WorldWideScience

Sample records for volcano puffs ash

  1. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  2. Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio

    Science.gov (United States)

    Daniele, P.; Lirer, L.; Petrosino, P.; Spinelli, N.; Peterson, R.

    2009-05-01

    PUFF is a numerical volcanic ash tracking model developed to simulate the behaviour of ash clouds in the atmosphere. The model uses wind field data provided by meteorological models and adds dispersion and sedimentation physics to predict the evolution of the cloud once it reaches thermodynamic equilibrium with the atmosphere. The software is intended for use in emergency response situations during an eruption to quickly forecast the position and trajectory of the ash cloud in the near (˜1-72 h) future. In this paper, we describe the first application of the PUFF model in forecasting volcanic ash dispersion from the Etna and Vesuvio volcanoes. We simulated the daily occurrence of an eruptive event of Etna utilizing ash cloud parameters describing the paroxysm of 22nd July 1998 and wind field data for the 1st September 2005-31st December 2005 time span from the Global Forecast System (GFS) model at the approximate location of the Etna volcano (38N 15E). The results show that volcanic ash particles are dispersed in a range of directions in response to changing wind field at various altitudes and that the ash clouds are mainly dispersed toward the east and southeast, although the exact trajectory is highly variable, and can change within a few hours. We tested the sensitivity of the model to the mean particle grain size and found that an increased concentration of ash particles in the atmosphere results when the mean grain size is decreased. Similarly, a dramatic variation in dispersion results when the logarithmic standard deviation of the particle-size distribution is changed. Additionally, we simulated the occurrence of an eruptive event at both Etna and Vesuvio, using the same parameters describing the initial volcanic plume, and wind field data recorded for 1st September 2005, at approximately 38N 15E for Etna and 41N 14E for Vesuvio. The comparison of the two simulations indicates that identical eruptions occurring at the same time at the two volcanic centres

  3. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  4. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  5. Ash and Steam, Soufriere Hills Volcano, Monserrat

    Science.gov (United States)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  6. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  7. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  8. Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico

    Directory of Open Access Journals (Sweden)

    M. A. Armienta

    2011-07-01

    Full Text Available Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico.

  9. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: psingla@buffalo.edu [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  10. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Science.gov (United States)

    Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; Voigt, C.; Rahm, S.; Simmet, R.; Scheibe, M.; Lichtenstern, M.; Stock, P.; Rüba, H.; Schäuble, D.; Tafferner, A.; Rautenhaus, M.; Gerz, T.; Ziereis, H.; Krautstrunk, M.; Mallaun, C.; Gayet, J.-F.; Lieke, K.; Kandler, K.; Ebert, M.; Weinbruch, S.; Stohl, A.; Gasteiger, J.; Groß, S.; Freudenthaler, V.; Wiegner, M.; Ansmann, A.; Tesche, M.; Olafsson, H.; Sturm, K.

    2011-03-01

    Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg m-3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often

  11. Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina.

    Science.gov (United States)

    Gómez, Dario; Smichowski, Patricia; Polla, Griselda; Ledesma, Ariel; Resnizky, Sara; Rosa, Susana

    2002-12-01

    The volcano Copahue, Neuquén province, Argentina has shown infrequent explosive eruptions since the 18th century. Recently, eruptive activity and seismicity were registered in the period July-October, 2000. As a consequence, ash clouds were dispersed by winds and affected Caviahue village located at about 9 km east of the volcano. Samples of deposited particles from this area were collected during this episode for their chemical analysis to determine elements of concern with respect to the health of the local population and its environment. Different techniques were used to evaluate the distribution of elements in four particle size ranges from 36 to 300 microm. X-ray powder diffraction (XRD) was selected to detect major components namely, minerals, silicate glass, fragments of rocks and sulfurs. Major and minor elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, S, Si and Ti), were detected by energy dispersive X ray analysis (EDAX). Trace element (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, U, V and Zn) content was quantified by inductively coupled plasma-mass spectrometry (ICP-MS). Nuclear activation analysis (NAA) was employed for the determination of Ce, Co, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Ta and Yb. An enrichment was observed in the smallest size fraction of volcanic ashes for four elements (As, Cd, Cu and Sb) of particular interest from the environmental and human health point of view.

  12. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    Science.gov (United States)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  13. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    Science.gov (United States)

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  14. Characterization of the ashes from the 2014-2015 Turrialba Volcano eruptions by means of scanning electron microscopy and energy dispersive X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Lucke, Oscar H.; Calderon, Ariadna

    2016-01-01

    The Turrialba Volcano is a stratovolcano located approximately 35 km northwest from San Jose, Costa Rica's capital city. A series of eruptions since October 29, 2014 until at least late 2015, has represented the most significant activity of this volcano since the 1860s. A significant volume of ash was dispersed with this eruptions that reached the most populous areas of the country. The characteristics of the ash particles are analyzed in order to establish the nature of the eruptive events that occurred on 2014 and 2015, and to monitor the evolution of the eruptive processes. The analysis was carried out utilizing optical microscopy and stereomicroscopy techniques, as well as novel scanning electron microscopy (SEM) methods that involve imaging and element composition analysis by means of Energy Dispersive X-Ray Spectroscopy (EDX). The evolution of the Turrialba eruptions is showed from phreatic events in 2014, with ashes composed entirely of non-juvenile fragments, to phreatomagmatic events starting on March 12, 2015 with the appearance of a significant fraction of juvenile components in the ash. (author)

  15. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    Science.gov (United States)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high

  16. Volcanic Ash fall Impact on Vegetation, Colima 2005

    Science.gov (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  17. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  18. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  19. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  20. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  1. Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile

    Science.gov (United States)

    Durant, A. J.; Prata, A. J.; Villarosa, G.; Rose, W. I.; Delmelle, P.; Viramonte, J.

    2012-04-01

    The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2-0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were 3 consistent particle size subpopulations in fallout at distances >300 km which suggests that aggregation influenced particle settling. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Some evidence for winnowing was identified through comparison of samples collected at the time of deposition to bulk samples collected months after deposition. X-Ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. XPS analyses revealed strong surface Fe enrichments (in contrast to the results from bulk leachate analyses), which indicates that surface analysis techniques should be applied to investigate potential influences on ocean productivity in response to volcanic ash fallout over oceans. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ~42 % of total S released into the atmosphere prior to deposition.

  2. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  3. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  4. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    Science.gov (United States)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R

  5. Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011.

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K; Forsberg, Bertil; Johansson, Christer

    2013-12-10

    In the aftermath of the Icelandic volcano Grimsvötn's eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24-31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study effects

  6. Volcanic Ash and Daily Mortality in Sweden after the Icelandic Volcano Eruption of May 2011

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K.; Forsberg, Bertil; Johansson, Christer

    2013-01-01

    In the aftermath of the Icelandic volcano Grimsvötn’s eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24–31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study

  7. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano

    Science.gov (United States)

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich

    2016-01-01

    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real

  8. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    Science.gov (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  9. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  10. Assessment of the exposure of islanders to ash from the Soufriere Hills volcano, Montserrat, British West Indies.

    Science.gov (United States)

    Searl, A; Nicholl, A; Baxter, P J

    2002-08-01

    The Soufriere Hills volcano, Montserrat, has been erupting since July 1995 and volcanic ash has fallen on the island throughout most of the eruption. The ash contains substantial quantities of respirable particles and unusually large amounts (15-20%) of the crystalline silica mineral, cristobalite. The purpose of the surveys described here, undertaken between December 1996 and April 2000, was to determine levels of personal exposure of islanders to volcanic ash and cristobalite in order to inform advice on the associated risks to health and the measures required to reduce exposure. Surveys of personal exposure to respirable dust and cristobalite were undertaken using cyclone samplers. In addition, direct reading instruments (DUSTTRAK) were used to monitor ambient air concentrations of PM(10) at fixed sites and also to provide information about exposures to airborne particles associated with selected activities. Environmental concentrations of airborne ash have been greatest in the areas where the most ash has been deposited and during dry weather. Individual exposure to airborne ash was related to occupation, with the highest exposures among gardeners, cleaners, roadworkers, and police at roadside checkpoints. During 1997 many of these individuals were exposed to concentrations of cristobalite that exceeded the ACGIH recommended occupational exposure limit. Since the population became confined to the north of the island in October 1997, even those in relatively dusty occupations have received exposures to cristobalite well below this limit. Most of the 4500 people who have remained on island since the eruption began have not been exposed to sufficiently high concentrations of airborne dust for long enough to be at risk of developing silicosis. However, more than a dozen individuals continued to experience frequent high occupational exposures to volcanic ash, some of whom may have had sufficient exposure to crystalline silica to be at risk of developing mild

  11. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    Science.gov (United States)

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  12. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  13. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  14. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  15. Geoheritage value of the UNESCO site at Leon Viejo and Momotombo volcano, Nicaragua

    Science.gov (United States)

    van Wyk de Vries, Benjamin; Navarro, Martha; Espinoza, Eveling; Delgado, Hugo

    2017-04-01

    The Momotombo volcano has a special place in the history of Nicaragua. It is perfectly visible from the Capital, Managua, and from the major city of Leon. The old capital "Leon Viejo", founded in 1524 was abandoned in 1610, after a series of earthquakes and some major eruptions from Momotombo. The site was subsequently covered by Momotombo ash. A major geothermal power plant stands at the base of the volcano. Momotombo had been dormant for a hundred years, but had maintained high fumarole temperatures (900°C), indicating magma had been close to the surface for decades. In recent years, seismic activity has increased around the volcano. In December 2015, after a short ash eruption phase the volcano erupted lava, then a string of Vulcanian explosions. The volcano is now in a phase of small Vulcanian explosions and degassing. The Leon Viejo World Heritage site is at risk to mainly ash fall from the volcano, but the abandonment of the old city was primarily due to earthquakes. Additional risks come from high rainfall during hurricanes. There is an obvious link between the cultural site (inscribed under UNESCO cultural criteria) and the geological environment. First, the reactivation of Momotombo volcano makes it more important to revise the hazard of the site. At the same time, Leon Viejo can provide a portal for outreach related to the volcano and for geological risk in general. To maximise this, we provide a geosite inventory of the main features of Momotombo, and it's environs, that can be used as the first base for such studies. The volcano was visited by many adventure tourists before the 2015/2016 eruption, but is out of bounds at present. Alternative routes, around the volcano could be made, to adapt to the new situation and to show to visitors more of the geodiversity of this fascinating volcano-tectonic and cultural area.

  16. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    Science.gov (United States)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011

  17. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  18. Buffer regulation of calcium puff sequences

    International Nuclear Information System (INIS)

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-01-01

    Puffs are localized Ca 2+ signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP 3 ). They are the result of the liberation of Ca 2+ from the endoplasmic reticulum through the coordinated opening of IP 3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca 2+ provides a mechanism that enriches the spatio–temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca 2+ signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP 3 R-Ca 2+ channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca 2+ buffer can increase the average number of channels that participate of a puff. (paper)

  19. Buffer regulation of calcium puff sequences.

    Science.gov (United States)

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  20. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Directory of Open Access Journals (Sweden)

    T P Mangan

    Full Text Available Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  1. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Science.gov (United States)

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  2. Volcanic Ash from the 1999 Eruption of Mount Cameroon Volcano ...

    African Journals Online (AJOL)

    2008-10-21

    Oct 21, 2008 ... fluorine (F) content of the ash was determined by the selective ion electrode method. The results ... the main mineral in volcanic ash responsible for causing silicosis. The F ... volcanic ash with little or no attention to the < 4 µm.

  3. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    Science.gov (United States)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  4. Diffusion coefficient adaptive correction in Lagrangian puff model

    International Nuclear Information System (INIS)

    Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong

    2014-01-01

    Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)

  5. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes

    Science.gov (United States)

    Capra, L.; Roverato, M.; Groppelli, G.; Caballero, L.; Sulpizio, R.; Norini, G.

    2015-03-01

    Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which 14C ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes.

  6. Ellipsometry and electronic microscopy of ashes swept of the Popocatepetl volcano; Elipsometria y microscopia electronica de barrido de las cenizas del volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Aaron; Munoz, Rafel; Falcon, Nelson [Universidad de Carabobo, Valencia (Venezuela); Chavira, Enrique [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico)

    2001-12-01

    The ellipsometry and the scanning electronic microscopy is applied to the study of the optic properties of Popocatepetl volcano ash in connection with the form, ruggedness and elemental chemical composition of the microparticles, also to argue about the relation with atmospheric conditions. [Spanish] Se aplica la eliposometria y la microscopia electronica de barrido al estudio de las propiedades opticas de las cenizas de volcan Popocatepetl en relacion con la forma, rugosidad y composicion quimica elemental de las microparticulas, destacandose su vinculacion con las condiciones de visibilidad.

  7. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  8. Estimation of volcanic ash emissions using trajectory-based 4D-Var data assimilation

    NARCIS (Netherlands)

    Lu, S.; Lin, X.; Heemink, A.W.; Fu, G.; Segers, A.J.

    2015-01-01

    Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore,

  9. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    Science.gov (United States)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  10. On the carcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene in volcano exhausts.

    Science.gov (United States)

    Ilnitsky, A P; Belitsky, G A; Shabad, L M

    1976-05-01

    The content of benzo(a)pyrene in the juvenile ashes of the volcano Tyatya (Kunashir Island, Kuriles) and in the soil, vegetation and volcanic mud collected near volcanos in Kamchatka was studied. It was concluded that volcanic activity does not play a large role in forming the background level of this carcinogen in the human environment.

  11. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    Science.gov (United States)

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples

  12. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  13. Air puff-induced 22-kHz calls in F344 rats.

    Science.gov (United States)

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  15. Study of gas-puff Z-pinches on COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; Grouchy, P. W. L. de; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Kroupp, E.; Fisher, A.; Maron, Y. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-11-15

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200 ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200 ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  16. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  17. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    Science.gov (United States)

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  18. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  19. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  20. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  1. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  2. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    Science.gov (United States)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  3. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    Science.gov (United States)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  4. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  5. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Christoph Silow

    2017-02-01

    Full Text Available Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200 and the final thickness (1.0–3.5 mm of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK and Multiple Puncture Probe (MPP, the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30% puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt % products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05 positive correlation to ‘liking of flavor’ and overall acceptance by the assessors.

