WorldWideScience

Sample records for volcano research station

  1. Newport Research Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Newport Research Station is the Center's only ocean-port research facility. This station is located at Oregon State University's Hatfield Marine Science Center,...

  2. Mukilteo Research Station

    Data.gov (United States)

    Federal Laboratory Consortium — Research at the Mukilteo Research Station focuses on understanding the life cycle of marine species and the impacts of ecosystem stressors on anadromous and marine...

  3. Space Station Habitability Research

    Science.gov (United States)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  4. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes

    Science.gov (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.

    2010-05-01

    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  5. Volcano Popocatepetl, Mexico: ULF geomagnetic anomalies observed at Tlamacas station during March–July, 2005

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2007-01-01

    Full Text Available In this paper the first results of ULF (Ultra Low Frequency geomagnetic anomalies observed at Tlamacas station (Long. 261.37, Lat. 19.07 located at 4 km near the volcano Popocatepetl (active volcano, Long. 261.37, Lat. 19.02 for the period March–July, 2005 and their analysis are presented. The geomagnetic data were collected with a 3-axial fluxgate magnetometer designed at UCLA (University of California, Los Angeles, 1 Hz sampling rate frequency, GPS. Our analysis reveals some anomalies which are suspected to be generated by local volcanic origin: the EM background in the vicinity of the volcano is significantly noisier than in other reference stations; the sporadic strong noise-like geomagnetic activity observed in the H-component; locally generated geomagnetic pulsations (without preferred polarization are detected only at Tlamacas station.

  6. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  7. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  8. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  9. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  10. Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia

    Science.gov (United States)

    Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.

    2014-12-01

    Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.

  11. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  12. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  13. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  14. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    Science.gov (United States)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations

  15. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  16. The Sewer Research Station in Frejlev

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Hvitved-Jacobsen, T.

    This report for the 2000 activities at the sewer research station in Frejlev. Only few - if any - sewer monitoring stations like the one in Frejlev exist. Without no doubt the field data produced - especially the time series - in the course of time will serve as a unique basis for projects dealin...

  17. The Sewer Research Station in Frejlev

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Schaarup-Jensen, Kjeld

    This report for the 1999 activities at the sewer research station in Frejlev. Only few - if any - sewer monitoring stations like the one in Frejlev exist. Without no doubt the field data produced - especially the time series - in the course of time will serve as a unigue basis for projects dealin...

  18. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  19. Geophysical research on structure of partly eroded maar volcanoes: Miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Skácelová, Z.; Rapprich, V.; Valenta, Jan; Hartvich, Filip; Šrámek, J.; Radoň, M.; Gaždová, Renata; Nováková, Lucie; Kolínský, Petr; Pécskay, Z.

    2010-01-01

    Roč. 55, č. 4 (2010), s. 299-310 ISSN 1802-6222 R&D Projects: GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30460519 Keywords : maar–diatreme volcano * ground magnetometry * ground gravity measurements Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.026, year: 2010 www.jgeosci.org/content/jgeosci.072_2010_4_skacelova.pdf

  20. Southern Research Station Global Change Research Strategy 2011-2019

    Science.gov (United States)

    Kier Klepzig; Zoe Hoyle; Stevin Westcott; Emrys Treasure

    2012-01-01

    In keeping with the goals of the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), the Southern Research Station (SRS) provides the information and technology needed to develop best management practices for the forest lands of the Southern United States, where science-guided actions are needed to sustain ecosystem health,...

  1. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  2. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  3. Omics Research on the International Space Station

    Science.gov (United States)

    Love, John

    2015-01-01

    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  4. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  5. Nutrition Research: Basis for Station Requirements

    Science.gov (United States)

    Lane, Helen W.; Rice, Barbara; Smith, Scott M.

    2011-01-01

    Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.

  6. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  7. 2008 Science Accomplishments Report of the Pacific Northwest Research Station

    Science.gov (United States)

    Rhonda Mazza

    2009-01-01

    This report highlights significant research findings and accomplishments by scientists at the Pacific Northwest (PNW) Research Station during fiscal year 2008. The mission of the PNW Research Station is to generate and communicate scientific knowledge that helps people understand and make informed choices about people, natural resources, and the environment. The work...

  8. 2010 Science Accomplishments Report of the Pacific Northwest Research Station

    Science.gov (United States)

    Rhonda Mazza

    2010-01-01

    In 2010, station researchers provided land managers and policymakers with critical information related to ecological processes, environmental threats, forest management, and use of natural resources. The station also capitalized on opportunities to expand its research in these arenas. The 2009 American Recovery and Reinvestment Act was one such opportunity that has...

  9. 2014 Science Accomplishments Report of the Pacific Northwest Research Station

    Science.gov (United States)

    Rhonda Mazza

    2015-01-01

    Communicating the scientific knowledge generated by the Pacific Northwest Research Station is integral to our mission. The 2014 Science Accomplishments reports highlights the breadth of the station’s research, the relevance of our science findings, and the application of these findings. The photographs throughout the report showcase the region where we work and how...

  10. 2013 Science Accomplishments Report of the Pacific Northwest Research Station

    Science.gov (United States)

    Rhonda Mazza

    2014-01-01

    Communicating the scientific knowledge generated by the Pacific Northwest Research Station is integral to our mission. The 2013 Science Accomplishments reports highlights the breadth of the station’s research, the relevance of our science findings, and the application of these findings. The photographs throughout the report showcase the region where we work and how...

  11. Biological field stations: research legacies and sites for serendipity

    Science.gov (United States)

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  12. NREL Research Takes Off for International Space Station | News | NREL

    Science.gov (United States)

    hydrogen. Research has proven that nitrate starvation triggers C. vulgaris to go into lipid production mode NREL Research Takes Off for International Space Station NREL Research Takes Off for International the other, Chlorella vulgaris, will make lipids. NREL research dating back to the late 1970s opened

  13. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  14. Rocky Mountain Research Station invasive species visionary white paper

    Science.gov (United States)

    D. E. Pearson; M. Kim; J. Butler

    2011-01-01

    Invasive species represent one of the single greatest threats to natural ecosystems and the services they provide. Effectively addressing the invasive species problem requires management that is based on sound research. We provide an overview of recent and ongoing invasive species research conducted by Rocky Mountain Research Station scientists in the Intermountain...

  15. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  16. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  17. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    Science.gov (United States)

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  18. The TOMO-ETNA experiment: an imaging active campaign at Mt. Etna volcano. Context, main objectives, working-plans and involved research projects

    Directory of Open Access Journals (Sweden)

    Jesús M. Ibáñez

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS, air-gun shooting for Wide Angle Seismic refraction (WAS, Multi-Channel Seismic (MCS reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.

  19. Multidisciplinary research for the safe fruition of an active geosite: the Salse di Nirano mud volcanoes (Northern Apennines, Italy)

    Science.gov (United States)

    Coratza, Paola; Albarello, Dario; Cipriani, Anna; Cantucci, Barbara; Castaldini, Doriano; Conventi, Marzia; Dadomo, Andrea; De Nardo, Maria Teresa; Macini, Paolo; Martinelli, Giovanni; Mesini, Ezio; Papazzoni, Cesare Andrea; Quartieri, Simona; Ricci, Tullio; Santagata, Tommaso; Sciarra, Alessandra; Vezzalini, Giovanna

    2017-04-01

    Mud volcanoes are emissions of cold mud due to the ascent to the surface of salty and muddy waters mixed with gaseous (methane) and, in minor part, fluid hydrocarbons (petroleum veils) along faults and fractures. In the Northern Apennines mud volcanoes are closely linked to the active tectonic compression associated with thrusts of regional importance. They are mostly cone-shaped and show variable geometry and size, ranging from one to few metres, and are located in 19 sites in the northwestern part of the Apennines. Particularly noteworthy is the Nirano mud volcano field, located in the Fiorano Modenese district, which, with a surface area of approximately 75,000 m2, is one of the best developed and largest mud volcano field of the entire Italian territory and among the largest in Europe; it is thus protected as natural reserve (Salse di Nirano) since 1982. The Nirano mud volcanoes are found at the bottom of an elliptical depression, interpreted as a collapse-like structure (caldera) that may have developed in response to the deflation of a shallow mud chamber triggered by several ejections and evacuation of fluid sediments. There are several individual or multiple cones within the field of the mud volcanoes of Nirano, with a rather discontinuous activity; apparatuses become dormant or even extinct whereas new vents can appear in other spots. In the research here presented about 50 vents have been mapped and few of them appeared in May 2016. The mud volcanoes of the region have been known since a long time and have always aroused great interest due to their outstanding scenic value, and, in the past the mud volcano emissions have been used in many ways. Beside their cultural value, the mud volcanoes of the study area represent a tourist attractiveness as testified by the increasing number of visitors (e.g. about 70,000 visitors in 2015 in the Salse di Nirano Natural Reserve). Numerous initiatives, targeted at various potential users, have been developed in the

  20. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  1. Research on application of knowledge engineering to nuclear power stations

    International Nuclear Information System (INIS)

    Umeda, Takeo; Kiyohashi, Satoshi

    1990-01-01

    Recently, the research on the software and hardware regarding knowledge engineering has been advanced eagerly. Especially the applicability of expert systems is high. When expert systems are introduced into nuclear power stations, it is necessary to make the plan for introduction based on the detailed knowledge on the works in nuclear power stations, and to improve the system repeatedly by adopting the opinion and request of those in charge upon the trial use. Tohoku Electric Power Co. was able to develop the expert system of practically usable scale 'Supporting system for deciding fuel movement procedure'. The survey and analysis of the works in nuclear power stations, the selection of the system to be developed and so on are reported. In No. 1 plant of Onagawa Nuclear Power Station of BWR type, up to 1/3 of the fuel is replaced at the time of the regular inspection. Some fuel must be taken to outside for ensuring the working space. The works of deciding fuel movement procedure, the development of the system and its evaluation are described. (K.I.)

  2. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  3. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  4. Lessons learnt from Volcanoes' Night I-II-III - a Marie Curie Researchers' Night project series dedicated to geosciences

    Science.gov (United States)

    Cseko, Adrienn; Bodo, Balazs; Ortega Rodriguez, Ariadna

    2017-04-01

    European Researchers' Nights (ERNs) are a pan-European series of events funded by the European Commission, organised on the last Friday of every September since 2005. ERNs mobilise scientific, academic and research organisations with the aim of giving the public the opportunity to meet researchers in an informal setting. The overall objective of ERNs is to achieve better awareness among the general public concerning the importance of science in everyday life and to combat stereotypes about researchers. The longer-term strategic objective of ERNs is to encourage young people to embark on a scientific career. Volcanoes' Night I-II-III has been an ERN project series funded by the EC FP7 and H2020 programmes between 2012-2015 (EC contract No. 316558, 610050, 633310, www.nochedevolcanes.es). The concept of Volcanoes' Night was created by researchers from the Canary Islands, Spain, where both the researchers and the public live in the close vicinity of volcanoes. The objective of the project was to use volcanoes as a background against which the role of geoscientists could be explained to the public. The scope of Volcanoes' Night was exclusively dedicated to geoscience, and in this respect it stands out among all other ERN projects, which are always more general in scope. During its four years of EC funding, the geographical coverage of Volcanoes' Night expanded substantially from a single location in 2012 (Fuencaliente de La Palma, Spain) to a dozen locations in 2015, mobilising multiple scientific organisations, researchers, and public authorities for engagement with the public. The last EC-funded project, Volcanoes' Night III, which was organised in 2014 and 2015, engaged approximately 21,000 visitors through its outreach activities, which included experiments, science cafés, volcano movies, My Day presentations, excursions, science workshops and more. The impact of the project was carefully assessed via surveys and social studies during its lifetime, and an Impact

  5. International Research Results and Accomplishments From the International Space Station

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  6. The EVER-EST Virtual Research Environment for the European Volcano Supersites

    Science.gov (United States)

    Salvi, S.; Trasatti, E.; Rubbia, G.; Romaniello, V.; Marelli, F.

    2017-12-01

    EVER-EST (European Virtual Environment for Research - Earth Science Themes) is an European H2020 project (2015-2018) aimed at the creation of a Virtual Research Environment (VRE) for the Earth Sciences. The VRE is intended to enhance the ability to collaborate and share knowledge and experience among scientists. One of the innovations of the project is the exploitation of the "Research Object" concept (http://www.rohub.org). Research Objects encapsulate not only data and publications, but also algorithms, codes, results, and workflows that can be stored, shared and re-used. Four scientific communities are involved in the EVER-EST project: land monitoring, natural hazards, marine biology, and the GEO Geohazard Supersites community (http://www.earthobservations.org/gsnl.php). The latter is represented in the project by INGV and the University of Iceland, and has provided user requirements to tailor the VRE to the common needs of the worldwide Supersite communities. To develop and test the VRE we have defined user scenarios and created Research Objects embedding research activities and workflows on the Permanent Supersites Campi Flegrei, Mount Etna and Icelandic Volcanoes (http://vm1.everest.psnc.pl/supersites/). While these Supersites are test sites for the platform, during the last year of the project other Supersites may also be involved to demonstrate the added value of the collaborative environment in research activities aiming to support Disaster Risk Reduction. Using the VRE, scientists are able to collaborate with colleagues located in different parts of the world, in a simple and effective way. This includes being able to remotely access and share data, research results and ideas, to carry out training sessions and discussions, to compare different results and models, and to synthesize many different pieces of information in a single consensus product to be disseminated to end-users. In particular, a further need of the Supersite scientists, which can be

  7. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  8. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  9. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  10. The International Space Station Research Opportunities and Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  11. Research on the International Space Station - An Overview

    Science.gov (United States)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  12. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  13. Report on terrestrial biology research and logistics at Baia Terra Nova Station

    Directory of Open Access Journals (Sweden)

    Satoshi Imura

    1999-11-01

    Full Text Available From December 4,1998 to January 15,1999,the author stayed at Baia Terra Nova Station (Italy in Antarctica, as an exchange scientist. To compare the biodiversity between Syowa Station and the Baia Terra Nova Station area, many samples of mosses, lichens, algae and micro animals in the soil were collected, and the structure of moss vegetation was studied in various fields around the station. Some characteristic features of logistics at the station were also researched.

  14. Research on station management in subway operation safety

    Science.gov (United States)

    Li, Yiman

    2017-10-01

    The management of subway station is an important part of the safe operation of urban subway. In order to ensure the safety of subway operation, it is necessary to study the relevant factors that affect station management. In the protection of subway safety operations on the basis of improving the quality of service, to promote the sustained and healthy development of subway stations. This paper discusses the influencing factors of subway operation accident and station management, and analyzes the specific contents of station management security for subway operation, and develops effective suppression measures. It is desirable to improve the operational quality and safety factor for subway operations.

  15. Psychosocial Research on the International Space Station: Special Privacy Considerations

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Ritsher, J.; Grund, E.; Weiss, D.; Gushin, V.; Kozerenko, O.

    Conducting psychosocial research with astronauts and cosmonauts requires special privacy and confidentiality precautions due to the high profile nature of the subject population and to individual crewmember perception of the risks inherent in divulging sensitive psychological information. Sampling from this small population necessitates subject protections above and beyond standard scientific human subject protocols. Many of these protections have relevance for psychosocial research on the International Space Station. In our previous study of psychosocial issues involving crewmembers on the Mir space station, special precautions were taken during each phase of the missions. These were implemented in order to gain the trust necessary to ameliorate the perceived risks of divulging potentially sensitive psychological information and to encourage candid responses. Pre-flight, a standard confidentiality agreement was provided along with a special layman's summary indicating that only group-level data would be presented, and subjects chose their own ID codes known only to themselves. In-flight, special procedures and technologies (such as encryption) were employed to protect the data during the collection. Post-flight, an analytic strategy was chosen to further mask subject identifiers, and draft manuscripts were reviewed by the astronaut office prior to publication. All of the eligible five astronauts and eight cosmonauts who flew joint US/Russian missions on the Mir were successfully recruited to participate, and their data completion rate was 76%. Descriptive analyses of the data indicated that there was sufficient variability in all of the measures to indicate that thoughtful, discriminating responses were being provided (e.g., the full range of response options was used in 63 of the 65 items of the Profile of Mood States measure, and both true and false response options were used in all 126 items of the Group Environment and the Work Environment measures). This

  16. Habitability research priorities for the International Space Station and beyond.

    Science.gov (United States)

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  17. Translational Cellular Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a

  18. Rodent Research on the International Space Station - A Look Forward

    Science.gov (United States)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  19. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  20. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  1. Was Einstein wrong? Space station research may find out

    CERN Multimedia

    2002-01-01

    Experiments using ultra-precise clocks on the International Space Station will attempt to check if Einstein's Special Theory of Relativity is correct. Future experiments may also yield evidence of string theory (1 page).

  2. About soil cover heterogeneity of agricultural research stations' experimental fields

    Science.gov (United States)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  3. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  4. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Johnston, David M.; Paton, Douglas; Christianson, Amy; Becker, Julia; Keys, Harry

    2008-05-01

    PurposeThis paper examines the unique challenges to volcanic risk management associated with having a ski area on an active volcano. Using a series of simulated eruption/lahar events at Ruapehu volcano, New Zealand, as a context, a model of risk management that integrates warning system design and technology, risk perceptions and the human response is explored. Principal resultsDespite increases in the observed audibility and comprehension of the warning message, recall of public education content, and people's awareness of volcanic risk, a persistent minority of the public continued to demonstrate only moderate awareness of the correct actions to take during a warning and failed to respond effectively. A relationship between level of staff competence and correct public response allowed the level of public response to be used to identify residual risk and additional staff training needs. The quality of staff awareness, action and decision-making has emerged as a critical factor, from detailed staff and public interviews and from exercise observations. Staff actions are especially important for mobilising correct public response at Ruapehu ski areas due to the transient nature of the visitor population. Introduction of education material and staff training strategies that included the development of emergency decision-making competencies improved knowledge of correct actions, and increased the proportion of people moving out of harm's way during blind tests. Major conclusionsWarning effectiveness is a function of more than good hazard knowledge and the generation and notification of an early warning message. For warning systems to be effective, these factors must be complemented by accurate knowledge of risk and risk management actions. By combining the Ruapehu findings with those of other warning system studies in New Zealand, and internationally, a practical five-step model for effective early warning systems is discussed. These steps must be based upon sound and

  5. Anatomy of a volcano

    NARCIS (Netherlands)

    Hooper, A.; Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “We

  6. 100 years of selection of sugar beet at the Ivanivska research-selection station.

    Directory of Open Access Journals (Sweden)

    А. С. Лейбович

    2009-10-01

    Full Text Available In given article the historical way of development of selection of sugar beet at the Ivanivska research-selection station is opened. For 100 years of selection work at station by scientific employees are created and introduced into manufacture over 20 grades of sugar beet.

  7. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  8. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    planned to create fully equipped complex facility possible to perform various experiments on the intensive neutron beam. Epithermal neutron beam enables development across the full spectrum of materials research for example shielding concrete tests or electronic devices construction improvement. Due to recent reports on the construction of the accelerator for the Boron Neutron Capture Therapy (BNCT) it has the opportunity to become useful and successful method in the fight against brain and other types of cancers not treated with well known medical methods. In Europe there is no such epithermal neutron source which could be used throughout the year for training and research for scientist working on BNCT what makes the stand unique in Europe. Also our research group which specializes in mixed radiation dosimetry around nuclear and medical facilities would be able to carry out research on new detectors and methods of measurements for radiological protection and in-beam (therapeutic) dosimetry. Another group of scientists from National Centre for Nuclear Research, where MARIA research reactor is located, is involved in research of gamma detector systems. There is an idea to develop Prompt-gamma Single Photon Emission Computed Tomography (Pg- SPECT). This method could be used as imaging system for compounds emitting gamma rays after nuclear reaction with thermal neutrons e.g. for boron concentration in BNCT. Inside the room, where H2 channel is located, there is another horizontal channel - H1 which is also unused. Simultaneously with the construction of the H2 stand it will be possible to create special pneumatic horizontal mail inside the H1 channel for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. It might expand the scope of research at the planned neutron station. Secondly it is planned to equip both stands with moveable positioning system, video system and facilities to perform animal experiments (anaesthesia, vital

  9. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    Science.gov (United States)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  10. AFSC/ABL: Little Port Walter Marine Research Station Supply Run Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In November, 2006, Oceanographic observations were initiated during the resupply cruises to the Little Port Walter Research Station on lower Baranof Island,...

  11. NASA/FAA North Texas Research Station Overview

    Science.gov (United States)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  12. Impacts and societal benefits of research activities at Summit Station, Greenland

    Science.gov (United States)

    Hawley, R. L.; Burkhart, J. F.; Courville, Z.; Dibb, J. E.; Koenig, L.; Vaughn, B. H.

    2017-12-01

    Summit Station began as the site for the Greenland Ice Sheet Project 2 ice core in 1989. Since then, it has hosted both summer campaign science, and since 1997, year-round observations of atmospheric and cryospheric processes. The station has been continuously occupied since 2003. While most of the science activities at the station are supported by the US NSF Office of Polar Programs, the station also hosts many interagency and international investigations in physical glaciology, atmospheric chemistry, satellite validation, astrophysics and other disciplines. Summit is the only high elevation observatory north of the Arctic circle that can provide clean air or snow sites. The station is part of the INTER-ACT consortium of Arctic research stations with the main objective to identify, understand, predict and respond to diverse environmental changes, and part of the International Arctic Systems for Observing the Atmosphere (IASOA) that coordinates Arctic research activities and provides a networked, observations-based view of the Arctic. The Summit Station Science Summit, sponsored by NSF, assembled a multidisciplinary group of scientists to review Summit Station science, define the leading research questions for Summit, and make community-based recommendations for future science goals and governance for Summit. The impact of several on-going observation records was summarized in the report "Sustaining the Science Impact of Summit Station, Greenland," including the use of station data in weather forecasts and climate models. Observations made at the station as part of long-term, year-round research or during shorter summer-only campaign seasons contribute to several of the identified Social Benefit Areas (SBAs) outlined in the International Arctic Observations Assessment Framework published by the IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks as an outcome of the 2016 Arctic Science Ministerial. The SBAs supported by research

  13. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  14. Joint research for innovative turbo machines in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, Alexander [MAN Diesel und Turbo SE, Oberhausen (Germany). AG Turbo; Jeschke, Peter [RWTH, Aachen (Germany). AG Turbo; Goldschmidt, Dirk [SIEMENS AG, Muelheim a.d. Ruhr (Germany). AG Turbo

    2013-04-01

    AG Turbo, established about 25 years ago, is a platform where pre-competitive, application-oriented turbo machinery research in Germany is agreed and coordinated. Focus of the research is on turbo machines which are responsible for energy conversion in conventional fossil-fired or combined cycle power plants (CCGT), as well as compressor trains for capturing and transporting the greenhouse gas CO{sub 2}. At all stages of the technical process - from gas compression through combustion in gas turbine combustors to expansion in the turbine - innovations are needed to actually meet the targets for efficiency, reliability, as well as protection of the climate and environment. Research results achieved will be presented using selected examples and an outlook at future activities will be given.

  15. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  16. A solar observing station for education and research in Peru

    Science.gov (United States)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  17. Rocky Mountain Research Station 2008-2012 National Fire Plan Investments

    Science.gov (United States)

    Erika Gallegos

    2013-01-01

    This report highlights selected accomplishments by the USDA Forest Service Rocky Mountain Research Station's Wildland Fire and Fuels Research & Development projects in support of the National Fire Plan from 2008 through 2012. These projects are examples of the broad range of knowledge and tools developed by National Fire Plan funding beginning in 2008.

  18. Research on Application of Automatic Weather Station Based on Internet of Things

    Science.gov (United States)

    Jianyun, Chen; Yunfan, Sun; Chunyan, Lin

    2017-12-01

    In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.

