WorldWideScience

Sample records for volcanol geotherm res

  1. Guía volcanológica de Lanzarote

    OpenAIRE

    Ortiz, R.

    1985-01-01

    Esta guía ha sido concebida como un complemento a la amplia bibliografía existente sobre geología y descripción volcanológica de Lanzarote, incidiendo en los aspectos más actuales de la investigación que nuestro grupo ha desarrollado. La volcanología es hoy una ciencia de carácter multidisciplinar, en cuyo desarrollo intervienen geólogos, químicos, biólogos, físicos y matemáticos; cuyos estudios van mucho más allá de la mera descripción, con implicaciones sociales, económ...

  2. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091762 Guo Wancheng(Xining Jiulong Engineering Investigation Ltd.,Xining 810700,China);Shi Xingmei Development and Utilization of Guide Basin’s Geothermal Resources of Qinghai Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(3),2008,p.79-80,92,2 illus.,2 tables,2 refs.)Key words:geothermal resources,QinghaiThis paper introduced the background of geothermal conditions and the many years of geothermal exploration data in Guide Basin.Then,the authors discussed the geothermal resources feature of Guide basin and raised some opinions on the reasonable development and utilization of geothermal resources.

  3. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  4. Geothermal energy

    OpenAIRE

    Manzella A.

    2015-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with p...

  5. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  6. Geothermal Energy.

    Science.gov (United States)

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122531 Hu Lingzhi ( Institute of Geological Engineering Design & Research of Beijing,Miyun 101500,China );Wang Jiankang Discussion on the Feasibility of Geothermal Resources Development and Utilization in Miyun District,Beijing ( City Geology,ISSN1007-1903,CN11-5519 / P,6 ( 3 ), 2011,p.34-35,59 ,) Key words:geothermal resources,Beijing Geothermal,as a new type of clean energy with the integrated trinity of " heat energy-mineral resource-water resource ",

  8. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141588 Guo Shiyan(Green Energy Geothermai Development Co.,SINOPEC,Xianyang 712000,China);Li Xiaojun Reservoir Stratum Characteristics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding,Hebei Province(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.922-931,2 illus.,4 tables,10 refs.)Key words:geothermal fields,Hebei Province

  9. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150342Guan Yu(Geo-Environment Monitoring Station of Anhui Province,Hefei230001,China);Chen Xun On Shallow Geothermal Energy Investigation in Urban Planning Zone of Bengbu in Anhui Province(Journal of Geology,ISSN1674-3636,CN32-1796/P,38(1),2014,p.88-93,2illus.,4tables,6refs.)Key words:geothermal energy,Anhui Province The authors conducted studies on shallow geothermal energy in urban planning zone in Bengbu of Anhui Province,depicted the geological settings of shallow geothermal energy,analyzed the natural features,heat exchange

  10. Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Leffel, C.S., Jr.; Eisenberg, R.A.

    1977-06-01

    This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

  11. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131088 Fan Difu (Geological Survey of Jiangsu Province , Nanjing 210018 , China ); Xu Xueqiu Origin Study of Geothermal Field in Xiaoyangkou of Rudong County in Jiangsu (Journal of Geology , ISSN1674-3636 , CN32-1796/P , 36 (2), 2012 , p.192-197 , 3illus. , 9refs.) Key words : geothermal fields , Jiangsu Province

  12. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  13. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101802 Fang Bin (China University of Geosciences,Beijing 100083,China);Yang Yunjun Characteristics and Resource Evaluation of the Jiwa Geothermal Field in Central Qiangtang,Northern Tibet,China (Geological Bulletin of China,ISSN1671-

  14. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112453 Li Qing (First Design and Research Institute,Ministry of Mechanical Industry, Bengbu 233000, China); Li Yixiang Application of Shallow Geothermal Energy Resources in the Hefei Area(Geology

  15. Geothermal Websites

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2005-03-01

    The Internet has become such an important part of our every day life. It can be used to correspond with people across the world, a lot faster than to send a letter in the mail. The Internet has a wealth of information that is available to anybody just by searching for it. Sometimes you get more information than you ever wanted to know and sometimes you can’t find any information. This paper will only cover a small portion of the websites and their links that have geothermal information concerning reservoir engineering, enhanced geothermal systems, hot dry rock and other aspects of geothermal. Some of the websites below are located in the US others international, such as, geothermal associations, and websites where you can access publications. Most of the websites listed below also have links to other websites for even more information.

  16. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151782 Ding Zhaoqin(Institute of Geophysical Exploration of Jilin Province,Changchun130012,China);Xu Zhihe The Possibility of Structure and Occurrence Geothermal Resources in Dunhua-Mishan Fault Zone(Huinan Section)(Jilin Geology,ISSN1001-2427,CN22-1099/P,33(2),2014,p.98-102,5illus.,1table,4refs.)Key words:geothermal resources,fracture

  17. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  18. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  19. In medias res

    DEFF Research Database (Denmark)

    Foote, Jonathan

    2017-01-01

    nor does he begin the Trojan War ab ovo (with the egg) but always he hurries to the action and snatches the listener in medias res (into the middle of things)      Horace, Ars Poetica 145–147 Good epic poets do not commence their tale from the beginning—ab ovo (with the egg)—as Horace states...

  20. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  1. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  2. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  3. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111059 Gao Jinghong(Engineering Group Co.Ltd.of the Second Institute of China Railway,Chengdu 610031,China);Tong Tiegang A Magnetotelluric Study of Geothermal Resources in Kaifeng Depression,Henan Province(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,34(4),2010,p.440-443,6 illus.,12 refs.)Key words:geothermal resources,telluric electromagnetic sounding,Henan Province Kaifeng Depression,located in the southeast corner of the Jiyuan-Kaifeng Depression,is enriched with deep-seated groundwater sources.The rich geothermal water rock(thermal reservoir)commonly has lower resistivity than the in-situ rock,and the reduction degree of its resistivity is related to the extent of water content,water temperature and mineralization.Based on geo-electrical anomaly,the authors inferred the distribution of the thermal reservoirs.A study of the magnetotelluric sounding method(MT)shows that the resistivity values of the basement are lowest in most surveying points north of F1 fault,implying the existence of the relationship with the geothermal water in the strata.According to the distribution of geo-electrical anomalies in the survey area,the authors locate the relatively enriched area of geothermal water in the basement of this area,thus providing an important basis

  4. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111836 Gao Jian(Sichuan Institute of Geological Survey for Nuclear Industry,Chengdu 610061,China);Shi Yuzhen Feasibility Study of Exploitation of Geothermal Resource in the Lugu Lake Region,Yanyuan,Sichuan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(3),2010,p.291-294,1 illus.,1 table,1 ref.,with English abstract)Key words:geothermal water,Sichuan Province20111837 He Jianhua(Geological Brigade 102,Bureau of Geolog

  5. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140332 Jiang Lin(School of Earth and Space Sciences,Peking University,Beijing100871,China);Ji Jianqing Geologic Analysis on the Prospects of the Enhanced Geothermal System(EGS)in the Bohaiwan Basin(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,49(1),2013,p.167-178,5illus.,4tables,41refs.)Key words:geothermal systems,Bohaiwan Basin Great amounts of thermal energy is stored ubiquitously in rocks with high tempera-

  6. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151090 Bian Huiying(School of Environmental Sciences and Engineering,Chang’an University,Xi’an 10054,China);Wang Shuangming Hydrodynamic Conditions of Geothermal Water in Gushi Depression of Guanzhong Basin(Coal Geology&Exploration;,ISSN1001-1986,CN61-1155/P,42(3),2014,p.50-54,60,9illus.,11refs.,

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and

  8. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    kaolinization . Deposition of silica can easily be observed in the Geysers field, where fractures of one-inch width, completely filled and sealed...by silica and calcite, are common features. Kaolinization , associated with other more complicated hydrothermal rock alteration, is also...techniques. Surface corrosion may be extremely severe in geothermal fluids containing free hydrochloric, sulphuric or hydrofluoric acid

  9. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070403 Deng Xiaoying (Zhengzhou Geo-Engineering Exploration Institute, Zhengzhou 450053, China); Yang Guoping Features and Origin of Geothermal Fluid in the New District of Hebi, Henan Provionce (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 32(2), 2005, p.111-114, 4 illus., 1 table, 7 refs.) Key words: thermal waters, Henan Province

  10. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  11. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  12. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110367 Cheng Jian(College of Energy Resources,Chengdu University of Technology,Chengdu 610059,China);Wang Duoyi Research on the Wenchuan Earthquake "Endpoint Effect":On the Geothermal Anomaly in Longquanyi,Chengdu,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,37(2),2010,p.155-159,4 illus.,15 refs.)Key words:seismic effects,thermal

  13. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102475 Chen Shiliang(No.4 Geological Party of Fujian Province,Ningde 352100,China)A Brief Analysis on Geothermy in the Nantai Isle of Fuzhou Municipality,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.310-314,1 illus.,1 table,3 refs.)Key words:geothermal exploration,Fujian ProvinceBased on the geochemistry and geophysical

  14. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  15. A European Res publica

    Directory of Open Access Journals (Sweden)

    Ola Zetterquist

    2011-05-01

    Full Text Available The article analyses the fundamental constitutional enigma of the European Union (EU, namely whether the EU can be considered as a (from its Member States separate and independent constitutional legal order. The EU is often referred to as a legal order sui generis, i.e. of a unique character that defies traditional definitions. More specifically, the notion of an independent and separate EU is at odds with the idea of the sovereign state. The notion of the EU as a legal order sui generis is too much influenced by the models of the sovereign state and sovereignty (in the vein of Thomas Hobbes. The key component in the Hobbesian idea of sovereignty is freedom as non-interference. A sovereign state is consequently a state that is free from, i.e. not interfered with by, external actors like, for example, the EU. Put differently, either the EU is sovereign or the Member States are sovereign. By shifting the perspective to a neo-Roman republican understanding of freedom as non-domination the constitutional picture of the EU will become more nuanced. Res publica is best understood as what citizens hold in common and above their narrow self-interest. According to a republican notion of the constitution the purpose of the law is to eliminate the possibility of arbitrary domination. For that reason, not all interference is to be considered as a restriction of freedom but only those restrictions that cannot be justified according to the res publica. Viewed through the republican prism it can be argued that the EU represents an important advancement in securing freedom as non-domination without implying that the EU must become a state. The fundamental enigma can thus be rephrased as a clash between two diverging concepts of freedom. Whereas the EU will always be at odds with the idea of sovereignty (however framed it will be much easier to reconcile with the republican ideal. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=1837332

  16. Res Publica aps / Erkki Bahovski

    Index Scriptorium Estoniae

    Bahovski, Erkki, 1970-

    2003-01-01

    Autori sõnul tekitavad tänavatel ülesseatud postrid, kus peaminister Juhan Parts kutsub üles ütlema "jah" Euroopa Liidule, kummastust, sest ehkki on tegemist Res Publica kampaaniaga, on tavainimesel raske vahet teha valitsuse justkui neutraalse referendumikampaania ja Res Publica "jah"-kampaania vahel

  17. Lõhe Res Publicas / Eve Heinla

    Index Scriptorium Estoniae

    Heinla, Eve, 1966-

    2005-01-01

    Tallinna linnapea Tõnis Palts on vastu Tallinna volikogu Res Publica fraktsiooni esimehe Toomas Tautsi abikaasa Kristina Tautsi tööleasumisele Lääne-Tallinna keskhaigla haldusjuhina. T. Paltsi kirjast Res Publica Tallinna piirkonna juhatusele. Lisa: Kuidas lahvatas pealinna võimutüli. Kommenteerivad: Maret Maripuu, Tõnis Palts, Vladimir Maslov

  18. Lõhe Res Publicas / Eve Heinla

    Index Scriptorium Estoniae

    Heinla, Eve, 1966-

    2005-01-01

    Tallinna linnapea Tõnis Palts on vastu Tallinna volikogu Res Publica fraktsiooni esimehe Toomas Tautsi abikaasa Kristina Tautsi tööleasumisele Lääne-Tallinna keskhaigla haldusjuhina. T. Paltsi kirjast Res Publica Tallinna piirkonna juhatusele. Lisa: Kuidas lahvatas pealinna võimutüli. Kommenteerivad: Maret Maripuu, Tõnis Palts, Vladimir Maslov

  19. Res Publica aps / Erkki Bahovski

    Index Scriptorium Estoniae

    Bahovski, Erkki, 1970-

    2003-01-01

    Autori sõnul tekitavad tänavatel ülesseatud postrid, kus peaminister Juhan Parts kutsub üles ütlema "jah" Euroopa Liidule, kummastust, sest ehkki on tegemist Res Publica kampaaniaga, on tavainimesel raske vahet teha valitsuse justkui neutraalse referendumikampaania ja Res Publica "jah"-kampaania vahel

  20. Res Publica objedinjajetsja s Sojuzom Otetshestva

    Index Scriptorium Estoniae

    2006-01-01

    Res Publica ja Isamaaliidu liitumisel tekib uus erakond - Eesti Eest!. Ida-Viru Isamaaliidu ja Res Publica esimeeste Hans Pindre, Vladislav Ponjatovski ning Narva Res Publica endise liidri Nikolai Golubevi arvamused

  1. Res Publica objedinjajetsja s Sojuzom Otetshestva

    Index Scriptorium Estoniae

    2006-01-01

    Res Publica ja Isamaaliidu liitumisel tekib uus erakond - Eesti Eest!. Ida-Viru Isamaaliidu ja Res Publica esimeeste Hans Pindre, Vladislav Ponjatovski ning Narva Res Publica endise liidri Nikolai Golubevi arvamused

  2. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  3. Geothermal energy in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  4. Res Publica v respublike / Roman Gornev

    Index Scriptorium Estoniae

    Gornev, Roman

    2002-01-01

    Järg 29. november nr. 48 lk. 7. Res Publica - uue poliitika partei. Res Publica Ida-Virumaal, partei juhtfiguurid, Res Publica Kohtla-Järvel. Koalitsioonileping Keskerakonnaga viis konfliktini partei juhtkonnaga. Kohtla-Järve Res Publica kohaliku organisatsiooni konflikti partei juhtkonnaga kommenteerib Hants Hint

  5. Res Publica kogub uut hoogu / Andres Jalak

    Index Scriptorium Estoniae

    Jalak, Andres, 1953-

    2005-01-01

    Kommenteerides Res Publica senise esimehe ja endise peaministri Juhan Partsi ning uueks esimeheks valitud Taavi Veskimäe kõnet Res Publica üldkogul, väljendab Res Publica fraktsiooni aseesimees usku, et Res Publica juhtimisel suudetakse 2007. aasta parlamendivalimistel taastada tulevikku suunatud mõtlemisega valitsus

  6. Res Publica v respublike / Roman Gornev

    Index Scriptorium Estoniae

    Gornev, Roman

    2002-01-01

    Järg 29. november nr. 48 lk. 7. Res Publica - uue poliitika partei. Res Publica Ida-Virumaal, partei juhtfiguurid, Res Publica Kohtla-Järvel. Koalitsioonileping Keskerakonnaga viis konfliktini partei juhtkonnaga. Kohtla-Järve Res Publica kohaliku organisatsiooni konflikti partei juhtkonnaga kommenteerib Hants Hint

  7. Res Publica kogub uut hoogu / Andres Jalak

    Index Scriptorium Estoniae

    Jalak, Andres, 1953-

    2005-01-01

    Kommenteerides Res Publica senise esimehe ja endise peaministri Juhan Partsi ning uueks esimeheks valitud Taavi Veskimäe kõnet Res Publica üldkogul, väljendab Res Publica fraktsiooni aseesimees usku, et Res Publica juhtimisel suudetakse 2007. aasta parlamendivalimistel taastada tulevikku suunatud mõtlemisega valitsus

  8. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  9. Comment on: "Borgia, A., Mazzoldi, A., Brunori, C.A., Allocca, C., Delcroix, C., Micheli, L., Vercellino, A., Grieco, G., 2014. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia. J. Volc. Geoth. Res. 284, 16-31"

    Science.gov (United States)

    Barazzuoli, Piero; Bertini, Giovanni; Brogi, Andrea; Capezzuoli, Enrico; Conticelli, Sandro; Doveri, Marco; Ellero, Alessandro; Gianelli, Giovanni; La Felice, Sonia; Liotta, Domenico; Marroni, Michele; Manzella, Adele; Meccheri, Marco; Montanari, Domenico; Pandeli, Enrico; Principe, Claudia; Ruggieri, Giovanni; Sbrana, Alessandro; Vaselli, Orlando; Vezzoli, Luigina

    2015-09-01

    Borgia et al. (2014) illustrated an active volcanic spreading model for the Amiata volcanic area (southern Tuscany, Italy). Although, at first glance, the model may appear appealing, this is not fully supported by the available data and the paper does not take into account their discussion. Accordingly, the supposed negative consequences of the Borgia et al. (2014) model on both contamination of shallow water and geothermal exploitation can likely be regarded as speculative.

  10. BioMagResBank.

    NARCIS (Netherlands)

    Ulrich, E.L.; Akutsu, H.; Doreleijers, J.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C.F.; Tolmie, D.E.; Wenger, R Kent; Yao, H.; Markley, J.L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data deposi

  11. Resúmenes Presentaciones Orales

    Directory of Open Access Journals (Sweden)

    Editor Gabriel Vargas Arana

    2015-12-01

    Full Text Available En este artículo se pueden encontrar los resúmenes de las presentaciones orales del III Congreso Latinoamericano de Plantas Medicinales, desarrollado del 12 al 14 de agosto de 2015 en la ciudad de Iquitos, Perú.

  12. Resúmenes Conferencias Magistrales

    Directory of Open Access Journals (Sweden)

    Editor Gabriel Vargas Arana

    2015-12-01

    Full Text Available En este artículo se pueden encontrar los resúmenes de las conferencias magistrales del III Congreso Latinoamericano de Plantas Medicinales, desarrollado del 12 al 14 de agosto de 2015 en la ciudad de Iquitos, Perú.