  6. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  7. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  8. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  9. The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)

    Science.gov (United States)

    Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.

    2007-12-01

    San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.

  10. Compositional profiling and sensorial analysis of multi-wholegrain extruded puffs as affected by fructan inclusion.

    Science.gov (United States)

    Handa, C; Goomer, S

    2015-09-01

    Rice grits, corn grits, pulse, wholegrain - finger millet and sorghum were utilized in the production of multigrain extruded puffs using a single screw extruder. The effect of inclusion of fructan - fructoligosaccharide in multi-wholegrain (MWG) extruded puffs was examined. MWG fructan enriched puffs puffs had 450 % higher dietary fiber content than the control puff (CP). These puffs can be categorized as 'Good Source' of fiber as it suffices 17.2 % DV of fiber. Puffs were rated 8.1 ± 0.6, 8.3 ± 0.7, 8.1 ± 0.6, 7.5 ± 0.5 and 8.2 ± 0.6 for color, flavor, texture, appearance and overall acceptability respectively. The scores for all the attributes were found to be not significantly different (p extruded puffs could be improved by the inclusion of fructans.

  11. Volcanic ash and aviation–The challenges of real-time, global communication of a natural hazard

    Science.gov (United States)

    Lechner, Peter; Tupper, Andrew C.; Guffanti, Marianne C.; Loughlin, Sue; Casadevall, Thomas

    2017-01-01

    More than 30 years after the first major aircraft encounters with volcanic ash over Indonesia in 1982, it remains challenging to inform aircraft in flight of the exact location of potentially dangerous ash clouds on their flight path, particularly shortly after the eruption has occurred. The difficulties include reliably forecasting and detecting the onset of significant explosive eruptions on a global basis, observing the dispersal of eruption clouds in real time, capturing their complex structure and constituents in atmospheric transport models, describing these observations and modelling results in a manner suitable for aviation users, delivering timely warning messages to the cockpit, flight planners and air traffic management systems, and the need for scientific development in order to undertake operational enhancements. The framework under which these issues are managed is the International Airways Volcano Watch (IAVW), administered by the International Civil Aviation Organization (ICAO). ICAO outlines in its standards and recommended practices (International Civil Aviation Organization, 2014) the basic volcanic monitoring and communication that is necessary at volcano observatories in Member States (countries). However, not all volcanoes are monitored and not all countries with volcanoes have mandated volcano observatories or equivalents. To add to the efforts of volcano observatories, a system of Meteorological Watch Offices, Air Traffic Management Area Control Centres, and nine specialist Volcanic Ash Advisory Centres (VAACs) are responsible for observing, analysing, forecasting and communicating the aviation hazard (airborne ash), using agreed techniques and messages in defined formats. Continuous improvement of the IAVW framework is overseen by expert groups representing the operators of the system, the user community, and the science community. The IAVW represents a unique marriage of two scientific disciplines - volcanology and meteorology - with the

  12. PUFF-III: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices

    International Nuclear Information System (INIS)

    Dunn, M.E.

    2000-01-01

    PUFF-III is an extension of the previous PUFF-II code that was developed in the 1970s and early 1980s. The PUFF codes process the Evaluated Nuclear Data File (ENDF) covariance data and generate multigroup covariance matrices on a user-specified energy grid structure. Unlike its predecessor, PUFF-III can process the new ENDF/B-VI data formats. In particular, PUFF-III has the capability to process the spontaneous fission covariances for fission neutron multiplicity. With regard to the covariance data in File 33 of the ENDF system, PUFF-III has the capability to process short-range variance formats, as well as the lumped reaction covariance data formats that were introduced in ENDF/B-V. In addition to the new ENDF formats, a new directory feature is now available that allows the user to obtain a detailed directory of the uncertainty information in the data files without visually inspecting the ENDF data. Following the correlation matrix calculation, PUFF-III also evaluates the eigenvalues of each correlation matrix and tests each matrix for positive definiteness. Additional new features are discussed in the manual. PUFF-III has been developed for implementation in the AMPX code system, and several modifications were incorporated to improve memory allocation tasks and input/output operations. Consequently, the resulting code has a structure that is similar to other modules in the AMPX code system. With the release of PUFF-III, a new and improved covariance processing code is available to process ENDF covariance formats through Version VI

  13. Study on preparation the egg yolk puff with chitosan

    Directory of Open Access Journals (Sweden)

    LI Hui

    2014-12-01

    Full Text Available This paper was studied chitosans with different degrees of deacetylation (70%,80%,90%,95% and different usages of chitosan that were added to research the effect of functional indexs in the egg yolk puff,such as calcium content and cholesterol content.Preliminarily chitosan was explored in the application of the Egg yolk puff.Text results showed that when the deacetylation degree of chitosan and its usage were 90% and 1% separately,the functional indexs and sensory quality of the Egg yolk puff can reach the equilibrium.Its calcium content was 76.2 mg/100 g,increased by 44.3 percent.Its cholesterol content was 290 mg/100 g,decreased by 35.1%.

  14. Inhaled smoke volume and puff indices with cigarettes of different tar and nicotine levels

    International Nuclear Information System (INIS)

    Woodman, G.; Newman, S.P.; Pavia, D.; Clarke, S.W.

    1987-01-01

    Ten asymptomatic smokers each smoked a low, low-to-middle and a middle tar cigarette with approximately the same tar-to-nicotine ratio, in a randomised order. The inhaled smoke volume was measured by tracing the smoke with the inert gas 81 Kr m . Puffing indices were recorded using an electronic smoking analyser and flowhead/cigarette holder. Throughout the study neither the mean inhaled smoke volume per puff nor the total inhaled smoke volume per cigarette changed significantly; however, the mean and total puff volumes were largest with the low tar cigarette and decreased with the higher tar brands. Puff volume was related to puff work (r s =0.83,P s =0.10,P>0.1). It is concluded that when switched between brands with the same tar-to-nicotine ratio, smokers increase their puff volumes with a lower tar cigarette but do not change the volume of smoke inhaled. Puff work and puff resistance were significantly correlated (r s =0.45,P<0.02). (author)

  15. Transition from phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano (Kamchatka) in 2013-2016 due to volcanic cone collapse

    Science.gov (United States)

    Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim

    2017-04-01

    Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10

  16. Interactions and ``puff clustering'' close to the critical point in pipe flow

    Science.gov (United States)

    Vasudevan, Mukund; Hof, Björn

    2017-11-01

    The first turbulent structures to arise in pipe flow are puffs. Albeit transient in nature, their spreading determines if eventually turbulence becomes sustained. Due to the extremely long time scales involved in these processes it is virtually impossible to directly observe the transition and the flow patterns that are eventually assumed in the long time limit. We present a new experimental approach where, based on the memoryless nature of turbulent puffs, we continuously recreate the flow pattern exiting the pipe. These periodic boundary conditions enable us to show that the flow pattern eventually settles to a statistically steady state. While our study confirms the value of the critical point of Rec 2040 , the flow fields show that puffs interact over longer ranges than previously suspected. As a consequence puffs tend to cluster and these regions of large puff densities travel across the puff pattern in a wave like fashion. While transition in Couette flow has been shown to fall into the ``directed percolation'', pipe flow may be more complicated since long range interactions are prohibited for the percolation transition type. Extensive measurements at the critical point will be presented to clarify the nature of the transition.

  17. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron

  18. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  19. Advances in Monitoring, Modelling and Forecasting Volcanic Ash Plumes over the Past 5 Years and the Impact on Preparedness from the London VAAC Perspective

    Science.gov (United States)

    Lee, D. S.; Lisk, I.

    2015-12-01

    Hosted and run by the Met Office, the London VAAC (Volcanic Ash Advisory Centre) is responsible for issuing advisories on the location and likely dispersion of ash clouds originating from volcanoes in the North East Atlantic, primarily from Iceland. These advisories and additional guidance products are used by the civil aviation community to make decisions on airspace flight management. London VAAC has specialist forecasters who use a combination of volcano source data, satellite-based, ground-based and aircraft observations, weather forecast models and dispersion models. Since the eruption of the Icelandic volcano Eyjafjallajökull in 2010, which resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace, London VAAC has been active in further developing its volcanic ash monitoring, modelling and forecasting capabilities, collaborating with research organisations, industry, other VAACs, Meteorological Services and the Volcano Observatory in Iceland. It has been necessary to advance operational capabilities to address evolving requirements, including for more quantitative assessments of volcanic ash in the atmosphere. Here we summarise advances in monitoring, modelling and forecasting of volcanic ash plumes over the past 5 years from the London VAAC perspective, and the realization of science into operations. We also highlight the importance of collaborative activities, such as the 'VAAC Best Practice' Workshop, where information is exchanged between all nine VAACs worldwide on the operational practices in monitoring and forecasting volcanic ash, with the aim of working toward a more harmonized service for decision makers in the aviation community. We conclude on an evaluation of how better we are prepared for the next significant ash-rich Icelandic eruption, and the challenges still remaining.

  20. Experimental studies of the argon-puff Z-pinch implosion process

    International Nuclear Information System (INIS)

    Huang Xianbin; Yang Libing; Gu Yuanchao; Deng Jianjun; Zhou Rongguo; Zou Jie; Zhou Shaotong; Zhang Siqun; Chen Guanghua; Chang Lihua; Li Fengping; Ouyang Kai; Li Jun; Yang Liang; Wang Xiong; Zhang Zhaohui

    2006-01-01

    A preliminary experiment for studying the argon-puff Z-pinch implosion process has been performed on the Yang accelerator. The ten-frame nanosecond temporal and spatial gated camera, visible high-speed scanning camera, differential laser interferometer, X-ray time integration pinhole camera and X-ray power system have been used to investigated the evolution of the argon-puff Z-pinch. Some typical results of argon-puff Z-pinch during implosion and pinch phase, including the 'zipper' effect, necking phenomenon, sausage instability, temperature changes and the effect of load current rise time, are given and analyzed as examples, and some relevant conclusions are drawn. (authors)

  1. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  2. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  3. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    Science.gov (United States)

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to

  4. Evolution of 222 Rn and chemical species related with eruptive processes of the Popocatepetl volcano

    International Nuclear Information System (INIS)

    Aranda, P.; Ceballos, S.; Cruz, D.; Hernandez, A.; Lopez, R.; Pena, P.; Salazar, S.; Segovia, N.; Tamez, E.

    1997-01-01

    The 222 Rn monitoring in the Popocatepetl volcano was initiated on 1993. At December 21, 1994 it is initiated an eruptive stage in the volcano with gas emission, ashes and the lava dome formation on the crater at middle 1996. During all this time it has been determined radon concentrations on soils with active and passive detectors. In this work the changes in radon contents are reported also the physicochemical parameters in spring water related with the volcanic building associated to the recent activity of the volcano. (Author)

  5. Puff-trajectory modelling for long-duration releases

    International Nuclear Information System (INIS)

    Underwood, B.Y.

    1988-01-01

    This investigation considers some aspects of the interpretation and application of the puff-trajectory technique which is increasingly being considered for use in accident consequence assessment. It firsthigh lights the problems of applying the straight-line Gaussian model to releases of many hours duration and the drawbacks of using the ad hoc technique of multiple straight-line plumes, thereby pointing to the advantages of allowing curved trajectories. A number of fundamental questions are asked about the conventional puff-trajectory approach such as: what is the justification for using ensemble-average spread parameters (σ values) in constructing particular realizations of the concentration field and to what sampling time should these σ values correspond. These questions are answered in the present work by returning to basics: an interpretation of the puff-trajectory method is developed which establishes a correspondence between the omission of wind-field fluctuations with period below a given value in the generation of trajectories and the achievable spatial resolution of the estimates of time-integrated concentration. In application to accident consequence assessment, this focusses attention on what spatial resolution is necessary for particular consequence types or is implicit in the computational discretization employed

  6. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  7. Debris-free soft x-ray source with gas-puff target

    Science.gov (United States)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  8. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  9. Marijuana smoking: effects of varying puff volume and breathhold duration.

    Science.gov (United States)

    Azorlosa, J L; Greenwald, M K; Stitzer, M L

    1995-02-01

    Two studies were conducted to quantify biological and behavioral effects resulting from exposure to controlled doses of marijuana smoke. In one study, puff volume (30, 60 and 90 ml) and in a second study, breathhold duration (0, 10 and 20 sec) were systematically varied while holding constant other smoking topography parameters (number of puffs = 10, interpuff interval = 60 sec and inhalation volume = 25% of vital capacity). Each study also varied levels of delta 9-tetrahydro-cannabinol marijuana cigarette content (1.75% and 3.55%). Regular marijuana users served as subjects (n = 7 in each experiment). Subjects smoked 10 puffs in each of six sessions; a seventh, nonsmoking session (all measures recorded at the same times as in active smoking sessions) served as a control. Variations in puff volume produced significant dose-related changes in postsmoking plasma delta 9-tetrahydro-cannabinol levels, carbon monoxide boost and subjective effects (e.g., "high"). In contrast, breathholding for 10 or 20 sec versus 0 sec increased plasma delta 9-tetrahydro-cannabinol levels but not CO boost or subjective effects. Task performance measures were not reliably influenced by marijuana smoke exposure within the dosing ranges examined. These findings confirm the utility of the controlled smoking technology, support the notion that cumulative puff volume systematically influences biological exposure and subjective effects, but cast doubt on the common belief that prolonged breathholding of marijuana smoke enhances classical subjective effects associated with its reinforcing value in humans.

  10. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description

    Science.gov (United States)

    Rose, T. R.; Fiske, R. S.; Swanson, D.