  19. Research on comprehensive decision-making of PV power station connecting system

    Science.gov (United States)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  20. Antarctica's Princess Elisabeth research station setting new standards in renewable energy design

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The first zero emission research platform that was recently inaugurated in Antarctica. The Princess Elisabeth research station, which is operated by the International Polar Foundation (IPF), is the only polar base to operate entirely on renewable energy. It was commissioned by the Belgian government to better understand the mechanism of climate change. The research station sets new standards in advanced design methodology. It demonstrates that the techniques and technology being used in extreme conditions could be a model for both commercial and domestic applications in more temperate areas around the world. Renewable energy sources are used along with passive housing techniques, optimization of energy consumption and best waste management practices. Solar energy provides about 30 per cent of the station's electricity supply through PV solar panels. Solar energy also provides hot water through solar thermal panels. Newly developed vacuum tube thermal panels reduce conducted heat loss and convert 70 per cent of the solar energy into useable thermal energy. The station's water treatment unit will recycle 100 per cent of its water and reuse 75 per cent of it using technology developed for future spaceships. After purification and neutralization, the recycled water is allocated to a second use for showers, toilets and washing machines. The research station uses passive building techniques. Its insulation, shape, orientation and window disposition allow comfortable ambient temperature to be maintained inside the building with little energy input. Wind power is responsible for about 70 per cent of the station's total electricity requirement. This is provided by 9 wind turbines that are designed to withstand the harsh conditions in Antarctica. This article also described the advanced power management system at the station, with particular reference to its SCADA human interface, the three-phase AC, the battery grid, evacuation of surplus energy and wiring system. 4 figs

  1. Antarctica's Princess Elisabeth research station setting new standards in renewable energy design

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-07-15

    The first zero emission research platform that was recently inaugurated in Antarctica. The Princess Elisabeth research station, which is operated by the International Polar Foundation (IPF), is the only polar base to operate entirely on renewable energy. It was commissioned by the Belgian government to better understand the mechanism of climate change. The research station sets new standards in advanced design methodology. It demonstrates that the techniques and technology being used in extreme conditions could be a model for both commercial and domestic applications in more temperate areas around the world. Renewable energy sources are used along with passive housing techniques, optimization of energy consumption and best waste management practices. Solar energy provides about 30 per cent of the station's electricity supply through PV solar panels. Solar energy also provides hot water through solar thermal panels. Newly developed vacuum tube thermal panels reduce conducted heat loss and convert 70 per cent of the solar energy into useable thermal energy. The station's water treatment unit will recycle 100 per cent of its water and reuse 75 per cent of it using technology developed for future spaceships. After purification and neutralization, the recycled water is allocated to a second use for showers, toilets and washing machines. The research station uses passive building techniques. Its insulation, shape, orientation and window disposition allow comfortable ambient temperature to be maintained inside the building with little energy input. Wind power is responsible for about 70 per cent of the station's total electricity requirement. This is provided by 9 wind turbines that are designed to withstand the harsh conditions in Antarctica. This article also described the advanced power management system at the station, with particular reference to its SCADA human interface, the three-phase AC, the battery grid, evacuation of surplus energy and wiring

  2. Fire social science research from the Pacific Southwest research station: studies supported by national fire plan funds

    Science.gov (United States)

    Deborah J. Chavez; James D. Absher; Patricia L. Winter

    2008-01-01

    Fire events often have a large impact on recreation and tourism, yet these issues had not been addressed from a social science perspective. To address his, the Wildland Recreation and Urban Cultures Research Work Unit (RWU) of the Pacific Southwest Research Station acquired funding through the National Fire Plan within the community assistance topic area. The three...

  3. Transit Station Congestion Index Research Based on Pedestrian Simulation and Gray Clustering Evaluation

    Directory of Open Access Journals (Sweden)

    Shu-wei Wang

    2013-01-01

    Full Text Available A congestion phenomenon in a transit station could lead to low transfer efficiency as well as a hidden danger. Effective management of congestion phenomenon shall help to reduce the efficiency decline and danger risk. However, due to the difficulty in acquiring microcosmic pedestrian density, existing researches lack quantitative indicators to reflect congestion degree. This paper aims to solve this problem. Firstly, platform, stair, transfer tunnel, auto fare collection (AFC machine, and security check machine were chosen as key traffic facilities through large amounts of field investigation. Key facilities could be used to reflect the passenger density of a whole station. Secondly, the pedestrian density change law of each key traffic facility was analyzed using pedestrian simulation, and the load degree calculating method of each facility was defined, respectively, afterwards. Taking pedestrian density as basic data and gray clustering evaluation as algorithm, an index called Transit Station Congestion Index (TSCI was constructed to reflect the congestion degree of transit stations. Finally, an evaluation demonstration was carried out with five typical transit transfer stations in Beijing, and the evaluation results show that TSCI can objectively reflect the congestion degree of transit stations.

  4. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    International Nuclear Information System (INIS)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  5. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  6. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  7. The space station window observational research facility; a high altitude imaging laboratory

    International Nuclear Information System (INIS)

    Runco, Susan K.; Eppler, Dean B.; Scott, Karen P.

    1999-01-01

    Earth Science will be one of the major research areas to be conducted on the International Space Station. The facilities from which this research will be accomplished are currently being constructed and will be described in this paper. By April 1999, the International Space Station nadir viewing research window fabrication will be completed and ready for installation. The window will provide a 20 inch (51 cm) diameter clear aperture. The three fused silica panes, which make up the window are fabricated such that the total peak-to-valley wavefront error in transmission through the three panes over any six inch diameter aperture does not exceed λ/7 where the reference wavelength is 632.8 nm. The window will have over 90% transmission between about 400 and 750, above 50% transmission between about 310 nm and 1375 nm and 40% transmission between 1386 nm and 2000 nm. The Window Operational Research Facility (WORF) is designed to accommodate payloads using this research window. The WORF will provide access to the International Space Station utilities such as data links, temperature cooling loops and power. Emphasis has been placed on the factors which will make this facility an optimum platform for conducting Earth science research

  8. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  9. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  10. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  11. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  12. Meteorological observations at Syowa Station, Antarctica, 2009 by the 50th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Juhei Sugaya

    2014-07-01

    Full Text Available This report describes the results of meteorological observations carried out by the Meteorological Observation Team of the 50th Japanese Antarctic Research Expedition (JARE-50 at Syowa Station from February 2009 to January 2010. The observation methods, instruments, and statistical methods used by JARE-50 were similar to those used by JARE-49.  The most notable results are as follows.  1 Class-A blizzards, the heaviest storm class, were recorded 13 times. This frequency is the same as in 1978, which was the highest on record. A total of 29 blizzards (of various classes occurred in 2009, which is close to normal.  2 The maximum sustained wind speed of 47.4 m/s was recorded on 21 February 2009.  3 Tropospheric temperatures for May-July over Syowa Station were higher than normal, but temperatures in the lower stratosphere for August-October were lower than normal.  4 Total ozone over Syowa Station was less than 220 m atm-cm between the middle of August and the end of October. The minimum value in 2009 was 135 m atm-cm. Total ozone increased rapidly in November 2009 when the ozone-hole area decreased around Syowa Station.

  13. Meteorological observations at Syowa Station, Antarctica, 2008 by the 49th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Hideshi Yoshimi

    2013-07-01

    Full Text Available This report describes the result of meteorological observations at Syowa Station by the Meteorological Observation Team of the 49th Japanese Antarctic Research Expedition (JARE-49 during the period 1 February 2008 to 27 January 2009. The observation methods, instruments, and statistical methods used by the JARE-49 team are nearly the same as those used by the JARE-48 observation team. Remarkable weather phenomena observed during the period of JARE-49 are as follows. 1 On 1 September 2008, the record minimum temperature for September was observed in the upper atmosphere (pressure greater than 175 hPa. 2 The monthly mean temperature at Syowa Station during October 2008 was -17.5°C; this is the lowest monthly mean October temperature recorded at Syowa Station. 3 The total ozone over Syowa Station was less than or equal to 220 m atm-cm during the period from late August to late November, and was close to minimum levels during the period from mid-September to mid-October. The lowest total ozone in 2008, recorded on 16 October 2008, was 140 m atm-cm.

  14. Characterization and evaluation of five jaboticaba accessions at the subtropical horticulture research station in Miami, Florida

    Science.gov (United States)

    Fruit of five Jaboticaba (Myrciaria caulifloria) cultivars ‘MC-05-06’, ‘MC-05-14’, ‘MC-05-12’, ‘MC-06-15,’ and ‘MC-06-14’ were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clona...

  15. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  16. In-space research, technology and engineering experiments and Space Station

    Science.gov (United States)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  17. Design and development of a Space Station proximity operations research and development mockup

    Science.gov (United States)

    Haines, Richard F.

    1986-01-01

    Proximity operations (Prox-Ops) on-orbit refers to all activities taking place within one km of the Space Station. Designing a Prox-Ops control station calls for a comprehensive systems approach which takes into account structural constraints, orbital dynamics including approach/departure flight paths, myriad human factors and other topics. This paper describes a reconfigurable full-scale mock-up of a Prox-Ops station constructed at Ames incorporating an array of windows (with dynamic star field, target vehicle(s), and head-up symbology), head-down perspective display of manned and unmanned vehicles, voice- actuated 'electronic checklist', computer-generated voice system, expert system (to help diagnose subsystem malfunctions), and other displays and controls. The facility is used for demonstrations of selected Prox-Ops approach scenarios, human factors research (work-load assessment, determining external vision envelope requirements, head-down and head-up symbology design, voice synthesis and recognition research, etc.) and development of engineering design guidelines for future module interiors.

  18. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  19. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern

    Science.gov (United States)

    Heber, B.; Galsdorf, D.; Herbst, K.; Gieseler, J.; Labrenz, J.; Schwerdt, C.; Walter, M.; Benadé, G.; Fuchs, R.; Krüger, H.; Moraal, H.

    2015-08-01

    Neutron monitors (NMs) are ground-based devices to measure the variation of cosmic ray intensities, and although being reliable they have two disadvantages: their size as well as their weight. As consequence, [1] suggested the development of a portable, and thus much smaller and lighter, calibration neutron monitor that can be carried to any existing station around the world [see 2; 3]. But this mini neutron monitor, moreover, can also be installed as an autonomous station at any location that provides ’’office” conditions such as a) temperatures within the range of around 0 to less than 40 degree C as well as b) internet and c) power supply. However, the best location is when the material above the NM is minimized. In 2011 a mini Neutron Monitor was installed at the Neumayer III station in Antarctica as well as the German research vessel Polarstern, providing scientific data since January 2014 and October 2012, respectively. The Polarstern, which is in the possession of the Federal Republic of Germany represented by the Ministry of Education and Research and operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and managed by the shipping company Laeisz, was specially designed for working in the polar seas and is currently one of the most sophisticated polar research vessels worldwide. It spends almost 310 days a year at sea usually being located in the waters of Antarctica between November and March while spending the northern summer months in Arctic waters. Therefore, the vessel scans the rigidity range below the atmospheric threshold and above 10 GV twice a year. In contrast to spacecraft measurements NM data are influenced by variations of the geomagnetic field as well as the atmospheric conditions. Thus, in order to interpret the data a detailed knowledge of the instrument sensitivity with geomagnetic latitude (rigidity) and atmospheric pressure is essential. In order to determine the atmospheric response data from the

  20. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern

    International Nuclear Information System (INIS)

    Heber, B; Galsdorf, D; Herbst, K; Gieseler, J; Labrenz, J; Schwerdt, C; Walter, M; Benadé, G; Fuchs, R; Krüger, H; Moraal, H

    2015-01-01

    Neutron monitors (NMs) are ground-based devices to measure the variation of cosmic ray intensities, and although being reliable they have two disadvantages: their size as well as their weight. As consequence, [1] suggested the development of a portable, and thus much smaller and lighter, calibration neutron monitor that can be carried to any existing station around the world [see 2; 3]. But this mini neutron monitor, moreover, can also be installed as an autonomous station at any location that provides ’’office” conditions such as a) temperatures within the range of around 0 to less than 40 degree C as well as b) internet and c) power supply. However, the best location is when the material above the NM is minimized. In 2011 a mini Neutron Monitor was installed at the Neumayer III station in Antarctica as well as the German research vessel Polarstern, providing scientific data since January 2014 and October 2012, respectively. The Polarstern, which is in the possession of the Federal Republic of Germany represented by the Ministry of Education and Research and operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and managed by the shipping company Laeisz, was specially designed for working in the polar seas and is currently one of the most sophisticated polar research vessels worldwide. It spends almost 310 days a year at sea usually being located in the waters of Antarctica between November and March while spending the northern summer months in Arctic waters. Therefore, the vessel scans the rigidity range below the atmospheric threshold and above 10 GV twice a year. In contrast to spacecraft measurements NM data are influenced by variations of the geomagnetic field as well as the atmospheric conditions. Thus, in order to interpret the data a detailed knowledge of the instrument sensitivity with geomagnetic latitude (rigidity) and atmospheric pressure is essential. In order to determine the atmospheric response data from the

  1. International Research Results and Accomplishments From the International Space Station - A New Compilation

    Science.gov (United States)

    Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a

  2. Research on applicability of optical and digital technologies to nuclear power stations

    International Nuclear Information System (INIS)

    Emoto, Motonori

    1990-01-01

    Recently, the development of electronic technology represented by optical multiple transmission technology and digital technology is remarkable, and it is expected that this tendency advances further hereafter. The improvement of the reliability, operational performance and maintainability of nuclear power stations by applying these most advanced technologies to them has been desired. In this research, it was found that by the application of optical multiple transmission and digital technology to nuclear power stations, their operation by a small number of operators, the automation of work management and so on can be realized. Besides, it was found that as the major technologies of hereafter, the advance of artificial intelligence technology, rapid and large capacity information processing, the network of the computers of different types and others is necessary. Further, if these technologies are completed, the clarification of the requirement when those are actually applied to nuclear power stations is necessary, and it was found also that as the matters to be considered at that time, the extent of improvement of reliability, the reduction of risk at the time of the troubles of equipment and other fundamental matters must be clarified hereafter. (K.I.)

  3. Research on the Effects of Heterogeneity on Pedestrian Dynamics in Walkway of Subway Station

    Directory of Open Access Journals (Sweden)

    Haoling Wu

    2016-01-01

    Full Text Available The major objective of this paper is to study the effects of heterogeneity on pedestrian dynamics in walkway of subway station. We analyze the observed data of the selected facility and find that walking speed and occupied space were varied in the population. In reality, pedestrians are heterogeneous individuals with different attributes. However, the research on how the heterogeneity affects the pedestrian dynamics in facilities of subway stations is insufficient. The improved floor field model is therefore presented to explore the effects of heterogeneity. Pedestrians are classified into pedestrians walking in pairs, fast pedestrians, and ordinary pedestrians. For convenience, they are denoted as P-pedestrians, F-pedestrians, and O-pedestrians, respectively. The proposed model is validated under homogeneous and heterogeneous conditions. Three pedestrian compositions are simulated to analyze the effects of heterogeneity on pedestrian dynamics. The results show that P-pedestrians have negative effect and F-pedestrians have positive effect. All of the results in this paper indicate that the capacity of walkway is not a constant value. It changes with different component proportions of heterogeneous pedestrians. The heterogeneity of pedestrian has an important influence on the pedestrian dynamics in the walkway of the subway station.

  4. Improving GNSS time series for volcano monitoring: application to Canary Islands (Spain)

    Science.gov (United States)

    García-Cañada, Laura; Sevilla, Miguel J.; Pereda de Pablo, Jorge; Domínguez Cerdeña, Itahiza

    2017-04-01

    The number of permanent GNSS stations has increased significantly in recent years for different geodetic applications such as volcano monitoring, which require a high precision. Recently we have started to have coordinates time series long enough so that we can apply different analysis and filters that allow us to improve the GNSS coordinates results. Following this idea we have processed data from GNSS permanent stations used by the Spanish Instituto Geográfico Nacional (IGN) for volcano monitoring in Canary Islands to obtained time series by double difference processing method with Bernese v5.0 for the period 2007-2014. We have identified the characteristics of these time series and obtained models to estimate velocities with greater accuracy and more realistic uncertainties. In order to improve the results we have used two kinds of filters to improve the time series. The first, a spatial filter, has been computed using the series of residuals of all stations in the Canary Islands without an anomalous behaviour after removing a linear trend. This allows us to apply this filter to all sets of coordinates of the permanent stations reducing their dispersion. The second filter takes account of the temporal correlation in the coordinate time series for each station individually. A research about the evolution of the velocity depending on the series length has been carried out and it has demonstrated the need for using time series of at least four years. Therefore, in those stations with more than four years of data, we calculated the velocity and the characteristic parameters in order to have time series of residuals. This methodology has been applied to the GNSS data network in El Hierro (Canary Islands) during the 2011-2012 eruption and the subsequent magmatic intrusions (2012-2014). The results show that in the new series it is easier to detect anomalous behaviours in the coordinates, so they are most useful to detect crustal deformations in volcano monitoring.

  5. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  6. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station

    Science.gov (United States)

    Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)

    2001-01-01

    Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.

  7. Trend on research and development of maintenance robot for nuclear power station

    International Nuclear Information System (INIS)

    Hamada, Shoichi

    1990-01-01

    The expectations for nuclear power supply will increase more and more in future. In the field of maintenance, a robot was introduced in the early stages effecting the decrease of personal exposure, shortening of plantoutage, etc., which has significantly contributed to the stable power generation by nuclear power stations. Recently, a robot is expected to handle new applications for man-like maintenance work, too. The research and development for realization of robots having high-grade specified functions or multi-purpose is now being proceeded. This paper presents the recent situation of robots and the tendency of studies on advanced basic technology of robotics. (author)

  8. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  9. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  10. Data Collected in 1959 by English Research Vessels at Serial and Surface Hydrographic Stations (NODC Accession 6900852)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present volume contains data collected in 1959 by English research vessels at serial and surface hydrographic stations. The data list are preceded by a number of...

  11. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    Science.gov (United States)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  12. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    Science.gov (United States)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  13. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    Mateeva, Z.; Filipov, A.; Filipov, V.

    2008-01-01

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  14. Cacao genetic resources research at the USDA-ARS Tropical Agriculture Research Station, Mayaguez, Puerto Rico

    Science.gov (United States)

    The current USDA ARS Tropical Agriculture Research Station’s (TARS) cacao (Theobroma cacao L.) collection in Mayaguez, Puerto Rico, consists of 262 clonally propagated accessions. Each accession is represented by six individual trees grafted onto a common ‘Amelonado’ seedling rootstock and planted ...

  15. Reusable Rack Interface Controller Common Software for Various Science Research Racks on the International Space Station

    Science.gov (United States)

    Lu, George C.

    2003-01-01

    The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall

  16. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  17. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  18. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  19. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  20. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    Science.gov (United States)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  1. Thermohydraulic and safety analysis on China advanced research reactor under station blackout accident

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Su Guanghui; Jia Dounan; Liu Xingmin; Zhang Jianwei

    2007-01-01

    A thermohydraulic and safety analysis code-TSACC has been developed using Fortran90 language to evaluate the transient thermohydraulic behavior of the China advanced research reactor (CARR) under station blackout accident (SBA). For the development of TSACC, a series of corresponding mathematical and physical models were applied. Point reactor neutron kinetics model was adopted for solving the reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional correlations were supplied. The usual finite difference method was abandoned and the integral technique was adopted to evaluate the temperature field of the plate type fuel elements. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behavior of the CARR. The computational result of TSACC showed the adequacy of the safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of RELAP5/MOD3 and a good agreement was obtained. The adoption of modular programming techniques enables TASCC to be applied to other reactors by easily modifying the corresponding function modules

  2. Seminar | "Managing Italian research stations at the Poles" by Roberto Sparapani | 19 February

    CERN Document Server

    2015-01-01

    Polar areas are an ideal place to study climate change and other research fields. However, living and working at the Poles is a challenge for all the researchers involved. This presentation by Roberto Sparapani, who led the Italian research station Dirigibile Italia at Ny-Ålesund from 1997 to 2014, will take a short trip through the research and history of polar science - with a focus on the human factor, which makes a difference in a natural environment that leaves no room for improvisation.   The seminar will be held on 19 February at 4.30 p.m. in the Main Auditorium. It will be followed by a screening of Paola Catapano’s documentary for RAIWORLD “A Nord di Capo nord” (North of Cape North), in Italian with English subtitles. The documentary was given the "Artistic Direction Special Award" at the Rome Scientific Documentary Festival in December 2014. Ny-Ålesund is a small international research village located in the northwest ...

  3. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  4. Leaf Beetles (Coleoptera ; Chrysomelidae) in the Campus and Agricultural Research Stations of Chiang Mai University, Thailand

    OpenAIRE

    Umemura, S; Tayutivutukul, J; Nakamura, H

    2005-01-01

    Qualitative surveys of leaf beetles were conducted at 5 survey sites (Chiang Mai University, Mae Hia Staion, Chang Kien Station, Nong Hoi Station, Suburb of Chiang Mai City) in Chiang Mai, Thailand using sweeping and beating methods from October 19th to October 30th, 2003. A total of 24 species of 8 subfamilies was collected from five survey sites ; 11 species, 3 species, 2 species, 11 species, 4 species from Chiang Mai University, Mae Hia Station, Chang Kien Station, Nong Hoi Station, Suburb...

  5. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  6. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland

    Science.gov (United States)

    Ostrowski, Rafał; Schönhofer, Jan; Szmytkiewicz, Piotr

    2016-10-01

    The paper contains a brief description of selected investigations carried out in the south Baltic coastal zone, with the particular focus on the history and recent activities conducted at the Coastal Research Station in Lubiatowo (CRS Lubiatowo), Poland. These activities comprise field investigations of nearshore hydrodynamic, lithodynamic, and morphodynamic processes. The study area is a sandy multi-bar shore with a mild slope, much exposed to the impact of waves approaching from NW-NE sector. The shore has a dissipative character which means that the wave energy is subject to gradual dissipation in the nearshore zone and only a small part of this energy is reflected by the shore. Due to the big wind fetch in N-NNE direction, the location of CRS Lubiatowo is favourable to registration of the maximum values of parameters of hydrodynamic and morphodynamic processes which occur in the Baltic during extreme storms.

  7. Causes of Rabbit Mortality at Mankon Research Station, Cameroon (1983-1987

    Directory of Open Access Journals (Sweden)

    Nfi, AN.

    1996-01-01

    Full Text Available A study was carried out to determine the causes of mortality in rabbits raised at the Institute of Zootechnical and Veterinary Research Station (IRZV Mankon between 1983-1987. Three breeds of rabbits the Californian, the New Zealand White and their crosses with local rabbits were used in the study. Within the period under review, all dead animals were necropsied and faecal and gastro-intestinal tract samples were examined in the laboratory. It was shown that high mortalities in rabbits were due to snuffles, pneumonia, mucoid enteritis, coccidiosis, mange, enterotoxaemia and Tyzzer's disease. 3060 rabbits died of various diseases comprising 1591 (52 % kittens, 1220 (39.7 % fryers and 280 (9.2 % adults. Kitten mortality compared to fryer and adult was highest ail through the period of study.

  8. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    Science.gov (United States)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  9. Technology development activities for housing research animals on Space Station Freedom

    Science.gov (United States)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  10. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    Science.gov (United States)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours

  11. The Need and Opportunity for an Integrated Research, Development and Testing Station in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip

  12. A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station.

    NARCIS (Netherlands)

    Oliveira Lebre Direito, M.S.; Ehrenfreund, P.; Marees, A.; Staats, M.; Roling, W.F.M.

    2011-01-01

    Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold

  13. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    Science.gov (United States)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  14. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base.

