated electronic equipment in industrial distribution system. The voltage disturbances such as voltage sags, swells, harmonics, unbalance and flickers. High quality in the power supply is needed, since failures due to such disturbances usually have a high impact on production cost. There are many different solutions to compensate voltage disturbances but the use of a DVR is considered to be the most cost effective method. The objective of this study is to propose a new topology of a DVR in order to mitigate voltage swells using a powerful power custom device namely the Dynamic Voltage Restorer (DVR. Approach: New configuration of a DVR with an improvement of a controller based on direct-quadrature-zero method has been introduced to compensate voltage swells in the network. Results: The effectiveness of the DVR with its controller were verify using Matlab/Simulinks SimPower Toolbox and then implemented using 5KVA DVR experimental setup. Simulations and experimental results demonstrate the effective dynamic performance of the proposed configuration. Conclusion: The implimentation of the proposed DVR validate the capabilities in mitigating of voltage swells effectiveness.During voltage swells, the DVR injects an appropriate voltage to maintain the load voltage at its nominal value.

  18. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    Science.gov (United States)

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores.

  19. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Raghuwanshi, M.; Cadel, E.; Pareige, P.; Duguay, S.; Couzinie-Devy, F.; Arzel, L.; Barreau, N.

    2014-07-01

    The reason why so-called wide-bandgap CuIn1-xGaxSe2 (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn1-xGaxSe2 polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  20. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, M., E-mail: mohit.raghuwanshi@etu.univ-rouen.fr; Cadel, E.; Pareige, P.; Duguay, S. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Université et INSA de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Couzinie-Devy, F.; Arzel, L.; Barreau, N. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, Université de Nantes, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2014-07-07

    The reason why so-called wide-bandgap CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn{sub 1−x}Ga{sub x}Se{sub 2} polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x < 0.4) CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  1. High-voltage test and measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, Wolfgang; Lemke, Eberhard

    2014-04-01

    Reflects the unit of both HV testing and measuring technique. Intended as an ''application guide'' for the relevant IEC standards. Refers also to future trends in HV testing and measuring technique. With numerous illustrations. It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  2. Electronic Voltage and Current Transformers Testing Device

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2012-01-01

    Full Text Available A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz. The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  3. High voltage source control on FODS

    Science.gov (United States)

    Patalakha, D. I.; Kalinin, A. Yu; Kulagin, N. V.

    2017-01-01

    The implementation of the high voltage power supply control system (HVPSCS) for experimental setup FODS (FOcusing Doublearmed Spectrometer) at accelerator U-70 of the Federal State Budgetary Institution State Research Center Of Russia Institute for High Energy Physics of the National Research Centre “Kurchatov Institute” (hereinafter referred to as IHEP) or for the test bench of the detector components is considered. The required set of hardware is defined and the appropriate software to operate HVPSCS is written in C/C++ codes. The date acquisition (DAQ) system [1] makes automatic control on HVPSCS for data taking run. It allows to get the dependence of appropriate detector parameters on the high voltage supply values and choose its optimal values for FODS detectors. The test run results of HVPSCS are presented.

  4. 高精度电流偏置电路的设计%Design of a high precision reference current bias circuit

    Institute of Scientific and Technical Information of China (English)

    蒋本福; 杨骁

    2013-01-01

    A high accuracy current bias circuit is presented in this paper, which can be used in RF wireless transceiver chip. This paper designs a practical application of the bandgap reference circuit, with consideration of the power, area and offset voltage. This paper adopts the bandgap reference circuit and a voltage to current converter structure to design a high power supply rejection ratio design (PSRR) of the reference current. Current mirror with auxiliary operational amplifier (gainboost) is to improve the output impedance, and to reduce the influence of modulation effect on the reference current, so as to improve the precision of output current reference.The reference current bias is simulated based on 0.35 μm technology standard CMOS process. The layout area is 0.18 mm2. Planning parameters extraction (PEX)simulation results show that the reference voltage is 1.203 5 V, temperature coefficient in the range of -55℃~+90℃ is 15.5 ppm/℃, the power supply rejection ratio in low frequency is 90 dB, when the outside resistor is from 1 kΩ~400 kΩ, the output reference current error range is 0.000 1μA.%提出了一款应用于 RF 无线收发芯片的高精度电流偏置电路。综合考虑功耗、面积和失调电压对基准电压的影响,设计了一款符合实际应用的带隙基准电路。并以带隙基准电路作基准电流源的偏置,采用电压电流转换器结构设计了具有高电源电压抑制比( PSRR )的基准电流源。电流镜采用辅助运放的设计方法来提高电流镜的输出阻抗,减小沟道调制效应对输出的基准电流的影响,从而提高输出基准电流的精度。采用0.35μm CMOS 工艺设计芯片版图,版图面积为0.18 mm2。提取寄生参数( PEX )仿真结果表明,该电路在-55℃~+90℃范围内的温度系数为15.5 ppm/℃,室温下基准电压为1.2035 V;在低频段电流源的电源抑制比为90 dB;在外接电阻从1 kΩ~400 kΩ变化时,输

  5. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  6. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A1 -D-A2 Low-Bandgap Conjugated Polymers.

    Science.gov (United States)

    Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-04-01

    Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A1 -D-A2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A1 -D-A2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm(-2) , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes.

  7. Voltage-Responsive Controlled Release Film with Cargo Release Self-Monitoring Property Based on Hydrophobicity Switching.

    Science.gov (United States)

    Jiao, Xiangyu; Li, Yanan; Li, Fengyu; Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-03-16

    Herein, voltage-responsive controlled release film was constructed by grafting ferrocene on the mesoporous inverse opal photonic crystal (mIOPC). The film achieved free-blockage controlled release and realized the monitoring of cargo release without external indicator. Free-blockage was attributed to the voltage switchable nanovalves which undergo hydrophobic-to-hydrophilic transition when applying voltage. Monitoring of cargo release was attributed to the optical property of mIOPC, the bandgap of mIOPC had a red shift when the solution invaded in. The film was hydrophobic enough to stop solution intrusion. Once the voltage was applied, the film became hydrophilic, leading to invasion of the solution. As a result, the cargos were released and the bandgap of mIOPC was red-shifted. Therefore, in this paper both a free-blockage controlled release film and a release sensing system was prepared. The study provides new insights into highly effective controlled release and release sensing without indicator.