  13. BioMagResBank.

    NARCIS (Netherlands)

    Ulrich, E.L.; Akutsu, H.; Doreleijers, J.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C.F.; Tolmie, D.E.; Wenger, R Kent; Yao, H.; Markley, J.L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data

  14. Reference book on geothermal direct use

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  15. Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  16. [Purification of recombinant Bacillus cereus ResD-ResE proteins expressed in Escherichia coli strains].

    Science.gov (United States)

    Shapyrina, E V; Shadrin, A M; Solonin, A S

    2013-01-01

    Recombinant E. coli strains expressing the Bacillus cereus ATCC 14579T resD and resEgenes fused with the ubiquitin gene were constructed, and purification of the ResD and ResE proteins was performed. The approach used in the study allowed us to increase the protein yield of the electrophoretic homogeneous ResD andResE proteins without denaturation steps up to 150 mg per gram of wet cell weight.

  17. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  18. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  19. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  20. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  1. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  2. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  3. Padenije Res Publica / Viktoria Jürmann

    Index Scriptorium Estoniae

    Jürmann, Viktoria

    2005-01-01

    Res Publica üks rajajatest, Rein Taagepera, lahkus parteist, süüdistades erakonda paremtsentristlikust maailmavaatest loobumises. Res Publica Riigikogu fraktsioon tahab avaldada umbusaldust haridus- ja teadusminister Mailis Repsile

  4. Res Publica esitas avalduse kaposse / Virkko Lepassalu

    Index Scriptorium Estoniae

    Lepassalu, Virkko, 1971-

    2003-01-01

    Kaposse jõudis Res Publica avaldus, milles palutakse uurida erakonda seadusvastaselt anonüümselt sponsoreerima kutsuva kirja tagamaid. Vt. ka Äripäev 19. veebruar lk. 6 "Kapo ei alustanud Res Publica avalduse peale kriminaalmenetlust"

  5. Miks Res Publica kaotas / Juhan Parts

    Index Scriptorium Estoniae

    Parts, Juhan, 1966-

    2004-01-01

    Ilmunud ka: Severnoje Poberezhje, 29. juuni 2004, lk. 2; Koit, 29. juuni 2004, lk. 6. Europarlamendi valimiste tulemused erakonnale Res Publica. Juhan Partsi kõne 26. juunil Pärnus toimunud Res Publica volikogul. Lühendatult

  6. Rahvaliit likvideerib Res Publica veeuputust / Janno Reiljan

    Index Scriptorium Estoniae

    Reiljan, Janno, 1951-

    2005-01-01

    Ilmunud ka: Molodjozh Estonii 1. august lk. 5. Selgitused Res Publica esimehe Taavi Veskimägi artiklile 25. juuli Postimehes "Pärast meid tulgu või veeuputus". Res Publica ja Rahvaliidu poliitika võrdlus

  7. Mida ootame Res Publica poliitikutelt? / Andreas Kaju

    Index Scriptorium Estoniae

    Kaju, Andreas

    2003-01-01

    Res Publica Juventus on piirkondadele saadetud küsitlustega otsinud vastuseid mitmetele probleemidele. Eesmärk Res Publica poliitilise käitumise raamide määramine. Tabel: Juventuse küsimused piirkondadele

  8. Res Publica esitas avalduse kaposse / Virkko Lepassalu

    Index Scriptorium Estoniae

    Lepassalu, Virkko, 1971-

    2003-01-01

    Kaposse jõudis Res Publica avaldus, milles palutakse uurida erakonda seadusvastaselt anonüümselt sponsoreerima kutsuva kirja tagamaid. Vt. ka Äripäev 19. veebruar lk. 6 "Kapo ei alustanud Res Publica avalduse peale kriminaalmenetlust"

  9. Rahvaliit likvideerib Res Publica veeuputust / Janno Reiljan

    Index Scriptorium Estoniae

    Reiljan, Janno, 1951-

    2005-01-01

    Ilmunud ka: Molodjozh Estonii 1. august lk. 5. Selgitused Res Publica esimehe Taavi Veskimägi artiklile 25. juuli Postimehes "Pärast meid tulgu või veeuputus". Res Publica ja Rahvaliidu poliitika võrdlus

  10. Miks Res Publica kaotas / Juhan Parts

    Index Scriptorium Estoniae

    Parts, Juhan, 1966-

    2004-01-01

    Ilmunud ka: Severnoje Poberezhje, 29. juuni 2004, lk. 2; Koit, 29. juuni 2004, lk. 6. Europarlamendi valimiste tulemused erakonnale Res Publica. Juhan Partsi kõne 26. juunil Pärnus toimunud Res Publica volikogul. Lühendatult

  11. Mida ootame Res Publica poliitikutelt? / Andreas Kaju

    Index Scriptorium Estoniae

    Kaju, Andreas

    2003-01-01

    Res Publica Juventus on piirkondadele saadetud küsitlustega otsinud vastuseid mitmetele probleemidele. Eesmärk Res Publica poliitilise käitumise raamide määramine. Tabel: Juventuse küsimused piirkondadele

  12. Padenije Res Publica / Viktoria Jürmann

    Index Scriptorium Estoniae

    Jürmann, Viktoria

    2005-01-01

    Res Publica üks rajajatest, Rein Taagepera, lahkus parteist, süüdistades erakonda paremtsentristlikust maailmavaatest loobumises. Res Publica Riigikogu fraktsioon tahab avaldada umbusaldust haridus- ja teadusminister Mailis Repsile

  13. Resúmenes de investigaciones

    OpenAIRE

    Departamento de Psicología

    2005-01-01

    Se presentan resúmenes en castellano, inglés y portugués de las siguientes investigaciones: - "La tranposición del conocimiento psicológico: el saber, sus mediaciones y los actores". - "Cambios cognitivos e interactividad en ambientes virtuales de aprendizaje". - "Orientación vocacional en poblaciones rurales de bajos recursos". - "Integración y poder en Ciencias Sociales".

  14. Resúmenes de investigaciones

    OpenAIRE

    Departamento de Psicología (Universidad de Castilla-La Mancha,2005)

    2005-01-01

    Se presentan resúmenes en castellano, inglés y portugués de las siguientes investigaciones: - "La tranposición del conocimiento psicológico: el saber, sus mediaciones y los actores". - "Cambios cognitivos e interactividad en ambientes virtuales de aprendizaje". - "Orientación vocacional en poblaciones rurales de bajos recursos". - "Integración y poder en Ciencias Sociales".

  15. 10 teesi Res Publica valitsemisprogrammist aastani 2007

    Index Scriptorium Estoniae

    2004-01-01

    Ilmunud ka: Ottshjot narodu Estonii. Res Publica 2003, 2004, lk. 4-5, 8-9. Res Publica valitsemisprogrammi lubadustest ja täitmisest. Vt. lk. 8-9 Res Publica ministrite olulisemad tegevused 2004. aastal - lühiülevaate teevad Ken-Marti Vaher, Taavi Veskimägi, Marko Pomerants, Toivo Maimets

  16. 10 teesi Res Publica valitsemisprogrammist aastani 2007

    Index Scriptorium Estoniae

    2004-01-01

    Ilmunud ka: Ottshjot narodu Estonii. Res Publica 2003, 2004, lk. 4-5, 8-9. Res Publica valitsemisprogrammi lubadustest ja täitmisest. Vt. lk. 8-9 Res Publica ministrite olulisemad tegevused 2004. aastal - lühiülevaate teevad Ken-Marti Vaher, Taavi Veskimägi, Marko Pomerants, Toivo Maimets

  17. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  18. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  19. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  20. Idaho Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

    1979-07-01

    Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

  1. Geothermal Loan Guaranty Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-17

    Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

  2. Geothermal Loan Guaranty Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-17

    Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

  3. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  4. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  5. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  6. Teine Res Musica ilmunud / Jaan Ross

    Index Scriptorium Estoniae

    Ross, Jaan, 1957-

    2010-01-01

    Artiklikogumikust: Res musica [2] : Eesti Muusikateaduse Seltsi ja Eesti Muusika- ja Teatriakadeemia muusikateaduse osakonna aastaraamat / peatoimetaja Urve Lippus. Tallinn : Eesti Muusika- ja Teatriakadeemia, 2010

  7. Teine Res Musica ilmunud / Jaan Ross

    Index Scriptorium Estoniae

    Ross, Jaan, 1957-

    2010-01-01

    Artiklikogumikust: Res musica [2] : Eesti Muusikateaduse Seltsi ja Eesti Muusika- ja Teatriakadeemia muusikateaduse osakonna aastaraamat / peatoimetaja Urve Lippus. Tallinn : Eesti Muusika- ja Teatriakadeemia, 2010

  8. Geothermal Orientation Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  9. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2016-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low...

  10. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  11. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  12. Geothermal Field Developments in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Seiichi

    1983-12-15

    The present situation of the geothermal field developments in Japan is such that eight geothermal power stations are being operated, while there are sill many geothermal areas to be explored. Up to this day, the target of geothermal exploration has mainly been the areas by surface geological survey and the existing geothermal reservoirs are located not deeper than 1,500m depth. Recent geothermal energy development shows a trend from the study on vapor dominated of liquid dominated hydrothermal resources in shallow zones to that on hydrothermal resources in deeper zones. Exploration wells of 3,000m depth class have been drilled in Japan.

  13. Geothermal Energy Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  14. Geothermal Power Engineering

    OpenAIRE

    Перемитин, Д. В.; Воробьёва, Виктория Владимировна

    2015-01-01

    Our world is changing and it becomes more and more real to replace traditional sources of energy by new ones. Alternative sources of energy have a lot of pluses and minuses. Alternative energy seems to be really ef183 fective and geothermal energy as a type of alternative energy looks effective too. This paper deals with geothermal energy, its advantages and disadvantages, prospects of using this kind of energy.

  15. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  16. Overview of geothermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.

    1978-05-01

    The technology of geothermal resource development includes the technologies associated with finding the resource, defining it well enough to invest in its development, plumbing it to move the heat from the earth to where it will be used, using it, and finally disposing of it. The base of earth sciences experience needed to adequately project limited data so as to discover and define a geothermal resource is growing rapidly as new resources are developed and elucidated. Technologies for moving the fluid are improving as new challenges are faced, e.g., the development of downhole pumps in order to increase flow rates from costly wells. Although a wide variety of applications of geothermal resources exist, still to be evaluated commercially are the use of binary cycles in electric power production and the possibility of using geothermal energy in the production of heavy water and in sugar milling and refining. Disposal of spent geothermal fluid underground (in contrast to surface disposal) is receiving increasing favor, both because of its greater acceptability from an environmental point of view and because of its beneficial effects on minimizing subsidence and recovering additional heat stored in rock framework of a geothermal reservoir.

  17. Frontières sociales, frontières culturelles, frontières techniques

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available Les sociétés démocratiques modernes ont basé leur unité sur l'égalité des chances et sur la mobilité sociale. Or, ce modèle d'intégration est fortement mis à l'épreuve aujourd'hui. Des discriminations structurelles viennent contredire le principe l'égalité de traitement. Des barrières difficilement franchissables, quel que soit le niveau, viennent contrecarrer la possibilité de promotion sociale. Un double phénomène est ainsi observable. D'une part, la société se fractionne en des espaces soc...

  18. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  19. Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

  20. Res Publica soolo rikkus tavasid / Kai Kalamees

    Index Scriptorium Estoniae

    Kalamees, Kai

    2005-01-01

    Riigikogu aseesimeheks valiti Res Publica liige Taavi Veskimägi, nüüd on Riigikogu juhatuses kaks ühe partei liiget. Riigikogu aseesimeheks tagasi valitud Toomas Vareki hinnangul näitab see samm nii Res Publica kogenematust kui ka Eesti poliitilise kultuuri kehva taset

  1. Res Publica otsib kandepinda / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2004-01-01

    Res Publica peasekretäri Ott Lumi sõnul on erakond teinud tõsised järeldused Euroopa Parlamendi valimiste tulemusest. Res Publica parlamendifraktsiooni väljasõidul pidas kriitilise kõne erakonna esimees Juhan Parts

  2. Res Publica soolo rikkus tavasid / Kai Kalamees

    Index Scriptorium Estoniae

    Kalamees, Kai

    2005-01-01

    Riigikogu aseesimeheks valiti Res Publica liige Taavi Veskimägi, nüüd on Riigikogu juhatuses kaks ühe partei liiget. Riigikogu aseesimeheks tagasi valitud Toomas Vareki hinnangul näitab see samm nii Res Publica kogenematust kui ka Eesti poliitilise kultuuri kehva taset

  3. Res Publica otsib kandepinda / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2004-01-01

    Res Publica peasekretäri Ott Lumi sõnul on erakond teinud tõsised järeldused Euroopa Parlamendi valimiste tulemusest. Res Publica parlamendifraktsiooni väljasõidul pidas kriitilise kõne erakonna esimees Juhan Parts

  4. Geothermal project summaries. Geothermal energy research, development, and demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

  5. BioMagResBank

    Science.gov (United States)

    Ulrich, Eldon L.; Akutsu, Hideo; Doreleijers, Jurgen F.; Harano, Yoko; Ioannidis, Yannis E.; Lin, Jundong; Livny, Miron; Mading, Steve; Maziuk, Dimitri; Miller, Zachary; Nakatani, Eiichi; Schulte, Christopher F.; Tolmie, David E.; Kent Wenger, R.; Yao, Hongyang; Markley, John L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pKa values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional 1H and 13C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions. PMID:17984079

  6. BioMagResBank.

    Science.gov (United States)

    Ulrich, Eldon L; Akutsu, Hideo; Doreleijers, Jurgen F; Harano, Yoko; Ioannidis, Yannis E; Lin, Jundong; Livny, Miron; Mading, Steve; Maziuk, Dimitri; Miller, Zachary; Nakatani, Eiichi; Schulte, Christopher F; Tolmie, David E; Kent Wenger, R; Yao, Hongyang; Markley, John L

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pK(a) values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional (1)H and (13)C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.

  7. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  8. ECONOMIC GEOLOGY (5)GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082442 Han Zaisheng(China Geological Servey,Beijing 100011,China);Ran Weiyan Exploration and Evaluation of Shal- low Geothermal Energy(Geology in China, ISSN1000—3657,CN11—1167/P,34(6), 2007,p.1115—1121,6 refs.,with English abstract) Key words:geothermal exploration, geothermal resources

  9. Isamaaliidu ühinemisjutt ajas Res Publica keema / Toomas Sildam

    Index Scriptorium Estoniae

    Sildam, Toomas, 1961-

    2005-01-01

    Ilmunud ka: Postimees : na russkom jazõke 14. nov., lk 3. Isamaaliidu esimehe Tõnis Lukase ettepanekut Isamaaliidu ja Res Publica ühinemiseks pooldavad ka Res Publica eestseisuse liikmed Juhan Parts ja Tõnis Palts, kuid Res Publica esimehe Taavi Veskimäe kinnitusel läheb Res Publica 2007. aasta parlamendivalimistele vastu iseseisvalt. Lisa: Isamaaliit ja Res Publica

  10. Isamaaliidu ühinemisjutt ajas Res Publica keema / Toomas Sildam

    Index Scriptorium Estoniae

    Sildam, Toomas, 1961-

    2005-01-01

    Ilmunud ka: Postimees : na russkom jazõke 14. nov., lk 3. Isamaaliidu esimehe Tõnis Lukase ettepanekut Isamaaliidu ja Res Publica ühinemiseks pooldavad ka Res Publica eestseisuse liikmed Juhan Parts ja Tõnis Palts, kuid Res Publica esimehe Taavi Veskimäe kinnitusel läheb Res Publica 2007. aasta parlamendivalimistele vastu iseseisvalt. Lisa: Isamaaliit ja Res Publica

  11. Canadian geothermal code for public reporting: reporting of exploration results, geothermal resources and geothermal reserves

    Energy Technology Data Exchange (ETDEWEB)

    Deibert, Lee [Meridian Environmental Consulting Ltd. (Canada); Hjartarson, Arnar [Mannvit Engineering (Canada); McDonald, Ian; Toohey, Brian [Nexen Inc. (Canada); McIlveen, John [Jacob Securities, (Canada); Thompson, Alison [Magma Energy Corp. (Canada); Yang, Daniel [Borealis Geopower Inc. (Canada)

    2010-07-01

    In December 2008, the Canadian geothermal code committee sponsored by the Canadian Geothermal Energy Association (CanGEA) was created with the intention of developing a code for public reporting of geothermal resources and reserves. The code was based on key elements of the Australian code which was developed in 2008 by the Australian Geothermal Energy Association in collaboration with the Australian Geothermal Energy Group. The Canadian Code was developed with the purpose of being applicable to both Canadian and international geothermal plays and to offer a reporting basis which satisfies investors, shareholders and capital markets. The Canadian Geothermal Reporting Code for Public Reporting is provided herein, it is intended for all Canadian companies and their competitors. Since reporting of geothermal results is a recent activity, this Code will require further input during its implementation.

  12. Geothermal resources in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Saibi, Hakim [Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-12-15

    The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW. (author)

  13. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  14. Geothermal reservoir engineering research

    Science.gov (United States)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  15. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  16. Geothermal Energy; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  17. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  18. Multidisciplinary research of geothermal modeling

    Science.gov (United States)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  19. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  20. Modern geothermal power: GeoPP with geothermal steam turbines

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  1. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  2. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  3. Geothermal Systems for School.

    Science.gov (United States)

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  4. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  5. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  6. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  7. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  8. Generation and propagation of infrasonic airwaves from volcanic explosions

    Science.gov (United States)

    Johnson, J. B.