    Science.gov (United States)

    Emnet, Philipp; Gaw, Sally; Northcott, Grant; Storey, Bryan; Graham, Lisa

    2015-01-01

    Pharmaceutical and personal care products (PPCPs) are a major source of micropollutants to the aquatic environment. Despite intense research on the fate and effects of PPCPs in temperate climates, there is a paucity of data on their presence in polar environments. This study reports the presence of selected PPCPs in sewage effluents from two Antarctic research stations, the adjacent coastal seawater, sea ice, and biota. Sewage effluents contained bisphenol-A, ethinylestradiol, estrone, methyl triclosan, octylphenol, triclosan, and three UV-filters. The maximum sewage effluent concentrations of 4-methyl-benzylidene camphor, benzophenone-1, estrone, ethinylestradiol, and octylphenol exceeded concentrations previously reported. Coastal seawaters contained bisphenol-A, octylphenol, triclosan, three paraben preservatives, and four UV-filters. The sea ice contained a similar range and concentration of PPCPs as the seawater. Benzophenone-3 (preferential accumulation in clams), estradiol, ethinylestradiol, methyl paraben (preferential accumulation in fish, with concentrations correlating negatively with fillet size), octylphenol, and propyl paraben were detected in biota samples. PPCPs were detected in seawater and biota at distances up to 25 km from the research stations WWTP discharges. Sewage effluent discharges and disposal of raw human waste through sea ice cracks have been identified as sources of PPCPs to Antarctic coastal environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  16. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  17. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    Science.gov (United States)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  18. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Science.gov (United States)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  19. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    Science.gov (United States)

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  20. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Directory of Open Access Journals (Sweden)

    Q. T. Nguyen

    2016-09-01

    Full Text Available This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS, northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3 might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10–30 nm in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those

  1. Impact of human activities on the concentration of indoor air particles in an antarctic research station

    Directory of Open Access Journals (Sweden)

    Erica Coelho Pagel

    Full Text Available Abstract One of the main characteristics of Antarctic buildings is the fact that they are designed mostly with a focus on energy efficiency. Although human activity is a major source of pollution, indoor air quality is not a matter of significant concern during building planning. This study examines the relationship between indoor activities in an Antarctic Research Station and the size distribution of particulate matter. Real-time particle size distribution data is used in conjunction with time-activity data. The activity number ratio is calculated using the mean number of particles found in each size range during each activity divided by the average number of particles found during a period characterized by the absence of human activities. Cooking, the use of cosmetics, waste incineration and exhaust from light vehicles were responsible for significant deterioration of indoor air related to the presence of fine and ultrafine particles. Cleaning, physical exercise and the movement of people were responsible for the emission of coarse particles. This article emphasizes the importance of post-occupancy evaluation of buildings, generating results relevant to the planning and layout of new buildings, especially regarding better indoor air quality.

  2. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  3. Chiliques volcano, Chile

    Science.gov (United States)

    2002-01-01

    .S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

  4. Socialization into science: An ethnographic study in a field research station

    Science.gov (United States)

    Calovini, Theresa Ann

    While the place of language in building the tasks and activities of the science classroom has received attention in the education literature, how students do the work of affiliation building through language remains poorly understood. This dissertation is based on ethnographic research in an apprenticeship learning situation at a biological field research station. I carried out this research with five undergraduates apprentices. I focus on how the language used in this apprenticeship situation positioned the apprentices with science. Issues of access and diversity in science education have motivated this research but this point can be missed because the five apprentices were all fairly successful in university science. They had all secured their job for the summer as paid research assistants. Yet, even with these successful students, science had a complicated place in their lives. I draw on Gee's (1999) notion of Discourse to understand this complexity. I focus on four Discourses--- Science, Knowing about the Animals, Senior Projects and RAships, and Relationships ---which were important in the apprentices' learning about and socialization with science. I try to understand the inter-workings of these four Discourses through a detailed analysis of three conversations involving one of the participants, Michelle. Michelle's use of narrative emerged as a linguistic resource which she used to explore dilemmas she experienced in the tensions between these four Discourses. Michelle was in many ways an ideal apprentice. She did her job well and she sought and received expert advice on her Senior project. Nonetheless, Michelle faced obstacles in her pursuit of a career in science and these obstacles related to language use and her use of narrative. I show how her use of narrative either facilitated or impeded her learning, depending on the context of the interaction. My analysis of Discourse points to important issues in language use by both students and teachers, with

  5. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  6. Experimental research of variable rotation speed ICE-based electric power station

    Directory of Open Access Journals (Sweden)

    Dar’enkov Andrey

    2017-01-01

    Full Text Available Developing variable rotation speed ICE-based stand-alone electric power stations which can supply distant regions and autonomous objects with electricity are of scientific interest due to the insufficient study. The relevance of developing such electric power stations is determined by their usage is to provide a significant fuel saving as well as increase ICE motor service life. The article describes the electric station of autonomous objects with improved fuel economy. The article describes multivariate characteristic. Multivariate characteristic shows the optimal frequency of rotation of the internal combustion engine. At this rotational speed there is the greatest fuel economy.

  7. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  8. Morphological and physio-chemical characterization of five Canistel accessions at the subtropical horticulture research station in Miami Florida

    Science.gov (United States)

    Fruit of five canistel cultivars, 'Fairchild','E11', 'Keisau', 'TREC#3' and 'TREC 3680' were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clonal accessions during July and August, ...

  9. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  10. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  11. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  12. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  13. Research on Layout Optimization of Urban Circle Solid Waste Transfer and Disposal Stations

    OpenAIRE

    Xuhui Li; Gangyan Li; Guowen Sun; Huiping Shi; Bao’an Yang

    2013-01-01

    Based on the Systematic Layout Planning theory and the analysis of transfer stations’ technological processes, a layout optimization model for solid waste transfer and disposal stations was made. The operating units’ layout of the solid waste transfer and disposal stations was simulated and optimized using the genetic algorithm, which could achieve reasonable technological processes, the smallest floor space and the lowest construction cost. The simulation result can also direct t...

  14. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador

    Science.gov (United States)

    Bracco, Francesco; Cerna, Marco; Vita Finzi, Paola; Vidari, Giovanni

    2016-01-01

    This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses. PMID:28074189

  15. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador

    Directory of Open Access Journals (Sweden)

    Jose Luis Ballesteros

    2016-01-01

    Full Text Available This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses.

  16. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador.

    Science.gov (United States)

    Ballesteros, Jose Luis; Bracco, Francesco; Cerna, Marco; Vita Finzi, Paola; Vidari, Giovanni

    2016-01-01

    This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses.

  17. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    Science.gov (United States)

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion.

  18. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy

  19. Evaluation of soil fertility status of Regional Agricultural Research Station, Tarahara, Sunsari, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-10-01

    Full Text Available Soil fertility evaluation of an area or region is most basic decision making tool for the sustainable soil nutrient management. In order to evaluate the soil fertility status of the Regional Agricultural Research Station (RARS, Tarahara, Susari, Nepal. Using soil sampling auger 81 soil samples (0-20 cm were collected based on the variability of land. The collected samples were analyzed for their texture, structure, colour, pH, OM, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status. The Arc-GIS 10.1 software was used for the preparation of soil fertility maps. The soil structure was granular to sub-angular blocky and varied between brown- dark grayish brown and dark gray in colour. The sand, silt and clay content were 30.32±1.4%, 48.92±0.89% and 20.76±0.92%, respectively and categorized as loam, clay loam, sandy loam, silt loam and silty clay loam in texture. The soil was moderately acidic in pH (5.98±0.08. The available sulphur (2.15±0.21 ppm, available boron (0.08±0.01 ppm and available zinc (0.35±0.03 ppm status were very low, whereas extractable magnesium (44.33±6.03 ppm showed low status. Similarly, organic matter (2.80±0.07%, total nitrogen (0.09±0.004 %, extractable calcium (1827.90±45.80 ppm and available copper (1.15±0.04 ppm were medium in content. The available phosphorus (39.77±5.27 ppm, extractable potassium (134.12±4.91 ppm, and available manganese (18.15±1.15 ppm exhibits high status, while available iron (244.7±19.70 ppm was very high. The fertilizer recommendation can be done based on determined soil fertility status to economize crop production. Furthermore, research farm should develop future research strategy accordance with the prepared soil data base.

  20. Using Distributed Operations to Enable Science Research on the International Space Station

    Science.gov (United States)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  1. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  2. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  3. Soil Fertility Assessment and Mapping of Regional Agricultural Research Station, Parwanipur, Bara, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2018-05-01

    Full Text Available Soil fertility assessment is a key for sustainable planning of a particular area. Thus, the present study was conducted to assess the soil fertility status of the Regional Agricultural Research Station, Parwanipur, Bara, Nepal. The study area is situated at the latitude 27°4’40.9’’N and longitude 84°56’9.85”E at 75masl altitude. Altogether 76 soil samples were collected based on the variability of land at 0-20 cm depth. The texture, pH, OM, total N, available P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn content in the samples were determined following standard analytical methods. Arc-GIS 10.1 was used for soil fertility mapping. The soil structure was angular blocky, and varied between grayish brown (10YR 5/2 and dark grayish brown (10YR 4/2 in color. The sand, silt and clay content were 24.41±0.59%, 54.57±0.44% and 21.03±0.32%, respectively and categorized as silt loam and loam in texture. The soil was moderately acidic in pH (5.67±0.09, low in organic matter (0.74±0.04% and available Sulphur (0.8± 0.1 ppm. The total nitrogen (0.06±0.001%, available boron (0.59±0.08ppm and available zinc (0.51±0.05ppm were low. Furthermore, available potassium (50.26±2.95ppm, available calcium (1674.6±46.3ppm and available magnesium (175.43± 8.93ppm were medium. Moreover, available copper (1.36±0.06 ppm and available manganese (16.52±1.12 ppm were high, while, available phosphorus (77.55±6.65 ppm and available iron (85.88±7.05 ppm were found high. It is expected that the present study would help to guide practices required for sustainable soil fertility management and developing future agricultural research strategy in the farm.

  4. Assessment of soil fertility status of Agriculture Research Station, Belachapi, Dhanusha, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2016-12-01

    Full Text Available Soil test-based fertility management is important for sustainable soil management. This study was carried out to determine the soil fertility status of the Agriculture Research Station, Belachapi, Dhanusha, Nepal. Using soil sampling auger 25 soil samples were collected randomly from a depth of 0-20 cm. Soil sampling points were identified using GPS device. Following standard methods adopted by Soil Science Division laboratory, Khumaltar, the collected soil samples were analyzed to find out their texture, pH, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu, Mn and organic matter status. The soil fertility status maps were made using Arc-GIS 10.1 software. The observed data revealed that soil was grayish brown in colour and sub-angular blocky in structure. The sand, silt and clay content were 36.03±3.66%, 50.32±2.52% and 25.42±2.25%, respectively and categorized as eight different classes of texture. The soil was acidic in pH (5.61±0.14. The available sulphur (0.73±0.09 ppm status was very low, whereas organic matter (1.34±0.07%, available boron (0.56±0.10 ppm, available zinc (0.54±0.22 ppm and available copper (0.30±0.01 ppm were low in status. The extractable potassium (95.52±13.37 ppm and extractable calcium (1264.8±92.80ppm exhibited medium in status. In addition, available phosphorus (33.25±6.97 ppm, available magnesium (223.20±23.65 ppm and available manganese (20.50±2.43 ppm were high in status. Furthermore, available iron (55.80±8.89 ppm status was very high. To improve the potentiality of crops (maize, rice, wheat etc. for studied area, future research strategy should be made based on its soil fertility status.

  5. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  6. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Science.gov (United States)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  7. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the

  8. Research at United States Antarctic stations during the International Magnetosphere Study

    International Nuclear Information System (INIS)

    Rosenberg, T.J.

    1982-01-01

    During the International Magnetospheric Study (IMS) the U.S. operated programs at McMurdo, Siple, South Pole, and Palmer stations and at the Soviet Vostok station. Details concerning measurement locations are considered, and program summaries are provided. The programs are related to the study of geomagnetic variations, magnetic pulsations in the polar cap, cosmic noise absorption, VLF radio waves, auroral photometry, the morphology and dynamics of visible auroral forms, cosmic ray intensity variations, and auroral infrasonic waves. One program is based on the utilization of VHF Doppler auroral radar

  9. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  10. the Preliminary Research Based on Seismic Signals Generated by Hutubi Transmitting Seismic Station with One Large-volume Airgun Array

    Science.gov (United States)

    Wang, Q.; Su, J.; Wei, Y.; Zhang, W.; Wang, H.; Wang, B.; Ji, Z.

    2017-12-01

    For studying the subsurface structure and its subtle changes, we built the Hutubi transmitting seismic station with one large-volume airgun array at one artificial water pool in the northern segment of Tianshan mountain, where earthquakes occurred frequently. The airgun array consists of six airguns with every airgun capacity of 2000in3, and the artificial water pool with the top diameter of 100m, bottom diameter of 20m and the depth of 18m.We started the regular excitation experiment with the large-volume airgun source every week since June, 2013. Using seismic signals geneated by the Hutubi airgun source, we made the preliminary research on the airgun source, waveform characteristics and the subsurface velocity changes in the northern Tiansh mountain. The results are as follows: The seismic signal exited by the airgun source is characteristic of low-frequency ,and the dominant frequency is in the range of 2 6Hz. The Hutubi transmitting seismic station can continuously generate long-distance detectable and highly repeatable signals, and the correlation coefficient of sigals is greater than 0.95; and the longest propagation distance arrives to 380km, in addition, the 5000-shot stacked sigal using the phase weighted stack technique can be identified in the station, which is about 1300km from the Hutubi transmitting seismic station. Hutubi large-volume airgun source is fitted to detect and monitor the regional-scale subsurface stress state. Applying correlation test method, we measured weak subsurface velocity changes in the northern Tianshan mountain, and found that the several stations, which are within 150km from the the Hutubi transmitting seismic station, appeared 0.1 0.2% relative velocity changes before the Hutubi MS6.2 earthquake on Dec.8, 2016.

  11. Biological Studies on a Live Volcano.

    Science.gov (United States)

    Zipko, Stephen J.

    1992-01-01

    Describes scientific research on an Earthwatch expedition to study Arenal, one of the world's most active volcanoes, in north central Costa Rica. The purpose of the two-week project was to monitor and understand the past and ongoing development of a small, geologically young, highly active stratovolcano in a tropical, high-rainfall environment.…

  12. Soil Fertility Assessment and Mapping of Agricultural Research Station, Jaubari, Illam, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-08-01

    Full Text Available Soil fertility evaluation is a prerequisite factor for sustainable planning of a particular region. Considering this, a study was conducted to determine the soil fertility status of the Agricultural Research Station, Jaubari, Illam, Nepal. In total, 78 soil samples were collected using soil sampling auger randomly from a depth of 0-20 cm. The texture, pH, OM, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status of the samples were analyzed in the laboratory of Soil Science Division, Khumaltar by following standard analytical methods. The soil fertility maps of the observed parameters were prepared through Arc-GIS 10.1 software. The observed data revealed that soil was brown (10YR 4/3, dark grayish brown (10YR 4/2, dark yellowish brown (10YR 4/4 and yellowish brown (10YR 5/6 in colour, and the structure was granular. Similarly, the sand, silt and clay content were 53.84±1.06%, 34.34±0.83% and 11.82±0.47%, respectively and were indicated as sandy loam and loam in texture. The soil was very acidic (pH 3.85±0.04, and very low in available boron (0.26±0.06mg/kg and available sulphur (0.59±0.15mg/kg. The available calcium (188.7±31.30mg/kg, available magnesium (50.98±5.0mg/kg and available manganese (5.16±0.90mg/kg were low. Likewise, available potassium (110.91±7.30mg/kg, available zinc (1.19±0.31mg/kg and available copper (0.95±0.05mg/kg content were medium. Similarly, organic matter (7.88±0.32%, total nitrogen (0.27±0.01% and available phosphorus (36.53±5.66mg/kg were high, and available iron (39.5±2.17 mg/kg was very high.  International Journal of EnvironmentVolume-6, Issue-3, Jun-Aug 2017, page: 46-70

  13. Down and Out at Pacaya Volcano: A Glimpse of Magma Storage and Diking as Interpreted From GPS Geodesy

    Science.gov (United States)

    Lechner, H. N.; Waite, G. P.; Wauthier, D. C.; Escobar-Wolf, R. P.; Lopez-Hetland, B.

    2017-12-01

    Geodetic data from an eight-station GPS network at Pacaya volcano Guatemala allows us to produce a simple analytical model of deformation sources associated with the 2010 eruption and the eruptive period in 2013-2014. Deformation signals for both eruptive time-periods indicate downward vertical and outward horizontal motion at several stations surrounding the volcano. The objective of this research was to better understand the magmatic plumbing system and sources of this deformation. Because this down-and-out displacement is difficult to explain with a single source, we chose a model that includes a combination of a dike and spherical source. Our modelling suggests that deformation is dominated the inflation of a shallow dike seated high within the volcanic edifice and deflation of a deeper, spherical source below the SW flank of the volcano. The source parameters for the dike feature are in good agreement with the observed orientation of recent vent emplacements on the edifice as well the horizontal displacement, while the parameters for a deeper spherical source accommodate the downward vertical motion. This study presents GPS observations at Pacaya dating back to 2009 and provides a glimpse of simple models of possible deformation sources.

  14. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  15. Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors

    Science.gov (United States)

    Ham, J. M.

    2013-12-01

    Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).

  16. Spying on volcanoes

    Science.gov (United States)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  17. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  18. 2004 Deformation of Okmok Volcano,Alaska, USA

    Science.gov (United States)

    Fournier, T. J.; Freymueller, J. T.

    2004-12-01

    Okmok Volcano is a basaltic shield volcano with a 10km diameter caldera located on Umnak Island in the Aleutian Arc, Alaska. Okmok has had frequent effusive eruptions, the latest in 1997. In 2002 the Alaska Volcano Observatory installed a seismic network and three continuous GPS stations. Two stations are located in the caldera and one is located at the base of the volcano at Fort Glenn. Because of instrumentation problems the GPS network was not fully operational until August 2003. A fourth GPS site, located on the south flank of the volcano, came online in September 2004. The three continuous GPS instruments captured a rapid inflation event at Okmok Volcano spanning 6 months from March to August 2004. The instruments give a wonderful time-series of the episode but poor spatial coverage. Modeling the deformation is accomplished by supplementing the continuous data with campaign surveys conducted in the summers of 2002, 2003 and 2004. Displacements between the 2002 and 2003 campaigns show a large inflation event between those time periods. The continuous and campaign data suggest that deformation at Okmok is characterized by short-lived rapid inflation interspersed with periods of moderate inflation. Velocities during the 2004 event reached a maximum of 31cm/yr in the vertical direction and 15cm/yr eastward at the station OKCD, compared with the pre-inflation velocities of 4cm/yr in the vertical and 2.5cm/yr southeastward. Using a Mogi point source model both prior to and during the inflation gives a source location in the center of the caldera and a depth of about 3km. The source strength rate is three times larger during the inflation event than the period preceding it. Based on the full time series of campaign and continuous GPS data, it appears that the variation in inflation rate results from changes in the magma supply rate and not from changes in the depth of the source.

  19. Research on efficiency test of a turbine in Khan Khwar hydropower station

    International Nuclear Information System (INIS)

    Zhang, H K; Liang, Z; Deng, M G; Liu, X B; Wang, H Y; Liu, D M

    2012-01-01

    The efficiency test is an important indicator to evaluate the energy conversion performance of a hydraulic turbine. For hydropower stations which do not have the direct flow measurement conditions, whether the characteristic curve of a turbine obtained through similarity theory conversion by using the comprehensive characteristic curve of the turbine can correctly reflect the operating performance of the prototype unit is a key issue in this industry. By taking the No.1 unit of Khan Khwar hydropower station as the example, the efficiency test of this turbine was studied on the site, including the measurement method of test parameters, the configuration of the computer test system, as well as the processing and analysis of test data.

  20. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    -tectonic interactions, and loss of volatiles plus densification of magma. The Cascade Range thus offers an outstanding opportunity for investigating a wide range of volcanic processes. Indeed, there may be areas of geodetic change that have yet to be discovered, and there is good potential for addressing a number of important questions about how arc volcanoes work before, during, and after eruptions by continuing geodetic research in the Cascade Range.

  1. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    -tectonic interactions, and loss of volatiles plus densification of magma. The Cascade Range thus offers an outstanding opportunity for investigating a wide range of volcanic processes. Indeed, there may be areas of geodetic change that have yet to be discovered, and there is good potential for addressing a number of important questions about how arc volcanoes work before, during, and after eruptions by continuing geodetic research in the Cascade Range.

  2. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  3. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  4. Evolving Hazard Monitoring and Communication at San Vicente Volcano, El Salvador

    Science.gov (United States)

    Bowman, L. J.; Gierke, J. S.

    2014-12-01

    El Salvador has 20 potentially active volcanoes, four of which have erupted in the last 100 years. Since San Vicente Volcano has had no historic eruptions, monitoring is not a high priority; especially given the current eruptive crisis at San Miguel Volcano. Though probability of eruptive hazards remains low at San Vicente, it is arguably one of the most hazardous volcanoes in the country due to rainfall-induced landslides and debris-flow risk. At least 250 deaths occurred in November 2009 from landslides and debris flows triggered by Hurricane Ida. This disaster caused the Universidad de El Salvador - Facultad Multidisciplinaria Paracentral (UES-FMP, San Vicente, El Salvador) to partner with governmental and nongovernmental organizations (including the U.S. Peace Corps, U.S. Fulbright Program, Korean International Cooperation Agency, Protección Civil and the Centro de Protección para Desastres (CEPRODE)) to focus its faculty and student research toward hazard monitoring and risk studies. Newly established monitoring efforts include: measurement of surface cracks and localized rainfall by Protección Civil and local residents using crude extensometers and rain gauges; installation of six weather stations that operate within the most at-risk municipalities; seismic refraction surveys to better characterize stratigraphy and seasonal water table changes; and most recently, a USAID/NSF-funded initiative partnered with the UES-FMP to monitor seasonal hydrologic conditions related to flooding and groundwater recharge. The information from these initiatives is now used to communicate current conditions and warnings through a network of two-way radios established by CEPRODE and Protección Civil. Representatives from the multi-institutional team also communicate the data to authorities who make better-informed decisions regarding warnings and evacuations, as well as determine suitable areas for population relocation in the event of a crisis. Data will eventually be used

  5. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    Science.gov (United States)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  6. Safety research of insulating materials of cable for nuclear power generating station

    Science.gov (United States)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  7. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  8. Beryllium-7 in Usnea antarctica Du Rietz from the Machu Picchu Antarctic Research Station

    International Nuclear Information System (INIS)

    Osores, Jose; Gonzales, Susana

    2013-01-01

    Concentrations of Be-7 in Usnea antarctica (lichen) collected during the austral summer of 2013 in the Antarctic Scientific Station 'Machu Picchu' were determined by high resolution gamma spectrometry, obtaining values between 366.5 and 515.1 Becquerels per kilogram dry weight. The analysis of variance shows no significant difference in the concentrations of Be-7 between sampling areas located at different heights. The average value of Be-7 for 2013 is significantly higher to other sampling years, except for 1996. (authors).

  9. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    Science.gov (United States)

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation

  10. Glocalized New Age Spirituality: A Mental Map of the New Central Bus Station in Tel Aviv, Deciphered through Its Visual Codes and Based on Ethno-Visual Research

    Science.gov (United States)

    Ben-Peshat, Malka; Sitton, Shoshana

    2011-01-01

    We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…

  11. Developing geophysical monitoring at Mayon volcano, a collaborative project EOS-PHIVOLCS

    Science.gov (United States)

    Hidayat, D.; Laguerta, E.; Baloloy, A.; Valerio, R.; Marcial, S. S.