  8. Alternative approaches of SiC & related wide bandgap materials in light emitting & solar cell applications

    Science.gov (United States)

    Wellmann, Peter; Syväjärvi, Mikael; Ou, Haiyan

    2014-03-01

    silicon oxycarbide material can provide potential applications of the Eu luminescent materials to challenging conditions like high temperatures or aggressive environments where the silica has weaknesses. In some approaches, silicon rich silicon oxide that contain silicon nanoclusters emit red to near infrared luminescence due to quantum confinement effects while luminescence at shorter wavelength is difficult due to the interplay of defects and quantum confinement effects. In addition it is applicable as low-k dielectric, etch-stop and passivation layers. It also has an optical band-gap that is smaller than that of SiO2 which may facilitate carrier injection at lower voltages that is suitable for optoelectronics. From materials perspective of emerging materials, it seems distant to consider system related issues. The future demands on communication and lighting devices require higher information flows in modernized optical devices, for example by replacing electrical interconnects with their optical counterparts and tunable backgrounds filters for integrated optics or photonics applications. However, there are materials issues related to such device performance, for example by a non-linearity, that provide the possibility for selective removal or addition of wavelengths using hetero structures in which one side of the structure enhances the light-to-dark sensitivity of long and medium wavelength channels and diminish others, and an opposite behavior in other face of the structure. Certainly materials may be applied in various innovative ways to provide new performances in devices and systems. In any materials and device evaluation, reliability issues in passivation and packaging of semiconductor device structures provide a base knowledge that may be used to evaluate new concepts. Fundamental aspects of dielectric constant, bandgap and band offsets between the valence and conduction band edges between the passivation layer and the semiconductor create a foundation for

  9. The impact of sodium on the sub-bandgap states in CZTSe and CZTS

    Science.gov (United States)

    Gershon, By Talia; Lee, Yun Seog; Mankad, Ravin; Gunawan, Oki; Gokmen, Tayfun; Bishop, Doug; McCandless, Brian; Guha, Supratik

    2015-03-01

    We compare the optically active sub-bandgap states in polycrystalline Cu2ZnSnSe4 (CZTSe) and Cu2ZnSnS4 (CZTS) thin films as a function of sodium content. In all samples studied, we find that CZTSe has a lower concentration of radiative defect-derived states compared to CZTS and that the states are also shallower in CZTSe compared to CZTS. Further, we find that sodium impacts the relative ratios of two sub-bandgap peaks in the 4 K photoluminescence (PL) spectra of CZTSe (one at ˜0.85 eV and another at ˜0.92 eV). We propose that both of these sub-bandgap peaks stem from intrinsic point defects in CZTSe rather than from electronic states introduced by sodium; this is supported by a measurement on a sodium-free single-crystal of CZTSe. We also show that films with stronger emission through the shallower sub-bandgap states at 4 K display room-temperature PL closer to the bandgap energy. For all sodium quantities studied, one broad PL peak is observed in the 4 K PL spectrum of CZTS which also shifts towards the band edge with increasing sodium. A reduced overall defect density and the fact that the states that are present are shallower together may help account for the lower VOC deficits in CZTSe and the empirical observations that sodium improves device performance.

  10. Fast-light Assisted Four-Wave-Mixing in Photonic Bandgap

    CERN Document Server

    Feng, Cheng; Zhang, Liang; Liu, Jinmei; Zhan, Li

    2014-01-01

    Since the forward and backward waves are coupled with each other and a standing wave with no net propagation of energy is formed in the photonic bandgap, it is a commonsense of basic physics that, any kinds of effects associated with wave propagation including four-wave-mixing (FWM) are thought to be impossible. However, we lay great emphasis here on explaining that this commonsense could be broken under specific circumstances. In this article, we report with the first experimental observation of the energy conversion in the photonic bandgap into other channel via FWM. Owing to the phase manipulation by fast light effect in the photonic bandgap, we manage to achieve the phase-match condition and thus occurred FWM transfer energy into other channels outside the photonic bandgap efficiently. As one-dimensional photonic crystal, simulations on fiber Bragg grating (FBG) with and without fast light were conducted respectively, and an enhanced FWM in photonic bandgap of FBG was observed. The experimental result sho...

  11. TiO2 anatase with a bandgap in the visible region.

    Science.gov (United States)

    Dette, Christian; Pérez-Osorio, Miguel A; Kley, Christopher S; Punke, Paul; Patrick, Christopher E; Jacobson, Peter; Giustino, Feliciano; Jung, Soon Jung; Kern, Klaus

    2014-11-12

    TiO2 anatase plays a central role in energy and environmental research. A major bottleneck toward developing artificial photosynthesis with TiO2 is that it only absorbs ultraviolet light, owing to its large bandgap of 3.2 eV. If one could reduce the bandgap of anatase to the visible region, TiO2-based photocatalysis could become a competitive clean energy source. Here, using scanning tunneling microscopy and spectroscopy in conjunction with density functional theory calculations, we report the discovery of a highly reactive titanium-terminated anatase surface with a reduced bandgap of less than 2 eV, stretching into the red portion of the solar spectrum. By tuning the surface preparation conditions, we can reversibly switch between the standard anatase surface and the newly discovered low bandgap surface phase. The identification of a TiO2 anatase surface phase with a bandgap in the visible and high chemical reactivity has important implications for solar energy conversion, photocatalysis, and artificial photosynthesis.

  12. Universal rule on chirality-dependent bandgaps in graphene antidot lattices.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Zhuhua; Guo, Wanlin

    2013-04-22

    Graphene with periodically patterned antidots has attracted intense research attention as it represents a facile route to open a bandgap for graphene electronics. However, not all graphene antidot lattices (GALs) can open a bandgap and a guiding rule is missing. Here, through systematic first-principles calculations, it is found that bandgaps in triangular GALs are surprisingly well defined by a chirality vector R = n a1 + ma2 connecting two neighboring antidots, where a1 and a2 are the basis vectors of graphene. The bandgap opens in the GALs with (n-m)mod3 = 0 but remains closed in those with (n-m)mod3 = ±1, reminiscent of the gap-chirality rule in carbon nanotubes. Remarkably, the gap value in GALs allows ample modulation by adjusting the length of chirality vectors, shape and size of the antidots. The gap-chirality relation in GALs stems from the chirality-dependent atomic structures of GALs as revealed by a super-atom model as well as Clar sextet analyses. This chirality-dependent bandgap is further shown to be a generic behavior in any parallelogram GAL and thus serves as an essential stepping stone for experimenters to realize graphene devices by antidot engineering.

  13. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...

  14. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  15. Reactive Power Strategy of Cascaded Delta-connected STATCOM Under Asymmetrical Voltage Conditions

    DEFF Research Database (Denmark)

    He, Zhixing; Ma, Fujun; Xu, Qianming;

    2017-01-01

    Cascaded static synchronous compensator (STATCOM) is an effective solution for reactive power support in mid-dle/high voltage conditions, and it has been widely employed to control reactive power in photovoltaic (PV) plants, wind farms, and industrial occasions. In this paper, reactive power...... control strategy of cascaded delta-connected STATCOM under asym-metrical voltage conditions is investigated. A new phase current reference calculation method is proposed to support reactive power continually under abnormal voltage conditions considering cluster voltage balancing control and phase current...... of the phase current references. Furthermore, the reactive power support capability of cascaded STATCOM under asymmetrical voltage conditions is explored and compared by combining the proposed references calculation method with the three generalized current references calculation strategies. Finally...

  16. Reference problems

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    in science or for that ma t ter, in any other subject. Indeed, the sorry state of science education is only a small part of the much deeper sy s temic rot. A colleague in IIT - Kanpur cynically remarked to me that IIT did not even need to teach... annual budget. (This takes into consideration only 50,000 seriously working scientists out of a total r e search and teaching staff of over 0.4 million in CSIR, ICAR, ICMR, un i ver sities, etc.). Following are some good examples for referring...