    2011-12-01

    magma probably rose rapidly from deep within, or below, the volcano just before its eruption. Remnants of the Kulanaokuaiki-3 scoria deposit, a subunit of the upper Kulanaokuaiki Tephra, are preserved over wide areas 7-12 km south and southeast of the summit and have characteristics also suggesting rapid rise and eruption (Fiske et al., this meeting). Some relatively primitive vitric ash occurs in the younger Keanakako`i Tephra (Garcia et al., this meeting) and can be interpreted to indicate little if any shallow storage. Thus the high-MgO glass reported here may be an end member in a family of relatively primitive compositions that can erupt under some circumstances at Kilauea's summit. Most recent tephra deposits at and near Kilauea's summit are attributed to phreatic or phreatomagmatic explosive eruptions that originated at relatively shallow depth. One important implication of our findings is that some highly energetic pyroclastic eruptions at Kilauea likely originated at far greater depths.

  11. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    Science.gov (United States)

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-07-21

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  12. Buckets of ash track tephra flux from Halema'uma'u Crater, Hawai'i

    Science.gov (United States)

    Swanson, Don; Wooten, Kelly M.; Orr, Tim R.

    2009-01-01

    The 2008–2009 eruption at Kīlauea Volcano's summit made news because of its eight small discrete explosive eruptions and noxious volcanic smog (vog) created from outgassing sulfur dioxide. Less appreciated is the ongoing, weak, but continuous output of tephra, primarily ash, from the new open vent in Halema'uma'u Crater. This tephra holds clues to processes causing the eruption and forming the new crater-in-a-crater, and its flux is important to hazard evaluations.The setting of the vent–easily accessible from the Hawaiian Volcano Observatory (HVO)—is unusually favorable for neardaily tracking of tephra mass flux during this small prolonged basaltic eruption. Recognizing this, scientists from HVO are collecting ash and documenting how ejection masses, components, and chemical compositions vary through time.

  13. An experimental study on Kr gas-puff Z-pinch

    International Nuclear Information System (INIS)

    Kuai Bin; Cong Peitian; Zeng Zhengzhong; Qiu Aici; Qiu Mengtong; Chen Hong; Liang Tianxue; He Wenlai; Wang Liangping; Zhang Zhong

    2002-01-01

    Kr gas-puff Z-pinch experiment performed recently on Qiang-guang I pulsed power generator is reported. The generator has a 1.5 MA current with a pulse width of 100 ns. The total X-ray energy as well as its spectrum has been obtained, and the average power of X-ray radiation in 50 - 700 eV measured by XRDs is 2 TW. The generator configuration, gas-puff load assembly and diagnostic system for the experiments are described

  14. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  15. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  16. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  17. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    Science.gov (United States)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  18. A real-time PUFF-model for accidental releases in complex terrain

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Mikkelsen, T.; Larsen, S.E.; Troen, I.; Baas, A.F. de; Kamada, R.; Skupniewicz, C.; Schacher, G.

    1990-01-01

    LINCOM-RIMPUFF, a combined flow/puff model, was developed at Riso National Laboratory for the Vandenberg AFB Meteorology and Plume Dispersion Handbook and is suitable as is for real time response to emergency spills and vents of gases and radionuclides. LINCOM is a linear, diagnostic, spectral, potential flow model which extends the Jackson-Hunt theory of non-hydrostatic, adiabatic wind flow over hills to the mesoscale domain. It is embedded in a weighted objective analysis (WOA) of real-time Vandenberg tower winds and may be used in ultra-high speed lookup table mode. The mesoscale dispersion model RIMPUFF is a flexible Gaussian puff model equipped with computer-time effective features for terrain and stability-dependent dispersion parameterization, plume rise formulas, inversion and ground-level reflection capabilities and wet/dry (source) depletion. It can treat plume bifurcation in complex terrain by using a puff-splitting scheme. It allows the flow-model to compute the larger scale wind field, reserving turbulent diffusion calculations for the sub-grid scale. In diagnostic mode toxic exposure are well assessed via the release of a single initial puff. With optimization, processing time for RIMPUFF should be on the order of 2 CPU minutes or less on a PC-system. In prognostic mode with shifting winds, multiple puff releases may become necessary, thereby lengthening processing time

  19. Effects of quantity and layers number of low trans margarines on puff pastry quality

    Directory of Open Access Journals (Sweden)

    Zahorec Jana J.

    2017-01-01

    Full Text Available The aim of this study was to investigate the effect of puff pastry margarine with reduced content of trans isomers in production of puff pastry with enhanced nutritional value. Experiments were carried out on the basis of 32 factorial design, wherein the independent variables were the amount of puff pastry margarines (30, 40 and 50%, on flour weight and number of margarine layers formed during the dough processing (108, 144, and 256. In order to determine the optimum values of independent parameters, the study was focused on defining of relevant qualitative indicators of the final product. By investigation of influence of the type of puff pastry margarine (ML1 and ML2 on the quality of puff pastry, it was determined that physico-chemical properties of margarine ML1 were not optimal for puff pastry production. Margarine ML1 had lower hardness by 50-60%, lower SFC by 20-35% and worse thermal characteristics compared to margarine ML2. Only by application of the maximum amount of margarine ML1 and 144 margarine layers a satisfactory quality of puff pastry was obtained: the lift of 2.89, hardness of 17.7 kgs, volume 83.6 cm3 and the total number of points of 14.8. Because of its better technological characteristics, margarine ML2 is favorable for making puff pastry. Significantly better physical properties and excellent pastry quality was obtained in samples with margarine ML2 in an amount of 50% of margarine and 256 layers: higher lift by 45%, volume by 25% and the total number of points by about 20% compared to sample ML1 with the best quality.

  20. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    Science.gov (United States)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  1. Amputation for a puff adder (Bitis arietans) envenomation in a child ...

    African Journals Online (AJOL)

    spreading halfway to the knee. The injury arose from a puff adder bite while walking on the bank of the Nile. The father took four days to transport the .... by an African Puff Adder (Bitis arietans). J Emerg Med. 1997; 15: 827-831. Figure 2. The child after the operation with hospital orderlies and father (West family photograph)

  2. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  3. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  4. Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands

    Directory of Open Access Journals (Sweden)

    Torge Steensen

    2015-03-01

    Full Text Available Quantifying volcanic ash emissions syneruptively is an important task for the global aviation community. However, due to the near real time nature of volcano monitoring, many parameters important for accurate ash mass estimates cannot be obtained easily. Even when using the best possible estimates of those parameters, uncertainties associated with the ash masses remain high, especially if the satellite data is only available in the traditional 10.8 and 12.0 μm bands. To counteract this limitation, we developed a quantitative comparison between the ash extents in satellite and model data. The focus is the manual cloud edge definition based on the available satellite reverse absorption (RA data as well as other knowledge like pilot reports or ground-based observations followed by an application of the Volcanic Ash Retrieval on the defined subset with an RA threshold of 0 K. This manual aspect, although subjective to the experience of the observer, can show a significant improvement as it provides the ability to highlight ash that otherwise would be obscured by meteorological clouds or, by passing over different surfaces with unaccounted temperatures, might be lost entirely and thus remains undetectable for an automated satellite approach. We show comparisons to Volcanic Ash Transport and Dispersion models and outline a quantitative match as well as percentages of overestimates based on satellite or dispersion model data which can be converted into a level of reliability for near real time volcano monitoring. 

  5. Computer modeling of a small neon gas-puff pinch

    International Nuclear Information System (INIS)

    Ullschmied, J.

    1996-01-01

    The macroscopic dynamics of a cylindrical gas-puff pinch and conditions of radiation plasma collapse are studied by using a one-dimensional ('mechanical') computer model. Besides the Joule plasma heating, compressional heating, magnetic field freezing in a plasma and recombination losses, also the real temperature- and density-dependences of radiation plasma loss are taken into account. The results of calculations are compared with experimental data taken from a small neon-puff z-pinch experiment operated at the Institute of Plasma Physics in Prague. (author). 7 figs., 11 refs

  6. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  7. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    Science.gov (United States)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  8. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  9. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    Directory of Open Access Journals (Sweden)

    H. F. Dacre

    2013-02-01

    Full Text Available The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter. NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  10. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  11. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  12. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  13. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  14. Theoretical and experimental comparisons of Gamble 2 argon gas puff experiments

    International Nuclear Information System (INIS)

    Thornhill, J.W.; Young, F.C.; Whitney, K.G.; Davis, J.; Stephanakis, S.J.

    1990-01-01

    A one-dimensional radiative MHD analysis of an imploding argon gas puff plasma is performed. The calculations are set up to approximate the conditions of a series of argon gas puff experiments that were carried out on the NRL Gamble II generator. Annular gas puffs (2.5 cm diameter) are imploded with a 1.2-MA peak driving current for different initial argon mass loadings. Comparisons are made with the experimental results for implosion times, K, L-shell x-ray emission, and energy coupled from the generator to the plasma load. The purpose of these calculations is to provide a foundation from which a variety of physical phenomena which influence the power and total energy of the x-ray emission can be analyzed. Comparisons with similar experimental and theoretical results for aluminum plasmas are discussed

  15. PUFF-IV, Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The PUFF-IV code system processes ENDF/B-VI formatted nuclear cross section covariance data into multigroup covariance matrices. PUFF-IV is the newest release in this series of codes used to process ENDF uncertainty information and to generate the desired multi-group correlation matrix for the evaluation of interest. This version includes corrections and enhancements over previous versions. It is written in Fortran 90 and allows for a more modular design, thus facilitating future upgrades. PUFF-IV enhances support for resonance parameter covariance formats described in the ENDF standard and now handles almost all resonance parameter covariance information in the resolved region, with the exception of the long range covariance sub-subsections. PUFF-IV is normally used in conjunction with an AMPX master library containing group averaged cross section data. Two utility modules are included in this package to facilitate the data interface. The module SMILER allows one to use NJOY generated GENDF files containing group averaged cross section data in conjunction with PUFF-IV. The module COVCOMP allows one to compare two files written in COVERX format. 2 - Methods: Cross section and flux values on a 'super energy grid,' consisting of the union of the required energy group structure and the energy data points in the ENDF/B-V file, are interpolated from the input cross sections and fluxes. Covariance matrices are calculated for this grid and then collapsed to the required group structure. 3 - Restrictions on the complexity of the problem: PUFF-IV cannot process covariance information for energy and angular distributions of secondary particles. PUFF-IV does not process covariance information in Files 34 and 35; nor does it process covariance information in File 40. These new formats will be addressed in a future version of PUFF

  16. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L

    2014-12-01

    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  17. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Directory of Open Access Journals (Sweden)

    A. O. González-Mellado

    2010-11-01

    Full Text Available The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4–150 km from the eruptive source.

    The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available

  18. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  19. Rheological Variations in Lahars Expected to Flow Along the Sides of Sakurajima and Ontake Volcanoes, Japan

    Science.gov (United States)

    Kurokawa, A. K.; Ishibashi, H.

    2016-12-01

    Volcanic ash is known to accumulate on the ground surface around volcano after eruptions. Once the ash gains weight and mixes with water to a critical point, the mixture of volcanic ash and water runs down a side of volcano causing severe damage to the ambient environment. The flow is referred to as lahar that is widely observed all over the world and it occasionally generates seismic signals [Walsh et al., 2016; Ogiso and Yomogida, 2015]. Sometimes it happens just after an eruption [Nakayama and Kuroda, 2003] whereas a large debris flow, which occurred about 30 years after the latest eruption due to heavy rainfall is also reported [Ogiso and Yomogida, 2015]. Thus when the lahar starts flowing is a key. In order to understand flow characteristics of lahar, it is important to focus on the rheology. However, little is known about the rheological property although the experimental condition can be controlled at atmospheric pressure and ambient temperature. This is an advantage when compared with magma and rock, which need to reach high-pressure and/or high-temperature conditions to be measured. Based on the background, we have performed basic rheological measurements using mixtures of water and volcanic ashes collected at Sakurajima and Ontake volcanoes in Japan. The first important point of our findings is that the two types of mixtures show non-linear characteristics differently. For instance, the viscosity variation strongly depends on the water content in the case of Sakurajima sample while the viscosity fluctuates within a certain definite range of shear rate using Ontake sample. Since these non-linear characteristics are related to structural changes in the flow, our results indicate that the flow of lahar is time-variable and complicated. In this presentation, we report the non-linear rheology in detail and go into the relation to temporal changes in the flow.

  20. The 1963–65 eruption of Irazú volcano, Costa Rica (the period of March 1963 to October 1964)

    Science.gov (United States)

    Murata, K.J.; Dondoli, C.; Saenz, R.

    1966-01-01

    The 1963–65 eruption of Irazú, like all others of this volcano during the historic period, produced only ash and other fragmental ejecta without lava. The initial outbreak on March 13, 1963 started with a series of great explosions that hurled out much ash, blocks, and bombs, but the activity soon settled down to alternating periods of explosive cruptions and quiet emission of steam.

  1. Turmoil at Turrialba volcano (Costa Rica): Degassing and eruptive behavior inferred from high-frequency gas monitoring

    OpenAIRE

    de Moor, J Maarten; Aiuppa, Alessandro; Avard, Geoffroy; Wehrmann, Heidi; Dunbar, Nelia W; Muller, Cyril; Tamburello, Giancarlo; Guidice, Gaetano; Liuzzo, Marco; Moretti, Roberto; Conde, A Vladimir; Galle, Bo

    2016-01-01

    Eruptive activity at Turrialba volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here, we use high frequency gas monitoring to track the behavior of the volcano between 2014 and 2015, and to decipher magmatic vs. hydrothermal contributions to the eruptions...

  2. Natural radioactivity in volcanic ash from Mt. Pinatubo eruption

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; Garcia, T.Y.; Dela Cruz, F.M.; Esguerra, L.V.; Castaneda, S.S.