    2011-12-01

    Mayon is an openly-degassed volcano, producing mostly small, frequent eruptions, most recently in Aug-Sept 2006 and Dec 2009. Mayon volcano status is level 1 with low seismicity dominated mostly local and regional tectonic earthquakes with continuous emission of SO2 from its crater. A research collaboration between Earth Observatory of Singapore-NTU and Philippine Institute of Volcanology and Seismology (PHIVOLCS) have been initiated in 2010 with effort to develop a multi-disciplinary monitoring system around Mayon includes geophysical monitoring, gas geochemical monitoring, and petrologic studies. Currently there are 4 broadband seismographs, 3 short period instruments, and 4 tiltmeters. These instruments will be telemetered to the Lignon Hill Volcano Observatory through radio and 3G broadband internet. We also make use of our self-made low-cost datalogger which has been operating since Jan 2011, performing continuous data acquisition with sampling rate of 20 minute/sample and transmitted through gsm network. First target of this monitoring system is to obtain continuous multi parameter data transmitted in real time to the observatory from different instruments. Tectonically, Mayon is located in the Oas Graben, a northwest-trending structural depression. Previous study using InSAR data, showing evidence of a left-lateral oblique slip movement of the fault North of Mayon. Understanding on what structures active deformation is occurring and how deformation signal is currently partitioned between tectonic and volcanic origin is a key for characterizing magma movement in the time of unrest. Preliminary analysis of the tangential components of tiltmeters (particularly the stations 5 and 7.5 NE from the volcano) shows gradual inflation movement over a few months period. The tangential components for tiltmeters are roughly perpendicular to the fault north of Mayon. This may suggest downward tilting of the graben in the northern side of Mayon. Another possibility is that

  12. Locating the timacum maius station on the roman road lissus-naissus-ratiaria: New archaeological research

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir P.

    2008-01-01

    Full Text Available As the exact location of two Timacum stations remains an open issue, the results of the latest archaeological investigations in the environs of Svrljig, southeast Serbia, seem to offer some corroborative evidence for the hypothesis proposed in our previous contribution that this might be the location of Roman Timacum Maius. A small-scale trial excavation was undertaken on the Roman site at Kalnica in the Niševac village area in July 2008. A trench 4 by 2m was opened in the zone of the site that had yielded plentiful fragments of building debris as well as small finds. A massive wall over 1m thick was found immediately beneath the surface. Built of bro­ken limestone and pebbles bound with lime mortar, it obviously was part of a larger structure. To the northeast of the wall was an area covered with fragmented roof tiles. The discovery of two ceramic tumuli embedded in the wall, indicating a wall-heating system so far unregistered on the representative Roman urban and settlement sites in Serbia, gives additional grounds to presume that this was a larger Roman settlement extending over an area of more than 5ha, possibly Timacum Maius, a station on the Roman road Lissus-Ratiaria-Naissus.

  13. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  14. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  15. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  16. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel

  17. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  18. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  19. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  20. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    International Nuclear Information System (INIS)

    Zhang, L G; Zhou, D Q

    2013-01-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed

  1. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  2. Research on the waiting time of passengers and escalator energy consumption at the railway station

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei-wu; Liu, Xiao-yan; Li, Liqing; Shi, Xiangnan; Zhou, Chenn Q. [School of Energy Science and Engineering, Central South University, Changsha 410083 (China)

    2009-12-15

    Based on the Little Formula and the classical queuing model of multi-channel M vertical stroke D vertical stroke n, the relation of the average queue length, the maximum waiting time and the escalator service intensity were identified and the waiting time simulation model was established. With the passenger delivery data at A railway station in China and the probability distribution model of waiting time, a detailed analysis was made on the escalator allocation, power and energy consumption on holidays, ordinary working days and the largest-passengers-volume days; meanwhile, the fixed and variable energy consumption were compared and studied when the waiting time are 5, 10 and 30 s. The result shows that the waiting time settings affect the allocation and the energy consumption of the escalators and the fixed energy consumption takes 70%. (author)

  3. Research on H2 speed governor for diesel engine of marine power station

    Science.gov (United States)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  4. Conducting Research on the International Space Station using the EXPRESS Rack Facilities

    Science.gov (United States)

    Thompson, Sean W.; Lake, Robert E.

    2016-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  5. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  6. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    Science.gov (United States)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  7. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many

  8. Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Thompson, Anu

    2004-02-01

    This study describes the distribution of sewage pollution markers (faecal coliforms, Clostridium perfringens and faecal sterols) in seawater and marine sediments around Rothera Research Station, Antarctic Peninsula. Untreated sewage waste has been released from this site since 1975, creating the potential for long-term contamination of the benthic environment. Faecal coliform concentrations in seawater reached background levels within 300 m of the outfall. In sediment cores, both C. perfringens and faecal coliform concentrations declined with distance from the outfall, though C. perfringens persisted at greater depths in the sediment. High concentrations of 5{beta}(H)-cholestan-3{beta}-ol (coprostanol) relative to the corresponding 5{alpha}-epimer (cholestanol), indicative of sewage pollution, were only found in sediments within 200 m of the sewage outfall. This study has shown that sewage contamination is limited to the immediate vicinity of the sewage outfall. Nevertheless, a sewage treatment plant was installed in February 2003 to reduce this contamination further. - Sewage contamination of seawater and marine sediments near Rothera Research Station (Antarctic Peninsula) was limited to the immediate vicinity of the outfall.

  9. Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers

    International Nuclear Information System (INIS)

    Hughes, Kevin A.; Thompson, Anu

    2004-01-01

    This study describes the distribution of sewage pollution markers (faecal coliforms, Clostridium perfringens and faecal sterols) in seawater and marine sediments around Rothera Research Station, Antarctic Peninsula. Untreated sewage waste has been released from this site since 1975, creating the potential for long-term contamination of the benthic environment. Faecal coliform concentrations in seawater reached background levels within 300 m of the outfall. In sediment cores, both C. perfringens and faecal coliform concentrations declined with distance from the outfall, though C. perfringens persisted at greater depths in the sediment. High concentrations of 5β(H)-cholestan-3β-ol (coprostanol) relative to the corresponding 5α-epimer (cholestanol), indicative of sewage pollution, were only found in sediments within 200 m of the sewage outfall. This study has shown that sewage contamination is limited to the immediate vicinity of the sewage outfall. Nevertheless, a sewage treatment plant was installed in February 2003 to reduce this contamination further. - Sewage contamination of seawater and marine sediments near Rothera Research Station (Antarctic Peninsula) was limited to the immediate vicinity of the outfall

  10. The application research of MACCS in consequence assessment of the attacked Dayabay Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhao Yuan; Dong Binjiang

    2003-01-01

    The method of radiological consequence assessment as Dayabay nuclear power station being attacked in war is studied in this paper. The Models and software of calculation and the parameters which have been chosen are also studied in this paper. This study estimates the off-site consequences of two different types of being attack accidents spectrum and the spent fuel pool being attacked accidents spectrum. This study calculated the distributing of radiological consequence in different weather. According to the analyse of the consequence, we get such result that the radiate consequence of nuclear reactor of Daya Bay nuclear power plant being attack in war is the same as the consequence of nuclear accident, but the consequence of spent fuel pool being attacked is very serious. If the spent fuel pool was attacked by the enemy, the contaminated area is very large. The effective dose within 30 km under the wind will exceed 1 Sv. Based in part upon the above information the recommendation is made that the Daya Bay nuclear power plant should be closed or run in low power. and the nuclear island should be protected in war. (authors)

  11. Research on Francis Turbine Modeling for Large Disturbance Hydropower Station Transient Process Simulation

    Directory of Open Access Journals (Sweden)

    Guangtao Zhang

    2015-01-01

    Full Text Available In the field of hydropower station transient process simulation (HSTPS, characteristic graph-based iterative hydroturbine model (CGIHM has been widely used when large disturbance hydroturbine modeling is involved. However, by this model, iteration should be used to calculate speed and pressure, and slow convergence or no convergence problems may be encountered for some reasons like special characteristic graph profile, inappropriate iterative algorithm, or inappropriate interpolation algorithm, and so forth. Also, other conventional large disturbance hydroturbine models are of some disadvantages and difficult to be used widely in HSTPS. Therefore, to obtain an accurate simulation result, a simple method for hydroturbine modeling is proposed. By this method, both the initial operating point and the transfer coefficients of linear hydroturbine model keep changing during simulation. Hence, it can reflect the nonlinearity of the hydroturbine and be used for Francis turbine simulation under large disturbance condition. To validate the proposed method, both large disturbance and small disturbance simulations of a single hydrounit supplying a resistive, isolated load were conducted. It was shown that the simulation result is consistent with that of field test. Consequently, the proposed method is an attractive option for HSTPS involving Francis turbine modeling under large disturbance condition.

  12. IMP: Using microsat technology to support engineering research inside of the International Space Station

    Science.gov (United States)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  13. Data assimilation strategies for volcano geodesy

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.

    2017-09-01

    Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to

  14. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  15. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  16. Long open-path TDL based system for monitoring background concentration for deployment at Jungfraujoch High Altitude Research Station- Switzerland

    Science.gov (United States)

    Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc

    2010-05-01

    A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.

  17. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    Energy Technology Data Exchange (ETDEWEB)

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period

  18. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; hide

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  19. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    Science.gov (United States)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  20. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    Science.gov (United States)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  1. Research Regarding High Gravity Brewing in the Pilot Station USAMV Cluj-Napoca

    Directory of Open Access Journals (Sweden)

    Andrei Borsa

    2013-11-01

    Full Text Available This paper aims to present preliminary research results obtained while developing and implementing a high gravity beer fermentation process. Production trials were performed in brewery pilot plant from University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Science and Technology. The tehnological parameters were adapted and monitored during the making.

  2. Evaluation of tele-ultrasound as a tool in remote diagnosis and clinical management at the Amundsen-Scott South Pole Station and the McMurdo Research Station.

    Science.gov (United States)

    Otto, Christian; Shemenski, Ron; Scott, Jessica M; Hartshorn, Jeanette; Bishop, Sheryl; Viegas, Steven

    2013-03-01

    Abstract Background: A large number of Antarctic stations do not utilize ultrasound for medical care. Regular use of ultrasound imaging at South Pole and McMurdo Stations first began in October 2002. To date, there has been no evaluation of medical events requiring ultrasound examination from this remote environment. Additionally, the importance of tele-ultrasound for clinical management in Antarctica has not yet been assessed. We therefore conducted a retrospective analysis of all ultrasound exams performed at South Pole and McMurdo Stations between October 2002 and October 2003. Radiology reports and patient charts were reviewed for pre- and post-ultrasound diagnosis and treatment. Sixty-six ultrasound exams were conducted on 49 patients. Of the exams, 94.0% were interpreted by the store-and-forward method, whereas 6.0% were interpreted in "real-time" format. Abdominal, genitourinary, and gynecology ultrasound exams accounted for 63.6% of exams. Ultrasound examination prevented an intercontinental aeromedical evacuation in 25.8% of cases, and had a significant effect on the diagnosis and management of illness in patients at South Pole and McMurdo research stations. These findings indicate that diagnostic ultrasound has significant benefits for medical care at Antarctic stations and that tele-ultrasound is a valuable addition to remote medical care for isolated populations with limited access to tertiary-healthcare facilities.

  3. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  4. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  5. Breeding ecology of buff-breasted babbler (Pellorneum tickelli at Doi Chiang Dao Wildlife Research Station, Chiang Mai province, Thailand

    Directory of Open Access Journals (Sweden)

    Patchareeyaporn Panyaarj

    2017-10-01

    Full Text Available The behavior of the buff-breasted babbler (Pellorneum tickelli was recorded from April 2010 to May 2012 along creeks in Doi Chiang Dao Wildlife Research Station, Chiang Mai, Thailand. Fifteen nests of the buff-breasted babbler were found on four creeks: Maeka, Maemard, Ong and Sikrobkrua. The general behavior of birds included foraging, excretion, locomotion, preening and vigilance. The complete breeding cycle of the buff-breasted babbler in this study was almost 1 mth. Egg clutch size was in the range 3–4 and the nestlings hatched almost simultaneously. The eggs were incubated by both the males and the females. After hatching, both parents invested in intensive parental care. As well as providing food, they also protected their nestlings. This information can be used to help with conservation planning in the area and elsewhere. Keywords: Bird nest, Breeding birds, Nestling, Parental care, Riparian

  6. Volcano Monitoring in Ecuador: Three Decades of Continuous Progress of the Instituto Geofisico - Escuela Politecnica Nacional

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.

    2014-12-01

    In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced

  7. The research station "Vaskiny Dachi", Central Yamal, West Siberia, Russia – a review of 25 years of permafrost studies

    Directory of Open Access Journals (Sweden)

    Marina O. Leibman

    2015-03-01

    Full Text Available The research station "Vaskiny Dachi" on the Yamal Peninsula was established in 1988. Activities aimed at monitoring of permafrost and related environmental features under a relatively low level of nature disturbances caused by gas field development. Cryogenic processes that may affect the environment and their structures have been of primary interest. Landslides are the most common cryogenic processes in Central Yamal in general and also in the proximity of the station. Field surveys of numerous landslides, analysis of their dependence on climatic parameters and their fluctuations resulted in novel classification of cryogenic landslides based on mechanisms of their development. Dating by radiocarbon and dendrochronology allows the separation of cycles of landslide activation. Cryogenic landslides control the development of other processes, such as thermal erosion, river channel erosion and thermokarst. It also affects topography, vegetation pattern, geochemistry of vegetation, ground water and soils. As a result, permafrost parameters, specifically active layer depth and ground temperature, moisture and ice content in the active layer, depend indirectly on landsliding. Monitoring within the framework of the main programs of the International Permafrost Association, such as Circumarctic Active Layer Monitoring (CALM, since 1993 and Thermal State of Permafrost (TSP, since 2011, play an important role among the research activities. From the collected data one can conclude that ground temperature increased on average by about 1 °C since the 1990s. At the same time, active layer fluctuations do not exactly follow the air temperature changes. Spatial changes in ground temperature are controlled by the redistribution of snow which is resulting from strong winds characteristic for tundra environments and the highly dissected relief of Central Yamal. Temporal variations rather depend on air temperature fluctuations but the rate differs in various

  8. Volcano Modelling and Simulation gateway (VMSg): A new web-based framework for collaborative research in physical modelling and simulation of volcanic phenomena

    Science.gov (United States)

    Esposti Ongaro, T.; Barsotti, S.; de'Michieli Vitturi, M.; Favalli, M.; Longo, A.; Nannipieri, L.; Neri, A.; Papale, P.; Saccorotti, G.

    2009-12-01

    Physical and numerical modelling is becoming of increasing importance in volcanology and volcanic hazard assessment. However, new interdisciplinary problems arise when dealing with complex mathematical formulations, numerical algorithms and their implementations on modern computer architectures. Therefore new frameworks are needed for sharing knowledge, software codes, and datasets among scientists. Here we present the Volcano Modelling and Simulation gateway (VMSg, accessible at http://vmsg.pi.ingv.it), a new electronic infrastructure for promoting knowledge growth and transfer in the field of volcanological modelling and numerical simulation. The new web portal, developed in the framework of former and ongoing national and European projects, is based on a dynamic Content Manager System (CMS) and was developed to host and present numerical models of the main volcanic processes and relationships including magma properties, magma chamber dynamics, conduit flow, plume dynamics, pyroclastic flows, lava flows, etc. Model applications, numerical code documentation, simulation datasets as well as model validation and calibration test-cases are also part of the gateway material.

  9. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  10. Volcanoes, Third Edition

    Science.gov (United States)

    Nye, Christopher J.

    It takes confidence to title a smallish book merely “Volcanoes” because of the impliction that the myriad facets of volcanism—chemistry, physics, geology, meteorology, hazard mitigation, and more—have been identified and addressed to some nontrivial level of detail. Robert and Barbara Decker have visited these different facets seamlessly in Volcanoes, Third Edition. The seamlessness comes from a broad overarching, interdisciplinary, professional understanding of volcanism combined with an exceptionally smooth translation of scientific jargon into plain language.The result is a book which will be informative to a very broad audience, from reasonably educated nongeologists (my mother loves it) to geology undergraduates through professional volcanologists. I bet that even the most senior professional volcanologists will learn at least a few things from this book and will find at least a few provocative discussions of subjects they know.

  11. Research on Automatic Ticketing Interface Design of Tianjin South Station under the Background of Aging

    Science.gov (United States)

    Zhenghui, Zhao

    2018-04-01

    Based on the context of increasingly serious aging problem in China, the psychological characteristics of elders in using public self-service facilities and the development status and the future trend of public self-service ticketing service. The approach is analysing physiological and psychological characteristics, education level of the elderly and studying its characteristics of consumer psychology and regional cultural characteristics profoundly before conducting comprehensive analysis and research in combination with the interface features of public self-service ticketing machine. The interface design will be more personalized, intelligent, regional and international. Strategies of caring for the elderly in the regional public self-service facility interface design innovation develops the concept of taking care of the elderly in the entire region as an indispensable people-benefiting optimization system in the modern social services.

  12. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    Science.gov (United States)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  13. Research on the technologies of cracking-resistance of mass concrete in subway station

    Science.gov (United States)

    Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang

    2018-03-01

    This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.

  14. Prototype Software for Future Spaceflight Tested at Mars Desert Research Station

    Science.gov (United States)

    Clancey, William J.; Sierhuis, Maaretn; Alena, Rick; Dowding, John; Garry, Brent; Scott, Mike; Tompkins, Paul; vanHoof, Ron; Verma, Vandi

    2006-01-01

    NASA scientists in MDRS Crew 49 (April 23-May 7, 2006) field tested and significantly extended a prototype monitoring and advising system that integrates power system telemetry with a voice commanding interface. A distributed, wireless network of functionally specialized agents interacted with the crew to provide alerts (e.g., impending shut-down of inverter due to low battery voltage), access md interpret historical data, and display troubleshooting procedures. In practical application during two weeks, the system generated speech over loudspeakers and headsets lo alert the crew about the need to investigate power system problems. The prototype system adapts the Brahms/Mobile Agents toolkit to receive data from the OneMeter (Brand Electronics) electric metering system deployed by Crew 47. A computer on the upper deck was connected to loudspeakers, four others were paired with wireless (Bluetooth) headsets that enabled crew members to interact with their personal agents from anywhere in the hab. Voice commands and inquiries included: 1. What is the {battery | generator} {volts | amps | volts and amps}? 2. What is the status of the {generator | inverter | battery | solar panel}? 3. What is the hab{itat} {power usage | volts | voltage | amps | volts and amps}? 4. What was the average hab{itat} {amps | volts | voltage} since {AM | PM)? 5. When did the {generator | batteries} change status? 6. Tell {me I | everyone} when{ ever} the generator goes offline. 7. Tell {me | | everyone} when the hab{itat} {amps | volts | voltage} {exceeds | drops brelow} . 8. {Send | Take | Record} {a} voice note {(for | to} } {at }. This research demonstrates the principles of design in the context of use, investigating requirements through experimental use of prototype systems in an analog setting, and use of MDRS as a research facility for designing and implementing new systems.

  15. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  16. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS

  17. The metalcasting industry and future research on the International Space Station

    International Nuclear Information System (INIS)

    Santner, Joe; Overfelt, Tony

    2000-01-01

    Fourteen million tons of castings are used annually in ninety percent of all manufactured goods and in all manufacturing machinery making metalcasting the manufacturing backbone of America. There are approximately 3,000 foundries located in 49 states directly providing employment to 200,000 people and indirectly supporting transportation, petrochemical, construction, and other end-user industries. The Solidification Design Center (SDC) began a pioneering effort to address metalcasting industry technical needs to maintain US global leadership in quality, price, and delivery. While individual companies have interacted in the past with the Auburn University SDC, eighty-percent of the foundries employ less than 100 individuals while only six-percent of the foundries employ more than 250 persons. The American Foundrymen's Society (AFS) formed the Solidification Design and Control Consortium to reach the small businesses in the U.S. metalcasting industry. Over a century of operation has proved the AFS committee structure to be a robust management tool. The recognized metalcasting industry technical needs and the unique opportunities that low earth orbit offers foundry process research are described in the present paper. In addition, the metalcasting approach to prioritize proposals, transfer technology developed within the small business community, and the metalcasting industry concerns regarding working with a government aerospace program are also discussed

  18. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  19. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  20. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  1. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska

    Science.gov (United States)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.

    2017-12-01

    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high

  2. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  3. Cataloging tremor at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as

  4. Ash and Steam, Soufriere Hills Volcano, Monserrat

    Science.gov (United States)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  5. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    Science.gov (United States)

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    dominant by biomass. Age-2+ Yellow Perch and White Perch diets from our western basin trawl had highest occurrences of benthic invertebrates in spring and fall. Hexagenia spp. accounted for >25% of Yellow Perch and White Perch diet composition (dry weight) in spring. We conducted an analysis using data from the past 6 years of our East Harbor survey to determine to what degree our new research vessel and trawl is affecting our ability to detect trends across the 50+ year time series. We also evaluated trends in water temperatue, dissolved oxygen, secchi depth and total Phosphorus from our LTLA sites near Vermilion, Ohio. Within the following report sections, we describe specific results from our primary surveys conducted in 2014.

  6. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  7. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  8. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  9. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows

    Science.gov (United States)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-11-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.

  10. Operation of TUT Solar PV Power Station Research Plant under Partial Shading Caused by Snow and Buildings

    Directory of Open Access Journals (Sweden)

    Diego Torres Lobera

    2013-01-01

    Full Text Available A grid connected solar photovoltaic (PV research facility equipped with comprehensive climatic and electric measuring systems has been designed and built in the Department of Electrical Engineering of the Tampere University of Technology (TUT. The climatic measuring system is composed of an accurate weather station, solar radiation measurements, and a mesh of irradiance and PV module temperature measurements located throughout the solar PV facility. Furthermore, electrical measurements can be taken from single PV modules and strings of modules synchronized with the climatic data. All measured parameters are sampled continuously at 10 Hz with a data-acquisition system based on swappable I/O card technology and stored in a database for later analysis. The used sampling frequency was defined by thorough analyses of the PV system time dependence. Climatic and electrical measurements of the first operation year of the research facility are analyzed in this paper. Moreover, operation of PV systems under partial shading conditions caused by snow and building structures is studied by means of the measured current and power characteristics of PV modules and strings.

  11. The recent seismicity of Teide volcano, Tenerife (Canary Islands, Spain)

    Science.gov (United States)

    D'Auria, L.; Albert, G. W.; Calvert, M. M.; Gray, A.; Vidic, C.; Barrancos, J.; Padilla, G.; García-Hernández, R.; Perez, N. M.

    2017-12-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk of the island.On 02/10/2016 a remarkable swarm of long-period events was recorded and was interpreted as the effect of a transient massive fluid discharge episode occurring within the deep hydrothermal system of Teide volcano. Actually, since Oct. 2016, the hydrothermal system of the volcano underwent a progressive pressurization, testified by the marked variation of different geochemical parameters. The most striking observation is the increase in the diffuse CO2 emission from the summit crater of Teide volcano which started increasing from a background value of about 20 tons/day and reaching a peak of 175 tons/day in Feb. 2017.The pressurization process has been accompanied by an increase in the volcano-tectonic seismicity of. Teide volcano, recorded by the Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN). The network began its full operativity in Nov. 2016 and currently consists of 15 broadband seismic stations. Since Nov. 2016 the network detected more than 100 small magnitude earthquakes, located beneath Teide volcano at depths usually ranging between 5 and 15 km. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest ever recorded since decades. Most of the events show typical features of the microseismicity of hydrothermal systems: high spatial and temporal clustering and similar waveforms of individual events which often are overlapped.We present the spatial and temporal distribution of the seismicity of Teide volcano since Nov. 2016, comparing it also with the past seismicity of the volcano. Furthermore we analyze the statistical properties of the numerous swarms recorded until now with the aid of a template

  12. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    and velocity structure. The 2014-15 Bárðarbunga dyke intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. The body is unlikely to be entirely melt as S-waves are still detected at stations directly above the anomaly. This low-velocity body is slightly deeper than the depth range suggested by InSAR and GPS studies of a deflating source beneath Askja. Beneath the main low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with deep seismicity. This is suggestive of a high temperature channel into the lower crust which could be a pathway for melt rising from the mantle.