    2003-02-01

    Analysis of infrasonic pressure waves generated by active volcanoes is essential to the understanding of volcanic explosion dynamics. Unlike seismic waves propagating in the earth, infrasonic airwaves offer a relatively unfiltered representation of source motions at the vent during an eruption. Time-varying acoustic propagation filters caused by changeable atmospheric conditions are minimal for microphones deployed at intermediate distances (article [ Johnson et al., J. Volcanol. Geotherm. Res., in press].

  9. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (Ga - 2.9 Ga). Our results indicate that Late Amazonian volcanism is more widespread in Tharsis than previously recognized. Based on our results it appears possible that Mars is volcanologically not dead yet. Ongoing work investigates the volumes of erupted products and implications for the outgassing history and atmospheric evolution of Mars. [1] Greeley R. (1982) JGR 87, 2705-2712. [2] Plescia J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  10. Geothermal energy in Nevada: development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  11. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bazilian, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denny, E. [Ecar Limited (Ireland); Dillon, J. [Ecar Limited (Ireland); Bialek, J. [Ecar Limited (Ireland); O' Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The rapid deployment of renewable sources of electricity (RES-E) is transforming power systems globally. This trend is likely to continue with large increases in investment and deployment of RES-E capacity over the coming decades. Several countries now have penetration levels of variable RES-E generation (i.e., wind and solar) in excess of 15% of their annual electricity generation; and many jurisdictions (e.g., Spain, Portugal, Ireland, Germany, and Denmark; and, in the United States, Colorado) have experienced instantaneous penetration levels of more than 50% variable generation.1 These penetration levels of variable RES-E have prompted many jurisdictions to begin modifying practices that evolved in an era of readily dispatchable, centralised power systems. Providing insights for the transition to high levels of variable RES-E generation is the focus of this document, which is the final report of the RES-E-NEXT project commissioned by the International Energy Agency’s implementing agreement on Renewable Energy Technology Deployment (IEA-RETD). It presents a comprehensive assessment of issues that will shape power system evolution during the transition to high levels of variable RES-E generation. While policy will be a central tool to sustain the growth of RES-E capacity and to enable power system transitions, the scope of the report extends beyond policy considerations to include the related domains of regulation, power market design, and system operation protocols. This broad scope is in recognition that a changing resource mix with greater penetration levels of variable RES-E has broad implications for grid operations, wholesale and retail power markets, and infrastructure needs. The next decade will be a critical transition period for power system stakeholders, as global deployment of RES-E capacity (and especially variable RES-E capacity) continues to scale-up in many regions of the world. To address increased penetration levels of RES-E in power systems

  12. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  13. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  14. Water Desalination Using Geothermal Energy

    OpenAIRE

    Noreddine Ghaffour; , Hacene Mahmoudi; Mattheus Goosen

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only...

  15. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  16. Geothermal emissions data base, Wairakei geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A database subset on the gaseous emissions from the Wairakei geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1965 to 1971, and new additions will be appended periodically to the file. The data is accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film or magnetic tape.

  17. Geothermal heating systems for greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.F.; Johnson, W.C.

    1980-08-12

    Ways to utilize low-temperature geothermally heated water for a flow-through system are presented. The geothermal energy used for this system is the waste heat discharged from space heating 500,000 square feet of floor space at Oregon Institute of Technology with geothermal water pumped directly from the campus wells. The information collected and analyzed is from data developed from operating a greenhouse on the Oregon Institute of Technology campus from December 1979 to April 1980. Methods for calculating heating requirements of greenhouses using geothermal energy were developed from the analyses of the data obtained. (MHR)

  18. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  19. Water Desalination Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Noreddine Ghaffour

    2010-08-01

    Full Text Available The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting.

  20. Geothermal energy: an important resource

    National Research Council Canada - National Science Library

    Dowling, Carolyn B; Neumann, Klaus; Florea, Lee J

    2016-01-01

    .... Contributions include studies on the feasibility of integrating geological modeling with system design, extraction of low-temperature geothermal energy in underground coal mines, ground-source heat...

  1. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  2. Renewable energy sources (RES: alternative possibilities, which could be implemented in Poland

    Directory of Open Access Journals (Sweden)

    Wiktor-Sułkowska Anna

    2016-01-01

    Full Text Available The Kyoto Protocol and the EU’s Renewable Energy Directive [1] are the World and the EU’s legal regulations, which put pressure on most of the countries to extensive use of renewable energy sources (RES, in exchange for a reduction of energy from conventional sources. The main goal of the legal regulations is to reduce greenhouse gas emission. In European Union, from 1990 till 2014, share of the renewable energy sources has increased about 173% [2]. The data show that RES share in energy mix is increasing, and still has to increase. Therefore, all European’s countries are obligated to build new RES installations and to improve the efficiency of existing installations. That is the reason of that paper. In this article, on the base of own field research carried out in Germany and in Poland, author presents two alternative methods of energy obtaining, in which former mining excavations are used. In first method the excavations are adapted as the elements of the hydroelectric power stations and in second method they are used as a source of geothermal energy. In the end of the paper, author presents the proposals for the implementation of similar solutions in Poland.

  3. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  4. Geothermal Progress Monitor 12

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  5. Geothermal Well Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  6. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  7. Federal Interagency Geothermal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  8. ResFuel XS - Rakenne ja toiminta

    OpenAIRE

    Soili, Piia

    2012-01-01

    Tämän opinnäytetyön tavoitteena oli Pirkanmaan ammattiopiston hankkiman ResFuel XS -laitteiston rakenteen ja toiminnan selvitys. Opinnäytetyön tarkoituksena oli tutkia tätä laitteistoa ja valmistaa sillä biodieseliä. Lisäksi tarkoituksena oli tehdä yksinkertainen käyttöohje Pirkanmaan ammattiopiston opiskelijoille. Valmistus ResFuel XS -laitteistolla tapahtuu vaihtoesteröintimenetelmällä, jossa alkoholi ja öljy reagoivat katalyytin ja lämmön vaikutuksesta, jolloin lopputuotteeksi sa...

  9. Earthquake and Geothermal Energy

    CERN Document Server

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  10. UWC geothermal resource exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  11. Stanford Geothermal Program

    Energy Technology Data Exchange (ETDEWEB)

    R. Horn

    1999-06-30

    Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

  12. GEOTHERMAL POWER GENERATION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  13. Stanford Geothermal Program

    Energy Technology Data Exchange (ETDEWEB)

    R. Horn

    1999-06-30

    Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

  14. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  15. Reply to: Barazzuoli P., Bertini G., Brogi A., Capezzuoli E., Conticelli S., Doveri M., Ellero A., Gianelli G., La Felice S., Liotta D., Marroni M., Manzella A., Meccheri M., Montanari D., Pandeli E., Principe C., Ruggieri R., Sbrana A., Vaselli V., Vezzoli L., 2015. COMMENT ON: "Borgia, A., Mazzoldi, A., Brunori, C.A., Allocca, C., Delcroix, C., Micheli, L., Vercellino, A., Grieco, G., 2014. Volcanic spreading forcing and feedback in geothermal resorvoir development, Amiata Volcano, Italia. J. Volc. Geoth. Res. 284, 16-31". Journal of Volcanology and Geothermal Research, this issue

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2015-09-01

    The volcanic spreading model by Borgia et al. (2014) is accurate in describing the extensional structures found on the edifice and the radial compressional structures existing all around the base of Amiata Volcano. Volcanic conduits, extensional structures, and direct contact between the volcanic rocks and the Tuscan Units, constitute the hydraulic connection between the potable fresh-water aquifer contained in the volcanites and the underlying hydrothermal system. Therefore, gaseous phases tend to flow upward (particularly through faults) carrying pollutants into the freshwater aquifer, while the freshwater recharges (also through primary permeability) the exploited geothermal fields.

  16. Investigation of geothermal resources in Korea (Geothermal Resources Maps)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jeong Ung; Lee, Seung Gu; Yum, Byoung Woo; Kim, Hyoung Chan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The Korean Peninsula forms a part of the stable foreland of Far East Asia and is a part of Sino-Korean Craton, where, hence, is not associated with high potential geothermal resources. Nevertheless, there are several geothermal springs, of which water temperature ranges from 23 to 76 deg. C. This study was aimed to draw various geothermal base maps in the Korean Peninsula, such as thermal conductivity map, heat flow map, geothermal gradient map, depth contour map of 25 deg. C and various geochemical figures of geothermal waters. In this study, the thermal springs was surveyed for well inventory, the determination of thermal conductivities of rocks, and chemical analyses of geothermal waters. Hydrogen and oxygen isotope values ({delta}D and {delta}{sup 18}O) of geothermal waters were also calculated, which would be useful to evaluate the origin of water. Map of geothermal gradient distribution illustrates geothermally anomalous areas - such as Deoksan, Dogo, Onyang and Yusong areas in ChungNam district, Jungwon area in Chungbuk district, Pocheon area in Gyeonggi district, Gosung area in Gwangwon district, Deokgu, Baekam, and Pohang areas in Gyeongbuk district and Busan, Mageumsan and Bugok area in Gyeongnam district. Heat flow map also shows similar features to geothermal anomalies. Most of thermal waters form the Korean Peninsula are alkaline and belongs to Na-HCO{sub 3} type. Their contents are characterized of low total dissolved solids and high contents of fluoride and sodium, of which results are same as those of the researches which was conducted before. (author). 21 refs., tabs., figs.

  17. Geothermal reservoir characterization through active thermal testing

    Science.gov (United States)

    Jung, Martin; Klepikova, Maria; Jalali, Mohammadreza; Fisch, Hansruedi; Loew, Simon; Amann, Florian

    2016-04-01

    Development and deployment of Enhanced Geothermal Systems (EGS) as renewable energy resources are part of the Swiss Energy Strategy 2050. To pioneer further EGS projects in Switzerland, a decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been launched at the Grimsel Test Site (GTS). The experiments are hosted in a low fracture density volume of the Grimsel granodiorite, similar to those expected at the potential enhanced geothermal system sites in the deep basement rocks of Northern Switzerland. One of the key goals of this multi-disciplinary experiment is to provide a pre- and post-stimulation characterization of the hydraulic and thermal properties of the stimulated fracture network with high resolution and to determine natural structures controlling the fluid flow and heat transport. Active thermal tests including thermal dilution tests and heat tracer tests allow for investigation of groundwater fluid flow and heat transport. Moreover, the spatial and temporal integrity of distributed temperature sensing (DTS) monitoring upgrades the potential and applicability of thermal tests in boreholes (e.g. Read et al., 2013). Here, we present active thermal test results and discuss the advantages and limitations of this method compared to classical approaches (hydraulic packer tests, solute tracer tests, flowing fluid electrical conductivity logging). The experimental tests were conducted in two boreholes intersected by a few low to moderately transmissive fault zones (fracture transmissivity of about 1E-9 m2/s - 1E-7 m2/s). Our preliminary results show that even in low-permeable environments active thermal testing may provide valuable insights into groundwater and heat transport pathways. Read T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, R. Hochreutener, N. Lavenant, and V. Boschero (2013), Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing

  18. Savisaar : me õppisime Res Publicalt / Alo Raun

    Index Scriptorium Estoniae

    Raun, Alo, 1981-

    2006-01-01

    Keskerakonna esimehe Edgar Savisaare väitel võttis erakonna Narva osakond Punaarmee Narva vallutamise 62. aastapäeva ürituste rahastamisel eeskuju Res Publicast, kes tänavu 9. mail toetas Suure Isamaasõja võidu 61. aastapäeva tähistamist Narvas

  19. Treatment methods for geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Mathur, A.K.; Garrison, W.

    1979-04-01

    A survey is made of commercially available methods currently in use as well as those which might be used to prevent scaling and corrosion in geothermal brines. More emphasis is placed on scaling. Treatments are classified as inhibitors, alterants and coagulants; they are applied to control scaling and corrosion in fresh and waste geothermal brines. Recommendations for research in brine treatment are described.

  20. Silica extraction from geothermal water

    Science.gov (United States)

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  1. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  2. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  3. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  4. Compilation of geothermal information: exploration

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  5. Middlesex Community College Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Jessie [Middlesex Community College, Bedford, MA (United States); Spaziani, Gina [Middlesex Community College, Bedford, MA (United States)

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  6. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  7. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  8. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  9. World Geothermal Congress WGC-2015

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  10. Geothermal resource evaluation of the Yuma area

    Energy Technology Data Exchange (ETDEWEB)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  11. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  12. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  13. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  14. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  15. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  16. Geothermal direct-heat utilization assistance

    Science.gov (United States)

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  17. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  18. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  19. QrtzGeotherm: A revised algorithm for quartz solubility geothermometry to estimate geothermal reservoir temperature and vapor fraction with multivariate analytical uncertainty propagation

    Science.gov (United States)

    Verma, Mahendra P.

    2012-11-01

    The quartz solubility geothermometry to calculate geothermal reservoir temperature and vapor fraction with multivariate analytical uncertainty propagation is programmed as two classes, SiO2TD and QrtzGeotherm in Visual Basic in Visual Studio 2010 (VB.NET). The class, SiO2TD calculates the total discharge concentration, SiO2TD and its uncertainty, SiO2TDErr from the analytical concentration of silica, SiO2msd and uncertainty, SiO2msdErr of separated water, sampled after N-separations of vapor and liquid. The class, QrtzGeotherm uses the following properties as input parameters: (i) HRes-reservoir enthalpy (kJ/kg), (ii) HResErr-uncertainty in the reservoir enthalpy (kJ/kg), (iii) SiO2TD-total discharge silica concentration (ppm), (iv) SiO2TDErr-uncertainty in the total discharge silica concentration (ppm) (v) GeoEq-number of quartz solubility regression equation, (vi) TempGuess-a guess value of the reservoir temperature (°C). The properties corresponding to the output parameters are (i) TempRes-reservoir temperature (K), (ii) TempResErr-uncertainty in the reservoir temperature (K), (iii) VaporRes-reservoir vapor fraction and (iv) VaporResErr-uncertainty in the reservoir vapor fraction. Similarly, it has a method, SiO2Eqn(EqNo, Temp) to provide the silica solubility as function of temperature corresponding to the regression equation. Four quartz solubility equations along the liquid-vapor saturation curve: (i) a quadratic equation of 1/T and pressure, (ii) a linear equation relating log SiO2to the inverse of absolute temperature (T), (iii) a polynomial of T including logarithmic terms and (iv) temperature as a polynomial of SiO2including logarithmic terms are programmed. A demonstration program, QGeotherm is written VB.NET. Similarly, the applicability of classes SiO2TD and QrtzGeotherm in MS-Excel is illustrated considering Los Azufres geothermal field as an example.

  20. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  1. Geothermal map of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Prol-Ledesma, R.M.; Juavez, M.G.

    1986-07-01

    Silica temperatures were calculated for 326 water samples from hot and warm springs located throughout Mexico as an attempt to estimate heat flow. Available heat flow data (Smith, 1974; Smith et al., 1979) for northern Mexico were related to silica temperature data to obtain the appropriate constants for the regional conditions according to Swanberg and Morgan's equation (1979, 1980). The constants obtained are similar to those obtained for the United States, therefore heat flow can be estimated on the basis of silica temperature data. By contouring calculated temperatures a map is obtained where geothermal provinces are shown. 4 figs., 1 tab., 15 refs.

  2. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  3. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  4. Res Publica meelitab valla- ja linnajuhte / Henrik Roonemaa

    Index Scriptorium Estoniae

    Roonemaa, Henrik

    2001-01-01

    Valitsusliidu regionaalpoliitikas pettunud 30 omavalitsusjuhti on astunud ühenduse Res Publica liikmeks, lootes selle põhjal tekkiva partei abil kohaliku ja riigivõimu taas omavahel suhtlema panna. Vt. samas Res Publica liikmetest omavalitsusjuhid

  5. Parts ei soovi Res Publica esimehe ametit / Tuuli Koch

    Index Scriptorium Estoniae

    Koch, Tuuli

    2005-01-01

    Kõige tõenäolisem kandidaat Res Publica juhi kohale on Taavi Veskimägi, aseesimeesteks kandideerivad Marko Mihkelson ja Henn Pärn. Res Publica fraktsiooni koosolekul leidis Mihhail Lotman, et erakond võiks olla feminiinsem

  6. The purifying bridge of Res Publica / Rein Taagepera

    Index Scriptorium Estoniae

    Taagepera, Rein, 1933-

    2004-01-01

    Res Publica edust Eesti poliitilisel maastikul. Autor käsitleb Res Publicat kui puhastava toimega ja silla funktsiooni täitvat parteid, mis üritab siduda tervikuks Keskerakonna ja Reformierakonna seisukohad

  7. Parts ei soovi Res Publica esimehe ametit / Tuuli Koch

    Index Scriptorium Estoniae

    Koch, Tuuli

    2005-01-01

    Kõige tõenäolisem kandidaat Res Publica juhi kohale on Taavi Veskimägi, aseesimeesteks kandideerivad Marko Mihkelson ja Henn Pärn. Res Publica fraktsiooni koosolekul leidis Mihhail Lotman, et erakond võiks olla feminiinsem

  8. Res Publica meelitab valla- ja linnajuhte / Henrik Roonemaa

    Index Scriptorium Estoniae

    Roonemaa, Henrik

    2001-01-01

    Valitsusliidu regionaalpoliitikas pettunud 30 omavalitsusjuhti on astunud ühenduse Res Publica liikmeks, lootes selle põhjal tekkiva partei abil kohaliku ja riigivõimu taas omavahel suhtlema panna. Vt. samas Res Publica liikmetest omavalitsusjuhid

  9. The purifying bridge of Res Publica / Rein Taagepera

    Index Scriptorium Estoniae

    Taagepera, Rein, 1933-

    2004-01-01

    Res Publica edust Eesti poliitilisel maastikul. Autor käsitleb Res Publicat kui puhastava toimega ja silla funktsiooni täitvat parteid, mis üritab siduda tervikuks Keskerakonna ja Reformierakonna seisukohad

  10. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  11. Resúmenes del Simposio de Conciencia

    Directory of Open Access Journals (Sweden)

    Congreso Nacional de Neurología

    2010-03-01

    Full Text Available El coma, los estados vegetativos y la propia muerte constituyen temas siempre muy debatidos por las implicaciones médicas, éticas, sociales y legales que generan tanto para los profesionales de la salud, como para los familiares y la población en general. En esta sección los lectores pueden encontrar un total de 26 resúmenes de aspectos que abordan casi todos los aspectos de estos interesantes temas.