    1992-01-01

    Last June 15, 1991, a major pyroclastic eruption occurred from Mt. Pinatubo volcano located in Zambales, Central Luzon. The radiological impact of this eruption was assessed based on the concentrations of the principal naturally occurring radionuclides observed in volcanic ash. The volcanic ash samples were collected from locations which are within 50-km radius of Mt. Pinatubo at various times after the eruption. The mean activity concentrations in Bq/kg wet weight of the natural radionuclides in volcanic ash were as follows: 12.6 for 238 U, 14.0 for 232 Th and 330 for 40 K. These values are significantly higher than the mean activity concentrations of these radionuclides observed in topsoil in the same provinces before the eruption. This suggests that with the deposition of large quantities of volcanic ash and lahar in Central Luzon and concomitant topographic changes, the distribution and quantities of radionuclides which gave rise to terrestrial radiation may have also changed. Outdoor radon concentrations measured three days and later after the eruption were within normal background values. (auth.). 4 refs.; 5 tabs.; 1 fig

  3. Dosage-based parameters for characterization of puff dispersion results.

    Science.gov (United States)

    Berbekar, Eva; Harms, Frank; Leitl, Bernd

    2015-01-01

    A set of parameters is introduced to characterize the dispersion of puff releases based on the measured dosage. These parameters are the dosage, peak concentration, arrival time, peak time, leaving time, ascent time, descent time and duration. Dimensionless numbers for the scaling of the parameters are derived from dimensional analysis. The dimensionless numbers are tested and confirmed based on a statistically representative wind tunnel dataset. The measurements were carried out in a 1:300 scale model of the Central Business District in Oklahoma City. Additionally, the effect of the release duration on the puff parameters is investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  5. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  6. Increased Melting of Glaciers during Cotopaxi volcano awakening in 2015

    Science.gov (United States)

    Ramon, Patricio; Vallejo, Silvia; Almeida, Marco; Gomez, Juan Pablo; Caceres, Bolivar

    2016-04-01

    Cotopaxi (5897 m), located about 50 km south of Quito (Ecuador), is one of the most active volcanoes in the Andes and its historical eruptions have caused a great impact on the population by the generation of lahars along its three main drainages (N, S, E). Starting on April 2015 the seismic monitoring networks and the SO2 gas detection network in May 2015 showed a significant increase from their background values, in June a geodetic instrument located in the NE flank started to record inflation; all this indicated the beginning of a new period of unrest. On August 14, five small phreatic explosions occurred, accompanied by large gas and ash emissions, ash falls were reported to the W of the volcano and to the S of Quito capital city. Three new episodes of ash and gas emissions occurred afterwards and towards the end of November 2015, the different monitoring parameters indicated a progressive reduction in the activity of the volcano. Since August 18 almost weekly overflights were made in order to conduct thermal (FLIR camera), visual and SO2 gas monitoring. Towards the end of August thermal measurements showed for the first time the presence of new thermal anomalies (13.5 to 16.3 °C) located in the crevices of the N glaciers, at the same time fumarolic gases were observed coming out from those fractures. On a flight made on September 3, the presence of water coming out from the basal fronts of the northern glaciers was clearly observed and the formation of narrow streams of water running downslope, while it was evident the appearance of countless new crevices in the majority of glacier ends, but also new cracks and rockslides on the upper flanks. All this led to the conclusion that an abnormal process was producing the melting of the glaciers around the volcano. Starting on September it was possible to observe the presence of small secondary lahars descending several streams and we estimated that many of them are due to increased glacier melting. Later

  7. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  8. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    Science.gov (United States)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  9. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  10. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    "eruption" with the galaxy's environment to be very similar to that of the Eyjafjallajokull volcano, which forced much of Europe to close its airports earlier this year. With Eyjafjallajokull, pockets of hot gas blasted through the surface of the lava, generating shock waves that can be seen passing through the grey smoke of the volcano. The hot gas then rises up in the atmosphere, dragging the dark ash with it. This process can be seen in a movie of the Eyjafjallajokull volcano where the shock waves propagating in the smoke are followed by the rise of dark ash clouds into the atmosphere. In the analogy with Eyjafjallajokull, the energetic particles produced in the vicinity of the black hole rise through the X-ray emitting atmosphere of the cluster, lifting up the coolest gas near the center of M87 in their wake, much like the hot volcanic gases drag up the clouds of dark ash. And just like the volcano here on Earth, shockwaves can be seen when the black hole pumps energetic particles into the cluster gas. "This analogy shows that even though astronomical phenomena can occur in exotic settings and over vast scales, the physics can be very similar to events on Earth," said co-author Aurora Simionescu also of the Kavli Institute. In M87, the plumes of cooler gas being lifted upwards contain as much mass as all of the gas contained within 12,000 light years of the center of the galaxy cluster. This shows the black hole-powered volcano is very efficient at blasting the galaxy free of the gas that would otherwise cool and form stars. "This gas could have formed hundreds of millions of stars if the black hole had not removed it from the center of the galaxy. That seems like a much worse disruption than what the airline companies on Earth had to put up with earlier this year," said Evan Million, a graduate student at Stanford University and lead-author of the other paper to be published about this deep study of M87. The eruption in M87 that lifted up the cooler gas must have

  11. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  12. Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method

    Science.gov (United States)

    Larson, Kristine M.; Palo, Scott; Roesler, Carolyn; Mattia, Mario; Bruno, Valentina; Coltelli, Mauro; Fee, David

    2017-09-01

    Detection and characterization of volcanic eruptions is important both for public health and aircraft safety. A variety of ground sensors are used to monitor volcanic eruptions. Data from these ground sensors are subsequently incorporated into models that predict the movement of ash. Here a method to detect volcanic plumes using GPS signals is described. Rather than carrier phase data used by geodesists, the method takes advantage of attenuations in signal to noise ratio (SNR) data. Two datasets are evaluated: the 2009 Redoubt Volcano eruptions and the 2013/2015 eruptions at Mt. Etna. SNR-based eruption durations are compared with previously published seismic, infrasonic, and radar studies at Redoubt Volcano. SNR-based plume detections from Mt. Etna are compared with L-band radar and tremor observations. To place these SNR observations from Redoubt and Etna in context, a model of the propagation of GPS signals through both water/water vapor and tephra is developed. Neither water nor fine ash particles will produce the observed attenuation of GPS signals, while scattering caused by particles > 1 cm in diameter potentially could.

  13. Correlating the electrification of volcanic plumes with ashfall textures at Sakurajima Volcano, Japan

    Science.gov (United States)

    Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn

    2018-06-01

    Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.

  14. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  15. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  16. Developmental ecdysteroid titers and DNA puffs in larvae of two sciarid species, Rhynchosciara americana and Rhynchosciara milleri (Diptera: Sciaridae).

    Science.gov (United States)

    Soares, M A M; Hartfelder, K; Tesserolli de Souza, J M; Stocker, A J

    2015-10-01

    Ecdysteroid titers, developmental landmarks and the presence of prominent amplifying regions (DNA puffs) have been compared during late larval to pupal development in four groups of Rhynchosciara americana larvae and in R. americana and Rhynchosciara milleri. Three prominent DNA puffs (B2, C3 and C8) expand and regress sequentially on the rising phase of the 20-hydroxyecdysone (20E) titer in R. americana as a firm, cellular cocoon is being constructed. A sharp rise in 20E coincides with the regression of these puffs. The shape of the 20E curve is similar in R. milleri, a species that does not construct a massive cocoon, but the behavior of certain DNA puffs and their temporal relationship to the curve differs. Regions corresponding to B2 and C3 can be identified in R. milleri by banding pattern similarity with R. americana chromosomes and, in the case of B2, by hybridization to an R. americana probe. A B2 puff appears in R. milleri as the 20E titer rises but remains small in all gland regions. A puff similar to the R. americana C3 puff occurs in posterior gland cells of R. milleri (C3(Rm)) after the B2 puff, but this site did not hybridize to R. americana C3 probes. C3(Rm) incorporated (3)H-thymidine above background, but showed less post-puff DNA accumulation than C3 of R. americana. R. americana C8 probes hybridized to a more distal region of the R. milleri C chromosome that did not appear to amplify or form a large puff. These differences can be related to developmental differences, in particular differences in cocoon construction between the two species.

  17. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  18. Kulanaokuaiki Tephra (ca, A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.

    2009-01-01

    K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.

  19. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations.

    Science.gov (United States)

    Heggie, Travis W

    2009-09-01

    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  20. Changes of polarimetric scattering characteristics of ALOS PALSAR caused by the 2011 Eruption of Shinmoe-dake Volcano

    Science.gov (United States)

    Ohkura, Hiroshi

    Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.

  1. Puff-on-cell model for computing pollutant transport and diffusion

    International Nuclear Information System (INIS)

    Sheih, C.M.

    1975-01-01

    Most finite-difference methods of modeling pollutant dispersion have been shown to introduce numerical pseudodiffusion, which can be much larger than the true diffusion in the fluid flow and can even generate negative values in the predicted pollutant concentrations. Two attempts to minimize the effect of pseudodiffusion are discussed with emphasis on the particle-in-cell (PIC) method of Sklarew. This paper describes a method that replaces Sklarew's numerous particles in a grid volume, and parameterizes subgrid-scale concentration with a Gaussian puff, and thus avoids the computation of the moments, as in the model of Egan and Mahoney by parameterizing subgrid-scale concentration with a Guassian puff

  2. Pb-210 and Po-210 from active volcanoes in Japan

    International Nuclear Information System (INIS)

    Komura, K.; Uchida, K.; Yamamoto, M.; Ueno, K.

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.)

  3. Pb-210 and Po-210 from active volcanoes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Uchida, K; Yamamoto, M; Ueno, K [Kanazawa Univ. (Japan)

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.).

  4. The Source of Volcanic Ash in Late Classic Maya Pottery at El Pilar, Belize

    Science.gov (United States)

    Catlin, B. L.; Ford, A.; Spera, F. J.

    2007-12-01

    The presence of volcanic ash used as temper in Late Classic Maya pottery (AD 600-900) at El Pilar has been long known although the volcano(s) contributing ash have not been identified. We use geochemical fingerprinting, comparing compositions of glass shards in potsherds with volcanic sources to identify the source(s). El Pilar is located in the Maya carbonate lowlands distant from volcanic sources. It is unlikely Maya transported ash from distant sites: ash volumes are too large, the terrain too rugged, and no draft animals were available. Ash layer mining is unlikely because mine sites have not been found despite intensive surveys. Nearest volcanic sources to El Pilar, Belize and Guatemala, are roughly 450 km to the south and east. The ash found in potsherds has a cuspate morphology. This suggests ash was collected during, or shortly after, an ash airfall event following eruption. Analyses of n=333 ash shards from 20 ceramic (pottery) sherds was conducted by electron microprobe for major elements, and LA-ICPMS for trace elements and Pb isotopes. These analyses can be compared to volcanic materials from candidate volcanoes in the region. The 1982 El Chichon eruption caused airfall deposition (archaeological samples and El Chichon has been made. The atomic ratios of La/Yb, Nb/Ta, Zr/Hf, Sr/Ba and Th/U of n=215 glass shards in the potsherds are 12.2±7.1, 10.9±3.4, 31.2±11.5, 0.09±0.05 and 2.5±0.9, respectively. These ratios for 1982 El Chichon are 15.4±2.1, 26.3, 36.1±5.3, 1.4±0.06 and 3.16, respectively. Data for the 1475 AD El Chichon eruption (Macias et al, 2003) can also be compared; the ratios from are 13.2±2.2, 7.3±1.8, 30.4±9.6, 1.51±0.4 and 2.88±0.23, respectively. The mean 208Pb/206Pb ratio of n=5 potsherds is 2.0523±0.002 compared to 2.0514±0.00074 for n=7 samples from El Chichon. The two most recent eruptions from El Chichon overlap with the potsherd glass data except for Sr/Ba, which might be modified by Sr-Ca exchange during firing. In

  5. Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.

    Science.gov (United States)

    Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong

    2017-11-16

    In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

  6. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  7. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  8. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Salzano, Ernesto; Maschio, Giuseppe

    2013-01-01

    The recent eruption of the Icelandic volcano has focused the worldwide attention on volcanic ash effects for the population, road, rail and air traffic and production activities. This paper aims to study of technological (industrial) accidental scenarios triggered by ash fallout and, more specifically, to define and quantify the potential damage on filtration systems. Malfunctions due to the filter clogging and service interruptions caused by the rupture of the filtering surface have been analysed in order to define the vulnerability of the equipment to such damages. Results are given in terms of threshold values of deposit on the filtering surface and exceedance probability curves of ash concentrations and the duration of the ash emission. This data can be easily implemented in the standard risk assessment with the aim to include the estimation of Natural-Technological (Na-Tech) hazards

  9. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  10. The future of volcanic ash-aircraft interactions from technical and policy perspectives

    Science.gov (United States)

    Casadevall, T. J.; Guffanti, M.