  17. Comparison of two voltage control strategies for a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    , it is possible to investigate the influence of the plant control gain, short circuit ratio, and time delays on the system stability, as well as the fulfillment of the design requirements. The implemented plant voltage control is based on a slope voltage controller, which calculates the references to be sent...... to the wind turbines, according to the slope gain and the difference between the reference and measured voltage at the point of connection. The results show that for a system where the time delay between the central control and the actuators is not negligible, the performance of a decentralized voltage...

  18. Impacts on Power Factor of AC Voltage Controllers Under Non-Sinusoidal Conditions

    Directory of Open Access Journals (Sweden)

    Mukhtiar Ahmed Mahar

    2012-04-01

    Full Text Available AC-AC conversion is obtained with the help of Cyclo-converters, DC Link converters and AC Voltage Controllers. AC voltage controllers are also referred to as voltage regulators. Main issue concerned to these converters is that they generate harmonics due to periodic variable structure system. The generated harmonics create disturbances and degrade the performance of converter. The power factor of supply side is affected due to these harmonics. This paper focuses on source side power factor of ac voltage controllers under nonsinusoidal conditions. In order to observe the power factor, measurement tool of power factor and simulation model of ac voltage controller is also developed in MATLAB software.

  19. Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons

    Science.gov (United States)

    Vu, Thanh-Tra; Tran, Van-Truong

    2016-08-01

    We theoretically investigate the effect of a transverse electric field generated by side gates and a vertical electric field generated by top/back gates on energy bands and transport properties of zigzag bilayer graphene ribbons (Bernal stacking). Using atomistic tight binding calculations and Green’s function formalism we demonstrate that a bandgap is opened when either field is applied and even enlarged under simultaneous influence of the two fields. Interestingly, although vertical electric fields are widely used to control the bandgap in bilayer graphene, here we show that transverse fields exhibit a more positive effect in terms of modulating a larger range of bandgap and retaining good electrical conductance. The Seebeck effect is also demonstrated to be enhanced strongly—by about 13 times for a zigzag bilayer graphene ribbon with 16 chain lines. These results may motivate new designs of devices made of bilayer graphene ribbons using electric gates.

  20. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within...... the cladding modes from the fiber. The propagation loss is measured in a cut-back experiment. The fundamental bandgap at 0.75-1.05 THz is found to have losses lower than 1.5 dB/cm, whereas the loss is below 1.0 dB/cm in the reduced bandgap 0.78-1.02 THz, as shown in Fig. 1(g)....

  1. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    Directory of Open Access Journals (Sweden)

    Deepanshu Sharma

    2016-08-01

    Full Text Available In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO thin films through low doping of zinc (Zn has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10% have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  2. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.

    Science.gov (United States)

    Gao, Dingshan; Zhou, Zhiping; Citrin, David S

    2008-03-01

    The photonic crystal structure with parallelogram lattice, capable of bending a self-collimated wave with free angles and partial bandgap reflection, is presented. The equifrequency contours show that the direction of the collimation wave can be turned by tuning the angle between the two basic vectors of the lattice. Acute, right, and obtuse angles of collimating waveguide bends have been realized by arc lattices of parallelogram photonic crystals. Moreover, partial bandgap reflection of the parallelogram lattice photonic crystals is validated from the equifrequency contours and the projected band structures. A waveguide taper based on this partial bandgap reflection is also designed and proved to have above 85% transmittance over a very wide operating bandwidth of 180 nm.

  3. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan-Pai; Horng, Sheng-Fu [Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chao, Yu-Chiang; Meng, Hsin-Fei [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Zan, Hsiao-Wen, E-mail: yuchiangchao@gmail.com, E-mail: meng@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-10-12

    In junction absorber photovoltaics doped wide bandgap n-type and p-type semiconductors form a porous interpenetrating junction structure with a layer of low bandgap absorber at the interface. The doping concentration is high enough such that the junction depletion width is smaller than the pore size. The highly conductive neutral region then has a dentrite shape with fingers reaching the absorber to effectively collect the photo-carriers swept out by the junction electric field. With doping of 10{sup 19} cm{sup -3} corresponding to a depletion width of 25 nm, pore size of 32 nm, absorber thickness close to exciton diffusion length of 17 nm, absorber bandgap of 1.4 eV and carrier mobility over 10{sup -5} cm{sup 2} V{sup -1} s{sup -1}, numerical calculation shows the power conversion efficiency is as high as 19.4%. It rises to 23% for a triplet exciton absorber.

  4. Tuning the hybridization bandgap by meta-molecules with in-unit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongqiang; Li, Yunhui, E-mail: liyunhui@tongji.edu.cn; Wu, Qian; Jiang, Haitao; Zhang, Yewen; Chen, Hong [Key Laboratory of Advanced Micro-Structured Materials, Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-09-07

    In this paper, we demonstrate that the hybridization bandgap (HBG) can be tuned conveniently by deep subwavelength meta-molecules with in-unit interaction. Spontaneous-emission-cancellation-like (SEC-like) effect is realized in a meta-molecule by introducing the destructive interference of two detuned meta-atoms. The meta-atoms consisting of subwavelength zero-index-metamaterial-based resonators are side-coupled to a microstrip. Compared to conventional HBG configurations, the presence of in-unit interaction between meta-atoms provides more flexibility in tuning the bandgap properties, keeping the device volume almost unchanged. Both numerical simulations and microwave experiments confirm that the width, depth, and spectrum shape of HBG can be tuned by simply introducing SEC-like interaction into the meta-molecule. Due to these features, our design may be promising to be applied in microwave or optics communications systems with strict limitation of device volume and flexible bandgap properties.

  5. Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers.

    Science.gov (United States)

    Várallyay, Z; Saitoh, K; Fekete, J; Kakihara, K; Koshiba, M; Szipocs, R

    2008-09-29

    Higher-order-mode solid and hollow core photonic bandgap fibers exhibiting reversed or zero dispersion slope over tens or hundreds of nanometer bandwidths within the bandgap are presented. This attractive feature makes them well suited for broadband dispersion control in femtosecond pulse fiber lasers, amplifiers and optical parametric oscillators. The canonical form of the dispersion profile in photonic bandgap fibers is modified by a partial reflector layer/interface placed around the core forming a 2D cylindrical Gires-Tournois type interferometer. This small perturbation in the index profile induces a frequency dependent electric field distribution of the preferred propagating higher-order-mode resulting in a zero or reversed dispersion slope.