  12. Geothermal Resources in Spain; Recurssos geothermicos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de la Noceda Marquez, C.

    2009-07-01

    A general view on the geothermal resources is presented and the basic concepts of geothermal fields and their classification, the different possibilities of geothermal energy utilization as well as a general panoramic of geothermal energy in Spain. (Author) 6 refs.

  13. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  14. Juhan Parts soovib Res Publica tagasi tippu viia / Toomas Sildam

    Index Scriptorium Estoniae

    Sildam, Toomas, 1961-

    2004-01-01

    Res Publica esimees peaminister Juhan Parts plaanib minna oma erakonnaga kohalikele valimistele ning uurib võimalusi paremerakondade ühinemiseks. Rakveres toimunud erakonna üldkogust. Lisad: Peaministri neli rasket hetke; Res Publica ministrid said parteilt toetuse. Vt. samas: Reformierakond kiitis Res Publicat hea koostöö eest; Parts: 191 vastuhäält on hea tulemus

  15. Kes tegelikult lõid Res Publica? / Valeri Kalabugin

    Index Scriptorium Estoniae

    Kalabugin, Valeri

    2005-01-01

    Enne erakonnaks kuulutamist oli Res Publica Eesti iseseisvust ja demokraatiat taotlev ühendus, kuhu on kuulunud mitmed poliitika- ning ühiskonnategelased. Vt. samas: Ühendus Res Publica avaldus. Küsimustele vastavad Res Publica avalike suhete juht Riina Vändre, Riigikogu liige Mart Nutt, ajakirjanik Toomas Kümmel

  16. Kes tegelikult lõid Res Publica? / Valeri Kalabugin

    Index Scriptorium Estoniae

    Kalabugin, Valeri

    2005-01-01

    Enne erakonnaks kuulutamist oli Res Publica Eesti iseseisvust ja demokraatiat taotlev ühendus, kuhu on kuulunud mitmed poliitika- ning ühiskonnategelased. Vt. samas: Ühendus Res Publica avaldus. Küsimustele vastavad Res Publica avalike suhete juht Riina Vändre, Riigikogu liige Mart Nutt, ajakirjanik Toomas Kümmel

  17. Juhan Parts soovib Res Publica tagasi tippu viia / Toomas Sildam

    Index Scriptorium Estoniae

    Sildam, Toomas, 1961-

    2004-01-01

    Res Publica esimees peaminister Juhan Parts plaanib minna oma erakonnaga kohalikele valimistele ning uurib võimalusi paremerakondade ühinemiseks. Rakveres toimunud erakonna üldkogust. Lisad: Peaministri neli rasket hetke; Res Publica ministrid said parteilt toetuse. Vt. samas: Reformierakond kiitis Res Publicat hea koostöö eest; Parts: 191 vastuhäält on hea tulemus

  18. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  19. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  20. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  1. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  2. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  3. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  4. Solar-geothermal hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Instituto de Ingenieria, UNAM, Ciudad Universitaria, Edificio 12, 04510 Mexico DF (Mexico)

    2006-10-15

    The Cerro Prieto Geothermal Power Plant is located in the northwest of Mexico, lat. 32{sup o}39', long. 115{sup o}21' in the northern hemisphere. A solar-geothermal hybrid system is proposed in order to increase the steam flow during the present geothermal cycle, adding a solar field of parabolic trough concentrators. Energy is supplied to the geothermal flow from wells in order to increase the steam generation rate. This configuration will increase the capacity factor of the system by generating additional steam during the peak demand hours. The parabolic trough solar field is evaluated in North-South and East-West orientation collector alignments. A proposal to obtain an increase of 10% in steam flow is evaluated, as the increase in flow is limited by the content of dissolved salts, so as to avoid a liquid phase with high salt concentrations. The size of the parabolic troughs field was obtained. (author)

  5. Geothermal power generation in United States

    Science.gov (United States)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  6. Optimizing Sustainable Geothermal Heat Extraction

    Science.gov (United States)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  7. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  8. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  9. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  10. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  11. Geothermal innovative technologies catalog

    Energy Technology Data Exchange (ETDEWEB)

    Kenkeremath, D. (ed.)

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  12. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  13. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  14. THE INVOLVEMENTOF YOUNG GENERATION IN RES INDUSTRY

    Directory of Open Access Journals (Sweden)

    Camelia CIOBANU

    2013-05-01

    Full Text Available With this work we want to present the results obtained from the analysis ofquestionnaires sent to representatives of higher education institutions in the cross-border project:Romania-Bulgaria joint cooperation for sustainable and long-term development of young humansource of renewable energy technologies in order overcoming socio-cultural barrier and theopening of joint opportunities of finding a job and employment in the border area, "RES-OP DEV№ .2 (3.I -3.2-4 MIS-ETC CODE 222."

  15. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  16. Outstanding issues for new geothermal resource assessments

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  17. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  18. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  19. Choosing a Geothermal as an HVAC System.

    Science.gov (United States)

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  20. Industrial low temperature utilization of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.

    1976-05-01

    This brief presentation on industrial utilization of low temperature geothermal resources first considers an overview of what has been achieved in using geothermal resources in this way and, second, considers potential, future industrial applications.

  1. Choosing a Geothermal as an HVAC System.

    Science.gov (United States)

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  2. Pagosa Springs geothermal project. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-19

    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  3. An Evaluation of Enhanced Geothermal Systems Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jelacic, Allan [U.S. Dept. of Energy, Washington, DC (United States); Fortuna, Raymond [U.S. Dept. of Energy, Washington, DC (United States); LaSala, Raymond [U.S. Dept. of Energy, Washington, DC (United States); Nathwani, Jay [U.S. Dept. of Energy, Washington, DC (United States); Nix, Gerald [U.S. Dept. of Energy, Washington, DC (United States); Visser, Charles [National Renewable Energy Lab. (NREL), Golden, CO (United States); Green, Bruce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Renner, Joel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bruton, Carol [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  4. Modern geothermal power: Binary cycle geothermal power plants

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  5. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  6. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  7. Strategic plan for the geothermal energy program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

  8. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  9. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  10. Greenhouse Gases from Geothermal Power Production

    OpenAIRE

    Fridriksson, Thráinn; Mateos, Almudena; Audinet, Pierre; Orucu, Yasemin

    2016-01-01

    Geothermal is a renewable source energy that can be used directly for heating or for power production. Geothermal utilization, particularly power production, may result in some greenhouse gas (GHG) emissions. GHG emissions from geothermal power production is generally small in comparison to traditional base load thermal energy power generation facilities. This is mainly due to the fact tha...

  11. Geothermal progress monitor. Progress report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  12. Geothermal energy utilisation in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Grepmeier, K. [Zentrum fuer rationelle Energieanwendung und Umwelt GmbH (ZREU), Regensburg (Germany)

    2005-04-01

    The following article highlights some of the outcomes derived from a survey which has been conducted by an international consortium under the auspices of the German consultancy Zentrum fuer rationelle Energieanwendung und Umwelt GmbH (ZREU) in the frame of a cooperative action entitled 'Promotion of Geothermal Energy Utilisation in Turkey'. The project which has been carried out under the umbrella of the European Union's Framework Programme for Research and Technological Development also featured a European business forum and technical site visit about 'Geothermal Energy Opportunities in Turkey' and a site visit tour to successful European geothermal utilisation schemes aiming to foster exchange of experience and to initiate business contacts between Turkish and European market actors. Special consideration has been given to investigate the potential of geothermal electricity generation with future-oriented binary cycle processes (e.g. based on Kalina technology) specifically suitable to exploit Turkey's low temperature geothermal reservoirs. Following up the activities ZREU has entered into a co-operation scheme with e.terras AG and leading technology providers to develop high efficient European turn-key solutions for promising goethermal markets worldwide. (orig.)

  13. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  14. 7{sup th} international geothermal conference

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jochen; Brian, Marcus; Dittmann, Elena (eds.)

    2011-05-10

    Within the 7th International Geothermal Conference from 10th to 12th May, 2011 in Freiburg (Federal Republic of Germany) the following lectures and posters were presented: (1) Global Geothermal Energy - Status and Challenges (L. Rybach); (2) The development of deep geothermal energy in Switzerland - Facts and perspectives (R. Wyss); (3) The importance of geothermal energy in the energy mix of the future (W. Muench); (4) Living with induced seismicity: Lessons from Basel and a roadmap ahead (S. Wiemer); (5) The seismic event in Landau, August 2009: Expert Group and research projects as follow-up (C. Boennemann); (6) Microseismicity (S. Baisch); (7) EU Research project GEISER for investigation of induced seismicity (T. Kohl); (8) Seismic hazard related to geothermal projects - expert view (H. Rueter); (9) Geological investigation (U. Schanz); (10) Drill design (W. Mueller-Ruhe); (11) Reducing costs for pumping geothermal water (H. Schroeder); (12) Optimisation of cycle processes - Best exergy point for ORC (S. Schuller); (13) High-potential working fluids for next-generation binary ORC (A.L. Laursen); (14) Geothermal energy - An essential part of future electricity production (C. Lohse); (15) Revision of the renewable Enrgy Sources Act (EEG) in 2011 (C. Viertl); (16) Amendment to the Renewable Energy Sources Act - Further development for the deep geothermal industry (E, Knapek); (17) Geothermal energy as an opportunity for energy supplies (J. Uhde); (18) Project financing - Democracy as a success factor (F. Fritsch); (19) Fund financing of geothermal projects (C. Deneke); (20) Geothermal Energy - requirements and perspectives from a utility point of view (M. Voss); (21) Hurdles for financing geothermal projects in Germany (M. Wiendieck); (22) Licenses for exploration of geothermal energy in Baden-Wuerttemberg (A. Brasse); (23) New reflections on the exploration strategy concerning the malm of the melasse basin (K. Dorsch); (24) Situation of the mining law in

  15. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  16. Resúmenes de proyectos de grado

    Directory of Open Access Journals (Sweden)

    Revista Ingeniería e Investigación

    2011-02-01

    Full Text Available Para la Facultad de Ingeniería de la Universidad Nacional de Colombia sede Bogotá los trabajos desarrollados por los estudiantes con la dirección de docentes como condición para obtener su título profesional, expresan la dinámica de las investigaciones y las áreas de conocimiento en la que están comprometidos los diferentes estamentos de la facultad, Es por esta razón que la revista Ingeniería e Investigación comenzará a publicar, a partir de la fecha los resúmenes de los trabajos de pregrado y las tesis de posgrado que permanentemente se están desarrollando en la Facultad de Ingeniería.

  17. Resíduos hospitalares Hospital refuse

    Directory of Open Access Journals (Sweden)

    Francisco Xavier Ribeiro da Luz

    1972-12-01

    Full Text Available Foram relatadas informações diversas sobre resíduos sólidos hospitalares: volumes produzidos, formas de acondicionamento no local de produção, de transporte interno, de armazenamento para a coleta, de remoção e de destinação final usuais em estabelecimentos especialmente norte-americanos. Soluções foram analisadas e apresentadas sugestões para as condições brasileiras.Information on solid waste handling specially in American hospitals: volumes and kinds of refuse, conditioning forms, internal transportation, is reported. Comments are presented on them and suggestions are made having in mind Brasilian conditions.

  18. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  19. Geothermal Energy in China: Status and Problems

    Institute of Scientific and Technical Information of China (English)

    Hu Ke; Yang Deming

    2000-01-01

    The application of geothermal energy in China has a long history. From the 70's last century, the research and development of geothermal in the world has been greatly advanced, and the Chinese geologists have finished the fundmental work for geothermal prospecting. The application technology is much behind in china. With the fast growing of national economy, the public, as well as the government recognizes the importance of clean and renewable energy, large scale development of geothermal energy is on the gate in China. This paper gives an outline of the geothermal potentials in china, and points out the problems and technical needs in the research and development in the near future.

  20. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  1. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  2. Protecting geothermal operations with rupture disks

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.W.

    1983-02-01

    Potential rupture disk applications in geothermal operations are reviewed. Several wells manifolded together, to form the geothermal feed, cause erratic pressure. Rupture disks are used for relief. Flash tanks are equipped with rupture disks. Brine separators, heat exchanger shells, and turbine casings are protected by rupture disks. An analysis of geothermal steam will determine the rupture disk metal. Reverse Buckling disks are recommended over tension loaded disks for dealing with geothermal pressure cycling. Erratic temperature suggests that metals which retain tensile strength with temperature be used (Inconel is mentioned). In summary, geothermal projects represent an excellent rupture disk market.

  3. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  4. Sauna taga tiigi ääres....

    Directory of Open Access Journals (Sweden)

    Marju Kõivupuu

    1999-01-01

    Full Text Available he folklorisation process of authorial songs is by no means a remnant of the past. The works of local song composers circulate among wider public independently from their author's will.The modern type of rhymed South-Estonian folk song of the recent years is represented in the works of poets Jaan Pulk, Jan Rahman, Contra (Margus Konnula and many others.Two South-Estonian authorial songs Haani miis [The Haanja Man] and Sauna taga tiigi ääres [At the Pond behind the Sauna] have been sung all over Estonia since the end of the 19th and the beginning of the 20th century. Today, these two songs are known as folksongs. The first was composed by Jaan Räppo (b. on April 11th, 1880 in Võrumaa - died on April 14th, 1958, also known as a politician and cultural figure in the Ukraine. In 1897 he wrote the verse narrative about a poor man from Kasaritsa while studying at the Võru town school in Estonia.The song Sauna taga tiigi ääres was composed by Hermann Julius Schmalz (b. on April 6th, 1870 in Räpina parish on the border of Võru and Setu region. According to the poet and literate himself he had not attended school for a day in his life; instead, he was educated (among other things in German language by his mother and governess, also by independent study. As a youth he learned to play several folk music instruments, violin, piano and guitar, he could also read music.

  5. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  6. SCE 1983 geothermal program update

    Energy Technology Data Exchange (ETDEWEB)

    Crane, G.K.

    1983-09-01

    The activities of Southern California Edison in its geothermal program are discussed. These activities include the operation of the Brawley and Salton Sea pilot plants and on-site associated research, the resurrection of the Heber double flash plant, geothermal power purchase arrangements with third parties, and economic analysis of modular, wellsite plant versus central station units. With continued technical progress to reduce the cost of hydrothermal power production and recognition of the long-term benefits of this base load renewable energy resource, it is expected that commercial development will continue.

  7. Extracting geothermal heat from mines

    Energy Technology Data Exchange (ETDEWEB)

    Ednie, H.

    2007-03-15

    In response to environmental concerns, research is underway to find alternative methods of generating energy, including the use of low-temperature geothermal heat from mines. Geothermal energy is the energy produced internally by radiogenic heat production and long-term cooling of the planet. Various applications can be used from this energy, including direct use for heating and electricity generation. The Earth/Mine Energy Resource Group (EMERG) at McGill University has worked on the development of alternative energies from both active and abandoned surface and underground mines. Geothermal heat from mines was once regarded as a benign energy source, particularly when compared to nuclear, oil, and coal. However, there is high potential for ground heat to be used as a sustainable solution to some energy requirements. EMERG's objective is to integrate alternate energy during the life of the mine, as well as after mine closure. Geothermal heat from mines will enable local communities to use this inexpensive source of energy for district heating of buildings, for drying food products, or for mining applications, such as heating deep oil sands deposits. Active or abandoned mines are ideal locations for geothermal systems. The first 100 metres underground is well suited for supply and storage of thermal energy. Due to the steady temperatures deep underground, geothermal sources are excellent fuels for heating and cooling systems. This article presented an example of a geothermal heat pump system used in Springhill Nova Scotia where Rock Can Am Ltd. is using floodwater from abandoned mines to heat and cool the company's facility at the site. The system produces annual savings of 600,000 kWh or $45,000 compared to conventional systems, proving that geothermal energy from abandoned or existing mines is a viable alternative energy source. Further efforts could result in it becoming a more effective and attractive option for the reclamation of abandoned mines

  8. Condensation Processes in Geothermal Systems

    Science.gov (United States)

    Norman, D. I.; Moore, J. N.

    2005-12-01

    We model condensation processes in geothermal systems to understand how this process changes fluid chemistry. We assume two processes operate in geothermal systems: 1) condensation of a vapor phase derived by boiling an aqueous geothermal fluid into a cool near surface water and 2) condensation of a magmatic vapor by a deep circulating meteoric thermal fluid. It is assumed that the condensation process has two stages. Initially the condensing fluid is under saturated in gaseous species. Condensation of the vapor phase continues until the pressure on the fluid equals the sum of the partial pressures of water and the dissolved gaseous species. At that time bubbles flux through the condensing fluid. In time the fluid and fluxing gas phase come to equilibrium. Calculation shows that during the second stage of the condensation process the liquid phase becomes enriched in more soluble gaseous species like CO2 and H2S, and depleted in less soluble species like CH4 and N2. Stage 2 condensation processes can therefore be monitored by ratios of more and less condensable species like CO2/N2. Condensation of vapor released by boiling geothermal fluids results in liquids with high concentrations of H2S and CO2 like is seen in geothermal system steam-heated waters. Condensation of a magmatic vapor into circulating meteoric water has been proposed, but not well demonstrated. We compare to our models the Cerro Prieto, Mexico gas analysis data set collected over twelve years time by USGS personnel. It was assumed for modeling that the Cerro Prieto geothermal fluids are circulating meteoritic fluids with N2/Ar ratios about 40 to which is added a magmatic vapor with N2/Ar ratio = 400. The Cerro Prieto analyses show a strong correlation between N2/Ar and CO2/N2 as predicted by calculation. Two dimensional image plots of well N2/Ar + CO2/N2 show a bull's-eye pattern on the geothermal field. Image plots of analyses collected over a year or less time show N2/Ar and CO2/N2 hot spots

  9. Geothermal resources of California sedimentary basins

    Science.gov (United States)

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  10. Mexican geothermal development and the future

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.M.E.V. [Comision Federal de Electricidad, Morelia (Mexico)

    1998-10-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth.