    2010-12-01

    Since the advent of jet-powered flight in the 1960s, the threat of volcanic ash to aviation operations has become widely recognized and the mitigation of this threat has received concerted international attention. At the same time the susceptibility to operational disruption has grown. Technical improvements to airframes, engines, and avionic systems have been made in response to the need for improved fuel efficiency and the demand for increased capacity for passenger and freight traffic. Operational demands have resulted in the growth of extended overseas flight operations (ETOPS), increased flight frequency on air traffic routes, and closer spacing of aircraft on heavily traveled routes. The net result has been great advances in flight efficiency, but also increased susceptibility to flight disruption, especially in heavily traveled regions such as North Atlantic-Europe, North America, and the North Pacific. Advances in ash avoidance procedures, pilot and air manager training, and in detection of ash-related damage and maintenance of aircraft and engines have been spurred by noteworthy eruptions such as Galunggung, Indonesia, 1982; Redoubt, Alaska, 1989-1990; and Pinatubo, Philippines, 1991. Comparable advances have been made in the detection and tracking of volcanic ash clouds using satellite-based remote sensing and numerical trajectory forecast models. Following the April 2010 eruption of Eyjafjallajökull volcano, Iceland, the global aviation community again focused attention on the issue of safe air operations in airspace affected by volcanic ash. The enormous global disruption to air traffic in the weeks after the Eyjafjallajökull eruption has placed added emphasis for the global air traffic management system as well as on the equipment manufacturers to reevaluate air operations in ash-affected airspace. Under the leadership of the International Civil Aviation Organization and the World Meteorological Organization, efforts are being made to address this

  11. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    Science.gov (United States)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age 3000 kg/s, strong chemistry - Lidar signal and FSSP-300 signal strongly dependent on refractive index, ash density, particle size spectrum 1- 50 µm - Mid-European airspace closure was justified until Sat. April 17; thereafter ageing ash clouds dominated. - Keflavik/Iceland was found to be free of ash as predicted on April 29 - May 2 - The Quality of forecasts was found to be quite reliable for aviation planning - For the future we recommend combinations of models + lidar + satellite + in-situ - We suggest an improved linking between operations and academia - The DLR Falcon will

  12. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  13. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  14. Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016

    Science.gov (United States)

    Ishii, Kensuke; Hayashi, Yuta; Shimbori, Toshiki

    2018-02-01

    It is vital to detect volcanic plumes as soon as possible for volcanic hazard mitigation such as aviation safety and the life of residents. Himawari-8, the Japan Meteorological Agency's (JMA's) geostationary meteorological satellite, has high spatial resolution and sixteen observation bands including the 8.6 μm band to detect sulfur dioxide (SO2). Therefore, Ash RGB composite images (RED: brightness temperature (BT) difference between 12.4 and 10.4 μm, GREEN: BT difference between 10.4 and 8.6 μm, BLUE: 10.4 μm) discriminate SO2 clouds and volcanic ash clouds from meteorological clouds. Since the Himawari-8 has also high temporal resolution, the real-time monitoring of ash and SO2 clouds is of great use. A phreatomagmatic eruption of Aso volcano in Kyushu, Japan, occurred at 01:46 JST on October 8, 2016. For this eruption, the Ash RGB could detect SO2 cloud from Aso volcano immediately after the eruption and track it even 12 h after. In this case, the Ash RGB images every 2.5 min could clearly detect the SO2 cloud that conventional images such as infrared and split window could not detect sufficiently. Furthermore, we could estimate the height of the SO2 cloud by comparing the Ash RGB images and simulations of the JMA Global Atmospheric Transport Model with a variety of height parameters. As a result of comparison, the top and bottom height of the SO2 cloud emitted from the eruption was estimated as 7 and 13-14 km, respectively. Assuming the plume height was 13-14 km and eruption duration was 160-220 s (as estimated by seismic observation), the total emission mass of volcanic ash from the eruption was estimated as 6.1-11.8 × 108 kg, which is relatively consistent with 6.0-6.5 × 108 kg from field survey. [Figure not available: see fulltext.

  15. Encounters of aircraft with volcanic ash clouds; A compilation of known incidents, 1953-2009

    Science.gov (United States)

    Guffanti, Marianne; Casadevall, Thomas J.; Budding, Karin

    2010-01-01

    Information about reported encounters of aircraft with volcanic ash clouds from 1953 through 2009 has been compiled to document the nature and scope of risks to aviation from volcanic activity. The information, gleaned from a variety of published and other sources, is presented in database and spreadsheet formats; the compilation will be updated as additional encounters occur and as new data and corrections come to light. The effects observed by flight crews and extent of aircraft damage vary greatly among incidents, and each incident in the compilation is rated according to a severity index. Of the 129 reported incidents, 94 incidents are confirmed ash encounters, with 79 of those having various degrees of airframe or engine damage; 20 are low-severity events that involve suspected ash or gas clouds; and 15 have data that are insufficient to assess severity. Twenty-six of the damaging encounters involved significant to very severe damage to engines and (or) airframes, including nine encounters with engine shutdown during flight. The average annual rate of damaging encounters since 1976, when reporting picked up, has been approximately 2 per year. Most of the damaging encounters occurred within 24 hours of the onset of ash production or at distances less than 1,000 kilometers from the source volcanoes. The compilation covers only events of relatively short duration for which aircraft were checked for damage soon thereafter; documenting instances of long-term repeated exposure to ash (or sulfate aerosols) will require further investigation. Of 38 source volcanoes, 8 have caused 5 or more encounters, of which the majority were damaging: Augustine (United States), Chaiten (Chile), Mount St. Helens (United States), Pacaya (Guatemala), Pinatubo (Philippines), Redoubt (United States), Sakura-jima (Japan), and Soufriere Hills (Montserrat, Lesser Antilles, United Kingdom). Aircraft have been damaged by eruptions ranging from small, recurring episodes to very large

  16. Hydromagnetic Rayleigh endash Taylor instability in high-velocity gas-puff implosions

    International Nuclear Information System (INIS)

    Roderick, N.F.; Peterkin, R.E. Jr.; Hussey, T.W.; Spielman, R.B.; Douglas, M.R.; Deeney, C.

    1998-01-01

    Experiments using the Saturn pulsed power generator have produced high-velocity z-pinch plasma implosions with velocities over 100 cm/μs using both annular and uniform-fill gas injection initial conditions. Both types of implosion show evidence of the hydromagnetic Rayleigh endash Taylor instability with the uniform-fill plasmas producing a more spatially uniform pinch. Two-dimensional magnetohydrodynamic simulations including unsteady flow of gas from a nozzle into the diode region have been used to investigate these implosions. The instability develops from the nonuniform gas flow field that forms as the gas expands from the injection nozzle. Instability growth is limited to the narrow unstable region of the current sheath. For the annular puff the unstable region breaks through the inner edge of the annulus increasing nonlinear growth as mass ejected from the bubble regions is not replenished by accretion. This higher growth leads to bubble thinning and disruption producing greater nonuniformity at pinch for the annular puff. The uniform puff provides gas to replenish bubble mass loss until just before pinch resulting in less bubble thinning and a more uniform pinch. copyright 1998 American Institute of Physics

  17. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes

    Science.gov (United States)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.

    2010-05-01

    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its

  18. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    Science.gov (United States)

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  19. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Pawelko Ezequiel Eduardo

    2016-01-01

    Full Text Available At Lidar Division of CEILAP (CITEDEF-CONICET a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  20. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  1. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    Science.gov (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  2. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  3. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  4. Huff 'n puff to revaporize liquid dropout in an Omani gas field

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wadhahi, M.; Boukadi, F.H.; Al-Bemani, A.; Al-Maamari, R.; Al-Hadrami, H. [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123 (Oman)

    2007-01-15

    In this study, Huff 'n Puff technique is used as a production mechanism to revaporize liquid dropout in the Saih Rawl retrograde condensate gas field, Oman. During the huff cycle, a number of wells were shut in to achieve revaporization. The same wells were put on stream, during the puff cycle. Liquid dropout induced a mechanical skin around the wellbore and hampered gas production capabilities but has been revaporized through pressurization. The pressure buildup in the rich-gas condensate reservoir was due to a cross flow originating from a deeper highly pressurized lean-gas bearing formation. The pressure communication was taking place through the wellbore during shut-in cycles. A compositional simulation model was used to confirm the theory of condensate revaporization. Simulation results indicated that Huff 'n Puff is a viable production technique. The technique improved gas deliverability and enhanced gas-liquid production by minimizing the skin caused by gas-liquid dropout. (author)

  5. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J; Bisig, Christoph; Damby, David E; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauser, Barbara

    2018-07-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm 2 and 0.39 ± 0.09 μg/cm 2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO 2 ). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  6. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface

    Science.gov (United States)

    Tomasek, Ines; Horwell, Claire J.; Bisig, Christoph; Damby, David; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauer, Barbara

    2018-01-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  7. Dynamic Sensing of Cornea Deformation during an Air Puff

    Science.gov (United States)

    Yamada, Kenji; Yamasaki, Naoyuki; Gosho, Takumi; Kiuchi, Yoshiaki; Takenaka, Jouji; Higashimori, Mitsuru; Kaneko, Makoto

    In early diagnosis of glancoma, intraocular pressure measurement is one of an important method. Non-contact method has measured eye pressure through the deformation of cornea during the increase of the force due to air puff. The deformation is influenced by the cornea stiffness as well as the eye internal pressure. Since the cornea stiffness is unknown in general, it is difficult to evaluate the ture eye pressure. The dynamic behavior of cornea under air puff may provide us with a good hint for evaluating the cornea stiffness appropriately. For this purpose, we develop the sensing system composed of a high speed camera, a mirror for producing a virtual camera, a non-contact tonometer and a slit light source. This system enables us to measure the cornea deformation under concave shape. We show the experimental data for human eyes as well as an artificial eye made by transparent material.

  8. Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Arendt, Elke K

    2016-04-01

    Four vegetable fat blends (FBs) with low trans-fatty acid (TFA ≤ 0.6 %) content with various ratios of palm stearin (PS) and rapeseed oil (RO) were characterised and examined for their application in puff pastry production. The amount of PS decreased from FB1 to FB4 and simultaneously the RO content increased. A range of analytical methods were used to characterise the FBs, including solid fat content (SFC), differential scanning calorimetry (DSC), cone penetrometry and rheological measurements. The internal and external structural quality parameters of baked puff pastry were investigated using texture analyser equipped with an Extended Craft Knife (ECK), VolScan and C-Cell image system. Puff pastry containing FB1 and FB2 achieved excellent baking results for full fat and fat-reduced puff pastry; hence these FBs contained adequate shortening properties. A fat reduction by 40 % using FB2 and a reduction of saturated fatty acids (SAFA) by 49 %, compared to the control, did not lead to adverse effects in lift and specific volume. The higher amount of RO and the lower SAFA content compared to FB1 coupled with the satisfying baking results makes FB2 the fat of choice in this study. FB3 and FB4 were found to be unsuitable for puff pastry production because of their melting behaviour.

  9. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments

    International Nuclear Information System (INIS)

    Stotler, D.P.; DIppolito, D.A.; LeBlanc, B.; Maqueda, R.J.; Myra, J.R.; Sabbagh, S.A.; Zweben, S.J.

    2003-01-01

    Gas Puff Imaging (GPI) experiments are designed to isolate the structure of plasma turbulence in the plane perpendicular to the magnetic field. Three-dimensional aspects of this diagnostic technique as used on the National Spherical Torus eXperiment (NSTX) are examined via Monte Carlo neutral transport simulations. The radial width of the simulated GPI images are in rough agreement with observations. However, the simulated emission clouds are angled approximately 15 degrees with respect to the experimental images. The simulations indicate that the finite extent of the gas puff along the viewing direction does not significantly degrade the radial resolution of the diagnostic. These simulations also yield effective neutral density data that can be used in an approximate attempt to infer two-dimensional electron density and temperature profiles from the experimental images

  10. Unmanned Aerial Technologies for Observations at Active Volcanoes: Advances and Prospects

    Science.gov (United States)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M.; Makel, D.; Schwandner, F. M.; Buongiorno, M. F.; Elston, J. S.

    2017-12-01

    Modern application of unmanned aerial systems' (UASs) technology allow us to conduct in situ measurements in volcanic plumes and drifting volcanic clouds that were impossible to make in the past. Thus, we are now able to explore proximal airspace near and within eruption columns and or other active vents, at very high and at very low altitudes—risk to human investigators is vastly reduced (although not eliminated). We are now on the cusp of being able to make in situ measurements and conduct sampling at altitudes of 5000-6000 meters relatively routinely. We also are developing heat tolerant electronics and sensors that will deployed on, around, and over active lava lakes and lava flows at terrestrial volcanoes, but with a view toward developing planetary applications, for instance on the surface of Venus. We report on our 2012-present systematic UAS-based observations of light gases (e.g., SO2 CO2, H2S) at Turrialba Volcano in Costa Rica, at Italian volcanic sites (e.g., Isole Vulcano; La Solfatara), and most recently at Kilauea Volcano, Hawaii in collaboration with USGS and NPS colleagues. Other deployments for Fall 2017 and Winter 2018 are in planning stages for the Salton Sea Basin and Costa Rica, which will include an airborne miniature mass spectrometer onboard several different types of UAVs. In addition, under development is the first purpose-built-for-volcanology small unmanned aircraft. We discuss strategies for acquiring airborne data from proximal ash/gas plumes during restless periods and during eruptions, from distal drifting ash/gas clouds from eruptions, and from diffuse emissions (e.g., CO2) at very low altitudes, utilizing UASs (e.g., fixed wing, multi-rotor, aerostat), especially regarding inputs for source flux reverse models. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  11. Effects of ascorbic acid, translutaminase and margarine amounts on the quality of puff pastry made from spelt flour

    OpenAIRE

    Šimurina, Olivera D.; Filipčev, Bojana V.; Bodroža-Solarov, Marija I.; Šoronja-Simović, Dragana M.

    2015-01-01

    Puff pastry has delicate and flaky texture which comes from unique combination of fat and dough. These bakery products are made from many thin layers of dough which are separated by alternate fat layers because of which they are considered to be high fat food. Properties of puff pastry depend mostly on the quality of flour, which must be specifically tailored for this purpose. The most commonly used flour in the production of puff pastry is refined wheat flour. Lately, the requirements of con...

  12. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  13. Laser-Irradiated Gas Puff Target Plasma Modeling

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.

    2014-01-01

    Roč. 42, č. 10 (2014), s. 2600-2601 ISSN 0093-3813 R&D Projects: GA ČR GAP102/12/2043 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Gas puff laser plasma * water window radiation source * RHMD code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.101, year: 2014 http://ieeexplore.ieee.org

  14. An efficient approach to transient turbulent dispersion modeling by CFD-statistical analysis of a many-puff system

    International Nuclear Information System (INIS)

    Ching, W-H; K H Leung, Michael; Leung, Dennis Y C

    2009-01-01

    Transient turbulent dispersion phenomena can be found in various practical problems, such as the accidental release of toxic chemical vapor and the airborne transmission of infectious droplets. Computational fluid dynamics (CFD) is an effective tool for analyzing such transient dispersion behaviors. However, the transient CFD analysis is often computationally expensive and time consuming. In the present study, a computationally efficient CFD-statistical hybrid modeling method has been developed for studying transient turbulent dispersion. In this method, the source emission is represented by emissions of many infinitesimal puffs. Statistical analysis is performed to obtain first the statistical properties of the puff trajectories and subsequently the most probable distribution of the puff trajectories that represent the macroscopic dispersion behaviors. In two case studies of ambient dispersion, the numerical modeling results obtained agree reasonably well with both experimental measurements and conventional k-ε modeling results published in the literature. More importantly, the proposed many-puff CFD-statistical hybrid modeling method effectively reduces the computational time by two orders of magnitude.