  13. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    Science.gov (United States)

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska, Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, began a program of seismic monitoring at potentially active volcanoes in the Cook Inlet region in 1988. Seismic monitoring of this area was previously accomplished by two independent seismic networks operated by the U.S. Geological Survey (Northern Cook Inlet) and the Geophysical Institute (Southern Cook Inlet). In 1989 the AVO seismic program consisted of three small-aperture networks of six, five, and six stations on Mt. Spurr, Redoubt Volcano, and Augustine Volcano respectively. Thirty-five other stations were operated in the Cook Inlet region as part of the AVO program. During 1990 six additional stations were added to the Redoubt network in response to eruptive activity, and three stations were installed at Iliamna Volcano. The principal objectives of the AVO program have been the seismic surveillance of the Cook Inlet volcanoes and the investigation of seismic processes associated with active volcanism.

  14. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-09-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements six months into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: Analysis and repair attempts of the VLA used in the deep water deployment during October 2003 have been completed; Definition of an interface protocol for the VLA DATS to the SFO has been established; Design modifications to allow integration of the VLA to the SFO have been made; Experience gained in the deployments of the first VLA is being applied to the design of the next VLAs; One of the two planned new VLAs being modified to serve as an Oceanographic Line Array (OLA). (2) Progress on the Sea Floor Probe: The decision to replace the Sea Floor Probe technology with the borehole emplacement of a geophysical array was reversed due to the 1300m water depth at the

  15. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-11-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2

  16. 3D electrical conductivity tomography of volcanoes

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  17. TOMO-ETNA experiment at Etna volcano: activities on land

    Directory of Open Access Journals (Sweden)

    Jesús M. Ibáñez

    2016-09-01

    Full Text Available In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 Broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV. This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them. A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.

  18. The Powell Volcano Remote Sensing Working Group Overview

    Science.gov (United States)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    to better understand each volcano's behavior. To share these results with end users, the group is developing a communication tool that would allow researchers to share information relating to specific volcanoes or regions, although it is currently under development as we work to determine the clearest lines of communication.

  19. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Science.gov (United States)

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  20. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    Science.gov (United States)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation

  1. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    Science.gov (United States)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  2. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  3. Investigation of microbial diversity in a desert Mars-like environment: Mars Desert Research Station (MDRS), Utah

    Science.gov (United States)

    Direito, Maria Susana; Staats, Martijn; Foing, Bernard H.; Ehrenfreund, Pascale; Roling, Wilfred

    The Utah Mars Desert Research Station (MDRS) harbours geo-morphology and geo-processes analogues to the planet Mars. Soil samples were collected during the EuroGeoMars campaign (from 24 January to 1 March 2009) from different locations and depths [1]. Samples were distributed among scientific collaborator institutes for analysis of microbial diversity, amino acid content and degradation, content of PAH or larger organic molecules, and respective soil properties. Our sample analysis had the objective of characterizing the microbial communities in this Mars analogue: DNA isolation, PCR (Polymerase Chain Reaction) using primers for DNA amplification of Bacteria, Archaea and Eukarya ribosomal RNA (rRNA) gene fragments, DGGE (Denaturing Gradient Gel Electrophoresis) and clone library construction with the final aim of sequencing. Results indicate that life is present in all the three domains of life (Archaea, Bacteria and Eukarya), while the most diversity was found in the domain Bacteria. Microorgan-isms are heterogeneously present and their identities are currently investigated. The obtained information will be later related to the other scientific analysis in order to obtain a better understanding of this Mars analogue site, which in turn will provide important information for the search for life on Mars. [1] Foing, B.H. et al . (2009). Exogeolab lander/rover instruments and EuroGeoMars MDRS campaign. LPI, 40, 2567.

  4. Boveri's research at the Zoological Station Naples: Rediscovery of his original microscope slides at the University of Würzburg.

    Science.gov (United States)

    Scheer, Ulrich

    2018-02-14

    Eric Davidson once wrote about Theodor Boveri: "From his own researches, and perhaps most important, his generalized interpretations, derive the paradigms that underlie modern inquiries into the genomic basis of embryogenesis" (Davidson, 1985). As luck would have it, the "primary data" of Boveri's experimental work, namely the microscope slides prepared by him and his wife Marcella during several stays at the Zoological Station in Naples (1901/02, 1911/12 and 1914), have survived at the University of Würzburg. More than 600 slides exist and despite their age they are in a surprisingly good condition. The slides are labelled and dated in Boveri's handwriting and thus can be assigned to his published experimental work on sea urchin development. The results allowed Boveri to unravel the role of the cell nucleus and its chromosomes in development and inheritance. Here, I present an overview of the slides in the context of Boveri's work along with photographic images of selected specimens taken from the original slides. It is planned to examine the slides in more detail, take high-resolution focal image series of significant specimens and make them online available. Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.

  5. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  6. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  7. A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

    Science.gov (United States)

    Direito, Susana O. L.; Ehrenfreund, Pascale; Marees, Andries; Staats, Martijn; Foing, Bernard; Röling, Wilfred F. M.

    2011-07-01

    Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold arid desert with mineralogy and erosion processes comparable to those on Mars. Insight into the microbial community composition of this terrestrial Mars analogue provides essential information for the search for life on Mars: including sampling and life detection methodology optimization and what kind of organisms to expect. Soil samples were collected from different locations. Culture-independent molecular analyses directed at ribosomal RNA genes revealed the presence of all three domains of life (Archaea, Bacteria and Eukarya), but these were not detected in all samples. Spiking experiments revealed that this appears to relate to low DNA recovery, due to adsorption or degradation. Bacteria were most frequently detected and showed high alpha- and beta-diversity. Members of the Actinobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes phyla were found in the majority of samples. Archaea alpha- and beta-diversity was very low. For Eukarya, a diverse range of organisms was identified, such as fungi, green algae and several phyla of Protozoa. Phylogenetic analysis revealed an extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya. These comprised radioresistant, endolithic, chasmolithic, xerophilic, hypolithic, thermophilic, thermoacidophilic, psychrophilic, halophilic, haloalkaliphilic and alkaliphilic micro-organisms. Overall, our data revealed large difference in occurrence and diversity over short distances, indicating the need for high-sampling frequency at similar sites. DNA extraction methods need to be optimized to improve extraction efficiencies.

  8. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    NARCIS (Netherlands)

    Stoker, C.R.; Clarke, J.; Oliveira Lebre Direito, M.S.; Martin, K.; Zavaleta, J.; Blake, D.; Foing, B.H.

    2011-01-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to

  9. Safety analysis report: A comparison of incidents from Safety Years 2006 through 2010, USDA Forest Service, Rocky Mountain Research Station Inventory and Monitoring Program

    Science.gov (United States)

    Devon Donahue

    2012-01-01

    This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...

  10. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  11. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  12. Volcano geodesy: Challenges and opportunities for the 21st century

    Science.gov (United States)

    Dzurisin, D.

    2000-01-01

    Intrusions of magma beneath volcanoes deform the surrounding rock and, if the intrusion is large enough, the overlying ground surface. Numerical models generally agree that, for most eruptions, subsurface volume changes are sufficient to produce measurable deformation at the surface. Studying this deformation can help to determine the location, volume, and shape of a subsurface magma body and thus to anticipate the onset and course of an eruption. This approach has been successfully applied at many restless volcanoes, especially basaltic shields and silicic calderas, using various geodetic techniques and sensors. However, its success at many intermediate-composition strato-volcanoes has been limited by generally long repose intervals, steep terrain, and structural influences that complicate the history and shape of surface deformation. These factors have made it difficult to adequately characterize deformation in space and time at many of the world's dangerous volcanoes. Recent technological advances promise to make this task easier by enabling the acquisition of geodetic data of high spatial and temporal resolution from Earth-orbiting satellites. Synthetic aperture radar interferometry (InSAR) can image ground deformation over large areas at metre-scale resolution over time-scales of a month to a few years. Global Positioning System (GPS) stations can provide continuous information on three-dimensional ground displacements at a network of key sites -information that is especially important during volcanic crises. By using InSAR to determine the shape of the displacement field and GPS to monitor temporal changes at key sites, scientists have a much better chance to capture geodetic signals that have so far been elusive at many volcanoes. This approach has the potential to provide longer-term warnings of impending volcanic activity than is possible with other monitoring techniques.

  13. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  14. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  15. Long open-path TDL based system for monitoring the background concentration for deployment at Jungfraujoch High Altitude Research Station- Switzerland

    Science.gov (United States)

    Simeonov, V.; van den Bergh, H.; Parlange, M. B.

    2009-12-01

    A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.

  16. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  17. Relative chronology of Martian volcanoes

    International Nuclear Information System (INIS)

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  18. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  19. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  20. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  1. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  2. INTERACT Station Catalogue - 2015

    DEFF Research Database (Denmark)

    INTERACT stations are located in all major environmental envelopes of the Arctic providing an ideal platform for studying climate change and its impact on the environment and local communities. Since alpine environments face similar changes and challenges as the Arctic, the INTERACT network also ...... catalogue includes descriptions of 73 research stations included in the network at the time of printing....

  3. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  4. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    Science.gov (United States)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these

  5. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  6. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    Science.gov (United States)

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  7. Large-N in Volcano Settings: Volcanosri

    Science.gov (United States)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months

  8. Laboratory volcano geodesy

    Science.gov (United States)

    Færøvik Johannessen, Rikke; Galland, Olivier; Mair, Karen

    2014-05-01

    intrusion can be excavated and photographed from several angles to compute its 3D shape with the same photogrammetry method. Then, the surface deformation pattern can be directly compared with the shape of underlying intrusion. This quantitative dataset is essential to quantitatively test and validate classical volcano geodetic models.

  9. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  10. Management Of Competition And Besting Among Crew Members: A Study At The Mars Desert Research Station (MDRS) In Utah, USA

    Science.gov (United States)

    Allner, Matthew; Bishop, Sheryl; Gushin, Vadim; McKay, Chris; Rygalov, Vadim; Allner, Matthew

    Introduction: Psychosocial group functioning has become an increased international focus of many space faring nations due to the recent shift in focus of colonizing the Moon and then preparing to travel to Mars and beyond. Purpose: This study investigates the effects of competition and besting among crewmembers in isolated and confined extreme (ICE) environments. Furthermore, the study investigates the effects associated with both preand intra-mission management efforts, which included crewmember assessments at various mission phases (pre-, intra-, and end-mission). Suggestions on how to manage competition and besting within a crew were investigated by implementing preand intra-mission awareness strategies as well as group participation in the development and implementation of countermeasures to manage crewmember tendency towards competition and besting to promote the development of positive group functioning. Methods: A six person heterogeneous American crew conducted a Mars simulation mission at the Mars Society's Mars Desert Research Station in Utah, USA in 2006 as part of a new NASA training program called Spaceward Bound. Participants were administered assessments of personality, personal and group identity/functioning, subjective stress, and subjective motivation. All participants were also provided information (pre-mission) regarding past research findings and tendencies of group functioning, stressors, cognitive functioning, and competition and besting. Results: Anecdotal data obtained from personal interviews with crewmembers strongly showed that pre-mission discussions regarding competition and besting provided awareness that allowed crewmembers to continually self-assess to prevent this tendency from surfacing during the mission. The assessment data results showed support for recorded diary materials which indicated crewmembers felt strongly that continual reminders of the besting concept, along with being allowed to participate in the development and

  11. What Happened to Our Volcano?

    Science.gov (United States)

    Mangiante, Elaine Silva

    2006-01-01

    In this article, the author presents an investigative approach to "understanding Earth changes." The author states that students were familiar with earthquakes and volcanoes in other regions of the world but never considered how the land beneath their feet had experienced changes over time. Here, their geology unit helped them understand…

  12. Radiation monitoring using manned helicopter around the nuclear power station in the fiscal year 2015 (Contract research)

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Iwai, Takeyuki; Matsunaga, Yuki; Toyoda, Masayuki; Tobita, Shinichiro; Nishizawa, Yukiyasu; Ishida, Mutsushi; Sato, Yoshiharu; Sasaki, Miyuki; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; Imura, Mitsuo; Miyamoto, Kenji; Kudo, Tamotsu; Nakayama, Shinichi

    2016-10-01

    By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around the Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies and the evaluation of radiation attenuation by snow. (author)

  13. Amtrak Stations

    Data.gov (United States)

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  14. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in

  15. Eruption of Mt. Pinatubo and climate of Syowa Station

    Directory of Open Access Journals (Sweden)

    Susumu Kaneto

    1997-03-01

    Full Text Available During the last year of the Antarctic Climate Research (ACR period, two large volcanos erupted. In June 1991,the volcano Pinatubo in the Philippines Islands (15°N, 120°E erupted and injected a large volcanic cloud in to the lower and middle stratosphere. In August 1991,Mt. Hudson in southern Chile (46°S, 73°W erupted; its volcanic cloud reached to 18km. From NOAA/AVHRR data, within 1991,the volcanic aerosol of Pinatubo dispersed mainly in tropical latitudes and that of Hudson spread in the area south of 40°S. The eruption effects are investigated here by comparing meteorological observation results at Syowa Station (69°S, 39°E with global analyses. The optical observations which measure direct effects of eruption materials, show a large effect from late 1991. Abnormal deviations were detected in surface temperature and total ozone amount but the occurrence is retarded relative to global average occurrence. Effects on stratospheric temperature were not detected.

  16. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  17. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  18. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  19. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  20. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    Science.gov (United States)

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  1. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  2. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  3. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  4. Tremor Source Location at Okmok Volcano

    Science.gov (United States)

    Reyes, C. G.; McNutt, S. R.

    2007-12-01

    Initial results using an amplitude-based tremor location program have located several active tremor episodes under Cone A, a vent within Okmok volcano's 10 km caldera. Okmok is an andesite volcano occupying the north-eastern half of Umnak Island, in the Aleutian islands. Okmok is defined by a ~2000 y.b.p. caldera that contains multiple cinder cones. Cone A, the youngest of these, extruded lava in 1997 covering the caldera floor. Since April 2003, continuous seismic data have been recorded from eight vertical short-period stations (L4-C's) installed at distances from Cone A ranging from 2 km to 31 km. In 2004 four additional 3- component broadband stations were added, co-located with continuous GPS stations. InSAR and GPS measurements of post-eruption deformation show that Okmok experienced several periods of rapid inflation (Mann and Freymueller, 2002), from the center of the 10 km diameter caldera. While there are few locatable VT earthquakes, there has been nearly continuous low-level tremor with stronger amplitude bursts occurring at variable rates and durations. The character of occurrence remained relatively constant over the course of days to weeks until the signal ceased in mid 2005. Within any day, tremor behavior remains fairly consistent, with bursts closely resembling each other, suggesting a single main process or source location. The tremor is composed of irregular waves with a broad range of frequencies, though most energy resides between ~2 Hz and 6 Hz. Attempts to locate the tremor using traditional arrival time methods fail because the signal is emergent, with envelopes too ragged to correlate on time scales that hold much hope for a location. Instead, focus was shifted to the amplitude ratios at various stations. Candidates for the tremor source include the center of inflation and Cone A, 3 km to the south-west. For all dates on record, data were band pass filtered between 1 and 5 Hz, then evaluated in 20.48 second windows (N=2048, sampling rate

  5. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  6. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    Science.gov (United States)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  7. The collocated station Košetice - Kešín u Pacova, Czech Republic: an important research infrastructure in central Europe

    Science.gov (United States)

    Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka

    2013-04-01

    The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting

  8. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  9. Analysis of technological innovation in Danish wind turbine industry - including the Test Station for Windturbines dual roll as research institution and certification authority

    International Nuclear Information System (INIS)

    Dannemand Andersen, P.

    1993-01-01

    The overall aim of this thesis is to examine the interactions between the Danish wind turbine industry and the Test Station for Wind Turbines. Because these interactions are concerning technological innovation, it follows that the innovation processes within the enterprises must be analyzed and modelled. The study is carried out as an iterative model-developing process using case study methods. The findings from some less structured interviews are discussed with literature and forms a basis for models and new interviews. The thesis is based on interviews with 20 R and D engineers in the Danish wind turbine industry, 7 engineers at The Test Station and 7 people involved in wind power abroad (American and British). The theoretical frame for this thesis is sociology/organizational theory and industrial engineering. The thesis consists of five main sections, dealing with technology and knowledge, innovation processes, organizational culture, innovation and interaction between the Test Station's research activities and the companies' innovation processes, and finally interaction through the Test Stations certification activity. First a taxonomy for technology and knowledge is established in order to clarify what kind of technology the interactions are all about, and what kind of knowledge is transferred during the interactions. This part of the thesis also contains an analysis of the patents drawn by the Danish wind turbine industry. The analysis shows that the Danish wind turbine industry do not use patents. Instead the nature of the technology and the speed of innovation are used to protect the industry's knowledge. (EG) (192 refs.)

  10. Causes of mortality of wild birds submitted to the Charles Darwin Research Station, Santa Cruz, Galapagos, Ecuador from 2002-2004.

    Science.gov (United States)

    Gottdenker, Nicole L; Walsh, Timothy; Jiménez-Uzcátegui, Gustavo; Betancourt, Franklin; Cruz, Marilyn; Soos, Catherine; Miller, R Eric; Parker, Patricia G

    2008-10-01

    Necropsy findings were reviewed from wild birds submitted to the Charles Darwin Research Station, Santa Cruz Island, Galápagos Archipelago between 2004 and 2006. One hundred and ninety cases from 27 different species were submitted, and 178 of these cases were evaluated grossly or histologically. Trauma and trauma-related deaths (n=141) dominated necropsy submissions. Infectious causes of avian mortality included myiasis due to Philornis sp. (n=6), avian pox (n=1), and schistosomosis (n=1).

  11. Akttvitas Selulase, Amilase Dan Invertase Pada Tanah Kebun Biologi Wamena*[cellulase, Amylase and Invertase Activities Achieved From Soil of Wamena Biological Research Station

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    Enzymatic activities in soil as due to microbes action in organic matter degradation, lead to propose as indicators for determining soil degree enrichment.In this work, the enzymatic activities of cellulase, invertase and amylase were determined in tropical soil collected from Biological Research Station in Wamena. Result of measurement on five soil samples showed that cellulase activity occurred between 0.10 - 0.31 mg reducing sugar/g soil/hour in 2% Carboxymethylcellulose (CMC) substrate, a...

  12. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  13. [STEM on Station Education

    Science.gov (United States)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  14. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide

    Science.gov (United States)

    Toda, Shingi; Stein, Ross S.; Sevilgen, Volkan; Lin, Jian

    2011-01-01

    Coulomb is intended both for publication-directed research and for college and graduate school classroom instruction. We believe that one learns best when one can see the most and can explore alternatives quickly. So the principal feature of Coulomb is ease of input, rapid interactive modification, and intuitive visualization of the results. The program has menus and check-items, and dialogue boxes to ease operation. The internal graphics are suitable for publication, and can be easily imported into Illustrator, GMT, Google Earth, or Flash for further enhancements.

  15. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  16. Elementary and Secondary Educational Services of Public Television Grantees: Highlights from the 1997 Station Activities Survey. CPB Research Notes, No. 104.

    Science.gov (United States)

    Corporation for Public Broadcasting, Washington, DC.

    This report provides a summary of K-12 educational services offered by Corporation for Public Broadcasting-supported television stations from CPB's annual Station Activities Survey. Stations are broken into cohorts by license type and budget size. The 1997 Station Activities Survey asked public television stations whether they provided…

  17. The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933.

    Science.gov (United States)

    Parolini, Giuditta

    2015-01-01

    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.

  18. ANCESTORS OF VEGETABLE BREEDING IN ROMANIA: GLICHERIA AND EMIL TĂLPĂLARU, RESEARCHERS AT EXPERIMENTAL STATION ŞTEFĂNEŞTI- ARGEŞ

    Directory of Open Access Journals (Sweden)

    Ion Scurtu

    2016-07-01

    Full Text Available Glicheria and Emil Talpalaru are two of the first breeders in our country, which during 1963-1984 worked at Stefanesti - Arges Experiment Station and has achieved remarkable results in improving vegetables. Talpalaru Emil attended the Faculty of Agronomy in Iaşi, and Mrs. Glicheria Talpalaru graduated the Faculty of Agriculture in Bucharest (1952. In 1957 both became researchers at Vegetable Experiment Station Ţigăneşti, Ilfov. From 1963 until their retirement (1984 worked at the Research Station Ştefăneşti and obtained the most important achievements . There are authors and co-authors of a series of books, papers or brochures on studying the phenomenon heterosis, hybrid tomato and seed production, vegetable technology and other issues. They are created the first F1 tomato varieties and hybrids that were cultivated many years in our country: Arges 1 (F1, Arges 450 ( F1, Arges 400 ( F1 and Arges 428 variety . In the same time Mrs. Talpalaru and she is co-author of varieties and hybrids of tomatoes, but obtained, two varietes for lettuce and one for red cabbage.

  19. Flank tectonics of Martian volcanoes

    International Nuclear Information System (INIS)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  20. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  1. The Princess Elisabeth Station

    Science.gov (United States)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  2. The contribution of the Volcano Observations Work Package to the implementation of the European Plate Observing System

    Science.gov (United States)

    Puglisi, Giuseppe

    2016-04-01

    The overall aim of the implementation phase of European Plate Observing System (EPOS) is to make the integrated platform operational in order to guarantee seamless access to the data provided by the European Solid Earth communities. The Volcano Observations Work Package (WP11) contributes to this objective by implementing a Thematic Core Service (TCS) which is planned to give access to the data and services provided by the European Volcano Observatories (VO) and some Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.). Both types are considered as national research infrastructures (RI) which the TCS will integrate. Currently, monitoring networks on European volcanoes consist of thousands of stations or sites where volcanological parameters are continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), as well as various prototypal monitoring systems (e.g. Doppler radars, ground based SAR). Across Europe several laboratories provide sample characterization (rocks, gases, isotopes, etc.), quasi-continuous analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing facilities. All these RIs provide high-quality information (observations) on the current status of European volcanoes and the geodynamic background of the surrounding areas. The implementation of the Volcano Observations TCS will address technical as well as managerial issues, both considering the current heterogeneous state-of-the-art of the volcanological research infrastructures in Europe. Indeed, the current arrangement of individual VO and VRI is considered too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort in the framework of the EPOS

  3. The "Volcano Observations" Thematic Core Service of the European Plate Observing System (EPOS): status of the implementation.