  6. Energy bandgap variation in oblique angle-deposited indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyurin; Kim, Hyunsoo; Cho, Jaehee, E-mail: jcho@chonbuk.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Jun Hyuk; Kim, Jong Kyu [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 54896 (Korea, Republic of); Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-01-25

    Indium tin oxide (ITO) thin films deposited using the oblique angle deposition (OAD) technique exhibit a strong correlation between structural and optical properties, especially the optical bandgap energy. The microstructural properties of ITO thin films are strongly influenced by the tilt angle used during the OAD process. When changing the tilt angle, the refractive index, porosity, and optical bandgap energy of ITO films also change due to the existence of a preferential growth direction at the interface between ITO and the substrate. Experiments reveal that the ITO film's optical bandgap varies from 3.98 eV (at normal incident deposition) to 3.87 eV (at a 60° tilt angle)

  7. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors.

    Science.gov (United States)

    Kang, Joongoo; Zhang, Lijun; Wei, Su-Huai

    2016-02-18

    Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs.

  8. On-chip High-Voltage Generator Design

    CERN Document Server

    Tanzawa, Toru

    2013-01-01

    This book describes high-voltage generator design with switched-capacitor multiplier techniques.  The author provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.   ·         Shows readers how to design charge pump circuits with lower voltage operation, higher power efficiency, and smaller circuit area; ·         Describes comprehensive circuits and systems design of on-chip high-voltage generators; ·         Covers all the component circuit blocks, including charge pumps, pump regulators, level shifters, oscillators, and references.

  9. An efficient method of DFT/LDA band-gap correction

    Science.gov (United States)

    Scharoch, Pawel; Winiarski, Maciej

    2013-12-01

    It has been shown that the underestimated by DFT/LDA(GGA) band-gap can be efficiently corrected by an averaging procedure of transition energies over a region close to the direct band-gap transition, which we call the Δ(EIG) method (the differences in the Kohn-Sham eigenvalues). For small excitations the averaging appears to be equivalent to the Δ(SCF) approach (differences in the self-consistent energies), which is a consequence of Janak’s theorem and has been confirmed numerically. The Gaussian distribution in k-space for electronic excitation has been used (occupation numbers in the Δ(SCF) or eigenenergy sampling in the Δ(EIG)). A systematic behavior of the k-space localization parameter σk correcting the band-gap has been observed in numerical experiments. On that basis some sampling schemes for band-gap correction have been proposed and tested in the prediction of the band-gap behavior in InxGa(1-x)N semiconducting alloy, and a very good agreement with independent calculations has been obtained. In the context of the work the issue of electron localization in the r-space has been discussed which, as it has been predicted by Mori-Sánchez et al. [P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100 (2008) 146401], should reduce the effect of the convex behavior of the LDA/GGA functionals and improve the band-gap prediction within DFT/LDA(GGA). A scheme for electron localization in r-space has been suggested.

  10. Wide-Bandgap Semiconductor Devices for Automotive Applications

    Science.gov (United States)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  11. Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells.

    Science.gov (United States)

    Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu-Chen; Jo, Sae Byeok; Liu, Bo; Zhao, Ting; Jen, Alex K-Y

    2016-10-01

    A low-bandgap (1.33 eV) Sn-based MA0.5 FA0.5 Pb0.75 Sn0.25 I3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Finally, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI3 cell to achieve a high efficiency of 19.08%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    We have theoretically investigated twin-core all-solid photonic bandgap fibers (PBGFs) for evanescent wave sensing of refractive index within one single microfluidic analyte channel centered between the two cores. The sensor can achieve ultrahigh sensitivity by detecting the change in transmission....... We find novel features in the sensing characteristics: the sensitivity is higher at the short wavelength edge of a bandgap than at the long wavelength edge, the effective index of the odd supermode (nodd) is more sensitive to ambient refractive index change compared with that of the even supermode...

  13. Refractive index sensing in an all-solid twin-core photonic bandgap fiber

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    2010-01-01

    We describe a highly sensitive refractive index sensor based on a twin-core coupler in an all-solid photonic bandgap guiding optical fiber. A single hole acts as a microfluidic channel for the analyte, which modifies the coupling between the cores, and avoids the need for selective filling....... By operating in the bandgap guiding regime the proposed sensor is capable of measuring refractive indices around that of water, and because the analyte varies the coupling coefficient (i.e., instead of phase matching condition) the device is capable of both high sensitivity and a relatively large dynamic range....

  14. Study on the photonic bandgaps of hollow-core microstructured fibers

    Institute of Scientific and Technical Information of China (English)

    Zhaolun Liu; Guiyao Zhou; Lantian Hou

    2006-01-01

    A simple method is presented to measure the transmission spectrum of hollow-core microstructured fibers in the visible, near-infrared, and mid-infrared regions. The plane wave expansion method is applied to analyze the photonic bandgaps of hollow-core microstructured fibers. The experimental results indicate that there are several strong transmission bands in the near-infrared and mid-infrared region, but hardly any transmission phenomena in the visible region, which shows that there are some bandgaps in nearinfrared wavelength. The experimental results are consistent with the numerically simulative results using a plane wave expansion method.

  15. Enhanced third-harmonic generation in photonic crystals at band-gap pumping

    Science.gov (United States)

    Yurchenko, Stanislav O.; Zaytsev, Kirill I.; Gorbunov, Evgeny A.; Yakovlev, Egor V.; Zotov, Arsen K.; Masalov, Vladimir M.; Emelchenko, Gennadi A.; Gorelik, Vladimir S.

    2017-02-01

    More than one order enhancement of third-harmonic generation is observed experimentally at band-gap pumping of globular photonic crystals. Due to a lateral modulation of the dielectric permittivity in two- and three-dimensional photonic crystals, sharp peaks of light intensity (light localization) arise in the media at the band-gap pumping. The light localization enhances significantly the nonlinear light conversion, in particular, third-harmonic generation, in the near-surface volume of photonic crystal. The observed way to enhance the nonlinear conversion can be useful for creation of novel compact elements of nonlinear and laser optics.

  16. Strain dependence of the direct energy bandgap in thin silicon on insulator layers

    OpenAIRE

    Munguía, J; Bluet, J-M; Chouaib, H.; Bremond, G.; Mermoux, Michel; Bru-Chevallier, C

    2010-01-01

    Abstract Photoreflectance spectroscopy is applied on tensilely-strained silicon on insulator (sSOI) thin layers in order to evaluate the biaxial strain effect on the Si direct bandgap. The measured redshift of the transition (i.e. direct bandgap) with strain (~ -100 meV/%), corresponds to theoretical predictions. The hydrostatic and valence band deformation potential parameters for E 1 (i.e. transition close to L-point along the ?-direction) are also measured: and ' 0 E eV D 5. 0 5 . 7 1 1...

  17. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  18. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui;

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  19. Bandgap engineering of rippled MoS2 monolayer under external electric field

    Science.gov (United States)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng; Feng, Ji

    2013-04-01

    In this letter we propose a universal strategy combining external electric field with the ripple of membrane to tune the bandgap of semiconducting atomic monolayer. By first-principles calculations we show that the bandgap of rippled MoS2 monolayer can be tuned in a large range by vertical external electric field, which is expected to have little effect on MoS2 monolayer. This phenomenon can be explained from charge redistribution under external electric field by a simple model. This may open an avenue of optimizing monolayer MoS2 for electronic and optoelectronic applications by surface patterning.