  15. Advances in volcano monitoring and risk reduction in Latin America

    Science.gov (United States)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    -sharing facilitatescross-border identification and warnings of ash plumes for aviation. Overall, long-term strategies of data collection and experience-sharing have helped Latin American observatories improve their monitoring and create informed communities cognizant of vulnerabilities inherent in living near volcanoes.

  16. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  17. Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch

    Science.gov (United States)

    Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.

    2018-02-01

    We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.

  18. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  19. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  20. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  1. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  2. Effects of ascorbic acid, translutaminase and margarine amounts on the quality of puff pastry made from spelt flour

    Directory of Open Access Journals (Sweden)

    Šimurina Olivera D.

    2015-01-01

    Full Text Available Puff pastry has delicate and flaky texture which comes from unique combination of fat and dough. These bakery products are made from many thin layers of dough which are separated by alternate fat layers because of which they are considered to be high fat food. Properties of puff pastry depend mostly on the quality of flour, which must be specifically tailored for this purpose. The most commonly used flour in the production of puff pastry is refined wheat flour. Lately, the requirements of consumers for healthy bakery products have a great response in the baking industry. On the market there are new products made with ingredients which have high nutritional value. This paper presents an optimization of the composition of puff pastry made of spelt flour by varying the amount of ingredients such as: margarine, ascorbic acid and enzyme transglutaminase. The optimal ratio of these ingredients has been based on the consideration of their major and interaction effects. During the optimization of spelt puff pastry quality, the following goals were set: maximum volume, minimum firmness and maximum overall acceptability. The optimal solutions were in the concentration range from 3.60 mg/kg to 10 mg/kg for ascorbic acid, from 0.03 mg/kg to 3 mg/kg for transglutaminase and from 29.84 to 30% for margarine on dough basis. It is recommended that the composition of spelt puff pastry involve: 10 mg/kg ascorbic acid, 0.03 mg/kg transglutaminase and 30 % margarine on dough basis to provide the desired product characteristics.

  3. Volcanic Ash -Aircraft Encounter Damages: in Volcanological Point of View

    Science.gov (United States)

    Aydar, Erkan; Aladaǧ, Çaǧdaş Hakan; Menteş, Turhan

    2017-04-01

    The jet era or age began at 1930 and 40's in aviation sector, with the production of first jet engine for the aircrafts. Since 1950's, the commercial aviation with regular flights were established. Civil aviation and air-transport drastically increased due to intensive demand, and declared at least 10 fold since 1970 by IATA report. Parallelly to technological and economical developpement, the commercial jets became more comfortable, secure and rapid, bringing the world smaller, the countries closer. On the other hand, according to Global Volcanism Program Catalogues of Smithsonian Institute, about 1,500 volcanoes have erupted in the Holocene, 550 of them have had historical eruptions and considered as active. Besides an average of 55-60 volcanoes erupt each year, and about 8-10 of these eruptions produce ash clouds that reach aircraft flight altitudes (Salinas and Watt, 2004). Volcanic ash can be expected to be in air routes at altitudes greater than 9 km (30,000 ft) for roughly 20 days per year worldwide (Miller &Casadeval, 2000). A precious compilation of incidents due to encounters of aircrafts with volcanic ash clouds covering the years between 1953 and 2009 was used in this work (Guffanti et al., 2010-USGS Report) with an additional information on Eyfjallajökull-2010 eruption. According to this compilation,129 incidents happened within the concerned time interval. The damages, in general, fall in second and third class of Severity index, indicating the damages are limited on airframe of the planes, or some abrasions in jet engine, windblast etc.. We focused on fourth class of severity index involving the damages on jet engine of aircraft (engine fail) due to ingestion of volcanic ash and investigate eruption style and caused damage relationships. During the eruptive sequences of Mts Saint Helen (USA), Galunggung (Indonesia, 2 incidents), Redoubt (USA), Pinatubo (Philipinnes), Unzen (Japan), Manam (Papua New Guinea), Soufriere Hills (Lesser Antilles), Chaiten

  4. Volcanic ash detection and retrievals using MODIS data by means of neural networks

    Directory of Open Access Journals (Sweden)

    M. Picchiani

    2011-12-01

    Full Text Available Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis.

    In this work we have developed a fast and accurate Neural Network (NN approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS data in the Thermal InfraRed (TIR spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases.

    The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part.

    The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km−2 has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement.

  5. Puff and bite: the relationship between the glucocorticoid stress response and anti-predator performance in checkered puffer (Sphoeroides testudineus).

    Science.gov (United States)

    Cull, Felicia; O'Connor, Constance M; Suski, Cory D; Shultz, Aaron D; Danylchuk, Andy J; Cooke, Steven J

    2015-04-01

    Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod

    International Nuclear Information System (INIS)

    Stotler, D.P.; LaBombard, B.; Terry, J.L.; Zweben, S.J.

    2002-01-01

    Visible imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results.Visibl e imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results

  7. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Science.gov (United States)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  8. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    Science.gov (United States)

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  9. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    Science.gov (United States)

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  10. Effect of salt reduction on wheat-dough properties and quality characteristics of puff pastry with full and reduced fat content.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Lynch, Kieran M; Arendt, Elke K

    2016-11-01

    Puff pastry is a major contributor of fat and sodium intake in many countries. The objective of this research was to determine the impact of salt (0-8.4g/100g flour) on the structure and quality characteristics of puff pastry with full and reduced (-40%) fat content as well as the rheological properties of the resulting dough. Therefore, empirical rheological tests were carried out including dough extensibility, dough stickiness and GlutoPeak test. The quality of the puff pastry was characterized with the VolScan, Texture Analyzer and C-Cell. NaCl reduction significantly changed rheological properties of the basic dough as well as a number of major quality characteristics of the puff pastry. Significant differences due to NaCl addition were found in particular for dough resistance, dough stickiness, Peak Maximum Time and Maximum Torque (ppastry containing full fat. Likewise, maximal lift, specific volume, number of cells and slice brightness increased with increasing NaCl at both fat levels. Although a sensorial comparison of puff pastries revealed that salt reduction (30%) was perceptible, no significant differences were found for all other investigated attributes. Nevertheless, a reduction of 30% salt and 40% fat in puff pastry is achievable as neither the perception and visual impression nor attributes such as volume, firmness and flavour of the final products were significantly affected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  12. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  13. Evolution of {sup 222} Rn and chemical species related with eruptive processes of the Popocatepetl volcano; Evolucion de {sup 222} Rn y especies quimicas relacionadas con procesos eruptivos del volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, P.; Ceballos, S.; Cruz, D.; Hernandez, A.; Lopez, R.; Pena, P.; Salazar, S.; Segovia, N.; Tamez, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The {sup 222} Rn monitoring in the Popocatepetl volcano was initiated on 1993. At December 21, 1994 it is initiated an eruptive stage in the volcano with gas emission, ashes and the lava dome formation on the crater at middle 1996. During all this time it has been determined radon concentrations on soils with active and passive detectors. In this work the changes in radon contents are reported also the physicochemical parameters in spring water related with the volcanic building associated to the recent activity of the volcano. (Author)

  14. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  15. Hazard assessment of long-range tephra dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico). Inplications on civil aviation

    Science.gov (United States)

    Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A.

    2013-12-01

    Popocatépetl is one of the most active volcanoes in Mexico threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude. The current volcanic hazards map, reconstructed after the crisis occurred in 1994, considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra dispersal hazard, especially related to atmospheric dispersal, has been performed. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is strongly required. In this work we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels. Tephra dispersal modelling is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the 'Ochre Pumice' Plinian eruption (4965 14C yrBP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied sampling them on the base of a Probability Density Function. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here

  16. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.

    Science.gov (United States)

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.

  17. Hazard Map of the Poás Volcano

    Directory of Open Access Journals (Sweden)

    Gustavo Barrantes Castillo

    2015-07-01

    Full Text Available The Poás volcano presents a series of hazards to the lives and activities of the communities in its surroundings; these hazards include ash fall, volcanic gases, ballistic projection, pyroclastic flows, lahars and lava flows. In the study described in this article, risks were zoned and integrated to form combined hazard maps for later use in territorial planning processes. With respect to methodology, the study was based on a heuristic approximation, which was supported with cartographic, geomorphological, and historical impact criteria to achieve a suitable product in terms of scale and ease of interpretation. These maps present greater detail and integration than other works and cartographies of volcanic hazards in Costa Rica.

  18. Characteristics and petrology of the effusive-explosive activity of Colima volcano, in the years 2015-2017

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez-Cornu, F. J.; Arreola-Ochoa, L. C.; Suarez, G. B. V.; Carrillo-Gonzalez, D. A.

    2017-12-01

    The Colima volcano, during the years 2015-2017, presented an important effusive and explosive activity, which began in January 2015 with the growth of a dome that was destroyed by explosions, forming pyroclastic flows reaching distances of up to 2 km by the north and south flanks of the volcano. In May a new dome was extruded, forming three thick lava flows along the northern and southern slopes; the extruded volume was approximately 6 million cubic meters, with a rate in 52 days of 1.3 m3/sec. On July 11 merapi flows were formed it flowed through by the ravines of Montegrande and San Antonio, on the south and southwest flank, reaching distances of 10.4 km. The following days the activity had decreased substantially, leaving a crater of 60 m of depth and 270 m of diameter. In February 2016, a small dome occupied the central part of the main crater, and it was until September that an episode of volcanic tremor began, that was associated with its rapid growth, which in 48 hours filled the crater and formed a lava flow that descended by the south slope. By October 2, 2.3 million m3 of lava were extruded, which caused a deflation of the dome. In October 7, the volcano emitted a great amount of gases and steam of water that formed an acid rain that affected forests and crops of the south and southwest slope, causing losses by 1 million dollars. In November, a series of explosions occurred that destroyed two thirds of the dome. In January 2017, the explosive activity increased and again destroyed the dome. Five events were recorded that reached between 3 km and 4 km of height on the top of the volcano, the dispersion of the ash generally went to the northeast, reaching distances of up to 200 km. Currently the volcano is sustaining reduced seismic and fumarole activity. In 2005, 2015 and 2017, the geochemical analysis of major elements such as SiO2 from the ash emitted by the volcano showed an increase from 54.51% to 60.05% and 60.24%, respectively, which was associated

  19. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  20. A parametric description of a skewed puff in the diabatic surface layer

    International Nuclear Information System (INIS)

    Mikkelsen, T.

    1982-10-01

    The spreading of passive material in the stable, neutral and unstable surface layer from an instantaneous ground source is parameterized in a form appropriate for use with an operational puff diffusion model. (author)

  1. Effects of puff times on intraocular pressure agreement between non-contact and Goldmann applanation tonometers

    Directory of Open Access Journals (Sweden)

    Ibrahim Toprak

    2014-07-01

    Full Text Available AIM: To compare intraocular pressure(IOPvalues obtained from two different puff modes of Canon TX-F non-contact tonometer(NCTand Goldmann applanation tonometer(GATin patients with primary open angle glaucoma(POAG. METHODS: The study group comprised 55 right eyes of 55 patients with a confirmed diagnosis of POAG, which were under treatment. All patients underwent detailed ophthalmological examinations, optical coherence tomography imaging and automated perimetry. Intraocular pressure measurements were performed using 1-puff mode of NCT(NCT1, 3-puffs mode of NCT(NCT3and GAT with 5 minutes intervals in order. RESULTS: Fifty-five eyes of 55 patients with POAG(mean age of 64.1±8.1 yearswere enrolled into the study. NCT1 and NCT3 gave similar IOP values when compared with GAT measurements(14.22±3.42, 14.28±3.29, 14.66±3.49mmHg respectively, P=0.291. Intertonometer agreement was assessed using the Bland-Altman method. The 95% limits of agreement(LoAfor NCT1-GAT, NCT3-GAT and NCT1-NCT3 comparisons were -4.9 to +4.4mmHg, -4.1 to +3.4mmHg, and -3.4 to +3.3mmHg respectively.CONCLUSION: Although IOP measurements obtained from two puff modes of NCT and GAT showed similar values, wide range of LoA might restrict use of NCT1, NCT3 and GAT interchangeably in POAG patients.

  2. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    Science.gov (United States)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  3. Dynamics of sausage instabilities of a gas-puff Z-pinch

    International Nuclear Information System (INIS)

    Sopkin, Yu.V.; Dorokhin, L.A.; Koshelev, K.N.; Sidelnikov, Yu.V.

    1991-01-01

    The early stage of the sausage instability in a gas-puff Z-pinch has been registered in VUV and soft X-rays with a 10 ns framing camera. We hypothesize that the rings of plasma expanding from the sausage instability enable an alternative current path to dominate the formation of 'micropinches'. (orig.)

  4. From Chaitén to the Chilean volcano monitoring network Jorge Munoz, Hugo Moreno, Servicio Nacional de Geología y Minería, Chile, jmunoz@sernageomin.cl

    Science.gov (United States)

    Muñoz, J.; Moreno, H.