    Science.gov (United States)

    Puglisi, Giuseppe

    2017-04-01

    The European volcanological community contributes to implementation of European Plate Observing System (EPOS) by making operational an integrated platform to guarantee a seamless access to the data provided by the European Solid Earth communities. To achieve this objective, the Volcano Observations Work Package (WP11) will implement a Thematic Core Services (TCS) which is planned to give access to the data and services provided by the European Volcano Observatories (VO) and some Volcanological Research Institutions (VRI; as university departments, laboratories, etc.); both types are considered as national research infrastructures (RI) over which to build the TCS. Currently, the networks on European volcanoes consist of thousands of stations or sites where volcanological parameters are continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), as well as various prototypal monitoring systems (e.g. Doppler radars, ground based SAR). In Europe also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), and almost continuous analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres. All these RIs provide high-quality information (observations) on the current status of European volcanoes and the geodynamic background of the surrounding areas. The implementation of the Volcano Observations TCS is addressing technical and management issues, both considering the current heterogeneous state of the art of the volcanological research infrastructures in Europe. Indeed, the frame of the VO and VRI is now too fragmented to be considered as a unique distributed infrastructure, thus the main effort planned in the frame of the EPOS-IP is focused to create services aimed at

  4. Research on Fault Diagnosis for Pumping Station Based on T-S Fuzzy Fault Tree and Bayesian Network

    Directory of Open Access Journals (Sweden)

    Zhuqing Bi

    2017-01-01

    Full Text Available According to the characteristics of fault diagnosis for pumping station, such as the complex structure, multiple mappings, and numerous uncertainties, a new approach combining T-S fuzzy gate fault tree and Bayesian network (BN is proposed. On the one hand, traditional fault tree method needs the logical relationship between events and probability value of events and can only represent the events with two states. T-S fuzzy gate fault tree method can solve these disadvantages but still has weaknesses in complex reasoning and only one-way reasoning. On the other hand, the BN is suitable for fault diagnosis of pumping station because of its powerful ability to deal with uncertain information. However, it is difficult to determine the structure and conditional probability tables of the BN. Therefore, the proposed method integrates the advantages of the two methods. Finally, the feasibility of the method is verified through a fault diagnosis model of the rotor in the pumping unit, the accuracy of the method is verified by comparing with the methods based on traditional Bayesian network and BP neural network, respectively, when the historical data is sufficient, and the results are more superior to the above two when the historical data is insufficient.

  5. Research on ISFLA-Based Optimal Control Strategy for the Coordinated Charging of EV Battery Swap Station

    Directory of Open Access Journals (Sweden)

    Xueliang Huang

    2013-01-01

    Full Text Available As an important component of the smart grid, electric vehicles (EVs could be a good measure against energy shortages and environmental pollution. A main way of energy supply to EVs is to swap battery from the swap station. Based on the characteristics of EV battery swap station, the coordinated charging optimal control strategy is investigated to smooth the load fluctuation. Shuffled frog leaping algorithm (SFLA is an optimization method inspired by the memetic evolution of a group of frogs when seeking food. An improved shuffled frog leaping algorithm (ISFLA with the reflecting method to deal with the boundary constraint is proposed to obtain the solution of the optimal control strategy for coordinated charging. Based on the daily load of a certain area, the numerical simulations including the comparison of PSO and ISFLA are carried out and the results show that the presented ISFLA can effectively lower the peak-valley difference and smooth the load profile with the faster convergence rate and higher convergence precision.

  6. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Rontogianni, S.; Konstantinou, K. I.; Lin, C.-H.

    2012-07-01

    The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004-2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF) earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7-8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1) HF event that occurred on 24 April 2006 at a depth of 5-6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  7. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    S. Rontogianni

    2012-07-01

    Full Text Available The Tatun Volcano Group (TVG is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004–2007 of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7–8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1 HF event that occurred on 24 April 2006 at a depth of 5–6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  8. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  9. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    rom 2005 to 2007, the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, conducted a study to describe the geologic framework, measure groundwater quality, characterize the groundwater-flow system, and describe the groundwater/surface-water interaction at the 60-acre Raleigh hydrogeologic research station (RHRS) located at the Neuse River Waste Water Treatment Plant in eastern Wake County, North Carolina. Previous studies have shown that the local groundwater quality of the surficial and bedrock aquifers at the RHRS had been affected by high levels of nutrients. Geologic, hydrologic, and water-quality data were collected from 3 coreholes, 12 wells, and 4 piezometers at 3 well clusters, as well as from 2 surface-water sites, 2 multiport piezometers, and 80 discrete locations in the streambed of the Neuse River. Data collected were used to evaluate the three primary zones of the Piedmont aquifer (regolith, transition zone, and fractured bedrock) and characterize the interaction of groundwater and surface water as a mechanism of nutrient transport to the Neuse River. A conceptual hydrogeologic cross section across the RHRS was constructed using new and existing data. Two previously unmapped north striking, nearly vertical diabase dikes intrude the granite beneath the site. Groundwater within the diabase dike appeared to be hydraulically isolated from the surrounding granite bedrock and regolith. A correlation exists between foliation and fracture orientation, with most fractures striking parallel to foliation. Flowmeter logging in two of the bedrock wells indicated that not all of the water-bearing fractures labeled as water bearing were hydraulically active, even when stressed by pumping. Groundwater levels measured in wells at the RHRS displayed climatic and seasonal trends, with elevated groundwater levels occurring during the late spring and declining to a low in the late fall. Vertical

  10. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  11. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    La Nave (southern flank of Mt. Etna, Italy; 1740m a.s.l.), in the framework of ASTRI, a flagship project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics (INAF). This offers the opportunity to test the use of a Cherenkov telescope for imaging volcanic structures. Starting from this know-how, we plan to develop a new prototype of Cherenkov detector with suitable characteristics for installation in the summit zone of Etna volcano (around 3000m a.s.l.).

  12. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  13. Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States). Center for Marine Resources and Environmental Technology (CMRET)

    2013-07-31

    A permanent observatory has been installed on the seafloor at Federal Lease Block, Mississippi Canyon 118 (MC118), northern Gulf of Mexico. Researched and designed by the Gulf of Mexico Hydrates Research Consortium (GOM-HRC) with the geological, geophysical, geochemical and biological characterization of in situ gas hydrates systems as the research goal, the site has been designated by the Bureau of Ocean Energy Management as a permanent Research Reserve where studies of hydrates and related ocean systems may take place continuously and cooperatively into the foreseeable future. The predominant seafloor feature at MC118 is a carbonate-hydrate complex, officially named Woolsey Mound for the founder of both the GOM-HRC and the concept of the permanent seafloor hydrates research facility, the late James Robert “Bob” Woolsey. As primary investigator of the overall project until his death in mid-2008, Woolsey provided key scientific input and served as chief administrator for the Monitoring Station/ Seafloor Observatory (MS-SFO). This final technical report presents highlights of research and accomplishments to date. Although not all projects reached the status originally envisioned, they are all either complete or positioned for completion at the earliest opportunity. All Department of Energy funds have been exhausted in this effort but, in addition, leveraged to great advantage with additional federal input to the project and matched efforts and resources. This report contains final reports on all subcontracts issued by the University of Mississippi, Administrators of the project, Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico, as well as status reports on the major components of the project. All subcontractors have fulfilled their primary obligations. Without continued funds designated for further project development, the Monitoring Station

  14. Elementary and Secondary Educational Services of Public Television Grantees: Highlights from the 1998 Station Activities Survey. CPB Research Notes, No. 116.

    Science.gov (United States)

    Corporation for Public Broadcasting, Washington, DC.

    This report is a summary of a variety of educational services offered by the Corporation for Public Broadcasting (CPB) supported television stations as reported in CPB's annual Station Activities Survey (1998). Highlights from the data include: 141 stations (80% of all CPB supported stations) provide educational services to elementary or secondary…

  15. Performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) and other hardware in the microgravity environment

    Science.gov (United States)

    Hogan, Robert P.; Dalton, Bonnie P.

    1991-01-01

    This paper discusses the performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) plus other associated hardware during the recent flight of Spacelab Life Sciences 1 (SLS-1). The RAHF was developed to provide proper housing (food, water, temperature control, lighting and waste management) for up to 24 rodents during flights on the Spacelab. The GPWS was designed to contain particulates and toxic chemicals generated during plant and animal handling and dissection/fixation activities during space flights. A history of the hardware development involves as well as the redesign activities prior to the actual flight are discussed.

  16. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  17. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    Science.gov (United States)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  18. ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

  19. Observations of rapid-fire event tremor at Lascar volcano, Chile

    Directory of Open Access Journals (Sweden)

    H. Rademacher

    1996-06-01

    Full Text Available During the Proyecto de Investigaciòn Sismològica de la Cordillera Occidental (PISCO '94 in the Atacama desert of Northern Chile, a continuously recording broadband seismic station was installed to the NW of the currently active volcano, Lascar. For the month of April, 1994, an additional network of three, short period, three-component stations was deployed around the volcano to help discriminate its seismic signals from other local seismicity. During the deployment, the volcanic activity at Lascar appeared to be limited mainly to the emission of steam and SO2. Tremor from Lascar is a random, «rapid-fire» series of events with a wide range of amplitudes and a quasi-fractal structure. The tremor is generated by an ensemble of independent elementary sources clustered in the volcanic edifice. In the short-term, the excitation of the sources fluctuates strongly, while the long-term power spectrum is very stationary.

  20. A search for the volcanomagnetic signal at Deception volcano (South Shetland I., Antarctica

    Directory of Open Access Journals (Sweden)

    J. M. Ibáñez

    1997-06-01

    Full Text Available After the increase in seismic activity detected during the 1991-1992 summer survey at Deception Island, the continuous measurement of total magnetic intensity was included among the different techniques used to monitor this active volcano. The Polish geomagnetic observatory Arctowski, located on King George Island, served as a reference station, and changes in the differences between the daily mean values at both stations were interpreted as indicators of volcanomagnetic effects at Deception. A magnetic station in continuous recording mode was also installed during the 1993-1994 and 1994-1995 surveys. During the latter, a second magnetometer was deployed on Deception Island, and a third one in the vicinity of the Spanish Antarctic Station on Livingston Island (at a distance of 35 km and was used as a reference station. The results from the first survey suggest that a small magma injection, responsible for the seismic re-activation, could produce a volcanomagnetic effect, detected as a slight change in the difference between Deception and Arctowski. On the other hand, a long term variation starting at that moment seems to indicate a thermomagnetic effect. However the short register period of only two stations do not allow the sources to be modelled. The future deployment of a magnetic array during the austral summer surveys, throughout the volcano, and of a permanent geomagnetic observatory at Livingston I. is aimed at further observations of magnetic transients of volcanic origin at Deception Island.

  1. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  2. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  3. Research and Applications of Chemical Sciences in Forestry: Proceedings of the 4th Southern Station Chemical Sciences Meeting

    Science.gov (United States)

    J.A. Vozzo; [Compiler

    1994-01-01

    This proceedings is the result of 65 scientists representing 34 facilities reported in 28 presentations. As titled, Research and Applications of Chemical Sciences in Forestry, the contributors represent academic, basic, and applied researchers from universities and U.S. Department of Agriculture. Their presence and experience represent a significant showing toward...

  4. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  5. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  6. EUROPEAN VOLCANOES' NIGHT: building a link between general public and volcanologists in a relaxed and welcoming setting

    Science.gov (United States)

    Calvo, David; González-Cárdenas, María E.; Baldrich, Laura; Solana, Carmen; Nave, Rosella; Calvari, Sonia; Harangi, Szabolcs; Chouraqui, Floriane; Dionis, Samara; Silva, Sonia V.; Forjaz, Victor H.; D'Auria, Luca; Pérez, Nemesio M.

    2017-04-01

    European Volcanoes' Night (www.volcanoesnight.com) is a "volcanic eruption" of art, culture, music, gastronomy, school activities, geotourism, exhibitions and scientific debates. The event aims to bring together members of the general public with scientists who work on the study of volcanoes, in order to meet and ask questions in a relaxed and welcoming setting. It is open to both locals and tourists who appreciate the beauty and power of this natural phenomena. This celebration gives attendees, and in particular young people, the opportunity to meet researchers in a relaxed and festive setting, which will feature many activities and which will be used to highlight the attractiveness of a career research on one of the most attractive natural phenomena; volcanoes. The 2016 European Volcanoes' Night was held at 16 different municipalities of Spain, France, Hungary, Italy, Portugal, United Kingdom and Cape Verde on September 30, 2016, coinciding with the celebration of "European Researchers' Night" held annually throughout Europe and neighbouring countries the last Friday of September. The spirit of the European VolcanoeśNight fits perfectly in the aim of the ERN, trying to close the gap between the scientific community and the rest of the society. In this case, volcanoes are the driving force of this event, celebrating the singularity of living on volcanoes, and how these affect our daily lives, our culture and our heritage. European VolcanoeśNight also celebrates volcano science, with avantgarde talks and presentations on different volcanic topics and becomes a meeting point for children discovering volcanoes as a pastime or a leisure topic, making this event a must for tourists and locals wherever has been held. At the end of 2016 European VolcanoeśNight, almost 150 activities were performed for thousands of spectators, a big success that confirms something as crucial as science as a communication issue, and as a tool to strengthen the ties between researchers

  7. Reflectometer end station for synchrotron calibrations of Advanced X-ray Astrophysics Facility flight optics and for spectrometric research applications

    International Nuclear Information System (INIS)

    Graessle, D.E.; Fitch, J.J.; Ingram, R.; Zhang Juda, J.; Blake, R.L.

    1995-01-01

    Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the M-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir N edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data

  8. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  9. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  10. Geochemical and Geophysical Signatures of Poas Volcano, Costa Rica

    Science.gov (United States)

    Martinez, M.; van Bergen, M.; Fernandez, E.; Takano, B.; Barboza, V.; Saenz, W.

    2007-05-01

    Among many research fields in volcanology, prediction of eruptions is the most important from the hazard- mitigation point of view. Most geophysicists have sought for the best physical parameters for this objective: various kinds of wave signals and geodesic data are two of such parameters. Being able to be remotely monitored gives them advantage over many other practical methods for volcano monitoring. On the other hand, increasing volcanic activity is always accompanied by mass transfer. The most swiftly-moving materials are volcanic gases which are the target geochemists have intensively studied although monitoring gases is rather tedious and limited for active volcanoes hosting crater lakes. A Japanese group lead by Bokuichiro Takano has recently developed an indirect method for monitoring gas injection into volcanic crater lakes. Polythionates are formed when SO2 and H2S are injected into the lake from subaqueous fumaroles. Such polythionates consist of chains of 4 to 6 sulphur atoms, the terminal ones of which are bonded with three oxygen atoms. The general formula for these anions is SxO62- (x= 4 to 6). Important to note is that SO2 input into the lake also depends upon the plumbing system of the volcanoes: conduits, cracks and hydrothermal reservoirs beneath the lake that usually differ from volcano to volcano. Despite such site-specific characters some general statements can be made on the behaviour of these chemical species. For example, at low volcanic activity S6O62- predominates while S4O62- and S5O62- become predominant with increasing SO2 that increases with volcanic activity. At higher SO2 input and high temperature polythionates disappear in the lake through interaction with aqueous SO2 (sulfitolysis). Thus, the ratios of the three polythionates or their absence serve as an indicator for various stages of volcanic activity. Monitoring polythionates is an independent method that can be compared with results from geophysical methods. However, it

  11. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  12. Recommendations regarding problems of research policy relating to the establishment and operation of atomic power stations in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This report, which was submitted by the Danish Planning Council for Research to the Parliamentary Committee on Scientific Research, is based on reports from the DANISH Atomic Energy Commission. and on a sub-committee appointed by the Planning Council, as well as on the comments of the Danish Research Council on these reports. The Planning Council submit that: (1) the question of the introduction and scope of Danish utilization of atomic energy should be considered as a link in setting up a total plan for energy policy elucidating the possibilities in the energy field from both aspects of supply and demand, (2) that there is a continuous interaction between energy policy and research policy in the subject field, (3) that the total resources for energy research and development should be considerably increased, (4) that investigations into the economy of atomic power should be intensified, and (5) that investigations of possibilities for long-term storage of radioactive waste in Denmark should be speeded up. Further, the Planning Council points out the need for research in areas such as (a) wind and solar energy, (b) the environmental impact of utilizing atomic power in relation to that of utilizing other forms of power, (c) economic and social effects of different forms of energy supply, as well as the problems of siting, decision taking and public information and participation and finally, (d) the utilization of the energy raw materials found in Greenland.

  13. Recommendations regarding problems of research policy relating to the establishment and operation of atomic power stations in Denmark

    International Nuclear Information System (INIS)

    1976-01-01

    This report, which was submitted by the Danish Planning Council for Research to the Parliamentary Committee on Scientific Research, is based on reports from the DANISH Atomic Energy Commission. and on a sub-committee appointed by the Planning Council, as well as on the comments of the Danish Research Council on these reports. The Planning Council submit that: 1) the question of the introduction and scope of Danish utilization of atomic energy should be considered as a link in setting up a total plan for energy policy elucidating the possibilities in the energy field from both aspects of supply and demand, 2) that there is a continuous interaction between energy policy and research policy in the subject field 3) that the total resources for energy research and development should be considerably increased, 4) that investigations into the economy of atomic power should be intensified, and 5) that investigations of possibilities for long-term storage of radioactive waste in Denmark should be speeded up. Further, the Planning Council points out the need for research in areas such as a) wind and solar energy, b) the environmental impact of utilizing atomic power in relation to that of utilizing other forms of power, c) economic and social effects of different forms of energy supply, as well as the problems of siting, decision taking and public information and participation and finally, d) the utilization of the energy raw materials found in Greenland. (B.P.)

  14. Volcanoes

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  15. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  16. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  17. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    Science.gov (United States)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  18. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  19. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  20. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    Science.gov (United States)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  1. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  2. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  3. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  4. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  5. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  6. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  7. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    Science.gov (United States)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  8. Volcanoes of the World: Reconfiguring a scientific database to meet new goals and expectations

    Science.gov (United States)

    Venzke, Edward; Andrews, Ben; Cottrell, Elizabeth

    2015-04-01

    The Smithsonian Global Volcanism Program's (GVP) database of Holocene volcanoes and eruptions, Volcanoes of the World (VOTW), originated in 1971, and was largely populated with content from the IAVCEI Catalog of Volcanoes of Active Volcanoes and some independent datasets. Volcanic activity reported by Smithsonian's Bulletin of the Global Volcanism Network and USGS/SI Weekly Activity Reports (and their predecessors), published research, and other varied sources has expanded the database significantly over the years. Three editions of the VOTW were published in book form, creating a catalog with new ways to display data that included regional directories, a gazetteer, and a 10,000-year chronology of eruptions. The widespread dissemination of the data in electronic media since the first GVP website in 1995 has created new challenges and opportunities for this unique collection of information. To better meet current and future goals and expectations, we have recently transitioned VOTW into a SQL Server database. This process included significant schema changes to the previous relational database, data auditing, and content review. We replaced a disparate, confusing, and changeable volcano numbering system with unique and permanent volcano numbers. We reconfigured structures for recording eruption data to allow greater flexibility in describing the complexity of observed activity, adding in the ability to distinguish episodes within eruptions (in time and space) and events (including dates) rather than characteristics that take place during an episode. We have added a reference link field in multiple tables to enable attribution of sources at finer levels of detail. We now store and connect synonyms and feature names in a more consistent manner, which will allow for morphological features to be given unique numbers and linked to specific eruptions or samples; if the designated overall volcano name is also a morphological feature, it is then also listed and described as

  9. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Science.gov (United States)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  10. Radon soil increases before volcano-tectonic earthquakes in Colombia

    International Nuclear Information System (INIS)

    Garzon, G.; Serna, D.; Diago, J.; Moran, C.

    2003-01-01

    Continuous studies of radon concentration changes in soils for the purpose of earthquake monitoring have been carried out in three colombian districts and in the edifices of Galeras and nevado del Ruiz volcanoes since 1995. In zones of active faulting have been measured radon soil emissions between 1000 and 2500 pCi/L. In an intersection of two active geological faults have been measured levels of 25 000 pCi/L. In the present work appears a compilation of examples of the registered anomalous radon emissions in several stations before earthquakes of tectonic character. Examples of registered radon increases before: (1) events of magnitudes between 2 and 4; (2) the occurrence of seismic swarms; and (3) the Quindio (Colombia) earthquake (M w = 6, 2) of January 1999, are described. A model of transport mechanism for the studied isotopes is presented. (orig.)

  11. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    Science.gov (United States)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.

  12. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    Science.gov (United States)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  13. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  14. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  15. Variability of IN measured with the Fast Ice Nucleus Chamber (FINCH) at the high altitude research station Jungfraujoch during wintertime 2013

    Science.gov (United States)

    Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Curtius, Joachim

    2014-05-01

    Ice nuclei (IN) are an important component of the atmospheric aerosol. Despite their low concentrations in the atmosphere, they have an influence on the formation of ice crystals in mixed-phase clouds and therefore on precipitation. The Fast Ice Nucleus CHamber (FINCH)1, a counter for ice nucleating particles developed at the Goethe University Frankfurt am Main allows long-term measurements of the IN number concentration. In FINCH the ice activation of the aerosol particles is achieved by mixing air flows with different temperature and humidity. The IN number concentration measurements at different meteorological conditions during the INUIT-JFJ campaign at the high altitude research station Jungfraujoch in Switzerland are presented and its variability are discussed. The good operational performance of the instrument allowed up to 10 hours of continuous measurements. Acknowledgment: This work was supported by the German Research Foundation, DFG Grant: BU 1432/3-2 BU 1432/4-1 in the framework of INUIT (FOR 1525) and SPP 1294 HALO. 1- Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H. (2008). The fast ice nucleus chamber finch. Atmospheric Research, 90:180-186.