  20. Solution-processable donor-acceptor polymers with modular electronic properties and very narrow bandgaps.

    Science.gov (United States)

    Foster, Michael E; Zhang, Benjamin A; Murtagh, Dustin; Liu, Yi; Sfeir, Matthew Y; Wong, Bryan M; Azoulay, Jason D

    2014-09-01

    Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized π-systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength (λ) ranges from 0.7 electronic properties so as to achieve very narrow optical bandgaps (Eg (opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date.

  1. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    A theoretical investigation of a novel type of optical fiber is presented. The operation of the fiber relies entirely on wave guidance through the photonic bandgap effect and not on total internal reflection, thereby distinguishing that fiber from all other known fibers, including recently studied...... photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica–air cladding structure and demonstrate how light can...

  2. Compact Electrically tunable Waveplate Based on Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Keller, Stephan Urs

    2009-01-01

    A compact tunable waveplate based on negative dielectric liquid crystal photonic bandgap fibers is presented. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm.......A compact tunable waveplate based on negative dielectric liquid crystal photonic bandgap fibers is presented. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm....

  3. A novel two-layer compact electromagnetic bandgap (EBG) structure and its applications in microwave circuits

    Institute of Scientific and Technical Information of China (English)

    YANG; Ning(杨宁); CHEN; Zhining; (陈志宁); WANG; Yunyi; (王蕴仪); Chia; M.; Y.; W.

    2003-01-01

    This paper presents a novel two-layer electromagnetic bandgap (EBG) structure. The studies on the characteristics of the cell are carried out numerically and experimentally. A lumped-LC equivalent circuit extracted from the numerical simulation is used to model the bandgap characteristics of the proposed EBG structure. The influences of geometric parameters on the operation frequency and equivalent LC parameters are discussed. A meander line high performance bandstop filter and a notch type duplexer are designed and measured. These EBG structures are shown to have potential applications in microwave and RF systems.

  4. Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap

    CERN Document Server

    Alegre, Thiago P Mayer; Winger, Martin; Painter, Oskar

    2010-01-01

    A fully planar two-dimensional optomechanical crystal formed in a silicon microchip is used to create a structure devoid of phonons in the GHz frequency range. A nanoscale photonic crystal cavity is placed inside the phononic bandgap crystal in order to probe the properties of the localized acoustic modes. By studying the trends in mechanical damping, mode density, and optomechanical coupling strength of the acoustic resonances over an array of structures with varying geometric properties, clear evidence of a complete phononic bandgap is shown.

  5. Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors

    Science.gov (United States)

    Steiner, M. A.; Perl, E. E.; Geisz, J. F.; Friedman, D. J.; Jain, N.; Levi, D.; Horner, G.

    2017-04-01

    We demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important the bandgap be determined from the external quantum efficiency.

  6. Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs.

    Science.gov (United States)

    Hou, Jin; Citrin, D S; Wu, Huaming; Gao, Dingshan; Zhou, Zhiping

    2011-06-15

    Photonic band structures of annular photonic-crystal (APC) silicon-on-insulator (SOI) asymmetric slabs with finite thickness were investigated by the three-dimensional plane-wave expansion method. The results show that for a broad range of air-volume filling factors, APC slabs can exhibit a significantly larger bandgap than conventional circular-hole photonic-crystal (PC) slabs. Bandgap enhancements over conventional air hole PC SOI slabs as large as twofold are predicted for low air-volume filling factors below 15%. This desirable behavior suggests a potential for APC SOI slabs to serve as the basis of various optical cavities, waveguides, and mirrors.

  7. The transfer voltage standard for calibration outside of a laboratory

    Directory of Open Access Journals (Sweden)

    Urekar Marjan

    2017-01-01

    Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019

  8. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    We introduce a defect site in the periodic structure of a photonic bandgap fiber,to confine and guide the second order mode by photonic bandgap effects.Based on a high air-filling fraction photonic crystal cladding structure,a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode.

  9. Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2003-08-01

    We introduce a solution based on the source-model technique for periodic structures for the problem of electromagnetic scattering by a two-dimensional photonic bandgap crystal slab illuminated by a transverse-magnetic plane wave. The proposed technique takes advantage of the periodicity of the slab by solving the problem within the unit cell of the periodic structure. The results imply the existence of a frequency bandgap and provide a valuable insight into the relationship between the dimensions of a finite periodic structure and its frequency bandgap characteristics. A comparison shows a discrepancy between the frequency bandgap obtained for a very thick slab and the bandgap obtained by solving the corresponding two-dimensionally infinite periodic structure. The final part of the paper is devoted to explaining in detail this apparent discrepancy.

  10. [Fatal electric arc accidents due to high voltage].

    Science.gov (United States)

    Strauch, Hansjürg; Wirth, Ingo

    2004-01-01

    The frequency of electric arc accidents has been successfully reduced owing to preventive measures taken by the professional association. However, the risk of accidents has continued to exist in private setting. Three fatal electric arc accidents caused by high voltage are reported with reference to the autopsy findings.

  11. An improved control method of power electronic converters in low voltage micro-grid

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Qingqiu, Lv; Yanjun, Tian

    2011-01-01

    control of the voltage and frequency deviation added to power references could achieve secondary regulation of the voltage and frequency. In this paper, the authors take the steady and transient transition of grid connecting and disconnecting of the micro-grid as an example, and demonstrate...... the place. The conventional droop control can perform the energy management in grid-connected mode, but may not so effective when micro-grid transferring between grid-connected mode and island mode. The paper analysis the micro-grid in different modes (Conventional droop control, Voltage reference...... compensation, Constant power output mode, Phase adjustment mode), and then proposes an overall control strategy for the micro-grid. The voltage reference compensation would minimize the steady-state error on the nominated operation point; the coordinate control of voltage and frequency with a feed forward...

  12. Voltage Sensors Monitor Harmful Static

    Science.gov (United States)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  13. Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides.

    Science.gov (United States)

    Niu, Shanyuan; Huyan, Huaixun; Liu, Yang; Yeung, Matthew; Ye, Kevin; Blankemeier, Louis; Orvis, Thomas; Sarkar, Debarghya; Singh, David J; Kapadia, Rehan; Ravichandran, Jayakanth

    2017-03-01

    Transition metal perovskite chalcogenides are a new class of versatile semiconductors with high absorption coefficient and luminescence efficiency. Polycrystalline materials synthesized by an iodine-catalyzed solid-state reaction show distinctive optical colors and tunable bandgaps across the visible range in photoluminescence, with one of the materials' external efficiency approaching the level of single-crystal InP and CdSe.

  14. Electrical and Optical Measurements of the Bandgap Energy of a Light-Emitting Diode

    Science.gov (United States)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe

    2016-01-01

    Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy E[subscript g]. In the case of…

  15. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  16. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...

  17. Amplification and ASE suppression in a polarization-maintaining ytterbium-doped allsolid photonic bandgap fibre

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Falk, C. I.; Lyngsøe, Jens Kristian

    2008-01-01

    We demonstrate suppression of amplified spontaneous emission at the conventional ytterbium gain wavelengths around 1030 nm in a cladding-pumped polarization-maintaining ytterbium-doped all-solid photonic crystal fibre. The fibre works through combined index and bandgap guiding. Furthermore, we show...