    2010-12-01

    Chaitén volcano in southern Andes started a plinian to subplinian rhyolitic eruption on May 2008 following a long period of quiescence. A new dome complex grew up at high rates during 2008-2009 inside a 2 kilometers caldera like structure. Pyroclastic, laharic, block and ash flows and ash falls deposits have been affecting the surrounding populations, ground, vegetation, ocean and rivers, such as the laharic flows burying the currently evacuated Chaitén city. The geological, volcanologic and seismic knowledge produced during the eruption and the determination of evolutionary sceneries were properly transferred and consequently taken in account during complex decisions of authorities in charge of the emergency. As a result, no fatalities or major people injuries were produced during this rhyolitic eruption. Mainly as the consequence of the eruption of the Chaitén volcano but also due to the valuable technical advice during the crisis management, evacuation, hazards evolution, volcanic alerts and selection of sites for relocation of the Chaitén city provided by geologist and volcanologist from SERNAGEOMIN, the funding for the National Volcano Monitoring Network (RNVV) was approved during 2008 and it was integrated as a Bicentenary initiative. During the lapse of 5 year, RNVV need to create professional capacity and working teams, improve the current volcano observatory at Temuco and conform three new observatories at Coihaique, Talca and Antofagasta cities to implement volcano monitoring networks at the 43 hazardous volcanoes along the Chilean Andes. Monitoring net is currently conformed by seismic stations in 10 volcanoes or volcanic groups (San Pedro-San Pablo in Central Volcanic Andes and Llaima, Villlarrica, Mocho-Choshuenco, Carrán-Los Venados, Cordón Caulle, Osorno, Calbuco, Chaitén and Melimoyu in the southern volcanic Andes), in addition to gas measure and video camera stations in Llaima, Villarrica and Chaitén volcanoes. In addition, the geologic and

  5. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  6. The human impact of volcanoes: a historical review of events 1900-2009 and systematic literature review.

    Science.gov (United States)

    Doocy, Shannon; Daniels, Amy; Dooling, Shayna; Gorokhovich, Yuri

    2013-04-16

    Introduction. More than 500 million people live within the potential exposure range of a volcano. The risk of catastrophic losses in future eruptions is significant given population growth, proximities of major cities to volcanoes, and the possibility of larger eruptions. The objectives of this review are to describe the impact of volcanoes on the human population, in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of volcanoes were compiled using two methods, a historical review of volcano events from 1900 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between volcano mortality and characteristics using STATA 11. Findings. There were a total of 91,789 deaths (range: 81,703-102,372), 14,068 injuries (range 11,541-17,922), and 4.72 million people affected by volcanic events between 1900 and 2008. Inconsistent reporting suggests this is an underestimate, particularly in terms of numbers injured and affected. The primary causes of mortality in recent volcanic eruptions were ash asphyxiation, thermal injuries from pyroclastic flow, and trauma. Mortality was concentrated with the ten deadliest eruptions accounting for more than 80% of deaths; 84% of fatalities occurred in four locations (the Island of Martinique (France), Colombia, Indonesia, and Guatemala). Conclusions. Changes in land use practices and population growth provide a background for increasing risk; in conjunction with increasing urbanization in at risk areas, this poses a challenge for future volcano preparedness and mitigation efforts.

  7. Particle fuelling for long pulse with standard gas puff and supersonic pulsed gas injection

    International Nuclear Information System (INIS)

    Bucalossi, J.; Tsitrone, E.; Martin, G.

    2003-01-01

    In addition to the standard gas puff and to the technically complex pellet injection, a novel intermediate method, based on the injection of a supersonic high density cloud of neutrals, has been recently implemented on the Tore Supra tokamak. Fuelling efficiency, in the 30-50% range are found while it lies in the 10-20% range for the gas puff. It is not sensitive to the plasma density and to the additional heating. According to modelling, the increased efficiency is attributed to the very short injection duration compared to the particle confinement time and to the strong cooling of the plasma edge resulting from the massive injection of matter. A feedback loop on the frequency of the injector has been successfully implemented to control the plasma density. In long pulse experiments (>200s), wall saturation has not been reached. Gas puffing rate was typically around 1 Pa.m 3 s -1 while dynamic wall retention around 0.6 Pa.m 3 s -1 . Co-deposited carbon layer could trap such large amounts of gas. A discharge fuelled by supersonic pulsed gas injections exhibits lower wall retention than a gas puff fuelled discharge. (author)

  8. Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system

    Science.gov (United States)

    Alonso-Caneiro, David; Karnowski, Karol; Kaluzny, Bartlomiej J.; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2011-07-01

    We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

  9. DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009

    Science.gov (United States)

    Gordeev, E.; Droznin, V.

    2009-12-01

    The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.

  10. Multi-variable X-band radar observation and tracking of ash plume from Mt. Etna volcano on November 23, 2013 event

    Science.gov (United States)

    Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.

    2015-04-01

    Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar

  11. Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with

  12. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  13. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    Science.gov (United States)

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    The 2009 eruption of Redoubt Volcano included 20 tephra-producing explosions between March 15, 2009 and April 4, 2009 (UTC). Next-Generation radar (NEXRAD) data show that plumes reached heights between 4.6 km and 19 km asl and were distributed downwind along nearly all azimuths of the volcano. Explosions lasted between 0.8 mm thick), including communities along the Kenai Peninsula (80–100 km) and the city of Anchorage (170 km). Trace ash (mass of tephra-fall deposits at 54.6 × 109 kg with a total DRE volume of 20.6 × 106 m3.

  14. Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2004-01-01

    which are usually identifiable. Due to the delay in the release of the SRTM data following the February 2000 flight, a significant part of our effort was devoted to the analog studies of the SRTM topographic data using topographic data from airborne interferometric radars. As part of the original SRTM Science Team, we proposed four study sites (Kilauea, Hawaii; Mt. Pinatubo, Philippines; Cerro Am1 and Femandina volcanoes, Galapagos Islands; and Tengger caldera, Java) where we could conduct detailed geologic studies to evaluate the uses of SRTM data for the analysis of lava flows, lahars, erosion of ash deposits, and an evaluation of the structural setting of the volcanoes. Only near the end of this project was one of these SRTM Science Team products (Luzon Island, the Philippines) released to the community, and we only had limited time to work on these data.

  15. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  16. Influence of an external gas puff on the RI-mode confinement properties in TEXTOR

    International Nuclear Information System (INIS)

    Kalupin, D.

    2002-06-01

    An actual subject of experimental and theoretical studies in present day fusion research is the development of an operational scenario combining simultaneously high confinement, with at least H-mode quality, and high densities, around or above the empirical Greenwald limit. Recently, this subject was studied in TEXTOR radiative improved (RI) mode discharges, in which the seeding of a small amount of impurities is helpful in a transition to the improved confinement stage. It was found that by the careful tailoring of external fuelling and optimisation of the wall conditions it is possible to maintain the H-mode or even higher quality confinement at densities much above Greenwald density limit. However, more intense fuelling, aimed to extend maximal achievable densities, led to the progressive confinement deterioration. The theory explains the transition to the RI-mode as a bifurcation into the stage where the transport governed by the ion temperature gradient (ITG) instability is significantly reduced due to a high density gradient and high value of the effective charge. The numerical studies of an influence of the gas puff intensity on confinement properties of plasma, done with the help of the 1-D transport code RITM, show that the same theory can be used for an explanation of the confinement rollover triggered by a strong gas puff. The code was modified in order to simulate the effect of the gas puff on the confinement properties. The anomalous transport coefficients in the plasma core include contributions from the ITG and dissipative trapped electron (DTE) instabilities. The transport at the plasma edge under RI-mode conditions might be described by the electrostatic turbulence caused by electric currents in the scrape-off layer of the limiter. The present computations show that this assumption for the edge transport does not allow the modeling of an effect of the gas puff intensity on the profiles evolution in agreement with experimental observations. The

  17. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.

    Science.gov (United States)

    Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G

    2007-03-01

    Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.

  18. Experimental study on gas-puff Z-pinch load characteristics on yang accelerator

    International Nuclear Information System (INIS)

    Ren Xiaodong; Huang Xianbin; Yang Libing; Dan Jiakun; Duan Shuchao; Zhang Zhaohui; Zhou Shaotong

    2010-01-01

    A supersonic single-shell gas-puff load has been developed for Z-pinch experiments on 'Yang' accelerator. Using a fast responding pressure probe to measure the supersonic gas flow, impact pressure at different position and plenum pressure were acquired, which were combined with gas dynamics formulas to determine gas pressures and densities. The radial density profile displays that positions of gas shell varies with axial position, and the gas densities on axis increases as the distance from nozzle increases. Integral radial densities indicates that the linear mass density peaks at nozzle exit and decreases as increasing the distance from nozzle. Using single-shell supersonic gas-puff load, Z-pinch implosion experiments were performed on 'Yang' accelerator. Primary analysis of implosion process was presented, and computational trajectories of imploding plasma shell using snowplow model are in agreement with the experimental results. (authors)

  19. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajökull (2010) in Iceland.

    Science.gov (United States)

    Karbowska, Bozena; Zembrzuski, Wlodzimierz

    2016-07-01

    Volcanic ash contains thallium (Tl), which is highly toxic to the biosphere. The aim of this study was to determine the Tl concentration in fractions of volcanic ash samples originating from the Eyjafjallajökull volcano. A sequential extraction scheme allowed for a study of element migration in the environment. Differential pulse anodic stripping voltammetry using a flow measuring system was selected as the analytical method to determine Tl content. The highest average content of Tl in volcanic ash was determined in the fraction entrapped in the aluminosilicate matrix (0.329 µg g(-1)), followed by the oxidizable fraction (0.173 µg g(-1)). The lowest content of Tl was found in the water soluble fraction (0.001 µg g(-1)); however, this fraction is important due to the fact that Tl redistribution among all the fractions occurs through the aqueous phase.

  20. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population

  1. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  2. Atmospheric control on ground and space based early warning system for hazard linked to ash injection into the atmosphere

    Science.gov (United States)

    Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis

    2014-05-01

    Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind

  3. Gas-puff Z-pinch experiment on the LIMAY-I

    International Nuclear Information System (INIS)

    Takasugi, K.; Miyamoto, T.; Akiyama, H.; Shimomura, N.; Sato, M.; Tazima, T.

    1989-01-01

    A gas-puff z-pinch plasma has been produced on the pulsed power generator LIMAY-I at IPP Nagoya University. The stored energy of the generator is 13 kJ, and it generates 600 kV-70 ns-3 Ω power pulse. Ar or He gas is puffed from a hollow nozzle with 18 mm diameter, and a z-pinch plasma is produced by a discharge between 3 mm gap electrodes

  4. Smoking Topography among Korean Smokers: Intensive Smoking Behavior with Larger Puff Volume and Shorter Interpuff Interval.

    Science.gov (United States)

    Kim, Sungroul; Yu, Sol

    2018-05-18

    The difference of smoker's topography has been found to be a function many factors, including sex, personality, nicotine yield, cigarette type (i.e., flavored versus non-flavored) and ethnicity. We evaluated the puffing behaviors of Korean smokers and its association with smoking-related biomarker levels. A sample of 300 participants was randomly recruited from metropolitan areas in South Korea. Topography measures during a 24-hour period were obtained using a CReSS pocket device. Korean male smokers smoked two puffs less per cigarette compared to female smokers (15.0 (13.0⁻19.0) vs. 17.5 (15.0⁻21.0) as the median (Interquartile range)), but had a significantly larger puff volume (62.7 (52.7⁻75.5) mL vs. 53.5 (42.0⁻64.2) mL); p = 0.012). The interpuff interval was similar between men and women (8.9 (6.5⁻11.2) s vs. 8.3 (6.2⁻11.0) s; p = 0.122) but much shorter than other study results. A dose-response association ( p = 0.0011) was observed between daily total puff volumes and urinary cotinine concentrations, after controlling for sex, age, household income level and nicotine addiction level. An understanding of the difference of topography measures, particularly the larger puff volume and shorter interpuff interval of Korean smokers, may help to overcome a potential underestimation of internal doses of hazardous byproducts of smoking.

  5. Self-potential signals caused by eruptions of the Galeras volcano – Colombia

    Directory of Open Access Journals (Sweden)

    Greinwald S.

    2007-12-01

    Full Text Available The National Institute of Geology and Mining, INGEOMINAS - Colombia, and the Federal Institute for Geosciences and Natural Resources, BGR - Germany, perform since 1997 as a joint venture
    multi-parameter measurements at the Galeras volcano, in the southwest of Colombia. Since the end of 1998 the Multi-parameter Station at Galeras (Estación Multiparámetro del Galeras - EMG includes the continuous monitoring of electromagnetic variations. The electromagnetic (EM station is located at the north-eastern foot walls of the central cone inside the caldera.
    During almost six years of electromagnetic monitoring, the data did not show significant variations of the electromagnetic field, which could be related to the volcanic activity. In July 2004 a new active period of Galeras began with two strong ash emissions. During both emissions strong self potential- (SP signals were recorded lasting for several hours. The present paper will present the data which could give some indications on the movements of liquids during ash emissions.

  6. A gas puff experiment for partial simulation of compact toroid formation on MARAUDER

    International Nuclear Information System (INIS)

    Englert, S.E.; Englert, T.J.; Degnan, J.H.; Gahl, J.M.

    1994-01-01

    Preliminary results will be reported of a single valve gas puff experiment to determine spatial and spectral distribution of a gas during the early ionization stages. This experiment has been developed as a diagnostic test-bed for partial simulation of compact toroid formation on MARAUDER. The manner in which the experimental hardware has been designed allows for a wide range of diagnostic access to evaluate early time evolution of the ionization process. This evaluation will help contribute to a clearer understanding of the initial conditions for the formation stage of the compact toroid in the MARAUDER experiment, where 60 of the same puff valves are used. For the experiment, a small slice of the MARAUDER cylindrical gas injection and expansion region geometry have been re-created but in cartesian coordinates. All of the conditions in the experiment adhere as closely as possible to the MARAUDER experiment. The timing, current rise time, capacitance, resistance and inductance are appropriate to both the simulation of one of the 60 puff valves and current delivery to the load. Both time-resolved images and spectral data have been gathered for visible light emission of the plasma. Processed images reveal characteristics of spatial distribution of the current. Spectral data provide information with respect to electron temperature and density, and entrainment of contaminants

  7. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  8. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  9. Lidar observation of Eyjafjallajoekull ash layer evolution above the Swiss Plateau

    Science.gov (United States)

    Simeonov, Valentin; Dinoev, Todor; Parlange, Mark; Serikov, Ilya; Calpini, Bertrand; Wienhold, F.; Engel, I.; Brabec, M.; Crisian, A.; Peter, T.; Mitev, Valentin; Matthey, R.