  11. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    Science.gov (United States)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  12. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R.

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  13. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  14. Optimal Extraction of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Kamal; Scherer, Charles, R.

    1977-06-01

    This study is concerned with the optimal extraction of energy from a hot water geothermal field. In view of the relative "commercial" availability of the many energy sources alternative to geothermal, it is possible that a socially "best" extraction policy may not include producing geothermal energy as fast as the current technology will permit. Rather, a truly "optimal" policy will depend on, among other things, the costs and value of geothermal energy in the future and the analogous values of other energy sources. Hence, a general approach to this problem would make the policy contingent on pertinent information on alternative sources. A good example of this approach is given in Manne's (1976) Energy Technology Assessment Model, where he points out that "Each energy source has its own cost parameters and introduction date, but is interdependent with other components of the energy sector." (Manne (1976), p. 379). But by their large dimensions, such relativity macro-analyses tend to preclude a close look at the specific technology of a process is important in developing meaningful resource management models, we substitute for a macro model the increasing value over time of the energy extracted. In this contact we seek an extraction rate (and an economic life) that maximizes the net discounted value of the energy extracted. [DJE-2005

  15. Res Publica Euroopas / Eiki Berg, Marko Mihkelson ; interv. Lauri Lugna

    Index Scriptorium Estoniae

    Berg, Eiki, 1970-

    2003-01-01

    Res Publica välispoliitika eksperdid Eiki Berg ja Marko Mihkelson vastavad küsimustele, mis käsitlevad Res Publica saamist Euroopa Rahvapartei (ERP) liikmeks, koostööd ERP-ga, EL-i põhiseaduslikku lepet

  16. Res Publica viskab Oleg Rebase välja

    Index Scriptorium Estoniae

    2006-01-01

    Res Publica Tallinna piirkonna juhatus leidis, et Oleg Rebane läks Keskerakonna provokatsiooniga kaasa minnes vastuollu Res Publica põhimõtetega. Tallinna linnapea Jüri Ratase suhtes algatatud umbusaldushääletuse põhjustest. Sven Sester vastab küsimusele, mis seotud Oleg Rebase ja Tõnis Bittmani juhtumiga

  17. Res Publica viskab Oleg Rebase välja

    Index Scriptorium Estoniae

    2006-01-01

    Res Publica Tallinna piirkonna juhatus leidis, et Oleg Rebane läks Keskerakonna provokatsiooniga kaasa minnes vastuollu Res Publica põhimõtetega. Tallinna linnapea Jüri Ratase suhtes algatatud umbusaldushääletuse põhjustest. Sven Sester vastab küsimusele, mis seotud Oleg Rebase ja Tõnis Bittmani juhtumiga

  18. Res Publica Euroopas / Eiki Berg, Marko Mihkelson ; interv. Lauri Lugna

    Index Scriptorium Estoniae

    Berg, Eiki, 1970-

    2003-01-01

    Res Publica välispoliitika eksperdid Eiki Berg ja Marko Mihkelson vastavad küsimustele, mis käsitlevad Res Publica saamist Euroopa Rahvapartei (ERP) liikmeks, koostööd ERP-ga, EL-i põhiseaduslikku lepet

  19. Remote sensing application on geothermal exploration

    Science.gov (United States)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  20. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  1. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  2. Geothermal exploration and development in Nevada through 1973

    Energy Technology Data Exchange (ETDEWEB)

    Garside, L.J.

    1974-01-01

    A brief description is given of Nevada's geothermal resources, and exploration activity for geothermal power through 1973. The use, geology, exploration, and regulation of the State's geothermal energy resources are discussed.

  3. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  4. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  5. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  6. Monitoring of Acoustic Emissions Within Geothermal Areas in Iceland: A new Tool for Geothermal Exploration.

    Science.gov (United States)

    Brandsdóttir, B.; Gudmundsson, O.

    2007-12-01

    With increased emphasis on geothermal development new exploration methods are needed in order to improve general understanding of geothermal reservoirs, characterize their extent and assess the potential for sustainable power production. Monitoring of acoustic emissions within geothermal areas may provide a new tool to evaluate the spatial extent of geothermal fields and model rock-fluid interactions. Three-dimensional seismic data have been used to assess the spatial and temporal distribution of noise within several high-temperature geothermal fields in Iceland. Seismic noise in the 4-6 Hz range within the Svartsengi field can be attributed to steam hydraulics and pressure oscillations within the geothermal reservoirs. Seismic noise surveys compliment electrical resistivity soundings and TEM-surveys by providing information pertinent to the current geothermal activity and extent of steam fields within the uppermost crust of the geothermal reservoir. Information related to acoustic emissions can thus help define targets for future wells.

  7. Geothermal Technologies Program - Geothermal Energy: Putting Creative Ideas to Work (Green Jobs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    Rapid expansion of U.S. geothermal capacity is opening new job opportunities across the nation. With more than 3,000 megawatts (MW) already installed, the United States leads the world in existing geothermal capacity.

  8. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  9. Geothermal Energy Technology: a current-awareness bulletin

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.B. (ed.)

    1983-01-15

    This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

  10. Direct contact, binary fluid geothermal boiler

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  11. Geothermal demonstration: Zunil food dehydration facility

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  12. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  13. Geothermal demonstration: Zunil food dehydration facility

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  14. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  15. Geothermal policy development program: expediting the local geothermal permitting process

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  16. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  17. Geothermal project summaries. Geothermal energy research, development and demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

  18. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  19. Origins of acid fluids in geothermal reservoirs

    Science.gov (United States)

    Truesdell, Alfred

    1991-01-01

    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  20. Pollution Control Guidance for Geothermal Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Robert P.

    1978-06-01

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pollution control technologies that may be applicable are described along with preliminary cost estimates for their application. Finally discharge and emission limitations are suggested that may serve as interim guidance for pollution control during early geothermal development.

  1. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  2. Geothermal energy for Hawaii: a prospectus

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  3. Deep Geothermal Energy Production in Germany

    OpenAIRE

    Thorsten Agemar; Josef Weber; Rüdiger Schulz

    2014-01-01

    Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in souther...

  4. Shutdown corrosion in geothermal energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Peter F.

    1982-10-08

    Experience has shown that corrosion occurring during geothermal energy utilization system downtime--shutdown corrosion--can pose a serious threat to successful operations. Shutdown corrosion in geothermal plants appears more severe than would be expected in their nongeothermal analogs, and its mitigation may pose a severe challenge to corrosion engineering personnel. This paper presents four case histories of geothermal shutdown corrosion problems. General methods of mitigation are explored.

  5. Geothermal Progress Monitor. Report No. 15

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  6. Corrosion reference for geothermal downhole materials selection

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  7. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  8. Geothermal progress monitor. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

  9. Updated U.S. Geothermal Supply Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S.; Porro, G.

    2007-03-01

    This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

  10. Geothermal development opportunities in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Kenkeremath, D.C.

    1989-11-16

    This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

  11. Deformation study of Kamojang geothermal field

    Science.gov (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.

    2017-07-01

    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  12. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  13. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  14. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  15. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  16. Hot dry rock geothermal energy

    Science.gov (United States)

    Heiken, G.; Murphy, H.; Nunz, G.; Potter, R.

    1981-08-01

    Man-made geothermal systems are discussed which make it possible to extract heat from hot rocks in areas where natural fluids are insufficient for the development of hydrothermal energy. The location and magnitude of high- and low-temperature geothermal resources in the USA for such hot dry rock (HDR) systems are examined. An HDR concept is described in which water is injected into one of two nearly parallel wells connected at depth by man-made fractures; the injected water circulates through the fracture system, where it is heated by conduction from the hot rock, and hot fluid, which can be used for heating or for electric power generation, rises through the second well. Some heat-extraction experiments using the described concept are reviewed which are being conducted in a complex volcanic field in New Mexico. The economics of HDR energy is evaluated.

  17. Models of Geothermal Brine Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare; John H. Weare

    2002-03-29

    Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

  18. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  19. Res Publica lükkas tagasi Isamaaliidu ühinemisettepaneku / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2005-01-01

    Kuigi Res Publica juhid lükkasid tagasi idee ühineda Isamaaliiduga, on Res Publica valmis koostööks nii Isamaaliidu kui ka kõigi teiste erakondadega. Res Publica parlamendifraktsiooni esimehe Marko Pomerantsi arvamus

  20. Res Publica lükkas tagasi Isamaaliidu ühinemisettepaneku / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2005-01-01

    Kuigi Res Publica juhid lükkasid tagasi idee ühineda Isamaaliiduga, on Res Publica valmis koostööks nii Isamaaliidu kui ka kõigi teiste erakondadega. Res Publica parlamendifraktsiooni esimehe Marko Pomerantsi arvamus

  1. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  2. Annotated geothermal bibliography of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  3. Geothermal Prospector: Supporting Geothermal Analysis Through Spatial Data Visualization and Querying Tools

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Daniel; Anderson, Arlene; Augustine, Chad

    2015-09-02

    Determining opportunities for geothermal energy can involve a significant investment in data collection and analysis. Analysts within a variety of industry and research domains collect and use these data; however, determining the existence and availability of data needed for a specific analysis activity can be challenging and represents one of the initial barriers to geothermal development [2]. This paper describes the motivating factors involved in designing and building the Geothermal Prospector application, how it can be used to reduce risks and costs related to geothermal exploration, and where it fits within the larger collection of tools that is the National Geothermal Data System (NGDS) [5].

  4. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  5. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  6. Titanium in the geothermal industry

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [TIMET UK Ltd., Swansea (United Kingdom)

    2003-12-01

    Titanium resists seawater and brine at temperatures as high as 260{sup o}C, and is also resistant to corrosion by sulphur dioxide; hydrogen sulphide; and aqueous solutions of those gases. Titanium is fully resistant to corrosion and stress corrosion cracking in the standard NACE test solution containing 3000 ppm dissolved H{sub 2}S, 5% NACl, and 0.5% acetic acid (pH 3.5). To avoid pitting at temperatures above 80{sup o}C, titanium alloys containing nickel, molybdenum, palladium or ruthenium are used. Examples of equipment fabricated in titanium in order to withstand the corrosive fluids present in some geothermal installations are plate heat exchangers and well casing. By careful selection of the grade of titanium, material thickness (with no corrosion allowance) and fabrication method, an economic fabrication with low maintenance costs and high availability can be achieved. A prime example of the application of titanium in the geothermal industry is the use of Grade 29 well casing in the Salton Sea, USA, which enables the exploitation of a geothermal resource containing highly corrosive brine. Advances in production technology are being applied to reduce the cost of the casing pipe. This technology may enable the use of sea water injection to augment weak or depleted aquifers, or to generate steam from Hot Dry Rocks. (author)

  7. Res Publica hirmutab valijaid homoabieludega / Evelyne Gebhardt ; interv. Tarmo Vahter

    Index Scriptorium Estoniae

    Gebhardt, Evelyne

    2004-01-01

    Saksa europoliitik, sotsiaaldemokraat Evelyne Gebhardt avaldab arvamust Res Publica europarlamendi valimiste loosungite kohta ning leiab, et kõige rohkem meenutavad need talle Prantsusmaa Le Peni või Austria Jörg Haiderit

  8. CRITÈRES DE CHOIX DE L’ INVESTISSEMENT

    Directory of Open Access Journals (Sweden)

    CEAUŞESCU Aurelian Ionut

    2009-12-01

    Full Text Available Les critères du choix de l’investissement sont liés à sa nature (investissement technique, investissement financier, investissement de sécurité, investissement de prestige, etc.. Nous allons raisonner sur un investissement technique dont les conséquences sont mesurables par des flux financiers. Mais, on ne peut pas estimer les conséquences financières d’un investissement de prestige ou de sécurité. Les critères financiers du choix des investissements reposent tous sur un principe commun: l’actualisation Ses principaux critères sont : 1 la durée (le délai de récupération du capital investi 2 le flux net de trésorerie actualisé ; 3 l’indice de profitabilité et le taux interne de rentabilite

  9. Isamaa ja Res Publica Liidu plaan / Juhan Parts

    Index Scriptorium Estoniae

    Parts, Juhan, 1966-

    2008-01-01

    Ilmunud ka: Eesti Eest = Za Estoniju : Izdanije objedinenija "Sojuz Otetshestva i Res Publica" 15. mai 2008, lk. 4-5. Eesti majanduse uutest ülesannetest. Kommenteerib: Mart Laar. Vt. samas: IRL-i ettepanekud koalitsioonileppe täienduseks

  10. Carmen Kass ühines Res Publicaga / Lauri Tankler

    Index Scriptorium Estoniae

    Tankler, Lauri

    2004-01-01

    Ilmunud ka: Võta Võim : na russkom jazõke, 29. veebr. 2004, lk. 1. Modell Carmen Kass otsustas astuda Res Publica Juventuse liikmeks. Juventus tegi C. Kassile ettepaneku kandideerida europarlamenti. Vt. samas: Carmen Kassi manifest

  11. Res Publica hirmutab valijaid homoabieludega / Evelyne Gebhardt ; interv. Tarmo Vahter

    Index Scriptorium Estoniae

    Gebhardt, Evelyne

    2004-01-01

    Saksa europoliitik, sotsiaaldemokraat Evelyne Gebhardt avaldab arvamust Res Publica europarlamendi valimiste loosungite kohta ning leiab, et kõige rohkem meenutavad need talle Prantsusmaa Le Peni või Austria Jörg Haiderit

  12. Isamaa ja Res Publica Liidu plaan / Juhan Parts

    Index Scriptorium Estoniae

    Parts, Juhan, 1966-

    2008-01-01

    Ilmunud ka: Eesti Eest = Za Estoniju : Izdanije objedinenija "Sojuz Otetshestva i Res Publica" 15. mai 2008, lk. 4-5. Eesti majanduse uutest ülesannetest. Kommenteerib: Mart Laar. Vt. samas: IRL-i ettepanekud koalitsioonileppe täienduseks

  13. Zoning Districts, ag-res, Published in 2008, Duchesne County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Zoning Districts dataset, was produced all or in part from Other information as of 2008. It is described as 'ag-res'. Data by this publisher are often provided...

  14. Res Publica lubab igale lapsele 2000 krooni kuus / Urmas Seaver

    Index Scriptorium Estoniae

    Seaver, Urmas, 1973-

    2005-01-01

    Res Publica lubab sügiseste kohalike omavalitsuste valimiste eel jagada eelkooliealiste laste vanematele 2000 krooni kuus kasvuraha. Lisa: Valimislubadused. Kommenteerivad: Maret Maripuu Reformierakonnast, Toomas Vitsut Keskerakonnast ja Jaak Juske Sotsiaaldemokraatlikust Erakonnast

  15. Severe-Use Polymers Les polymères utilisés dans des conditions extrêmes

    Directory of Open Access Journals (Sweden)

    Cassidy P. E.

    2006-11-01

    Full Text Available The past decade has seen the development of organic polymers which can withstand extreme thermal, chemical and mechanical stresses. Three applications requiring resistance to these stresses are reviewed. Aerospace needs are for thermo-oxidatively stable adhe-sives, coatings and electrical insulation. Numerous polymers have been synthesized which are stable to high tempera-tures, but not all of these can be processed. Recent work has emphasized modifications to make stable polymers tractible. Types of polymers include aromatic (polyphenylene, polyester, polyamide, polyimidine, many heterocycles, ladders and inorganic backbones. Synthesis and properties of some of these polymers are discussed. Geothermal applications are directed toward elastomeric seals that require resistance to reduction and hydrolysis. The most successful formulations are EPDM and fluoroelastomers, with the former being superior and now used in the field. Long term undersea applications of elastomers require resistance to water absorption or permeation, hydrolysis and leaching of the rubber components. Solubility and permeation rate increase drastically with temperature, effects which can be used to evaluate service life. Twolayer laminates of different elastomers show permeation which is directionally dependent and which does not fit accepted calculated averages. La dernière décennie a vu le développement de polymères organiques pouvant résister à des contraintes extrêmes mécaniques, chimiques et thermiques. On passe en revue dans cet article trois applications exigeant une résistance à ces contraintes. Dans le domaine de l'aérospatiale on a besoin de ces polymères pour les adhésifs stables à l'oxydation thermique, pour les revêtements et pour l'isolement électrique. On a synthétisé de nombreux polymères qui sont stables à des hautes températures mais tous ne peuvent pas être travaillés. Un travail récent a mis en valeur les modifications permettant de

  16. Progress Towards a NASA Earth Science Reuse Enablement System (RES)

    Science.gov (United States)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2010-01-01

    A Reuse Enablement System (RES) allows developers of Earth science software to contribute software for reuse by others and.for users to find, select, and obtain software for reuse in their own systems. This paper describes work that the X4S,4 Earth Science Data Systems (ESDS) Software Reuse Working Group has completed to date in the development of an RES for NASA.