  18. 30W, 1178nm Yb-doped photonic bandgap fiber amplifier

    DEFF Research Database (Denmark)

    Shirakawa, Akira; Maruyama, Hiroki; Ueda, Ken-ichi

    2009-01-01

    High-power, high-efficiency ytterbium-doped solid-core photonic-bandgap fiber amplification at the long-wavelength edge of the Yb gain band is reported. Amplified-spontaneous-emission-free, 30W nonpolarized and 25W linearly-polarized 1178nm outputs have been achieved with

  19. Tunable All-in-Fiber Waveplates Based on Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Eskildsen, Lars; Weirich, Johannes;

    2008-01-01

    Tunable all-in-fiber waveplates based on negative dielectric liquid crystal photonic bandgap fibers are presented. The birefringence can be tuned electrically and thermally to work as a quarter-wave or a half-wave plate in the range 1520 nm-1580 nm....

  20. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time in the millisec...

  1. Experimental investigation of hollow-core photonic crystal fibers with five photonic band-gaps

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-hui; HOU Lan-tian; WEI Dong-bin; WANG Hai-yun; ZHOU Gui-yao

    2008-01-01

    The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green light transmission in the HC-PCFs'has been observed remarkably.

  2. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  3. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes

    NARCIS (Netherlands)

    Brabec, C.J.; Winder, C.; Sariciftci, N.S.; Hummelen, J.C.; Dhanabalan, A.; van Hal, P.A.; Janssen, R.A.J.

    2002-01-01

    A novel low-bandgap conjugated polymer (PTPTB, E-g = similar to1.6 eV), consisting of alternating electron-rich N-dodecyl-2,5-bis(2'-thienyl)pyrrole (TPT) and electron-deficient 2,1,3-benzothiadiazole (B) units, is introduced for thin-film optoelectronic devices working in the near infrared (NIR).

  4. Polymer solar cells and infrared light emitting diodes : Dual function low bandgap polymer

    NARCIS (Netherlands)

    Winder, C.; Mühlbacher, D.; Neugebauer, H.; Sariciftci, N.S.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    2002-01-01

    Conjugated Polymers with a HOMO-LUMO transition <2eV, i.e. a low bandgap, respectively, have interesting and desired properties for some thin film optoelectronic devices like light emitting diodes and solar cells. In this contribution we present the implementation of the novel copolymer PTPTB,

  5. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes

    NARCIS (Netherlands)

    Brabec, C.J.; Winder, C.; Sariciftci, N.S.; Hummelen, J.C.; Dhanabalan, A.; van Hal, P.A.; Janssen, R.A.J.

    2002-01-01

    A novel low-bandgap conjugated polymer (PTPTB, E-g = similar to1.6 eV), consisting of alternating electron-rich N-dodecyl-2,5-bis(2'-thienyl)pyrrole (TPT) and electron-deficient 2,1,3-benzothiadiazole (B) units, is introduced for thin-film optoelectronic devices working in the near infrared (NIR). B

  6. Polymer solar cells and infrared light emitting diodes : Dual function low bandgap polymer

    NARCIS (Netherlands)

    Winder, C.; Mühlbacher, D.; Neugebauer, H.; Sariciftci, N.S.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    2002-01-01

    Conjugated Polymers with a HOMO-LUMO transition <2eV, i.e. a low bandgap, respectively, have interesting and desired properties for some thin film optoelectronic devices like light emitting diodes and solar cells. In this contribution we present the implementation of the novel copolymer PTPTB, consi

  7. Bandgap determination of P(VDF–TrFE) copolymer film by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Dipankar Mandal; K Henkel; K Müller; D Schmeißer

    2010-08-01

    The ferroelectric of poly(vinylidene fluoride trifluoroethylene), P(VDF–TrFE) is confirmed for 100 nm thickness spin coated copolymer film. The homogeneous coverage of the copolymer film is investigated by the help of X-ray photoelectron spectroscopy (XPS). Most importantly, the existing bandgap in the crystalline phase of the copolymer is determined directly from the electron energy loss spectroscopy (EELS).

  8. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes

    NARCIS (Netherlands)

    Brabec, C.J.; Winder, C.; Sariciftci, N.S.; Hummelen, J.C.; Dhanabalan, A.; van Hal, P.A.; Janssen, R.A.J.

    2002-01-01

    A novel low-bandgap conjugated polymer (PTPTB, E-g = similar to1.6 eV), consisting of alternating electron-rich N-dodecyl-2,5-bis(2'-thienyl)pyrrole (TPT) and electron-deficient 2,1,3-benzothiadiazole (B) units, is introduced for thin-film optoelectronic devices working in the near infrared (NIR). B

  9. Narrow Bandgap in beta-BaZn2As2 and Its Chemical Origins

    CERN Document Server

    Xiao, Zewen; Ueda, Shigenori; Toda, Yoshitake; Ran, Fan-Yong; Guo, Jiangang; Lei, Hechang; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2015-01-01

    Beta-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that beta-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of beta-BaZn2As2 (previously-reported value ~0.2 eV) is one order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of beta-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the tem-perature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemi-cal bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the non-bonding Ba 5dx2-y2 orbitals form unexpectedly deep conduction band minimum (CBM) in beta-BaZn2As2 although the CBM of L...

  10. Compression of realistic laser pulses in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...

  11. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.;

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  12. High-Performance Photothermal Conversion of Narrow-Bandgap Ti2 O3 Nanoparticles.

    Science.gov (United States)

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tom

    2017-01-01

    Ti2 O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2 O3 nanoparticles possess strong light absorption and nearly 100% internal solar-thermal conversion efficiency. Furthermore, Ti2 O3 -nanoparticle-based thin film shows potential use in seawater desalination and purification.

  13. Physical ageing in the above-bandgap photoexposured glassy arsenic selenides

    Energy Technology Data Exchange (ETDEWEB)

    Kozdras, A [Faculty of Physics of Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Golovchak, R [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-08-15

    Physical ageing induced by above-bandgap light illumination is studied in glassy As-Se using differential scanning calorimetry. It is shown that measurable effect like to known short-term physical ageing is observed only in Se-rich glasses. The kinetics of this effect is compared with that caused by natural storage in a dark.

  14. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...