  16. Fuel debris characterization and treatment technologies development for TEPCO's Fukushima Daiichi Nuclear Power Station. 2012 annual research and development report

    International Nuclear Information System (INIS)

    2014-03-01

    Since March 11, 2011, severe accidents occurred at Fukushima Daiichi Nuclear Power Station (1F NPS), the Government of Japan and Tokyo Electric Power Company (TEPCO) and all Japan's companies have been worked on the remediation. The first meeting of 'Government and TEPCO's Mid-to-Long Term Countermeasure Meeting' was held on December 16, 2011, and then' the Council for the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station' was established on February 8, 2013, and 19 research and development projects and Working team / Sub working team were launched. Japan Atomic Energy Agency (JAEA); Fukushima Project Teams in Nuclear Fuel Cycle Laboratories and Nuclear Science Research Institute are belonging to the projects of 'Fuel debris characterization (2-(3)-1)', 'Analysis of fuel debris (2-(3)-2)' and 'Treatment technology development of fuel debris (2-(3)-3)'. In the 2012 JFY, we carried out research and development on the 'Fuel debris characterization (2-(3)-1)' and 'Treatment technology development of fuel debris (2-(3)-3)', and obtained some results on the debris properties and debris treatment technologies. This document report annual research and development results of above two projects in 2012 JFY. In the Project of 'Fuel debris characterization (2-(3)-1)', the debris chemical form, phase state and composition were estimated by thermodynamic calculation with referring sever accident code results and the fuel debris properties which needed for developing the methods/devices for defueling was identified with information of Three Mile Island and sever accident study. As for investigation of reaction and products specific to 1F accident, fundamental data on the debris such as mechanical properties i.e. hardness, and effects of sea water, B 4 C, ratio of Zr content and O/M, and thermal properties as melting points, thermal conductivity, etc. were obtained by

  17. Evaluation of the Performance of ClimGen and LARS-WG models in generating rainfall and temperature time series in rainfed research station of Sisab, Northern Khorasan

    Directory of Open Access Journals (Sweden)

    najmeh khalili

    2016-10-01

    Full Text Available Introduction:Many existing results on water and agriculture researches require long-term statistical climate data, while practically; the available collected data in synoptic stations are quite short. Therefore, the required daily climate data should be generated based on the limited available data. For this purpose, weather generators can be used to enlarge the data length. Among the common weather generators, two models are more common: LARS-WG and ClimGen. Different studies have shown that these two models have different results in different regions and climates. Therefore, the output results of these two methods should be validated based on the climate and weather conditions of the study region. Materials and Methods:The Sisab station is 35 KM away from Bojnord city in Northern Khorasan. This station was established in 1366 and afterwards, the meteorological data including precipitation data are regularly collected. Geographical coordination of this station is 37º 25׳ N and 57º 38׳ E, and the elevation is 1359 meter. The climate in this region is dry and cold under Emberge and semi-dry under Demarton Methods. In this research, LARG-WG model, version 5.5, and ClimGen model, version 4.4, were used to generate 500 data sample for precipitation and temperature time series. The performance of these two models, were evaluated using RMSE, MAE, and CD over the 30 years collected data and their corresponding generated data. Also, to compare the statistical similarity of the generated data with the collected data, t-student, F, and X2 tests were used. With these tests, the similarity of 16 statistical characteristics of the generated data and the collected data has been investigated in the level of confidence 95%. Results and Discussion:This study showed that LARS-WG model can better generate precipitation data in terms of statistical error criteria. RMSE and MAE for the generated data by LAR-WG were less than ClimGen model while the CD value of

  18. Application of the k{sub 0}-INAA method for analysis of biological samples at the pneumatic station of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, Daniel C.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: dcpuerta@hotmail.com, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute (JSI), Ljubljana, LJU (Slovenia). Department of Environmental Sciences

    2013-07-01

    As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in biological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by the International Atomic Energy Agency (IAEA). The elements Al, Ba, Br, Na, K, Mn, Mg, Sr and V were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 4.5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the 'bare triple-monitor' method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0.1%Au alloy and high purity zirconium comparators were used. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials NIST SRM 1547 Peach Leaves, INCT-MPH-2 Mixed Polish Herbs and NIST SRM 1573a Tomato Leaves. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors (bias, %) less than 30% for most elements. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The E{sub n}-number showed that all results, except Na in NIST SRM 1547 and NIST SRM 1573a and Al in INCT-MPH-2, were within 95% confidence interval. (author)

  19. k{sub 0}-INAA method at the pneumatic station of the IEA-R1 nuclear research reactor. Application to geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Mariano, Davi B.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: davimariano@usp.br, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There is a significant number of analytically important elements, when geological samples are concerned, whose activation products are short-lived (seconds to minutes) or medium-lived radioisotopes (minutes to hours). As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in geological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by The International Atomic Energy Agency (IAEA). The elements Al, Dy, Eu, Na, K, Mn, Mg, Sr, V and Ti were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the -bare triple-monitor- method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0,1% Au alloy, high purity zirconium, Ni and Lu comparators were irradiated. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials basalt BE-N (IWG-GIT), basalt JB- 1 (GSJ), andesite AGV-1 (USGS), granite GS-N (IWG-GIT), SOIL-7 (IAEA) and sediment Buffalo River Sediment (NIST-BRS-8704), which represent different geological matrices. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors less than 10% for most elements. (author)

  20. Nitrogen–use efficiency in different vegetation type at Cikaniki Research Station, Halimun-Salak Mountain National Park, West Java

    Directory of Open Access Journals (Sweden)

    SUHARNO

    2007-10-01

    Full Text Available A research about nitrogen–use efficiency (NUE and trees identification was conducted at different vegetation type at Cikaniki, Halimun-Salak National Park, West Java. Plot quadrate methods (20 x 50 m was used to analyze trees vegetation and Kjeldahl methods was used to analyze leaf nitrogen. The width and length of the leaf was also measured to obtain the leaf surface area. The result showed that there are 61 individual trees which consisted of 24 species was identified. The species which have 5 highest important value are Altingia excelsa (64,657, Castanopsis javanica (39,698, Platea latifolia (27,684, Garcinia rostrata (21,151, and Schima walichii (16,049. Futhermore Eugenia lineata (13,967, Melanochyla caesa (12,241, Quercus lineata (10,766, platea excelsa (10,766 have lower important value. Other trees have important value less than 10. Morphological and nitrogen content analyze were done on 4 species : Quercus lineata, G. rostrata, A. excelsa, and E. lineata. Among them, Quercus lineata has highest specific leaf area (SLA (0,01153, followed by G. rostrata (0,00821, A. excelsa (0,00579, and E. lineata (0,00984 g/cm2. The highest number of stomata was found on A. excelsa (85,10/mm2, followed by E. lineata (74,40/mm2, Q. lineata (53,70/mm2, and G. rostrata (18,4 /mm2. The emergent species (A. excelsa and Q. lineata have higher nitrogen content than the underlayer species (G. rostrata and E. lineata. A. excelsa have highest nitrogen use efficiency (28,19% compare to E. lineata (23,81% , Q. lineata (19,09%, and G. rostrata (14,87%. Although not significant, emergen species have higher NUE than underlayer species.

  1. Using Bayesian Belief Networks To Assess Volcano State from Multiple Monitoring Timeseries And Other Evidence

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2013-04-01

    When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard

  2. Implications Of Soil Resistivity Measurements Using The Electrical Resistivity Method A Case Study Of A Maize Farm Under Different Soil Preparation Modes At KNUST Agricultural Research Station Kumasi

    Directory of Open Access Journals (Sweden)

    Jakalia

    2015-01-01

    Full Text Available Abstract Continuous vertical electrical sounding CVES technique was used to investigate the soil moisture content of a maize farm at the Kwame Nkrumah University of Science and Technology KNUST Agricultural Research Station ARS Kumasi Ghana. The soils of the maize farm were categorized into four different land preparation modes ploughed-harrowed ploughed hoed and no-till plot. Time-lapse measurements with CVES was carried out using the multi-electrode Wenner array to investigate soil moisture variation with the help of the ABEM Terrameter SAS 4000 resistivity meter. The results showed a heterogeneous distribution of soil moisture content both spatially and temporally. Most of the water available for plants uptake was within a depth of 0.20 0.40 m which coincided with the root zones of the maize crops. In addition the no-till plot was found to conserve more moisture during dry weather conditions than the rest of the plots. The research shows that CVES technique is applicable in monitoring shallow soil water content in the field and the results obtained could be used to optimize irrigation scheduling and to assess the potential for variable-rate irrigation.

  3. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  4. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  5. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  6. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  7. International Space Station exhibit

    Science.gov (United States)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  8. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  9. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  10. Geophysical data collection using an interactive personal computer system. Part 1. ; Experimental monitoring of Suwanosejima volcano

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M. (Kyoto Univerdity, Kyoto (Japan). Disaster Prevention Reserach Institute)

    1991-10-15

    In the article, a computer-communication system was developed in order to collect geophysical data from remote volcanos via a public telephpne network. This system is composed of a host presonal computer at an observatory and several personal computers as terminals at remote stations. Each terminal acquires geophysical data, such as seismic, intrasonic, and ground deformation date. These gara are stored in the terminals temporarily, and transmitted to the host computer upon command from host computer. Experimental monitoring was conducted between Sakurajima Volcanological Observatory and several statins in the Satsunan Islands and southern Kyushu. The seismic and eruptive activities of Suwanosejima volcano were monitored by this system. Consequently, earthquakes and air-shocks accompanied by the explosive activity were observed. B-type earthquakes occurred prio to the relatively prolonged eruptive activity. Intermittent occurrences of volcanic tremors were also clearly recognized from the change in mean amplitubes of seismic waves. 7 refs., 10 figs., 2 tabs.

  11. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    Science.gov (United States)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  12. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  13. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    Science.gov (United States)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  14. Volcano Trial Case on GEP: Systematically processing EO data

    OpenAIRE

    Baumann, Andreas Bruno Graziano

    2017-01-01

    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  15. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  16. Soil radon response around an active volcano

    International Nuclear Information System (INIS)

    Segovia, N.; Valdes, C.; Pena, P.; Mena, M.; Tamez, E.

    2001-01-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  17. Episodic inflation of Akutan volcano, Alaska revealed from GPS and InSAR time series

    Science.gov (United States)

    DeGrandpre, K.; Lu, Z.; Wang, T.

    2016-12-01

    Akutan volcano is one of the most active volcanoes located long the Aleutian arc. At least 27 eruptions have been noted since 1790 and an intense swarm of volcano-tectonic earthquakes occurred in 1996. Surface deformation after the 1996 earthquake sequence has been studied using GPS and Interferometric Synthetic Aperture Radar (InSAR) separately, yet models created from these datasets require different mechanisms to produce the observed surface deformation: an inflating Mogi source results in the best approximation of displacement observed from GPS data, whereas an opening dyke is the best fit to deformation measured from InSAR. A recent study using seismic data revealed complex magmatic structures beneath the caldera, suggesting that the surface deformation may reflect more complicated mechanisms that cannot be estimated using one type of data alone. Here we integrate the surface deformation measured from GPS and InSAR to better understand the magma plumbing system beneath Akutan volcano. GPS time-series at 12 stations from 2006 to 2016 were analyzed, and two transient episodes of inflation in 2008 and 2014 were detected. These GPS stations are, however, too sparse to reveal the spatial distribution of the surface deformation. In order to better define the spatial extent of this inflation four tracks of Envisat data acquired during 2003-2010 and one track of TerraSAR-X data acquired from 2010 to 2016 were processed to produce high-resolution maps of surface deformation. These deformation maps show a consistently uplifting area on the northwestern flank of the volcano. We inverted for the source parameters required to produce the inflation using GPS, InSAR, and a dataset of GPS and InSAR measurements combined, to find that a deep Mogi source below a shallow dyke fit these datasets best. From the TerraSAR-X data, we were also able to measure the subsidence inside the summit caldera due to fumarole activity to be as high as 10 mm/yr. The complex spatial and temporal

  18. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  19. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  20. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  1. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  2. Soil scientific survey of 220/38 kV cable circuits of the power station 'Eemscentrale' in the Dutch province Groningen; Theoretical backgrounds, research method and results

    International Nuclear Information System (INIS)

    Langevoord, J.; Van Loon, L.J.M.

    1995-01-01

    Recently, five underground cable circuits were completed at the site of the EPON (an energy utility for the north-eastern part of the Netherlands) title power station, consisting of two 220 kV and two 380 kV connections with a total length of 24 km. Soil scientific in situ investigations and laboratory tests were carried out in advance to collect data, on the basis of which thermal resistivity and critical thermal conditions could be calculated. It was demonstrated by the calculated results that no de-hydrated zones occurred around the cable for design criteria conditions. Optimal cable bed conditions could be achieved, using some of the sand excavated from the trench. In this article, attention will be paid to theoretical aspects of heat transfer of cables for underground electricity transport, the research method of the soil scientific survey, and the results of the survey for the design of the cable connection, to be made by NKF (cable manufacturer) and for the final execution of the cable design. In the second article, to be published in a next issue of this magazine, attention will be paid to soil scientific marginal conditions and soil scientific supervision during the realization. 9 figs., 6 tabs., 9 refs

  3. Independent Review of U.S. and Russian Probabilistic Risk Assessments for the International Space Station Mini Research Module #2 Micrometeoroid and Orbital Debris Risk

    Science.gov (United States)

    Squire, Michael D.

    2011-01-01

    The Mini-Research Module-2 (MRM-2), a Russian module on the International Space Station, does not meet its requirements for micrometeoroid and orbital debris probability of no penetration (PNP). To document this condition, the primary Russian Federal Space Agency ISS contractor, S.P. Korolev Rocket and Space Corporation-Energia (RSC-E), submitted an ISS non-compliance report (NCR) which was presented at the 5R Stage Operations Readiness Review (SORR) in October 2009. In the NCR, RSC-E argued for waiving the PNP requirement based on several factors, one of which was the risk of catastrophic failure was acceptably low at 1 in 11,100. However, NASA independently performed an assessment of the catastrophic risk resulting in a value of 1 in 1380 and believed that the risk at that level was unacceptable. The NASA Engineering and Safety Center was requested to evaluate the two competing catastrophic risk values and determine which was more accurate. This document contains the outcome of the assessment.

  4. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  5. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  6. Listening carefully. Unique observations of harmonic tremor at Lascar volcano, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Hellweg, M. [Stuttgart Univ., Stuttgart (Germany). Inst. fuer Geophysik

    1999-06-01

    During the deployment of Proyecto de Investigacion Sismologica de la Cordillera Occidental 94 (PISCO '94) in the Atacama Desert of Northern Chile, a broadband seismic station and a network od three short-period three-component stations were installed around the active volcano Lascar (Chile). The paper analyzes the resulting data set, which include a sequence of harmonic tremor with a fundamental at a about 0.63 Hz and up to 30 overtones lasting 18 h. Power spectra and spectrograms of Lascar's harmonic tremor from the various stations demonstrate that the frequencies recorded cannot be explained as path effects, and must therefore be attributed to mechanisms at or near the source.

  7. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  8. Volcanology and volcano sedimentology of Sahand region

    International Nuclear Information System (INIS)

    Moine Vaziri, H.; Amine Sobhani, E.

    1977-01-01

    There was no volcano in Precambrian and Mesozoic eras in Iran, but in most place of Iran during the next eras volcanic rocks with green series and Dacites were seen. By the recent survey in Sahand mountain in NW of Iran volcanography, determination of rocks and the age of layers were estimated. The deposits of Precambrian as sediment rocks are also seen in the same area. All of volcanic periods in this place were studied; their extrusive rocks, their petrography and the result of their analytical chemistry were discussed. Finally volcano sedimentology of Sahand mountain were described

  9. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  10. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  11. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    Science.gov (United States)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  12. Determination and uncertainty of moment tensors for microearthquakes at Okmok Volcano, Alaska

    Czech Academy of Sciences Publication Activity Database

    Pesicek, J. D.; Šílený, Jan; Prejean, S. G.; Thurber, C. H.

    2012-01-01

    Roč. 190, č. 3 (2012), s. 1689-1709 ISSN 0956-540X R&D Projects: GA ČR GAP210/12/2235 Institutional research plan: CEZ:AV0Z30120515 Keywords : earthquake source observations * volcano seismology * body waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.853, year: 2012

  13. The Krakatau volcano 125 years after the catastrophic eruption (August 27, 1883)

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Kozák, Jan; Vaněk, Jiří; Hanuš, Václav

    2008-01-01

    Roč. 52, č. 3 (2008), s. 449-454 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : Krakatau volcano * 1883 eruption * anniversary Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008

  14. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  15. Oceanographic profile biochemical measurements collected using a net from the ARLIS II (ARCTIC RESEARCH LABORATORY ICE STATION) in the Arctic in 1964 (NODC Accession 0000978)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirty-nine plankton samples were collected at the Drift Station "Arlis II" at the north of Greenland in the Arctic Ocean during the period from June to December,...

  16. Recent Inflation of Kilauea Volcano

    Science.gov (United States)

    Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.

    2006-12-01

    Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes

  17. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  18. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  19. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  20. Of volcanoes, saints, trash, and frogs

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    , at the same time as political elections and economic hardship. During one year of ethnographic fieldwork volcanoes, saints, trash and frogs were among the nonhuman entities referred to in conversations and engaged with when responding to the changes that trouble the world and everyday life of Arequipans...

  1. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    Science.gov (United States)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  2. False Color Image of Volcano Sapas Mons

    Science.gov (United States)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  3. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  4. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    Science.gov (United States)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  5. Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2015-09-01

    Full Text Available Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol–cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011 was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l. focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of −8 to 5 °C. With a box model the sensitivity of the effective peak supersaturation (SSpeak, an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases and at higher frequencies, the maximum SSpeak decreases again.

  6. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    Science.gov (United States)

    Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard

    2011-07-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

  7. Concentrations of higher dicarboxylic acids C5–C13 in fresh snow samples collected at the High Alpine Research Station Jungfraujoch during CLACE 5 and 6

    Directory of Open Access Journals (Sweden)

    K. Sieg

    2009-03-01

    Full Text Available Samples of freshly fallen snow were collected at the high alpine research station Jungfraujoch (Switzerland in February and March 2006 and 2007, during the Cloud and Aerosol Characterization Experiments (CLACE 5 and 6. In this study a new technique has been developed and demonstrated for the measurement of organic acids in fresh snow. The melted snow samples were subjected to solid phase extraction and resulting solutions analysed for organic acids by HPLC-MS-TOF using negative electrospray ionization. A series of linear dicarboxylic acids from C5 to C13 and phthalic acid, were identified and quantified. In several samples the biogenic acid pinonic acid was also observed. In fresh snow the median concentration of the most abundant acid, adipic acid, was 0.69 μg L−1 in 2006 and 0.70 μg L−1 in 2007. Glutaric acid was the second most abundant dicarboxylic acid found with median values of 0.46 μg L−1 in 2006 and 0.61 μg L−1 in 2007, while the aromatic acid phthalic acid showed a median concentration of 0.34 μg L−1 in 2006 and 0.45 μg L−1 in 2007. The concentrations in the samples from various snowfall events varied significantly, and were found to be dependent on the back trajectory of the air mass arriving at Jungfraujoch. Air masses of marine origin showed the lowest concentrations of acids whereas the highest concentrations were measured when the air mass was strongly influenced by boundary layer air.

  8. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    Science.gov (United States)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-07-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  9. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Science.gov (United States)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to

  10. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    Science.gov (United States)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  11. Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea

    Science.gov (United States)

    Drews, M.; Schmaljohann, R.; Wallmann, K.

    2003-04-01

    We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride

  12. Rockfalls, Avalanches and Landslides at Augustine Volcano, 2003-2006

    Science.gov (United States)

    Deroin, N.; McNutt, S. R.; Reyes, C.; Sentman, D. D.

    2006-12-01

    Rockfalls, avalanches, and landslides have been frequently recorded in seismic data at Augustine Volcano for many years. Typical years, such as 2003 or 2004, had several dozen such events that were strong enough to trigger the automatic event detection system. Seventeen rockfalls occurred in 2003, mostly in late summer when air temperatures were highest. In 2004, 28 events occurred -- also in late summer. Typical events lasted about 30 sec, had frequencies greater than 6 Hz, and were well recorded on summit stations, suggesting that they were rockfalls from the steep summit dome into the adjacent moat area. In 2005, both the rate and the occurrence pattern changed. Rockfall activity began in April 2006 and continued through fall and early winter, after peaking in May and June. Overall there were more than 340 rockfalls in 2005, including both small and large events. The 2005 rockfall activity increased at nearly the same time as both earthquake activity and ground heating, suggesting that higher temperatures and steaming contributed to mechanical instabilities of the surface dome rocks. We examined relative amplitudes and frequency contents at station pairs to determine relative locations of the rockfalls by assuming both higher amplitudes and higher frequencies are associated with events closer to a given station. When a low-light camera was installed at Augustine in January 2006, we were able to confirm these relations because of the clear correlation between rockfalls, debris flows, and pyroclastic flows to the east (towards the camera) and higher amplitudes and frequencies at east station AUE. Other events had higher amplitudes and frequencies at west station AUW with no material seen moving eastward. Still other events moved towards the north, with amplitudes being nearly equivalent at both AUE and AUW. Compound events also occurred, with mass flow in several directions simultaneously. As the new steep-sided and unstable dome grew in spring 2006, rockfalls and

  13. Pre-Mission Communication And Awareness Stratgies For Positive Group Functioning And Development: Analysis Of A Crew At The Mars Desert Research Station (MDRS) In Utah, USA

    Science.gov (United States)

    Allner, Matthew; Bishop, Sheryl; Gushin, Vadim; McKay, Chris; Rygalov, Vadim; Allner, Matthew

    Introduction: Psychosocial group functioning has become an increased international focus of many space faring nations due to the recent shift in focus of colonizing the Moon and then preparing to travel to Mars and beyond. Purpose: This study investigates the effects of pre-mission communication and awareness strategies for positive group functioning in extreme environments as well as suggestive countermeasures to maintain positive group dynamic development in isolated and confined extreme (ICE) environments. The study is supported by both preand intra-mission management efforts, which included crewmember assessments at various mission phases (pre-, intra-, and end-mission). Methods: A six person heterogeneous American crew conducted a Mars simulation mission at the Mars Society's Mars Desert Research Station in Utah, USA in 2006 as part of a new NASA training program called Spaceward Bound. Participants were administered assessments of personality, personal and group identity/functioning, subjective stress, coping, and subjective motivation. All participants were also provided information (pre-mission) regarding past research and tendencies of group functioning, stressors, cognitive functioning, and mission mistakes from a mission phase analysis approach, to see if this would be a factor in positive group dynamic development. Results: Data collected and obtained by both assessment and journaling methods were both consistent and indicative of positive personalities desirable of expedition crews. Assessment data further indicated positive group cohesion and group interactions, along with supportive and strong leadership, all which led to positive personal and group experiences for crewmembers. Crewmembers all displayed low levels of competition while still reporting high motivation and satisfaction for the group dynamic development and the mission objectives that were completed. Journals kept by the crew psychologist indicated that crewmembers all felt that the pre

  14. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    Science.gov (United States)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    winter 2008 and summer 2010. Moreover, the velocities and temperature contrast between the fracture and the atmosphere were close to the ones recorded at Miyakejima. Finally, the temperature profiles realized across the fractures and confirmed by the infrared thermography data allowed us to define the convective patterns. This study represents the first detection and characterization of air convection at a seasonal scale within fractures on volcanoes. It constitutes a preliminary step to further investigations dedicated to the understanding of the perturbation of such systems before eruptions. [1] Antoine R., Baratoux D., Rabinowicz M., Fontaine F.J., Bachèlery P., Staudacher T., Saracco G., Finizola A., Thermal infrared images analysis of a quiescent cone on Piton de La Fournaise volcano: Evidence for convective air flow within an unconsolidated soil, Journal of Volcanology and Geothermal Research, Volume 183, Issues 3-4, 2009, Pages 228-244.

  15. Guidelines for Learning Stations.

    Science.gov (United States)

    Fehrle, Carl C.; Schulz, Jolene

    Guidelines for designing and planning learning stations for pupils at the elementary grade level include suggestions on how to develop a station that will be successful in meeting the learners' needs. Instructions for the use of tapes at a station and matching pupils with stations are given, as are guidelines on classroom arrangement and record…

  16. Listening carefully: unique observations of harmonic tremor at Lascar volcano, Chile

    Directory of Open Access Journals (Sweden)

    M. Hellweg

    1999-06-01

    Full Text Available During the deployment of Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO'94 in the Atacama Desert of Northern Chile, a broadband seismic station and a network of three short-period three-component stations were installed around the active volcano Lascar. The resulting data set includes a sequence of harmonic tremor with a fundamental at about 0.63 Hz and up to 30 overtones lasting 18 h. Power spectra and spectrograms of Lascar's harmonic tremor from the various stations demonstrate that the frequencies recorded cannot be explained as path effects, and must therefore be attributed to mechanisms at or near the source. The polarization of the wavefield cannot simply be explained as the propagation of any of the classical types of seismic waves, thus we apply new methods to the data to investigate the narrowband signals of the harmonic peaks. While the amplitude characteristics of these signals cannot be correlated across the network, frequency characteristics of the harmonic wavefield are consistent across stations and components. The tremor's fundamental frequency changes at the same time at all stations, indicating that such changes must be caused at the source. In addition, a change in the frequency of the fundamental, f1, is reflected exactly in the frequencies of the overtones, nf1 and peak-broadening in the power spectrum is the result of shifts in the fundamental frequency. It is therefore unlikely that the overtones are produced as resonances. This spectral behavior indicates rather that the source is some resonance at a single frequency within the magma, magma/gas or gas parts of the volcano whose amplitude exceeds the range for which the assumptions of linear acoustics are valid.

  17. Properties of Repetitive Long-Period Seismicity at Villarrica Volcano, Chile

    Science.gov (United States)

    Richardson, J.; Waite, G. P.; Palma, J.; Johnson, J. B.