  17. Subversion in Jacques Rancières Pädagogik

    Directory of Open Access Journals (Sweden)

    Renate Schreiber

    2013-09-01

    Full Text Available Renate Schreiber zeigt die grundlegende Bedeutung von Jacques Rancières subversiven Ansatz für heutiges pädagogisches Handeln und diskutiert dabei u.a. das Verhältnis von Erklärungen und Selbstermächtigung in dem die Funktion des Willens eine große Rolle spielt. Dabei stellt sie Rancières Metapolitik der Pädagogik vor.

  18. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Science.gov (United States)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of

  19. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  20. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  1. National Geothermal Information Resource annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.

    1978-04-19

    The National Geothermal Information Resource (GRID) of the Lawrence Berkeley Laboratory is chartered by the U.S. Department of Energy (DOE) to provide critically evaluated data and other information for the development and utilization of geothermal energy. Included are both site dependent and site independent information related to resource evaluation, electrical and direct utilization, environmental aspects, and the basic properties of aqueous electrolytes. The GRID project is involved in cooperative agreements for the interchange of information and data with other organizations. There are currently three U.S. data centers working to implement the collection and exchange of information on geothermal energy research and production: the DOE Technical Information Center (TIC), Oak Ridge, the GEOTHERM database of the U.S. Geological Survey in Menlo Park, and the GRID project. The data systems of TIC, GEOTHERM and GRID are coordinated for data collection and dissemination, with GRID serving as a clearinghouse having access to files from all geothermal databases including both numerical and bibliographic data. GRID interfaces with DOE/TIC for bibliographic information and with GEOTHERM for certain site-dependent numerical data. The program is organized into four principal areas: (1) basic geothermal energy data; (2) site-dependent data for both electrical and direct utilization; (3) environmental aspects, and (4) data handling development. The four sections of the report are organized in this way.

  2. Geothermal development issues: Recommendations to Deschutes County

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, C.

    1982-07-01

    This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

  3. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  4. Geothermal Resource Verification for Air Force Bases,

    Science.gov (United States)

    1981-06-01

    phase of reservoir - ... geothermal techniques will begin to focus on the deeer, iso ’i fined reservoirs that will have little or no definitive surfa...1976. ;L-ison, D. L., PROGRAM REVIEW, GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM, U. S. Department of Energy, DOE/ET/ 27002 -6, December 1979

  5. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  6. Geothermal industry employment: Survey results & analysis

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

  7. Geothermal progress monitor. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

  8. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  9. Assessment of Geothermal Data Resources and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  10. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  11. Report on Hawaii Geothermal Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  12. Forecast of geothermal-drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A.J.; Brown, G.L.

    1982-07-01

    The number of geothermal wells that will be drilled to support electric power production in the United States through 2000 A.D. are forecasted. Results of the forecast are presented by 5-year periods for the five most significant geothermal resources.

  13. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  14. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    Science.gov (United States)

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  15. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  16. Assessment of Geothermal Data Resources and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  17. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  18. Mercury emissions from geothermal power plants.

    Science.gov (United States)

    Robertson, D E; Crecelius, E A; Fruchter, J S; Ludwick, J D

    1977-06-03

    Geothermal steam used for power production contains significant quantities of volatile mercury. Much of this mercury escapes to the atmosphere as elemental mercury vapor in cooling tower exhausts. Mercury emissions from geothermal power plants, on a per megawatt (electric) basis, are comparable to releases from coal-fired power plants.

  19. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    Science.gov (United States)

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  20. Careers in Geothermal Energy: Power from below

    Science.gov (United States)

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  1. Geothermal resources development project: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

  2. Geothermal progress monitor: Report Number 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  3. Geothermal heat pump system assisted by geothermal hot spring

    Science.gov (United States)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  4. Resource assessment for geothermal direct use applications

    Energy Technology Data Exchange (ETDEWEB)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  5. Discontinuous Operation of Geothermal Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    方肇洪; 刁乃仁; 崔萍

    2002-01-01

    Ground-source heat pump (GSHP) systems for HVAC have aroused more and more interest in China in recent years because of their higher energy efficiency compared with conventional systems. The design and performance simulation of the geothermal heat exchangers is vital to the success of this technology. In GSHP systems, the load of the geothermal heat exchanger varies greatly and is usually discontinuous even during a heating or cooling season. This paper outlines a heat transfer model for geothermal heat exchangers. The model was used to study the influence of the discontinuous operation of the heat pumps on the performance of the geothermal heat exchangers. A simple and practical approach is presented for sizing the geothermal heat exchangers.

  6. Geothermal energy and the production of electricity

    Science.gov (United States)

    Varet, J.

    Geothermal production of electricity, about 2,500 MW throughout the world, is considered. The types of geothermal resources are reviewed. A geothermal field can be used for the production of electricity only if the layer, a porous and permeable stock located at depths of 500 and 1500 m, is carried by a magmatic source at high temperatures. Prospecting and development of high energy geothermal energy are discussed, including feasibility studies and the construction of electric power stations. Once the existence of a field is determined, exploitation can begin, consisting of drilling, steam collecting and purifying, and the construction of turboalternator power plants. An example, the Bouillante-Guadeloupe geothermal power station, is presented. Production sites across the globe are reviewed, and electrical energy costs are discussed.

  7. Analysis of production decline in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zais, Elliot J.; Bodvarsson, Gunnar

    1980-09-01

    The major objectives of the Decline Curve project were to: (1) test the decline analysis methods used in the petroleum industry on geothermal production data; (2) examine and/or develop new analysis methods; and (3) develop a standard operating procedure for analyzing geothermal production data. Various analysis methods have long been available but they have not been tested on geothermal data because of the lack of publicly available data. The recent release to publication of substantial data sets from Wairakei, New Zealand, Cerro Prieto, Mexico and The Geysers, USA has made this study possible. Geothermal reservoirs are quite different from petroleum reservoirs in many ways so the analysis methods must be tested using geothermal data.

  8. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  9. Basic research needed for the development of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  10. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  11. Geothermal activity near Clearlake, California

    Science.gov (United States)

    Burns, K. L.; Potter, R. M.

    Geothermal activity in the region of high heat flow near the city of Clearlake includes hot springs, fumeroles, vents, and areas of hydrothermal alteration. Onshore, the location is controlled by Quaternary longitudinal NNW-trending faults of the San Andreas systems, and the transverse Burns Valley fault. Offshore, an additional control is arcuate graben-forming faults. The city is bracketed by three hydrothermal 'hot spots,' which are Sulphur Bank hot spring, resurgences in Burns Valley, and the Oak Cove hot spot. All three are associated with sharp 'spikes' in the isotherms and locally enhanced heat flow.

  12. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  13. Colorado State Capitol Geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Lance [Colorado Department of Personnel and Adminstration, Denver, CO (United States)

    2016-04-29

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  14. Is Geothermal Simulation a "Catastrophe"?

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V.V.; Pinder, George F.

    1980-12-16

    All numerical simulators of geothermal reservoirs depend upon an accurate representation of the thermodynamics of steam-water systems. These relationships are required to render tractable the system of balance equations derived from the physics of flow through porous media. While it is generally recognized that the steam-water system (i.e. two phase) is not in thermodynamic equilibrium, equihbrium thermodynamics are employed in its description. In this paper, we present an alternative view based on non-equilibrium thermodynamics. The underpinnings of this approach are found in a branch of topology generally referred to as "catastrophe theory". [Thom, 1975

  15. A study of geothermal drilling and the production of electricity from geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  16. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  17. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  18. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  19. Neutron imaging for geothermal energy systems

    Science.gov (United States)

    Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence

    2013-03-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  20. Reno Industrial Park geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  1. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  2. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  3. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  4. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  5. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  6. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  7. Oregon: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  8. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  9. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  10. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  11. Geothermal district heating: basics to success

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.

    1985-01-01

    A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

  12. Geothermal exploration technology. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

  13. Geothermal energy systems. Exploration, development, and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Huenges, Ernst (ed.) [GeoForschungsZentrum Potsdam (Germany)

    2010-07-01

    Presenting boundary conditions for the economic and environmental utilization of geothermal technology, this is the first book to provide basic knowledge on the topic in such detail. The editor is the coordinator of the European Geothermic Research Initiative, while the authors are experts for the various geological situations in Europe with high temperature reservoirs in shallow and deep horizons. With its perspectives for R and D in geothermic technology concluding each chapter, this ready reference will be of great value to scientists and decision-makers in research and politics, as well as those giving courses in petroleum engineering, for example. (orig.)

  14. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  15. Geothermal emissions data base: Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A new database subset on the gaseous emissions from the Cerro Prieto geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1967 to 1969, and new additions will be appended periodically to the file. The data are accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film, or magnetic tape.

  16. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  17. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  18. A Manpower Assessment of the Geothermal Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-24

    The authors were asked to estimate the net employment gains in the geothermal industry from 1980 to 1985 and 1990. Method was by survey. Response rates were high, so the estimates here likely reflect industry knowledge and outlooks at the start of the most active construction decade of the U.S. geothermal industry. An untitled table following Table IV-1 is of great interest because it breaks out employment requirement estimates for different phases/aspects of project development, i.e., exploration and resource assessment, exploratory drilling, production drilling, power plant construction, feed system (field piping) construction, field operation and maintenance, power plant operation and maintenance, and transmission line construction. Estimates like these are rare in the U.S. geothermal literature. While these estimates are dated, they comprise an historical economic baseline from which improvements in labor use in the geothermal industry might be constructed. (DJE 2005)

  19. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  20. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  1. Database on the geothermal resources of Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Kedaid, Fatima Zohra [Centre de Developpement des Energies Renouvelables, B.P. 62, route de l' Observatoire, Bouzareah, Alger (Algeria)

    2007-06-15

    The paper describes a database on the low-temperature geothermal resources of Algeria that includes information on thermal springs and wells, a description of hot water resources, and thematic maps. (author)

  2. Valuation of Geothermal Wells on Real Property

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-12-01

    The Geo-Heat Center is often contacted by individual property owners, real estate professionals and others for assistance in the evaluation of geothermal resources in real property transactions. This document is a summary of information on the methods we have suggested to approach this situation in the past. The first of these methods is employed in situations in which the geothermal resource is in use serving some application. The second approach is for situations in which there is a known well on the property but it is not currently in use. The information presented here does not address situations in which the property is underlain by suspected geothermal resources for which there is no surface manifestation or existing development. The information contained in this document is intended to address large capacity wells of the type that would be used for commercial geothermal applications.

  3. Geothermal Brief: Market and Policy Impacts Update

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.

    2012-10-01

    Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

  4. International Legislation of Shallow Geothermal Energy Use

    Science.gov (United States)

    Hähnlein, S.; Bayer, P.; Blum, P.

    2009-12-01

    Climate change, energy savings and energy autonomy are frequently discussed topics. Hence, renewable energy resources are currently promoted worldwide. One of these is geothermal energy. Worldwide the number of shallow geothermal installations (review the current international legal status of thermal use of groundwater. We present the results of an international survey, which offers comprehensive insight in the worldwide legal situation of closed and open systems of shallow geothermal installations. The focus is on minimum distances of these systems and limits for groundwater temperature changes. We can conclude that there are only few regulations and recommendations for minimum distances of these installations and groundwater temperature changes. Some countries have no regulations and in addition if recommendations are given, these are not legally binding. However, to promote shallow geothermal energy as an economically attractive and sustainable energy source, an international homogeneous legislation is necessary.

  5. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  6. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  7. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  8. Electronic geothermal atlases of Asian Russia

    Institute of Scientific and Technical Information of China (English)

    Albert DDuchkov; Michael Zheleznjak; Ludmila SSokolova

    2014-01-01

    Generalized geothermal data was used to produce two electronic atlases for Asian Russia, Geothermal Atlas of Siberia (GAS) (1995-2000) and Geothermal Atlas for Siberia and Russian Far East (GASRFE) (2009-2012). The atlases include heat flow maps, temperatures at depths of 0.5, 1, 2, 3, 5 km and lower boundary of permafrost. Quantitative values of pa-rameters are presented as isolines (GAS) and symbols (GASRFE). GAS website is located at the Trofimuk Institute (www.ipgg.sbras.ru/ru/institute/structure/geophysics/natural-fields). GASRFE provides the most complete geothermal data on Asian Russia, which has been growing for the last 50 years, and is published on the Internet at http://maps.nrcgit.ru/geoterm. In this atlas, data about the depth of permafrost lower boundary ("zero"isotherm) are pre-sented for the first time.

  9. Regulation of geothermal energy development in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  10. Perspectives of offshore geothermal energy in Italy

    Science.gov (United States)

    Armani, F. B.; Paltrinieri, D.

    2013-06-01

    Italy is the first European and world's fifth largest producer of geothermal energy for power generation which actually accounts for less than 2% of the total electricity production of the country. In this paper after a brief introduction to the basic elements of high-enthalpy geothermal systems, we discuss the potentialities represented by the submarine volcanoes of the South Tyrrhenian Sea. In particular we focus on Marsili Seamount which, according to the literature data, can be considered as a possible first offshore geothermal field; then we give a summary of the related exploitation pilot project that may lead to the realization of a 200MWe prototype power plant. Finally we discuss some economic aspects and the development perspectives of the offshore geothermal resource taking into account the Italian energy framework and Europe 2020 renewable energy target.

  11. Perspectives of offshore geothermal energy in Italy

    Directory of Open Access Journals (Sweden)

    Armani F. B.

    2013-06-01

    Full Text Available Italy is the first European and world’s fifth largest producer of geothermal energy for power generation which actually accounts for less than 2% of the total electricity production of the country. In this paper after a brief introduction to the basic elements of high-enthalpy geothermal systems, we discuss the potentialities represented by the submarine volcanoes of the South Tyrrhenian Sea. In particular we focus on Marsili Seamount which, according to the literature data, can be considered as a possible first offshore geothermal field; then we give a summary of the related exploitation pilot project that may lead to the realization of a 200MWe prototype power plant. Finally we discuss some economic aspects and the development perspectives of the offshore geothermal resource taking into account the Italian energy framework and Europe 2020 renewable energy target.

  12. Geothermal Technologies Program Overview - Peer Review Program

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, JoAnn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  13. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  14. Classification of Geothermal Resources - An engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.C.

    1996-01-24

    Geothermal resources have been classified into low, intermediate and high enthalpy resources by their reservoir temperatures. The temperature ranges used are arbitrary and there is not a general agreement. Geothermal resources should be classified by two independent thermodynamic properties of their fluids at the wellhead. They should reflect the fluids availability to do work. By setting the triple point of water as the sink condition, and normalising the fluids specific exergies by the maximum specific exergy of dry saturated steam, geothermal resources can be classified into high, medium, and low category resources by their specific exergy indices (SEI) of greater than 0.5, between 0.05 and 0.5, and less than 0.05. These correspond to geothermal fluids having exergies greater than that of dry saturated steam at 1 bar absolute, between saturated water and dry saturated steam at 1 bar absolute, and less than saturated water at 1 bar absolute respectively.

  15. Geothermal resource development: laws and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, J.C.

    1977-08-25

    The development of geothermal resources in California is becoming of increasing interest because of the large amounts of these resources in the state. In response to this interest in development, the legislature and regulatory bodies have taken actions to increase geothermal power production. The important federal and California laws on the subject are presented and discussed. Pertinent federal and state provisions are compared, and inconsistencies are discussed. An important concept that needs clarification is the manner of designating an area as a ''known geothermal resource area.'' The question of designating geothermal resource as a mineral is not completely resolved, although there is authority tending toward the finding that it is a mineral.

  16. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  17. Turkish tomato greenhouse gets geothermal heating

    NARCIS (Netherlands)

    Sikkema, A.; Maaswinkel, R.H.M.

    2011-01-01

    Wageningen UR Greenhouse Horticulture will set up an ultramodern greenhouse in Turkey, together with Dutch greenhouse builders and contractors. Geothermal energy will be used there to provide heat and carbon dioxide for tomato cultivation.

  18. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  19. Update of Geothermics in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Negrin, Luis C.A.; Quijano Leon, Jose Luis [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2004-12-01

    Four geothermal fields are currently operating in Mexico (Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes), with a total installed geothermal-electric capacity of 953 megawatts (MW). This means the country is located in third place, worldwide, just behind the USA and Philippines. Thirty-six power plants of several types (condensing, back pressure and binary cycle), between 1.5 and 110 MW, operate in the fields, fed by 197 wells with a combined production of 7,700 metric tons of steam per hour (t/h). These production wells have depths between 600 and 4,400 meters. Steam comes with 8,750 t/h of brine that is injected through 19 injection wells or treated in a solar evaporation pond of 14 km2 in Cerro Prieto. During 2003, steam produced in those fields equaled 67.5 million metric tons, and the power plants generated 6,282 gigawatt-hours (GWh), which represented 3.1% of the electric energy produced in Mexico. All the power plants and the geothermal fields are operated bye the public utility, the Comision Federal de Electricidad (Comision Federal de Electricidad (CFE)). [Spanish] Actualmente se operan en Mexico cuatro campos geotermicos (Cerro Prieto, Los Azufres, Los Humeros y Las Tres Virgenes), con una capacidad geotermoelectrica total de 953 megawatts (MW). Esto coloca al pais en el tercer lugar mundial, detras de Estados Unidos y Filipinas. En esos campos operan treinta y seis unidades de tipos diversos (a condensacion, a contrapresion y de ciclo binario), entre 1.5 y 110 MW, alimentadas por 197 pozos con una produccion combinada de 7,700 toneladas de vapor por hora (t/h). Estos pozos productores tienen profundidades entre 600 y 4,400 metros. El vapor sale acompanado por 8,750 t/h de salmuera, que se inyecta en 19 pozos inyectores o se trata en una laguna de evaporacion solar de 14 km2 en Cerro Prieto. Durante 2003 el vapor producido en los campos sumo 67.5 millones de toneladas y las unidades generaron 6,282 gigawatts-hora (GWh), lo que represento el

  20. BeTemper: thermal characterisation of the Belgian subsoil for shallow geothermal applications

    Science.gov (United States)

    Petitclerc, Estelle; Dusar, Michiel; Declercq, Pierre-Yves; Vanbrabant, Yves

    2015-04-01

    The current energy transition towards Renewable Energy Sources (RES) is mainly driven in Belgium by intermittent sources such as wind turbines and photovoltaic panels. Other sources are however available, such as biomass and geothermal resources. The latter can take various forms among which Ground Source Heat Pumps (GSHP). This Geothermal RES could be an important supply for the heating/cooling market, which represents 48% of the energy consumption in Belgium. The interest in using the ground as a source or storage device for thermal energy has grown considerably in the last few years and the market is expected to grow significantly by 2020 (Petitclerc, 2013). However, research in the thermal characteristics of the soil and subsoil is lagging behind the industrial technological development. Sizing errors of installations increasing the budget are therefore frequent and promising projects are abandoned. BeTemper was launched in 2014 for a period of 2 years. It aims to assess the shallow geothermal potential in Belgium through analysis of rock thermal properties from the surface to a depth of 150 m, which covers the standard depth for a vertical loop system currently installed in Belgium (75% of the GSHP market). The project focuses on laboratory thermal properties analyses (thermal conductivity (λ in W/m.K) and diffusivity (m²/s)) of about 400 rock samples corresponding to 30 different lithologies. Influences of water content, of porosity, of mineralogical composition and of mineralogical texture on these thermal parameters are studied. Thermal parameters measurements are performed with the high-resolution Thermal Conductivity Scanning method (Popov 1999, 2012) for both saturated and dry conditions. The mineralogical and petrological analyses are conducted thanks to different analytical equipments of the mineralogical and petrological laboratory at the RBINS-GSB. The proportion of the different mineralogical phases of samples are evaluated with the Panalytical X

  1. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  2. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  3. Geothermal energy exploitation in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.W.