  15. Electrical and Optical Measurements of the Bandgap Energy of a Light-Emitting Diode

    Science.gov (United States)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe

    2016-01-01

    Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy E[subscript g]. In the case of…

  16. Size dependence of the bandgap of plasma synthesized silicon nanoparticles through direct introduction of sulfur hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Theingi, S.; Guan, T. Y.; Klafehn, G.; Taylor, P. C.; Lusk, M. T.; Collins, R. T., E-mail: rtcollin@mines.edu [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States); Renewable Energy Materials Research Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401 (United States); Kendrick, C. [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States); Renewable Energy Materials Research Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401 (United States); Electrical and Computer Engineering, Michigan Technological University, Houghton, Michigan 49931 (United States); Gorman, B. P. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Stradins, P. [Renewable Energy Materials Research Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-10-19

    Developing silicon nanoparticle (SiNP) synthesis techniques that allow for straightforward control of nanoparticle size and associated optical properties is critical to potential applications of these materials. In addition, it is, in general, hard to probe the absorption threshold in these materials due to silicon's low absorption coefficient. In this study, size is controlled through direct introduction of sulfur hexafluoride (SF{sub 6}) into the dilute silane precursor of plasma synthesized SiNPs. Size reduction by nearly a factor of two with high crystallinity independent of size is demonstrated. The optical absorption spectra of the SiNPs in the vicinity of the bandgap are measured using photothermal deflection spectroscopy. Bandgap as a function of size is extracted taking into account the polydispersity of the samples. A systematic blue shift in absorption edge due to quantum confinement in the SiNPs is observed with increasing flow of SF{sub 6}. Photoluminescence (PL) spectra show a similar blue shift with size. However, a ∼300 meV difference in energy between emission and absorption for all sizes suggests that PL emission involves a defect related process. This shows that, while PL may allow size-induced shifts in the bandgap of SiNPs to be monitored, it cannot be relied on to give an accurate value for the bandgap as a function of size.

  17. Size Dependence of the Bandgap of Plasma Synthesized Silicon Nanoparticles Through Direct Introduction of Sulfur Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Theingi, S.; Guan, T. Y.; Kendrick, C.; Klafehn, G.; Gorman, B. P.; Taylor, P. C.; Lusk, M. T.; Stradins, Pauls; Collins, R. T.

    2015-10-19

    Developing silicon nanoparticle (SiNP) synthesis techniques that allow for straightforward control of nanoparticle size and associated optical properties is critical to potential applications of these materials. In addition, it is, in general, hard to probe the absorption threshold in these materials due to silicon's low absorption coefficient. In this study, size is controlled through direct introduction of sulfur hexafluoride (SF6) into the dilute silane precursor of plasma synthesized SiNPs. Size reduction by nearly a factor of two with high crystallinity independent of size is demonstrated. Optical absorption spectra of the SiNPs in the vicinity of the bandgap are measured using photothermal deflection spectroscopy. Bandgap as a function of size is extracted taking into account the polydispersity of the samples. A systematic blue shift inabsorption edge due to quantum confinement in the SiNPs is observed with increasing flow of SF6. Photoluminescence (PL) spectra show a similar blue shift with size. However, a ~300 meV difference in energy between emission and absorption for all sizes suggests that PL emission involves a defect related process. While PL may allow size-induced shifts in the bandgap of SiNPs to be monitored, it cannot be relied on to give an accurate value for the bandgap as a function of size.

  18. Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization

    Science.gov (United States)

    Yang, Xiong Wei; Lee, Joong Seok; Kim, Yoon Young

    2016-11-01

    Because effective material properties are essential concepts in the analyses of wave phenomena in metamaterials, they may also be utilized in the optimal design of metamaterials. In this work, we propose a topology optimization method directly using the Effective Mass Density (EMD) concept to maximize the first bandgaps of two-dimensional solid Locally Resonant Acoustic Metamaterials (LRAMs). When the first bandgap is characterized by the negative EMD, the bandgap maximization can be formulated efficiently as a topology optimization problem to broaden the frequency zone of the negative EMD values. In this work, EMD is calculated by considering the macroscopic isotropy of LRAMs in the long wavelength limit. To facilitate the analytical sensitivity analysis, we propose an elaborate calculation scheme of EMD. A sensitivity averaging technique is also suggested to guarantee the macroscopically isotropic behavior of the LRAMs. In the present study, the coating layer interfacing the core and the matrix of a ternary LRAM is chosen as the design region because it significantly influences the bandgap. By considering several numerical examples, the validity of this method is verified, and the effects of the mass constraint ratios on the optimized results are also investigated.

  19. Low index-contrast photonic bandgap fiber for transmission of short pulsed light

    DEFF Research Database (Denmark)

    Riishede, Jesper; Lægsgaard, Jesper; Broeng, Jes

    2004-01-01

    The use of low-index-contrast photonic bandgap (PBG) fiber for transmission of short pulsed light is discussed. PBG fibers have positive waveguide dispersion at long wavelengths at which conventional index-guiding fibers have negative waveguide dispersion. PBG fibers with low-index contrast can...

  20. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites.

    Science.gov (United States)

    Dar, M Ibrahim; Jacopin, Gwénolé; Meloni, Simone; Mattoni, Alessandro; Arora, Neha; Boziki, Ariadni; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Grätzel, Michael

    2016-10-01

    Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.

  1. Theory study on the bandgap of antimonide-based multi-element alloys

    Science.gov (United States)

    An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li

    2017-05-01

    In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.

  2. Selecting Semiconducting Single-Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide-Based Polymers

    NARCIS (Netherlands)

    Salazar-Rios, Jorge Mario; Gomulya, Widianta; Derenskyi, Vladimir; Yang, Jie; Bisri, Satria Zulkarnaen; Chen, Zhihua; Facchetti, Antonio; Loi, Maria Antonietta

    2015-01-01

    Noncovalent functionalization of carbon nanotubes by wrapping them using pi-conjugated polymers is one of the most promising techniques to sort, separate, and purify semiconducting nanotube species for applications in optoelectronic devices. However, wide energy bandgap polymers commonly used in thi

  3. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.

    Science.gov (United States)

    Zhou, Guangyong; Ventura, Michael; Gu, Min; Matthews, Aaron; Kivshar, Yuri

    2005-06-13

    We report on the fabrication and characterization of void-based body-centered-cubic (bcc) photonic crystals in a solidified transparent polymer by the use of a femtosecond laser-driven microexplosion method. The change in the refractive index in the region surrounding the void dots that form the bcc structures is verified by presenting confocal microscope images, and the bandgap properties are characterized by using a Fourier transform infrared spectrometer. The effect of the angle of incidence on the photonic bandgaps is also studied. We observe multiple stop gaps with a suppression rate of the main gap of 47% for a bcc structure with a lattice constant of 2.77 microm, where the first and second stop gaps are located at 3.7 microm and 2.2 microm, respectively. We also present a theoretical approach to characterize the refractive index of the material for calculating the bandgap spectra, and confirm that the wavelengths of the observed bandgaps are in good correlation with the analytical predictions.

  4. Reflection-induced bias error in an air-core photonic bandgap fiber optic gyroscope.

    Science.gov (United States)

    Zhang, Zuchen; Xu, Xiaobin; Zhang, Zhihao; Song, Ningfang; Zhang, Chunxi

    2016-01-15

    Analysis of the bias error induced by reflections in an air-core photonic bandgap fiber gyroscope is performed by both simulation and experiment. The bias error is sinusoidally periodic under modulation, and its intensity is related to the relative positions of the reflection points. A simple and effective method for the suppression of the error is proposed, and it has been verified experimentally.