    2011-12-01

    Villarrica Volcano, Chile hosts a persistent lava lake and is characterized by degassing and long-period seismicity. In order to better understand the relationship between outgassing and seismicity, we recorded broadband seismic and acoustic data along with high-rate SO2 emission data. We used both a densely-spaced linear array deployed on the northern flank of Villarrica, during the austral summer of 2011, and a wider aperture array of stations distributed around the volcano that was active in the austral summer of 2010. Both deployments consisted of three-component broadband stations and were augmented with broadband infrasound sensors. Of particular interests are repetitive, ~1 Hz seismic and coincident infrasound signals that occurred approximately every 2 minutes. Because these events are typically very low amplitude, we used a matched filter approach to identify them. We windowed several high-amplitude records of these events from broadband seismic stations near the vent. The record section of each event served as a template to compare with the entire dataset by cross-correlation. This approach identified ~20,000 nearly identical events during the ~7 day deployment of the linear array, which were otherwise difficult to identify in the raw records. Assuming that all of the events that we identified have identical source mechanisms and depths, we stack the large suite of events to produce low-noise records and particle motions at receivers farther than 5 km from the vent. We find that the records from stations near the edifice are dominated by tangential particle motion, suggesting the influence of near-field components. Correlation of these data with broadband acoustic data collected at the summit suggest that these repeatable seismic processes are linked to acoustic emissions, probably due to gas bubbles bursting at the magma free surface, as no eruptive products besides gas were being emitted by the volcano during the instrument deployment. The acoustic

  18. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    Science.gov (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  19. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  20. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    Science.gov (United States)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  1. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  2. Multi-disciplinary Monitoring of the 2014 Eruption of Fogo Volcano, Cape Verde

    Science.gov (United States)

    Fernandes, R. M. S.; Faria, B. V. E.

    2015-12-01

    The Fogo volcano, located in the Cape Verde Archipelago (offshore Western Africa), is a complete stratovolcano system. It is the most recent expression of the Cape Verde hotspot, that has formed the archipelago. The summit reaches ~2830m above sea level, and raises 1100m above Chã das Caldeiras, an almost flat circular area. The last eruption of Fogo started on November 23, 2014 (~10:00UTC), after 19 years of inactivity. C4G, a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, collaborated immediately with INMG, the Cape Verdean Meteorological and Geophysical Institut with the goal of complementing the permanent geophysical monitoring network in operation on Fogo island. The INMG permanent network is composed of seven seismographic stations and three tiltmeter stations, with real-time data transmitted. On the basis of increased pre-event activity (which started in October 2014), INMG issued a formal alert of an impending eruption to the Civil Protection Agency, about 24 hours before the onset of the eruption. Although the eruption caused no casualties or personal injuries due to the warnings issued, the lava expelled by the eruption (which last until the end of January) destroyed the two main villages in the caldera (~1000 inhabitants) and covered vast areas of agricultural land, causing very large economic losses and an uncertain future of the local populations. The C4G team installed a network of seven GNSS receivers and nine seismometers, distributed by the entire island. The data collection started on 28th November 2014, and continued until the end of January 2015. The mission also included a new detailed gravimetric survey of the island, the acquisition of geological samples, and the analysis of the air quality during the eruption. We present here a detailed description of the monitoring efforts carried out during the eruption as well as initial results of the analysis of the

  3. Characterizing Microseismicity at the Newberry Volcano Geothermal Site using PageRank

    Science.gov (United States)

    Aguiar, A. C.; Myers, S. C.

    2015-12-01

    The Newberry Volcano, within the Deschutes National Forest in Oregon, has been designated as a candidate site for the Department of Energy's Frontier Observatory for Research in Geothermal Energy (FORGE) program. This site was stimulated using high-pressure fluid injection during the fall of 2012, which generated several hundred microseismic events. Exploring the spatial and temporal development of microseismicity is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We analyze Newberry seismicity using both surface and borehole seismometers from the AltaRock and LLNL seismic networks. For our analysis we adapt PageRank, Google's initial search algorithm, to evaluate microseismicity during the 2012 stimulation. PageRank is a measure of connectivity, where higher ranking represents highly connected windows. In seismic applications connectivity is measured by the cross correlation of 2 time windows recorded on a common seismic station and channel. Aguiar and Beroza (2014) used PageRank based on cross correlation to detect low-frequency earthquakes, which are highly repetitive but difficult to detect. We expand on this application by using PageRank to define signal-correlation topology for micro-earthquakes, including the identification of signals that are connected to the largest number of other signals. We then use this information to create signal families and compare PageRank families to the spatial and temporal proximity of associated earthquakes. Studying signal PageRank will potentially allow us to efficiently group earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  4. Monitoring of the Nirano Mud Volcanoes Regional Natural Reserve (North Italy using Unmanned Aerial Vehicles and Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Tommaso Santagata

    2017-09-01

    Full Text Available In the last years, measurement instruments and techniques for three-dimensional mapping as Terrestrial Laser Scanning (TLS and photogrammetry from Unmanned Aerial Vehicles (UAV are being increasingly used to monitor topographic changes on particular geological features such as volcanic areas. In addition, topographic instruments such as Total Station Theodolite (TST and GPS receivers can be used to obtain precise elevation and coordinate position data measuring fixed points both inside and outside the area interested by volcanic activity. In this study, the integration of these instruments has helped to obtain several types of data to monitor both the variations in heights of extrusive edifices within the mud volcano field of the Nirano Regional Natural Reserve (Northern Italy, as well as to study the mechanism of micro-fracturing and the evolution of mud flows and volcanic cones with very high accuracy by 3D point clouds surface analysis and digitization. The large amount of data detected were also analysed to derive morphological information about mud-cracks and surface roughness. This contribution is focused on methods and analysis performed using measurement instruments as TLS and UAV to study and monitoring the main volcanic complexes of the Nirano Natural Reserve as part of a research project, which also involves other studies addressing gases and acoustic measurements, mineralogical and paleontological analysis, organized by the University of Modena and Reggio Emilia in collaboration with the Municipality of Fiorano Modenese.

  5. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters

    International Nuclear Information System (INIS)

    Nyeki, S.; Baltensperger, U.; Jost, D.T.; Weingartner, E.; Colbeck, I.

    1997-01-01

    Aerosol physical parameter measurements are reported here for the first full annual set of data from the Jungfraujoch site. Comparison to NOAA background and regional stations indicate that the site may be designated as 'clean continental' during the free tropospheric influenced period 03:00 -09:00. (author) figs., tab., refs

  6. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters

    Energy Technology Data Exchange (ETDEWEB)

    Nyeki, S.; Baltensperger, U.; Jost, D.T.; Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Colbeck, I. [Essex Univ., Colchester (United Kingdom)

    1997-09-01

    Aerosol physical parameter measurements are reported here for the first full annual set of data from the Jungfraujoch site. Comparison to NOAA background and regional stations indicate that the site may be designated as `clean continental` during the free tropospheric influenced period 03:00 -09:00. (author) figs., tab., refs.

  7. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Science.gov (United States)

    Lacher, Larissa; Lohmann, Ulrike; Boose, Yvonne; Zipori, Assaf; Herrmann, Erik; Bukowiecki, Nicolas; Steinbacher, Martin; Kanji, Zamin A.

    2017-12-01

    In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L-1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L-1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L-1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L-1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other

  8. Atmospheric trace elements and Pb isotopes at an offshore site, Ieodo Ocean Research Station, in the East China Sea from June to October 2015

    Science.gov (United States)

    Lee, S.; Han, C.; Shin, D.; Hur, S. D.; Jun, S. J.; Kim, Y. T.; Hong, S.

    2016-12-01

    East Asia, especially China, has become a major anthropogenic source region of trace elements due to the rapid industrialization and urbanization in the past decades. Numerous studies reported that anthropogenic pollutants from East Asia are transported by westerly winds during winter to spring across the Pacific to North America and beyond. Here we report elemental concentrations and Pb isotope ratios in airborne particles from Ieodo Ocean Research Station (IORS) located in the middle of the East China Sea (32.07o N, 125.10o E). A total of 30 aerosol samples (PM2.5-10) were collected between 18 June and 30 October 2015 and analyzed for trace elements (Zn, As, Mo, Cd, Sb, Ba, Tl, and Pb) and Pb isotopes using ICP-SFMS and TIMS, respectively. The mean concentrations of trace elements ranged from 0.06 ng m-3 for Tl to 10.1 ng m-3 for Zn. These values are much lower (up to several orders) than those at unban sites in East Asia, confirming a low level of air pollution at IORS due to the remoteness of the site from major sources of anthropogenic pollutants. On the other hand, the mean crustal enrichment factors, calculated using Ba as a conservative crustal element, are much higher than unity (84 for Tl, 100 for Mo, 140 for Pb, 166 for Zn, 262 for As, 526 for Cd, and 570 for Sb, respectively), indicating that these elements are of anthropogenic origin. Combining the Pb isotope ratios and the HYSPLIT model 5-day backward trajectory analysis, we have identified episodic long-range transport of air pollutants from diverse source regions of China, Korea, Japan and Taiwan to the site in summer (June to August). By comparison, an increasing long-range transport of pollution from China was observed in autumn (September and October). Finally, our study shows that IORS is an ideal background site for monitoring levels of concentrations and source origins of atmospheric trace elements in East Asia.

  9. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  10. Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA

    Science.gov (United States)

    Flinders, Ashton; Shen, Yang

    2015-04-01

    Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.

  11. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Science.gov (United States)

    Coratza, Paola; Castaldini, Doriano

    2016-04-01

    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  12. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall; McCausland, Wendy

    2016-01-01

    , the intruded magma volume can be quickly and easily estimated with few short-period seismic stations. Notable cases in which distal VT events preceded eruptions at long-dormant volcanoes include: Nevado del Ruiz (1984-1985), Pinatubo (1991), Unzen (1989-1995), Soufriere Hills (1995), Shishaldin (1989-1999), Tacana' (1985-1986), Pacaya (1980-1984), Rabaul (1994), and Cotopaxi (2001). Additional cases are recognized at frequently active volcanoes including Popocateptl (2001-2003) and Mauna Loa (1984). We present four case studies (Pinatubo, Soufriere Hills, Unzen, and Tacana') in which we demonstrate the above mentioned VT characteristics prior to eruptions. Using regional data recorded by NEIC, we recognized in near-real time that a huge distal VT swarm was occurring, deduced that a proportionately huge magmatic intrusion was taking place beneath the long dormant Sulu Range, New Britain Island, Papua New Guinea, that it was likely to lead to eruptive activity, and warned Rabaul Volcano Observatory days before a phreatic eruption occurred. This confirms the value of this technique for eruption forecasting. We also present a counter-example where we deduced that a VT swarm at Volcan Cosiguina, Nicaragua, indicated a small intrusion, insufficient to reach the surface and erupt. Finally, we discuss limitations of the method and propose a mechanism by which this distal VT seismicity is triggered by magmatic intrusion.

  13. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  14. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  15. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  16. Electrical structure of Newberry Volcano, Oregon

    Science.gov (United States)

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  17. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  18. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  19. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  20. Local control stations

    International Nuclear Information System (INIS)

    Brown, W.S.; Higgins, J.C.; Wachtel, J.A.

    1993-01-01

    This paper describes research concerning the effects of human engineering design at local control stations (i.e., operator interfaces located outside the control room) on human performance and plant safety. The research considered both multifunction panels (e.g. remote shutdown panels) as well as single-function interfaces (e.g., valves, breakers, gauges, etc.). Changes in performance shaping factors associated with variations in human engineering at LCSs were estimated based on expert opinion. By means of a scaling procedure, these estimates were used to modify the human error probabilities in a PRA model, which was then employed to generate estimates of plant risk and scoping-level value/impact ratios for various human engineering upgrades. Recent documentation of human engineering deficiencies at single-function LCSs was also reviewed, and an assessment of the current status of LCSs with respect to human engineering was conducted

  1. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    y Recursos Naturales (MARN) of El Salvador and by a network of geophysical and geochemical stations established on the volcano by the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV), immediately after the December 2013 eruption, on the request of MARN. During the eruption, SO2 emissions increased from a background level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 fluxes during the pre-, syn- and post-eruptive stages were used to model SO2 dispersion around the volcano. Air SO2 concentration exceeds the dangerous threshold of 5 ppm in the crater region, and in some middle sectors of the highly visited volcanic cone.

  2. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  3. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  4. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    International Nuclear Information System (INIS)

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc

    2015-01-01

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps

  5. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)

    2015-04-24

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  6. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  7. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  8. Streamflow Gaging Stations

    Data.gov (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  9. Fire Stations - 2007

    Data.gov (United States)

    Kansas Data Access and Support Center — Fire Station Locations in Kansas Any location where fire fighters are stationed at or based out of, or where equipment that such personnel use in carrying out their...

  10. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  11. Water Level Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  12. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  13. Big Game Reporting Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...

  14. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  15. Fire Stations - 2009

    Data.gov (United States)

    Kansas Data Access and Support Center — Fire Stations in Kansas Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their jobs is...

  16. Internet-accessible, near-real-time volcano monitoring data for geoscience education: the Volcanoes Exploration Project—Pu`u `O`o

    Science.gov (United States)

    Poland, M. P.; Teasdale, R.; Kraft, K.

    2010-12-01

    Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes

  17. The Horizontal Ice Nucleation Chamber (HINC: INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Directory of Open Access Journals (Sweden)

    L. Lacher

    2017-12-01

    Full Text Available In this work we describe the Horizontal Ice Nucleation Chamber (HINC as a new instrument to measure ambient ice-nucleating particle (INP concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T and relative humidity (RH in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l.  to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %, relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 % to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ

  18. Ejection age of volcano rocks and trend of volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Keiichi

    1987-10-01

    This report is II-7 of an interim report on research and development of the Sunshine Project for 1986. This report considers on the trend of volcanic activities in the South of Kyushu area. K-Ar age measurement was newly made and reported. Age values obtained were 1.09 plus minus 0.21 Ma for Nagaoyama andesite, 1.33 plus minus 0.18 Ma for Nozato andesite, and 0.3 plus minus 0.1 Ma for Imuta volcanos. Including these age values, from the age values and their distribution of the volcanic rocks in the South Kyushu district, the following three districts were selected to represent the volcanic activities since the Pliocene Epoch. As these districts are mutually overwrapped, verification at these overwrapped districts are necessary. (4 figs, 1 tab, 12 refs)

  19. Identification of Focal Mechanisms of Seisms Occurring in the San Salvador Volcano-Ilopango Lake Area Between 1994 and March 2005

    International Nuclear Information System (INIS)

    Maria Mendez Martinez, Luz de; Portillo, Mercy

    2009-01-01

    We studied the geographic area located in the central part of El Salvador, between the San Salvador Volcano (Quezaltepec) and Ilopango Lake. Its latitude is between 13 deg. 36' and 13 deg. 54', and longitude is between -89 deg. 18' and -88 deg. 57'. This area is directly affected by the WNW axis, the most prominent weak tectonic system in the region. Our research aimed to determine the focal mechanisms of seisms occurring in the studied area between 1994 and March 2005. Our analysis provided information about displacement types of the geological faults, using the wave impulse P method and computer applications ARCGIS and SEISAN, with the subroutine FOCMEC. Information of the studied seisms was obtained from the National Service of Territorial Studies (SNET) database. Geographic models used in the preparation of maps are from the geographic information system of the School of Physics at the University of El Salvador. The 37 focal mechanisms on the map of faults were identified in digital seismographs to determinate the arrival polarity of the wave P for each seism station. Data from the focal mechanisms were analyzed and correlated with their replications. The analysis allowed us to identify evidences to consider the fault continuity not reported by the last geological mission in El Salvador conducted in the 1970s. The fault continuity is located northwest of the studied geographical area, between San Salvador City and the San Salvador Volcano. The compression and strain axes for this area are two main horizontal force axes. The average orientation for the strain axis is NNE-SSW, and WNW-SEE for the compression axis. There is also important seismic activity in the Ilopango Lake and surrounding area. However, data did not allow us to make any inference. The tensors distribution resulted in a high dispersion corresponding to typical fauces models.

  20. CDIP Station Data Collection - All Stations

    Data.gov (United States)

    Scripps Institution of Oceanography, UC San Diego — The Coastal Data Information Program's station data collection consists of all publicly-released coastal environment measurements taken over the program's history, a...

  1. Volcanoes of México: An Interactive CD-ROM From the Smithsonian's Global Volcanism Program

    Science.gov (United States)

    Siebert, L.; Kimberly, P.; Calvin, C.; Luhr, J. F.; Kysar, G.

    2002-12-01

    xico from the Bulletin of the Global Volcanism Network and its predecessor, the Scientific Event Alert Network Bulletin, as well as early event-card notices of the Smithsonian's Center for Short-Lived Phenomena. An extensive petrologic database contains major-element analyses and other petrological and geochemical data for 1776 samples. The user also has access to a database of the Global Volcanism Program's map archives. Another option on the CD views earthquake hypocenters and volcanic eruptions from 1960 to the present plotted sequentially on a map of México and Central America. A bibliography of Mexican volcanism and geothermal research includes references cited in the Smithsonian's volcano database as well as those obtained from a search of the Georef bibliographic database. For more advanced queries and searches both the petrologic database and volcanic activity reports can be uploaded from the CD.

  2. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  3. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  4. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  5. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  6. Inventory of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, B.; Arellano, S.; Norman, P.; Conde, V.

    2012-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.

  7. Dynamic and Geological-Ecological Spatial Planning Approach in Hot Mud Volcano Affected Area in Porong-Sidoarjo

    Directory of Open Access Journals (Sweden)

    Haryo Sulistyarso

    2010-08-01

    Full Text Available By May 29t h 2006 with an average hot mud volcano volume of 100,000 m3 /per day, disasters on well kick (i.e. Lapindo Brantas Ltd. in Banjar Panji 1 drilling well have deviated the Spatial Planning of Sidoarjo’s Regency for 2003- 2013. Regional Development Concept that is aimed at developing triangle growth pole model on SIBORIAN (SIdoarjo-JaBOn-KRIaAN could not be implemented. This planning cannot be applied due to environmental imbalance to sub district of Porong that was damaged by hot mud volcano. In order to anticipate deviations of the Regional and Spatial Planning of Sidoarjo Regency for 2003-2013, a review on regional planning and dynamic implementation as well as Spatial Planning Concept based on geologicalecological condition are required, especially the regions affected by well kick disaster. The spatial analysis is based on the geological and ecological condition by using an overlay technique using several maps of hot mud volcano affected areas. In this case, dynamic implementation is formulated to the responsiblity plan that can happen at any time because of uncertain ending of the hot mud volcano eruption disaster in Porong. The hot mud volcano affected areas in the Sidoarjo’s Spatial Planning 2009-2029 have been decided as a geologic protected zone. The result of this research is scenarios of spatial planning for the affected area (short term, medium term and long term spatial planning scenarios.

  8. Trash Can Volcano - One Change of State with Endless Possibilities

    Science.gov (United States)

    Brill, K. A.; Lanza, F.; Gochis, E. E.; Lechner, H. N.; Waite, G. P.

    2013-12-01

    Introducing students to earth science and geophysical concepts in fun, innovative and demonstrative ways is critical to capturing the attention of students at all levels. A properly designed experiment may provide a variety of dimensions that middle and high school teachers can use to introduce some of the core ideas in geosciences while addressing many of the Next Generation Science Standards (NGSS). Using a modified experiment from Harpp et al. (2005) referred to here as 'Trash Can Volcano' we introduce students to the fields of volcanology, natural hazards, and geophysics as well as the use of models and data analysis in an inquiry based fashion. The Trash Can Volcano uses the expansive properties of boiling nitrogen or subliming carbon dioxide to simulate an eruption of a magmatic system. We produce an analog model of an eruption by confining either of these gasses in a submerged plastic soda pop bottle. The expanding gasses pressurize the bottle beyond the yield strength of the plastic; the resulting explosion is analogous to a Strombolian style eruption. An experiment of this type engages students by providing a dramatic experience and begs further inquiry into the nature of the event. This activity also provides educators with a variety of possible directions to explore the core ideas and NGSS standards. In one of our explorations we show how scientists monitor volcanic eruptions and hazards. We deploy three separate microphones to capture atmospheric pressure changes at known distances, and students can calculate the speed of the wave emitted from the energetic release of the gas by identifying the arrival of the waves at each microphone. Using this data, students can also investigate wave attenuation. In another module, students observe the demonstration, develop a research plan, discuss different variables and controls, and then observe the explosive demonstration again. This methodology provides an opportunity to observe, learn and study an event

  9. Radioactivity monitoring by the official monitoring stations in North-Rhine Westphalia and the Juelich Nuclear Research Centre after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    1986-01-01

    This official report presents a governmental declaration of the prime minister of NRW, Mr. Rau, concerning the reactor accident at Chernobyl, and a joint declaration of ministers of NRW, concerning the impact of the accident on the Land NRW. These statements are completed by six official reports on radioactivity measurements carried out by the official monitoring stations of the Land and by the KFA Juelich. These reports inform about methods, scope, and results of the measuring campaigns accomplished by the Zentralstelle fuer Sicherheitstechnik (ZFS), the public materials testing office (MPA), the Chemisches Untersuchungsamt, the Landesamt fuer Wasser und Abfall, and the KFA Juelich. (DG) [de

  10. Smithsonian Marine Station (SMS) at Fort Pierce

    Science.gov (United States)

    share current Smithsonian research on the plants and animals of the Indian River Lagoon and marine Smithsonian Marine Station at Fort Pierce Website Search Box Search Field: SMS Website Search Twitter SMS Home › Welcome to the Smithsonian Marine Station Homepage slideshow Who We Are... The

  11. Mineralogical and geochemical study of mud volcanoes in north ...

    African Journals Online (AJOL)

    The gulf of Cadiz is one of the most interesting areas to study mud volcanoes and structures related to cold fluid seeps since their discovery in 1999. In this study, we present results from gravity cores collected from Ginsburg and Meknes mud volcanoes and from circular structure located in the gulf of Cadiz (North Atlantic ...

  12. Fuego Volcano eruption (Guatemala, 1974): evidence of a tertiary fragmentation?

    International Nuclear Information System (INIS)

    Brenes-Andre, Jose

    2014-01-01

    Values for mode and dispersion calculated from SFT were analyzed using the SFT (Sequential Fragmentation/Transport) model to Fuego Volcano eruption (Guatemala, 1974). Analysis results have showed that the ideas initially proposed for Irazu, can be applied to Fuego Volcano. Experimental evidence was found corroborating the existence of tertiary fragmentations. (author) [es

  13. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  14. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  15. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  16. Nighttime Near Infrared Observations of Augustine Volcano Jan-Apr, 2006 Recorded With a Small Astronomical CCD Camera

    Science.gov (United States)

    Sentman, D.; McNutt, S.; Reyes, C.; Stenbaek-Nielsen, H.; Deroin, N.

    2006-12-01

    Nighttime observations of Augustine Volcano were made during Jan-Apr, 2006 using a small, unfiltered, astronomical CCD camera operating from Homer, Alaska. Time-lapse images of the volcano were made looking across the open water of the Cook Inlet over a slant range of ~105 km. A variety of volcano activities were observed that originated in near-infrared (NIR) 0.9-1.1 micron emissions, which were detectable at the upper limit of the camera passband but were otherwise invisible to the naked eye. These activities included various types of steam releases, pyroclastic flows, rockfalls and debris flows that were correlated very closely with seismic measurements made from instruments located within 4 km on the volcanic island. Specifically, flow events to the east (towards the camera) produced high amplitudes on the eastern seismic stations and events presumably to the west were stronger on western stations. The ability to detect nighttime volcanic emissions in the NIR over large horizontal distances using standard silicon CCD technology, even in the presence of weak intervening fog, came as a surprise, and is due to a confluence of several mutually reinforcing factors: (1) Hot enough (~1000K) thermal emissions from the volcano that the short wavelength portion of the Planck radiation curve overlaps the upper portions (0.9-1.1 micron) of the sensitivity of the silicon CCD detectors, and could thus be detected, (2) The existence of several atmospheric transmission windows within the NIR passband of the camera for the emissions to propagate with relatively small attenuation through more than 10 atmospheres, and (3) in the case of fog, forward Mie scattering.

  17. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  18. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  19. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  20. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a