    1980-01-01

    The essential factors, human and technical, which control the operation of geothermal systems, particularly those which allow prediction of behavior during and after exploitation, are sketched. The strategy and co-ordination involved in using New Zealand's geothermal resources for power production are considered. The broader aspects of the technical matters involved in the design of the parasitic plant reservoir system are described. (MHR)

  4. Geothermal overviews of the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.; Axtell, L.H. (comps.)

    1972-01-01

    This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

  5. Tracer tests in geothermal resource management

    OpenAIRE

    Axelsson G.

    2013-01-01

    Geothermal reinjection involves injecting energy-depleted fluid back into geothermal systems, providing an effective mode of waste-water disposal as well as supplementary fluid recharge. Cooling of production boreholes is one of the main disadvantages associated with reinjection, however. Tracer testing is an important tool for reinjection studies because tracer tests actually have a predictive power since tracer transport is orders of magnitude faster than cold-front advancement around reinj...

  6. Design of a Geothermal Downhole Magnetic Flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  7. INEL geothermal environmental program. 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

    1981-04-01

    An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

  8. A Sustainability Assessment Protocol for Geothermal Utilization

    OpenAIRE

    Shortall, Ruth, 1981-

    2010-01-01

    Sustainable development calls for the use of sustainable energy systems. However, the way in which a geothermal resource is utilized will ultimately determine whether or not it is sustainable. Sustainable utilization of geothermal energy means that it is produced and used in such a way that is compatible with the well-being of future generations and the environment (UNDP, 2000). A measurement and assessment framework is needed for a sustainable energy development strategy, as it can prov...

  9. Evaluation of geothermal cooling systems for Arizona

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

  10. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  11. Au Cern, premières collisions de protons hier

    CERN Multimedia

    Galeazzi, Juliette

    2009-01-01

    "Hier, les scientifiques du monde entier ont salué le redémarrage du LHC, grand collisionneur de hadrons, au Cern à Genève. Après quatorze mois d'arrêt, à la suite d'une panne, les expériences ont pris et les premières collisions ont eu lieu" (2 pages)

  12. Reinsalu : Res Publica lisab kiirust / Urmas Reinsalu ; interv. Lauri Tankler

    Index Scriptorium Estoniae

    Reinsalu, Urmas, 1975-

    2004-01-01

    Ilmunud ka: Võta Võim : na russkom jazõke, 28. apr. 2004, lk. 4. Res Publica esikandidaat Urmas Reinsalu erakonna valimiskampaania eesmärkidest, võimalustest nende eesmärkide saavutamiseks ja erakonna valimisprogrammi ning kandidaatide eelistest konkurentide ees

  13. Pettumus Res Publicas algas kirikus antud vandest / Margus Tsahkna

    Index Scriptorium Estoniae

    Tsahkna, Margus, 1977-

    2005-01-01

    Autori sõnul on Res Publica petnud inimeste põhiväärtustele tuginevaid ootusi, Eesti riik kaugeneb kodanikust ja tema elulistest huvidest. Isamaaliit paneb ette asuda tegelike probleemide lahendamisele ning kutsub erakondi üles kaitsma rahvuslikke huve

  14. Pettumus Res Publicas algas kirikus antud vandest / Margus Tsahkna

    Index Scriptorium Estoniae

    Tsahkna, Margus, 1977-

    2005-01-01

    Autori sõnul on Res Publica petnud inimeste põhiväärtustele tuginevaid ootusi, Eesti riik kaugeneb kodanikust ja tema elulistest huvidest. Isamaaliit paneb ette asuda tegelike probleemide lahendamisele ning kutsub erakondi üles kaitsma rahvuslikke huve

  15. Resúmenes Presentaciones de Pósteres

    Directory of Open Access Journals (Sweden)

    Editor Gabriel Vargas Arana

    2015-12-01

    Full Text Available En este artículo se pueden encontrar los resúmenes de las presentaciones de pósteres del III Congreso Latinoamericano de Plantas Medicinales, desarrollado del 12 al 14 de agosto de 2015 en la ciudad de Iquitos, Perú.

  16. In Medias Res : Peter Sloterdijk's Spherological Poetics of Being

    NARCIS (Netherlands)

    Schinkel, Willem; Noordegraaf-Eelens, Liesbeth

    2011-01-01

    In Medias Res brengt een gezelschap van gerenommeerde auteurs samen om het oeuvre van Peter Sloterdijk toe te lichten, kritisch te bezien en toe te passen. Sloterdijk is in recente jaren uitgegroeid tot een van de meest toonaangevende Duitse denkers. Zijn werk, dat uitermate relevant is voor filosof

  17. Res Publica poeetika / Kalev Kesküla

    Index Scriptorium Estoniae

    Kesküla, Kalev, 1959-2010

    2002-01-01

    Ilmar Laabani propagandaluuletusest "Võidupüha õhtulaul" (ilmus Manivald Mõõgaste pseudonüümi all 1939. või 1940. a. ajakirjas Eesti Noorus). Res Publica vastvalitud esimees Juhan Parts tsiteeris seda oma programmkõnes 24. aug. 2002 Viljandis

  18. Reinsalu : Res Publica lisab kiirust / Urmas Reinsalu ; interv. Lauri Tankler

    Index Scriptorium Estoniae

    Reinsalu, Urmas, 1975-

    2004-01-01

    Ilmunud ka: Võta Võim : na russkom jazõke, 28. apr. 2004, lk. 4. Res Publica esikandidaat Urmas Reinsalu erakonna valimiskampaania eesmärkidest, võimalustest nende eesmärkide saavutamiseks ja erakonna valimisprogrammi ning kandidaatide eelistest konkurentide ees

  19. Nursing home resident outcomes from the Res-Care intervention.

    Science.gov (United States)

    Resnick, Barbara; Gruber-Baldini, Ann L; Zimmerman, Sheryl; Galik, Elizabeth; Pretzer-Aboff, Ingrid; Russ, Karin; Hebel, J Richard

    2009-07-01

    To test the effectiveness of a restorative care (Res-Care) intervention on function, muscle strength, contractures, and quality of life of nursing home residents, with secondary aims focused on strengthening self-efficacy and outcome expectations. A randomized controlled repeated-measure design was used, and generalized estimating equations were used to evaluate status at baseline and 4 and 12 months after initiation of the Res-Care intervention. Twelve nursing homes in Maryland. Four hundred eighty-seven residents consented and were eligible: 256 from treatment sites and 231 from control sites. The majority were female (389, 80.1%) and white (325, 66.8%); 85 (17.4%) were married and the remaining widowed, single, or divorced/separated. Mean age was 83.8 +/- 8.2, and mean Mini-Mental State Examination score was 20.4 +/- 5.3. Res-Care was a two-tiered self-efficacy-based intervention focused on motivating nursing assistants and residents to engage in functional and physical activities. Barthel Index, Tinetti Gait and Balance, grip strength, Dementia Quality-of-Life Scale, self-efficacy, and Outcome Expectations Scales for Function. Significant treatment-by-time interactions (PTinetti Mobility Score and its gait and balance subscores and for walking, bathing, and stair climbing. The findings provide some evidence for the utility and safety of a Res-Care intervention in terms of improving function in NH residents.

  20. Res Publica : Don Kihhot pobedil Karlsona / Jevgenija Garanzha

    Index Scriptorium Estoniae

    Garanža, Jevgenija, 1979-

    2005-01-01

    Res Publica esimeesteks kandideerinud Taavi Veskimägi ja Jaanus Rahumägi tutvustasid erakonna üldkogul oma programmi. Uus juht Taavi Veskimägi võttis partei üle 4 protsendilise reitinguga, põhimõtted kohalikeks valimisteks valmistumisel

  1. FIJI geothermal resource assessment and development programme

    Energy Technology Data Exchange (ETDEWEB)

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  2. Main aspects of geothermal energy in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hiriart, G.; Gutierrez-Negrin, L.C.A. [Comision Federal de Electridad, Morelia (Mexico)

    2003-12-01

    With an installed geothermal electric capacity of 853 MW{sub e}, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes. Cerro Prieto is the second largest field in the world, with 720 MW{sub e} and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MW{sub e}), Los Humeros (35 MW{sub e}) and Las Tres Virgenes (10 MW{sub e}) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 MW{sub e} each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total. (author)

  3. Geothermal activity helps life survive glacial cycles.

    Science.gov (United States)

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species.

  4. Geothermal energy in California: Status report

    Energy Technology Data Exchange (ETDEWEB)

    Citron, O.; Davis, C.; Fredrickson, C.; Granit, R.; Kerrisk, D.; Leibowitz, L.; Schulkin, B.; Wornack, J.

    1976-06-30

    The potential for electric energy from geothermal resources in California is currently estimated to be equivalent to the output from 14 to 21 large (1000 MW) central station power plants. In addition, since over 30 California cities are located near potential geothermal resources, the non-electric applications of geothermal heat (industrial, agriculture, space heating, etc.) could be enormous. Therefore, the full-scale utilization of geothermal resources would have a major impact upon the energy picture of the state. This report presents a summary of the existing status of geothermal energy development in the state of California as of the early part of 1976. The report provides data on the extent of the resource base of the state and the present outlook for its utilization. It identifies the existing local, state, and federal laws, rules and regulations governing geothermal energy development and the responsibilities of each of the regulatory agencies involved. It also presents the differences in the development requirements among several counties and between California and its neighboring states. Finally, it describes on-going and planned activities in resource assessment and exploration, utilization, and research and development. Separate abstracts are prepared for ERDA Energy Research Abstracts (ERA) for Sections II--VI and the three Appendixes.

  5. Tracer tests in geothermal resource management

    Directory of Open Access Journals (Sweden)

    Axelsson G.

    2013-05-01

    Full Text Available Geothermal reinjection involves injecting energy-depleted fluid back into geothermal systems, providing an effective mode of waste-water disposal as well as supplementary fluid recharge. Cooling of production boreholes is one of the main disadvantages associated with reinjection, however. Tracer testing is an important tool for reinjection studies because tracer tests actually have a predictive power since tracer transport is orders of magnitude faster than cold-front advancement around reinjection boreholes. A simple and efficient method of tracer test interpretation, assuming specific flow channels connecting reinjection and production boreholes, is available. It simulates tracer return profiles and estimates properties of the flow channels, which are consequently used for predicting the production borehole cooling. Numerous examples are available worldwide on the successful application of tracer tests in geothermal management, many involving the application of this interpretation technique. Tracer tests are also used for general subsurface hydrological studies in geothermal systems and for flow rate measurements in two-phase geothermal pipelines. The tracers most commonly used in geothermal applications are fluorescent dyes, chemical substances and radioactive isotopes. New temperature-resistant tracers have also been introduced and high-tech tracers are being considered.

  6. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  7. GEOTHERMAL HEAT PUMP GROUTING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.

    1998-04-01

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  8. Geothermal heat pump grouting materials

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.

    1998-08-01

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  9. Microbial life in geothermal waters

    Energy Technology Data Exchange (ETDEWEB)

    Sand, W. [Universitaet Hamburg (Germany). Mikrobiologie

    2003-12-01

    Geothermal waters usually contain many salts, often in varying concentrations. Some of these salts, especially if they are oxidizable or reducible, may be subject to microbial conversion and/or (bio)precipitation. Microorganisms can oxidize, sometimes even under anoxic (absence of oxygen) conditions, reduced sulfur compounds, iron (II) ions, and manganese (II) ions, to mention just a few of the most important. On the other hand, partially or fully oxidized compounds can be reduced by microorganisms, for example sulfur compounds, iron (III) ions, manganese (IV) ions, nitrogen oxides such as nitrite and nitrate, and, finally, bicarbonate and carbonate ions. If organic compounds are present, these may also be oxidized or reduced. A multitude of these microorganisms are able to perform such a metabolism under aerobic or anoxic conditions. All these (bio)processes allow bacteria to grow and proliferate. The consequences include biocorrosion and biodeterioration. The growth requirements and the biodeterioration mechanisms will be discussed in this review. (author)

  10. Environmental Assessment -- Hydrothermal Geothermal Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applications such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. Construction-related impacts would be relatively minor. Construction of the facility will require the distance of about 1.7 ha (4.1 acres). No further disturbance is anticipated, unless it becomes necessary to replace the seepage pond with an injection well, because the production well is in service and adjacent roads and transmission lines are adequate. Disruption of competing land uses will be minimal, and loss of wildlife habitat will be acceptable. Noise should not significantly affect wildlife and local residents; the most noise activities (well drilling and flow testing) have been completed. Water use during construction will not be large, and impacts on competing uses are unlikely. Socio-economic impacts will be small because the project will not employ a large number of local residents and few construction workers will need to find local housing.

  11. Geothermal resources of southern Idaho

    Science.gov (United States)

    Mabey, Don R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150?C. Water from many of these systems is valuable for direct heat applications, but is lower than the temperature of interest for commercial generation of electricity at the present time. Most of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. By far the largest hydrothermal system in Idaho is in the Bruneau-Grand View area of the western Snake River Plain with a calculated reservoir temperature of 107?C and an energy of 4.5? 10 20 joules. No evidence of higher temperature water associated with this system has been found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures has not been found. Large volumes of water at temperatures between 90? and 150?C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain. Areas that appear particularly promising for the occurrence of large high-temperature hydrothermal systems are: the area north of the Snake River Plain and west of the Idaho batholith, the Island Park area, segments of the margins of the eastern Snake River Plain, and the Blackfoot lava field.

  12. Geothermal exploration techniques: a case study. Final report. [Coso geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    Combs, J.

    1978-02-01

    The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

  13. Geothermal exploration techniques: a case study. Final report. [Coso geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    Combs, J.

    1978-02-01

    The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

  14. Geothermal research. Innovative geothermal probe field for an Art Nouveau villa; Geothermieforschung. Innovatives Erdwaermesondenfeld fuer Jugendstilvilla

    Energy Technology Data Exchange (ETDEWEB)

    Buechner, Ute; Dworrak, Matthias C. [FITR - Forschungsinstitut fuer Tief- und Rohrleitungsbau gemeinnuetzige GmbH, Weimar (Germany)

    2010-07-01

    The Weimarer Forschungsinstitut fuer Tief- und Rohrleitungsbau (FITR) is seated in a historical Art Nouveau Villa owned by the Max-Zoellner-Stiftung. The building was modernized exemplarily. It now has a bivalent heating system with a geothermal field. Modern measuring technology was implemented, and project findings of geothermal projects of the FITR were implemented.

  15. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  16. Electroluminescence from indirect band gap semiconductor ReS2

    Science.gov (United States)

    Gutiérrez-Lezama, Ignacio; Aditya Reddy, Bojja; Ubrig, Nicolas; Morpurgo, Alberto F.

    2016-12-01

    It has been recently claimed that bulk crystals of transition metal dichalcogenide (TMD) ReS2 are direct band gap semiconductors, which would make this material an ideal candidate, among all TMDs, for the realization of efficient opto-electronic devices. The situation is however unclear, because even more recently an indirect transition in the PL spectra of this material has been detected, whose energy is smaller than the supposed direct gap. To address this issue we exploit the properties of ionic liquid gated field-effect transistors (FETs) to investigate the gap structure of bulk ReS2. Using these devices, whose high quality is demonstrated by a record high electron FET mobility of 1100 cm2 V-1 s-1 at 4 K, we can induce hole transport at the surface of the material and determine quantitatively the smallest band gap present in the material, irrespective of its direct or indirect nature. The value of the band gap is found to be 1.41 eV, smaller than the 1.5 eV direct optical transition but in good agreement with the energy of the indirect optical transition, providing an independent confirmation that bulk ReS2 is an indirect band gap semiconductor. Nevertheless, contrary to the case of more commonly studied semiconducting TMDs (e.g., MoS2, WS2, etc) in their bulk form, we also find that ReS2 FETs fabricated on bulk crystals do exhibit electroluminescence when driven in the ambipolar injection regime, likely because the difference between direct and indirect gap is only 100 meV. We conclude that ReS2 does deserve more in-depth investigations in relation to possible opto-electronic applications.