  5. A note on anomalous band-gap variations in semiconductors with temperature

    Science.gov (United States)

    Chakraborty, P. K.; Mondal, B. N.

    2017-09-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  6. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre;

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  7. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years)

    NARCIS (Netherlands)

    Kroon, Renee; Lenes, Martijn; Hummelen, Jan C.; Blom, Paul W.M.; Boer, Bert de

    2008-01-01

    During the last decade the field of polymer photovoltaics has seen a tremendous improvement in both device efficiency and understanding of the underlying physical processes. One has come to a point in which the prototypical large bandgap material system P3HT:PCBM is nearing optimal device performanc

  8. DNA-Based Photonic Bandgap Structures and Devices

    Science.gov (United States)

    2009-11-29

    Genes to Machines: DNA Nanomechanical Devices, Trends in Biochemical Sciences 30, 119-125 (2005). 4. N.C. Seeman. Structural DNA Nanotechnology: An... kpc ≥ ω , k becomes purely real.. If the dispersion relation just given is written as =++ 22)( kpkak 1ε 2)( c ω , it resembles that for modes in a...waveguide. By analogy, the frequency region for which 1ε 22)( kpc < ω will be referred to as cutoff. IV. APPLICATIONS The presence of molecules

  9. Low Voltage Power Supply Incorporating Ceramic Transformer

    CERN Document Server

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  10. The impact of sodium on the sub-bandgap states in CZTSe and CZTS

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, By Talia, E-mail: tsgersho@us.ibm.com; Lee, Yun Seog; Mankad, Ravin; Gunawan, Oki; Gokmen, Tayfun; Guha, Supratik [Physical Sciences Department, IBM T.J. Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, New York 10598 (United States); Bishop, Doug; McCandless, Brian [Institute of Energy Conversion, University of Delaware, Newark, Delaware 19716 (United States)

    2015-03-23

    We compare the optically active sub-bandgap states in polycrystalline Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films as a function of sodium content. In all samples studied, we find that CZTSe has a lower concentration of radiative defect-derived states compared to CZTS and that the states are also shallower in CZTSe compared to CZTS. Further, we find that sodium impacts the relative ratios of two sub-bandgap peaks in the 4 K photoluminescence (PL) spectra of CZTSe (one at ∼0.85 eV and another at ∼0.92 eV). We propose that both of these sub-bandgap peaks stem from intrinsic point defects in CZTSe rather than from electronic states introduced by sodium; this is supported by a measurement on a sodium-free single-crystal of CZTSe. We also show that films with stronger emission through the shallower sub-bandgap states at 4 K display room-temperature PL closer to the bandgap energy. For all sodium quantities studied, one broad PL peak is observed in the 4 K PL spectrum of CZTS which also shifts towards the band edge with increasing sodium. A reduced overall defect density and the fact that the states that are present are shallower together may help account for the lower V{sub OC} deficits in CZTSe and the empirical observations that sodium improves device performance.

  11. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  12. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W.; Silverstein, Brian L. [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  13. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate vario...... power quality disturbances, such as interruptions, sags and imbalances. Simulation studies have been performed. The effectiveness of the proposed method has been demonstrated under the simulated typical power disturbances....

  14. A matter of quantum voltages.

    Science.gov (United States)

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  15. VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK

    African Journals Online (AJOL)

    VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF RUMUOLA DISTRIBUTION NETWORK. ... The artificial neural networks controller engaged to controlling the dynamic voltage ... Article Metrics.

  16. Modeling and simulation of band-gap profiling with planar heterojunction of hole-transporting layer-free perovskite solar cells

    Science.gov (United States)

    Liu, Yung-Tsung; Chen, Yu-Hung; Lin, Chen-Cheng; Fan, Chia-Ming; Liu, Jun-Chin; Tung, Yung-Liang; Tsai, Song-Yeu

    2017-07-01

    This study entailed modeling a perovskite absorber involving band-gap grading at the back of the absorber and double-grading profiles of hole-transporting layer-free perovskite solar cells. Device simulation based on continuity equations and Poisson’s equation was carried out by using AMPS-1D software. The optimum grading profile consisted of a band gap of 1.7 eV at the interface between the TiO2 and absorber with a graded thickness of 300 nm, uniform 1.5 eV of 50 nm, and back surface 2.1 eV with a graded thickness of 50 nm. The attained simulated efficiency was 22.68% (open-circuit voltage, V oc  =  1.34 V; short-circuit current density, J sc  =  19.98 mA cm-2 fill factor, FF  =  0.84), which is close to the uniform band gap of 1.5 eV of the whole absorber with a hole-transporting layer (Spiro-OMeTAD). This was mainly because of back grading forming a conduction band energy barrier to suppress the transportation of photo-generated electrons from the absorber to the back electrode, thereby improving carrier collection. The results indicate that the hole-transporting layer could be replaced by optimal band-gap profiling of the absorber, with near to no decayed performance of the perovskite solar cells.

  17. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

    Science.gov (United States)

    Chen, Chih-Ping; Chan, Shu-Hua; Chao, Teng-Chih; Ting, Ching; Ko, Bao-Tsan

    2008-09-24

    Two low-bandgap (LGB) conjugated polymers ( P1 and P2) based on thiophene-phenylene-thiophene (TPT) with adequate energy levels have been designed and synthesized for application in bulk-heterojunction polymer solar cells (PSCs). The absorption spectral, electrochemical, field effect hole mobility and photovoltaic properties of LGB TPT derivatives are investigated and compared with poly(3-hexylthiophene) (P3HT). Photophysical studies reveal bandgaps of 1.76 eV for P1 and 1.70 eV for P2, which could effectively harvest broader solar spectrum. In addition, the thin film absorption coefficients of P1 and P2 are 1.6 x 10 (5) cm (-1) (lambda approximately 520 nm) and 1.4 x 10 (5) cm (-1) (lambda approximately 590 nm), respectively. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open circuit voltage while blending them with fullerene derivatives as electron acceptors. Furthermore, both materials show sufficient hole mobility (3.4 x 10 (-3) cm (2)/Vs for P2) allowing efficient charge extraction and a good fill-factor for PSC application. High-performance power conversion efficiency (PCE) of 4.4% is obtained under simulated solar light AM 1.5 G (100 mW/cm (2)) from PSC device with an active layer containing 25 wt% P2 and 75 wt% [6,6]-phenyl-C71-butyric acid methyl ester (PC 71BM), which is superior to that of the analogous P3HT cell (3.9%) under the same experimental condition.

  18. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    Science.gov (United States)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  19. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  20. A new low-voltage and high-speed sense amplifier for flash memory

    Institute of Scientific and Technical Information of China (English)

    Guo Jiarong; Ran Feng

    2011-01-01

    A new low-voltage and high-speed sense amplifier is presented,based on a very simple direct currentmode comparison.It adopts low-voltage reference current extraction and a dynamic output method to realize its performance indicators such as low voltage,low power and high precision.The proposed amplifier can sense a 0.5 μA current gap and work with a lowest voltage of 1 V.In addition,the current power of a single amplifier is optimized by 15%.