  17. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  18. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  19. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Patten, Kim [Arizona Geological Survey

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  20. Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.M.; Kroll, P.; Nilo, B.

    1982-12-01

    The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

  1. Governance Obstacles to Geothermal Energy Development in Indonesia

    Directory of Open Access Journals (Sweden)

    Matthew S. Winters

    2015-01-01

    Full Text Available Despite having 40 per cent of the world’s potential for geothermal power production, Indonesia exploits less than five per cent of its own geothermal resources. We explore the reasons behind this lagging development of geothermal power and highlight four obstacles: (1 delays caused by the suboptimal decentralisation of permitting procedures to local governments that have few incentives to support geothermal exploitation; (2 rent-seeking behaviour originating in the point-source nature of geothermal resources; (3 the opacity of central government decision making; and (4 a historically deleterious national fuel subsidy policy that disincentivised geothermal investment. We situate our arguments against the existing literature and three shadow case studies from other Pacific countries that have substantial geothermal resources. We conclude by arguing for a more centralised geothermal governance structure.

  2. Geothermal Research Program of the US Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, W.A.; Guffanti, M.

    1981-01-01

    The beginning of the Geothermal Research Program, its organization, objectives, fiscal history, accomplishments, and present emphasis. The projects of the Geothermal Research Program are presented along with a list of references.

  3. Geothermal policy project. Quarterly report, August 1-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1979-11-01

    The NCSL geothermal policy project continued with initiating geothermal studies in new project states and furthering policy development in existing states. Activities of the project staff are reviewed. (MHR)

  4. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  5. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  6. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  7. Hydrogeologic and geothermal investigation of Pagosa Springs, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, M.J.

    1980-01-01

    The following topics are covered: geology; geophysical surveys; geothermal wells, springs, and heat flow; hydrology; drilling program, well testing, and mineralogical and petrographic studies of samples from geothermal wells. (MHR)

  8. Financing geothermal resource development in the Pacific Region states

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-15

    State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

  9. DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

  10. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  11. Federal Geothermal Program Plan for Fiscal Year 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-03-01

    This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This is a report of the Interagency Geothermal Coordinating Committee (IGCC). (DJE 2005)

  12. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Anna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  13. Geothermal Progress Monitor, report No. 13

    Science.gov (United States)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  14. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  15. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  16. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  17. Hydraulic design of geothermal probes; Hydraulische Auslegung von Erdwaermesondenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, Christoph; Zapp, Franz Josef [GEFGA mbH, Gesellschaft zur Entwicklung und Foerderung von Geothermen Anlagen, Limburg (Germany)

    2011-07-01

    Based on hydraulic considerations of geothermal probes of various designs and dimensions, the contribution under consideration reports on various influences on the heat transfer capacity of geothermal probes. The influence of laminar and turbulent pipe flow on the heat transfer capacity of geothermal probes is explained. Various parameters are considered such as the effect of various antifreezing compounds and the different types of construction of geothermal probes.

  18. CONSUMER POTENTIAL ANALYSIS OF FEASIBILITY CRITERIA OF GEOTHERMAL PROJECTS

    OpenAIRE

    Jenei, Tunde

    2012-01-01

    The University of Debrecen, Faculty of Engineering, has been conducting a research program in geothermal energy since 2008. This program enabled me to devise an analytical study of the monetary and non-monetary criteria of geothermal projects. The monetary criteria of a region or a location for geothermal energy production cover the investment costs of the surface installations and the cost of the drillings. Non-monetary criteria include the geological and geothermal evaluations of a reservoi...

  19. Geothermal Progress Monitor report No. 8. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

  20. Geothermal program overview: Fiscal years 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  1. Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  2. Advanced Geothermal Optical Transducer (AGOT)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full

  3. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  4. Stanford geothermal program. Final report, July 1990--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

  5. Project Independence. Final task force report: geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    1974-11-01

    This report contains the final technical analysis of the Project Independence Interagency Geothermal Task Force chaired by the National Science Foundation. The potential of geothermal energy, resources, fuel cycles, and the status of geothermal technology are outlined. Some constraints inhibiting rapid and widespread utilization and some Federal actions to remove utilization barriers are described. (MOW)

  6. Geothermal resources in Arizona: a bibliography. Circular 23

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S.S.

    1982-01-01

    All reports and maps generated by the Geothermal Project of the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the University of Arizona are listed. In order to provide a more comprehensive listing of geothermal papers from other sources have been included. There are 224 references in the bibliography. (MHR)

  7. Geothermal resources in Arizona: a bibliography. Circular 23

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S.S.

    1982-01-01

    This bibliography references all reports and maps generated by the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the Department of Chemical Engineering, University of Arizona. To provide a more comprehensive listing of geothermal energy in Arizona, all available geothermal papers from other sources have been included. A total of 224 references are presented. (MHR)

  8. Innovation versus monopoly: geothermal energy in the West. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.L.; Stover, D.F.; Nelson, P.A.; Lamont, W.J.

    1977-07-01

    The following subjects are covered: geothermal energy and its use, electric utilities and the climate for geothermal development, the raw fuels industry and geothermal energy, and government and energy. The role of large petroleum companies and large public utilities is emphasized. (MHR)

  9. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  10. Technology assessment of geothermal pumping equipment. final report, July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, K.E.; Malgieri, A.J.

    1978-09-01

    Twenty-eight separate interviews were conducted with DOE personnel, DOE contractors doing geothermal research, persons associated with geothermal installations, companies engaged in the drilling and completion of geothermal well, and pump manufactures. The reports of these interviews are presented and summarized and conclusions are drawn.

  11. Proceedings and findings of the geothermal commercialization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Dhillon, H.

    1979-04-01

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  12. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting ...

  13. Geothermal Program Overview: Fiscal Years 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-11-01

    Geothermal energy represents the largest U.S. energy resource base and already provides an important contribution to our nation's energy needs. This overview looks at the basic science behind the various geothermal technologies and provides information on DOE Geothermal Energy Program activities and accomplishments.

  14. 30 CFR 202.351 - Royalties on geothermal resources.

    Science.gov (United States)

    2010-07-01

    ... reasonable amount of commercially demineralized water necessary for power plant operations or otherwise used... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Royalties on geothermal resources. 202.351... MANAGEMENT ROYALTIES Geothermal Resources § 202.351 Royalties on geothermal resources. (a)(1) Royalties on...

  15. FY97 Geothermal R&D Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-09-01

    This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

  16. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  17. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  18. Review of geothermal energy resources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Alam Zaigham, Nayyer [Department of Geology, University of Karachi, Karachi 75270 (Pakistan); Alam Nayyar, Zeeshan [Department of Applied Physics, University of Karachi, Karachi 75270 (Pakistan); Hisamuddin, Noushaba [422 Wycliffe, Irvine, CA 92602 (United States)

    2009-01-15

    Pakistan, despite the enormous potential of its energy resources, remains energy deficient and has to rely heavily on imports of hydrocarbon products to satisfy hardly its needs. Moreover, a very large part of the rural areas does not have the electrification facilities because they are either too remote and/or too expensive to connect to the national grid. Pakistan has wide spectrum of high potential renewable energy sources, conventional and as well non-conventional. Many of them have not been adequately explored, exploited and developed. Geothermal energy is one of them. Pakistan can be benefited by harnessing the geothermal option of energy generation as substitute energy in areas where sources exist. Most of the high enthalpy geothermal resources of the world are within the seismic belts associated with zones of crustal weakness like the seismo-tectonic belt that passes through Pakistan having inherited a long geological history of geotectonic events. The present study of the geotectonic framework suggests that Pakistan should not be lacking in commercially exploitable sources of geothermal energy. This view is further strengthened by (a) the fairly extensive development of alteration zones and fumeroles in many regions of Pakistan, (b) the presence of a fairly large number of hot springs in different parts of the country, and (c) the indications of Quaternary volcanism associated with the Chagai arc extending into Iran and Afghanistan border areas. These manifestations of geothermal energy are found within three geotectonic or geothermal environments, i.e., (1) geo-pressurized systems related to basin subsidence, (2) seismo-tectonic or suture-related systems, and (3) systems related to Neogene-Quaternary volcanism. A few localities, scattered sporadically all over the country, have been studied to evaluate only some of the basic characteristic parameters of the geothermal prospects. The present review study the geothermal activities of varying intensity and

  19. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  20. Sisetülides Res Publica heitis liidu Keskerakonnaga kõrvale / Urmas Seaver

    Index Scriptorium Estoniae

    Seaver, Urmas, 1973-

    2005-01-01

    Res Publica juhatus otsustas toetada senise koalitsiooni jätkamist Tallinnas. Res Publica ja Reformierakonna täiendatud koalitsioonileppest. Reformierakonna Tallinna piirkonna juhi Keit Pentuse hinnang võimutülile. Lisa: Võimuleppe lisa

  1. Res Publica presidendikandidaatide nimed selguvad neljapäevaks / Rauno Veri, Urmo Kübar

    Index Scriptorium Estoniae

    Veri, Rauno, 1978-

    2006-01-01

    Res Publica, Isamaaliit, Reformierakond, SDE ja Keskerakond otsivad ühist presidendikandidaati, ainsa parlamendierakonnana ei osale läbirääkimistel Rahvaliit. Reformierakonna, SDE presidendikandidaatidest; Res Publica naiskogu ja Väärikate Kogu ühisavaldusest

  2. Res Publica tähistab sünnipäeva konverentsiga / Lauri Tankler

    Index Scriptorium Estoniae

    Tankler, Lauri

    2003-01-01

    Ilmunud ka: Võta Võim : na russkom jazõke 3. dets. lk. 3. Res Publica saab 2-aastaseks, mille puhul korraldatakse konverents "Riik ja Res Publica". Vt. samas: Selle aasta veebruaris said kuldmärgid

  3. Res Publica kärbiks võimuorganite koosseise / Argo Ideon

    Index Scriptorium Estoniae

    Ideon, Argo, 1966-

    2002-01-01

    Res Publica taotleb Riigikogu kärpimist 61 liikmeni, lubab kahandada kohalike volikogude koosseise, Tallinna abilinnapeade arvu ja kaotada portfellita ministrite kohad. Vt. samas: Res Publica valimisnimekiri Tallinnas

  4. Res Publica : umbusaldamine võib lõpetada senise koalitsiooni / Villy Paimets

    Index Scriptorium Estoniae

    Paimets, Villy, 1972-

    2005-01-01

    Res Publica erakorraline volikogu avaldas toetust justiitsministrile ja andis peaministrile volitused lõpetada justiitsministri umbusaldamise korral senine koalitsioon ning alustada läbirääkimisi Isamaaliiduga. Lisa: Res Publica toetab Vaherit

  5. Res Publica asus Reformierakonda Tallinna võimuliidust tõrjuma / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2005-01-01

    Res Publica Tallinna piirkonna juhatuse liikme Siim Roode sõnul teeb Res Publica Keskerakonna Tallinna piirkonna juhatusele ettepaneku koalitsiooniläbirääkimiste alustamiseks. Lisa: Paltsu ettekäändeks Unicom

  6. Res Publica : umbusaldamine võib lõpetada senise koalitsiooni / Villy Paimets

    Index Scriptorium Estoniae

    Paimets, Villy, 1972-

    2005-01-01

    Res Publica erakorraline volikogu avaldas toetust justiitsministrile ja andis peaministrile volitused lõpetada justiitsministri umbusaldamise korral senine koalitsioon ning alustada läbirääkimisi Isamaaliiduga. Lisa: Res Publica toetab Vaherit

  7. Res Publica hakkab kaaluma Kohtla-Järve võimuliidust lahkumist / Erik Gamzejev

    Index Scriptorium Estoniae

    Gamzejev, Erik, 1967-

    2002-01-01

    Ilmunud ka: Severnoje Poberezhje 19. nov. lk. 1. Res Publica eestseisuse ettepanek Kohtla-Järve osakonnale lahkuda koalitsioonist. Osakonna juhatuse otsus esitada Hants Hint volikogu esimehe kandidaadiks. Res Publica liikmete käitumise arutelu aukohtus

  8. Res Publica andis kolmele poliitikule fiktiivse elukoha / Kärt Karpa

    Index Scriptorium Estoniae

    Karpa, Kärt, 1973-

    2002-01-01

    Väidetavalt lasi Res Publica enne kohalikke valimisi ühte Pirita eramajja sisse registreerida Jaanus Rahumäe ja veel kaks Res Publica liiget, et nad saaksid kandideerida Tallinna volikogusse ja Pirita halduskogusse

  9. Res Publica tähistab sünnipäeva konverentsiga / Lauri Tankler

    Index Scriptorium Estoniae

    Tankler, Lauri

    2003-01-01

    Ilmunud ka: Võta Võim : na russkom jazõke 3. dets. lk. 3. Res Publica saab 2-aastaseks, mille puhul korraldatakse konverents "Riik ja Res Publica". Vt. samas: Selle aasta veebruaris said kuldmärgid

  10. Sisetülides Res Publica heitis liidu Keskerakonnaga kõrvale / Urmas Seaver

    Index Scriptorium Estoniae

    Seaver, Urmas, 1973-

    2005-01-01

    Res Publica juhatus otsustas toetada senise koalitsiooni jätkamist Tallinnas. Res Publica ja Reformierakonna täiendatud koalitsioonileppest. Reformierakonna Tallinna piirkonna juhi Keit Pentuse hinnang võimutülile. Lisa: Võimuleppe lisa

  11. Res Publica hakkab kaaluma Kohtla-Järve võimuliidust lahkumist / Erik Gamzejev

    Index Scriptorium Estoniae

    Gamzejev, Erik, 1967-

    2002-01-01

    Ilmunud ka: Severnoje Poberezhje 19. nov. lk. 1. Res Publica eestseisuse ettepanek Kohtla-Järve osakonnale lahkuda koalitsioonist. Osakonna juhatuse otsus esitada Hants Hint volikogu esimehe kandidaadiks. Res Publica liikmete käitumise arutelu aukohtus

  12. Res Publica kärbiks võimuorganite koosseise / Argo Ideon

    Index Scriptorium Estoniae

    Ideon, Argo, 1966-

    2002-01-01

    Res Publica taotleb Riigikogu kärpimist 61 liikmeni, lubab kahandada kohalike volikogude koosseise, Tallinna abilinnapeade arvu ja kaotada portfellita ministrite kohad. Vt. samas: Res Publica valimisnimekiri Tallinnas

  13. Res Publica presidendikandidaatide nimed selguvad neljapäevaks / Rauno Veri, Urmo Kübar

    Index Scriptorium Estoniae

    Veri, Rauno, 1978-

    2006-01-01

    Res Publica, Isamaaliit, Reformierakond, SDE ja Keskerakond otsivad ühist presidendikandidaati, ainsa parlamendierakonnana ei osale läbirääkimistel Rahvaliit. Reformierakonna, SDE presidendikandidaatidest; Res Publica naiskogu ja Väärikate Kogu ühisavaldusest

  14. Res Publica asus Reformierakonda Tallinna võimuliidust tõrjuma / Mirko Ojakivi

    Index Scriptorium Estoniae

    Ojakivi, Mirko

    2005-01-01

    Res Publica Tallinna piirkonna juhatuse liikme Siim Roode sõnul teeb Res Publica Keskerakonna Tallinna piirkonna juhatusele ettepaneku koalitsiooniläbirääkimiste alustamiseks. Lisa: Paltsu ettekäändeks Unicom

  15. Res Publica andis kolmele poliitikule fiktiivse elukoha / Kärt Karpa

    Index Scriptorium Estoniae

    Karpa, Kärt, 1973-

    2002-01-01

    Väidetavalt lasi Res Publica enne kohalikke valimisi ühte Pirita eramajja sisse registreerida Jaanus Rahumäe ja veel kaks Res Publica liiget, et nad saaksid kandideerida Tallinna volikogusse ja Pirita halduskogusse

  16. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Energy Technology Data Exchange (ETDEWEB)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  17. Retrospective examination of geothermal environmental assessments

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

    1984-03-01

    Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

  18. Deep drilling for geothermal energy in Finland

    Science.gov (United States)

    Kukkonen, Ilmo

    2016-04-01

    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  19. Industrial utilization of geopressured geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Underhill, Gary K; Carlson, Ronald A.; Clendinning, William A.; Erdos, Jozsef; Gault, John; Hall, James W.; Jones, Robert L.; Michael, Herbert K.; Powell, Paul H.; Riemann, Carl F.; Rios-Castellon, Lorenzo; Shepherd, Burchard P.; Wilson, John S.

    1976-01-01

    Discussion of the industrial utilization of geopressured geothermal energy is currently limited by the limited knowledge of the resource's distribution. However, the resource assessment activity in the Bureau of Economic Geology, The University of Texas at Austin, has identified a number of fairway or potential resource zones. These zones are located in Kenedy County; in and about Corpus Christi and Nueces Bays in Nueces, San Patricio, and Aransas Counties; in the coastal zones of Matagorda County; and in a crescent-shaped zone parallel to the coastline in Brazoria and Galveston Counties. The Kenedy and Matagorda County zones are situated in rural areas with little or no industrial activity. The Corpus Christi and Brazoria-Galveston zones are in and adjacent to highly industrialized and urbanized districts. The rural zones will require the establishment of new industries for geothermal fluid utilization while the industrial-urban zones will require either new industry, expansion to existing industry, or modification to existing plant and process. Proposed industries for geothermal fluid utilization can be considered with respect to fitting the industry to the available fluids; this has been the usual approach. An alternate approach is to fit the abailable fluids to the proposed industry. In order to follow the alternate approach requires consideration of ways to upgrade the quality of existing geothermal fluids or geothermal-derived or -energized fluids.

  20. Geothermal direct heat applications program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.