    2010-05-01

    The Iceland volcano Eyjafjallajökull started to emit significant amounts of volcanic ash and SO2 on 15th April 2010, following the initial eruption on 20th March 2010. In the next days, the ash was dispersed over large parts of Europe resulting in the closure of the major part of the European airspace. Information about spatial and temporal evolution of the cloud was needed urgently to define the conditions for opening the airspace. Satellite, airborne and ground observations together with meteorological models were used to evaluate the cloud propagation and evolution. While the horizontal extents of the volcanic cloud were accurately captured by satellite images, it remained difficult to obtain accurate information about the cloud base and top height, density and dynamics. During this event lidars demonstrated that they were the only ground based instruments allowing monitoring of the vertical distribution of the volcanic ash. Here we present observational results showing the evolution of the volcanic layer over the Swiss plateau. The measurements were carried out by one Raman lidar located in Payerne, two elastic lidars located in Neuchatel and Zurich, and a backscatter sonde launched from Zurich. The observations by the lidars have shown very similar time evolution, coherent with the backscatter sonde profiles and characterized by the appearance of the ash layer on the evening of 16th, followed by descend to 2-3 km during the next day and final mixing with the ABL on 19th. Simultaneous water vapor data from the Payerne lidar show low water content of the ash layer. The CSEM and EPFL gratefully acknowledge the financial support by the European Commission under grant RICA-025991.

  10. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  11. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  12. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    Science.gov (United States)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  13. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  14. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    Science.gov (United States)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  15. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sechrest, Y.; Munsat, T. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Smith, D. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stotler, D. P.; Zweben, S. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2015-05-15

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff.

  16. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Sechrest, Y.; Munsat, T.; Smith, D.; Stotler, D. P.; Zweben, S. J.

    2015-01-01

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff

  17. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  18. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  19. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  20. A 'Puff' dispersion model for routine and accidental releases

    International Nuclear Information System (INIS)

    Grsic, Z.; Rajkovic, B.; Milutinovic, P.

    1999-01-01

    A Puff dispersion model for accidental or routine releases is presented. This model was used as a constitutive part of an automatic meteorological station.All measured quantities are continuously displayed on PC monitor in a digital and graphical form, they are averaging every 10 minutes and sending to the civil information center of Belgrade. In the paper simulation of a pollutant plume dispersion from The oil refinery 'Pancevo', on April 18 th 1999 is presented. (author)

  1. Aircraft and Volcanic Ash a Key Focus of EGU Meeting

    Science.gov (United States)

    Showstack, Randy

    2010-05-01

    The erupting Eyjafjallajökull volcano in southern Iceland, which has intermittently disrupted European air traffic since 14 April, provided a dramatic backdrop for the recent European Geosciences Union (EGU) General Assembly in Vienna, Austria, about 2700 kilometers to the east. EGU organized several last-minute conference sessions about the eruption, and a number of scientists, including some from Iceland, discussed the latest situation, monitoring and assessment needs, and new guidance about flying through volcanic ash, which volcanologist and incoming EGU president-elect Donald Dingwell of the University of Munich, Germany, called “one of the ugliest cocktails nature throws up.” Although the eruption was small compared with those at Mount St. Helens in 1980 or Mount Pinatubo in 1991, the event produced an estimated 0.1 ± 0.05 cubic kilometer of tephra between 14 and 16 April, according to preliminary numbers from the Institute of Earth Sciences in Reykjavik, Iceland (see the related news item in this issue). An enormous amount of ash from the eruption got lofted into the jet stream toward the United Kingdom and the European mainland. European air traffic controllers, operating under the best guidance and guidelines available at that time—which indicated no flying in ash—shut down European air space to avoid a potential catastrophe if ash clogged up an aircraft's engines.

  2. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    Science.gov (United States)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  3. The Influence of Puff Characteristics, Nicotine Dependence, and Rate of Nicotine Metabolism on Daily Nicotine Exposure in African American Smokers.

    Science.gov (United States)

    Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon; Delucchi, Kevin; Benowitz, Neal L

    2016-06-01

    African American (AA) smokers experience greater tobacco-related disease burden than Whites, despite smoking fewer cigarettes per day (CPD). Understanding factors that influence daily nicotine intake in AA smokers is an important step toward decreasing tobacco-related health disparities. One factor of interest is smoking topography, or the study of puffing behavior. (i) to create a model using puff characteristics, nicotine dependence, and nicotine metabolism to predict daily nicotine exposure, and (ii) to compare puff characteristics and nicotine intake from two cigarettes smoked at different times to ensure the reliability of the puff characteristics included in our model. Sixty AA smokers smoked their preferred brand of cigarette at two time points through a topography device. Plasma nicotine, expired CO, and changes in subjective measures were measured before and after each cigarette. Total nicotine equivalents (TNE) was measured from 24-hour urine collected during ad libitum smoking. In a model predicting daily nicotine exposure, total puff volume, CPD, sex, and menthol status were significant predictors (R(2) = 0.44, P smokers. Cancer Epidemiol Biomarkers Prev; 25(6); 936-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    Science.gov (United States)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  5. MESOI Version 2.0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables

  6. 'Carcinogens in a puff': smoking in Hong Kong movies.

    Science.gov (United States)

    Ho, Sai-Yin; Wang, Man-Ping; Lai, Hak-Kan; Hedley, Anthony J; Lam, Tai-Hing

    2010-12-01

    Smoking scenes in movies, exploited by the tobacco industry to circumvent advertisement bans, are linked to adolescent smoking. Recently, a Hong Kong romantic comedy Love in a puff put smoking at centre stage, with numerous smoking scenes and words that glamourise smoking. Although WHO has issued guidelines on reducing the exposure of children to smoking in movies, none is adopted in Hong Kong. Comprehensive tobacco control strategies are urgently needed to protect young people in Hong Kong from cigarette promotion in movies.

  7. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  8. Preliminary results of an examination of electronic cigarette user puff topography: the effect of a mouthpiece-based topography measurement device on plasma nicotine and subjective effects.

    Science.gov (United States)

    Spindle, Tory R; Breland, Alison B; Karaoghlanian, Nareg V; Shihadeh, Alan L; Eissenberg, Thomas

    2015-02-01

    Electronic cigarettes (ECIGs) heat a nicotine-containing solution; the resulting aerosol is inhaled by the user. Nicotine delivery may be affected by users' puffing behavior (puff topography), and little is known about the puff topography of ECIG users. Puff topography can be measured using mouthpiece-based computerized systems. However, the extent to which a mouthpiece influences nicotine delivery and subjective effects in ECIG users is unknown. Plasma nicotine concentration, heart rate, and subjective effects were measured in 13 experienced ECIG users who used their preferred ECIG and liquid (≥ 12 mg/ml nicotine) during 2 sessions (with or without a mouthpiece). In both sessions, participants completed an ECIG use session in which they were instructed to take 10 puffs with 30-second inter-puff intervals. Puff topography was recorded in the mouthpiece condition. Almost all measures of the effects of ECIG use were independent of topography measurement. Collapsed across session, mean plasma nicotine concentration increased by 16.8 ng/ml, and mean heart rate increased by 8.5 bpm (ps topography measurement equipment, ECIG-using participants took larger and longer puffs with lower flow rates. In experienced ECIG users, measuring ECIG topography did not influence ECIG-associated nicotine delivery or most measures of withdrawal suppression. Topography measurement systems will need to account for the low flow rates observed for ECIG users. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. High-energy electron acceleration in the gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Keiichi, E-mail: takasugi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308 (Japan); Miyazaki, Takanori [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan and Dept. Innovation Systems Eng., Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Nishio, Mineyuki [Anan National College of Technology, 265 Aoki, Minobayashi, Anan, Tokushima 774-0017 (Japan)

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  10. Observation of the bremsstrahlung generation in the process of the Rayleigh endash Taylor instability development at gas puff implosion

    International Nuclear Information System (INIS)

    Baksht, R.B.; Fedunin, A.V.; Labetsky, A.Y.; Rousskich, A.G.; Shishlov, A.V.

    1997-01-01

    The electron magnetohydrodynamic model predicts the appearance of anode endash cathode voltage in the process of Rayleigh endash Taylor instability development during gas puff implosions. The appearance of the anode endash cathode voltage should be accompanied by the accelerated electron flow and the generation of the bremsstrahlung radiation. Experiments with neon and krypton gas puffs were performed on the GIT-4 [S. P. Bugaev, et al., Plasma Sci. 18, 115 (1990)] generator (1.6 MA, 120 ns) to observe the bremsstrahlung radiation during the gas puff implosion. Two spikes of the bremsstrahlung radiation were observed in the experiments. The first spike is connected with the gas breakdown; the second one is connected with the final stage of the implosion. The development of the RT instabilities does not initiate the bremsstrahlung radiation, therefore, the absence of anode endash cathode voltage is demonstrated. copyright 1997 American Institute of Physics

  11. Occurrence of Somma-Vesuvio fine ashes in the tephrostratigraphic record of Panarea, Aeolian Islands

    Science.gov (United States)

    Donatella, De Rita; Daniela, Dolfi; Corrado, Cimarelli

    2008-10-01

    Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.

  12. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  13. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Munoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; Zande, W.J. van der; Waters, L.; Rose, W.I.

    2004-01-01

    [1] We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3degrees - 174degrees of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic

  14. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    Science.gov (United States)

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  15. An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2006-12-01

    Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.

  16. A statistical theory on the turbulent diffusion of Gaussian puffs

    International Nuclear Information System (INIS)

    Mikkelsen, T.; Larsen, S.E.; Pecseli, H.L.

    1982-12-01

    The relative diffusion of a one-dimensional Gaussian cloud of particles is related to a two-particle covariance function in a homogeneous and stationary field of turbulence. A simple working approximation is suggested for the determination of this covariance function in terms of entirely Eulerian fields. Simple expressions are derived for the growth of the puff's standard deviation for diffusion times that are small compared to the integral time scale of the turbulence. (Auth.)

  17. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  18. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  19. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Muñoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; van der Zande, W.J.; Waters, L.B.F.M.; Rose, W.I.

    2004-01-01

    We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3°-174° of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980

  20. Hedonic Predictors of Tobacco Dependence: A Puff Guide to Smoking Cessation

    Science.gov (United States)

    2015-04-07

    process may not always be the case. While Perkins et al. (31) showed the potential for a connection between puff volume, considered reinforcement...effect can be attributed to the effects of "acute tolerance" (31 ). Nicotine is thought to acutely desensitize nicotinic receptors ("acute tolerance...company that performs biological assays) for the cotinine assay. Salivary cotinine levels were measured through an enzyme immunoassay conducted by

  1. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  2. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  3. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  4. Stratigraphy and Petrology of the Grande Soufriere Hills Volcano, Dominica, Lesser Antilles

    Science.gov (United States)

    Daly, G.; Smith, A. L.; Garcia, R.; Killingsworth, N.

    2007-12-01

    The Grande Soufriere Hills volcanic center is located on the south east coast of the island of Dominica in the Lesser Antilles. Although the volcano is deeply dissected, a distinct circular crater that opens to the east can be observed. Within the crater is a lava dome and unconsolidated pyroclastic deposits mantle the southeast flanks of the volcano. These pyroclastic deposits are almost entirely matrix-supported block and ash flows and surges suggesting that Pelean-style eruptions have dominated its most recent activity. Within this sequence is a relatively thin (30-50 cm) clast-supported deposit that has been interpreted as a possible blast deposit. Two age dates from these younger deposits suggest that much of this activity occurred between l0,000 and 12,000 years ago. On the southeastern coast at Pointe Mulâtre and extending approximately 4 km north and at a maximum 2 km west, is a megabreccia of large (up to 3 m) flow-banded andesite clasts set in a semi-lithified medium grained ash matrix. At Pointe Mulâtre this megabreccia is overlain by unconsolidated block and ash flow deposits. To the north of the megabreccia, exposures in the sea cliffs reveal a consolidated sequence of well-bedded alternating coarse and fine deposits suggesting deltaic foreset beds; which in turn appears to be overlain by a yellow- colored relatively coarse flow deposit with an irregular upper surface. The uppermost deposits in the sea cliffs are a sequence of unconsolidated block and ash flow deposits and interbedded fluviatile conglomerates equivalent to the younger flow deposits logged inland. Volcanic rocks from the Grande Soufriere Hills are all porphyritic andesites often containing hypabyssal inclusions. Dominant phenocrysts are plagioclase often with inclusion-rich cores and well developed zoning. Mafic phenocrysts include hornblende, augite and hypersthene. Geochemically these andesites range from 58- 63% SiO2 and show trends of decreasing values for Al2O3, FeO, MgO, CaO, Ti

  5. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  6. The microphysics of ash tribocharging: New insights from laboratory experiments

    Science.gov (United States)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this

  7. Integration of plume and puff diffusion models/application of CFD

    Science.gov (United States)

    Mori, Akira

    The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.

  8. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  9. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  10. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  11. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  12. Recent Advances with the AMPX Covariance Processing Capabilities in PUFF-IV

    International Nuclear Information System (INIS)

    Wiarda, Dorothea; Arbanas, Goran; Leal, Luiz C.; Dunn, Michael E.

    2008-01-01

    The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point-wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in 235U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advandage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point-wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.

  13. Holocene eruptive activity of Yufu-Tsurumi volcano group found from piston cores in Beppu bay, Central Kyushu; Beppuwan core kara mita Yufu Tsurumi kazangun ni okeru kanshinsei no funka katsudo

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Kusanagi, M. [Kobe University, Kobe (Japan); Furusawa, A. [Dia Consultants Co. Ltd., Nagoya (Japan); Ui, T. [Hokkaido University, Sapporo (Japan)

    1996-08-01

    With an objective to identify the Holocene eruptive activity of the Yufu-Tsurumi volcano group, analysis was made on the volcanic ash, Yufu-dake 1 (a product of the latest eruptive activity). The analysis used piston core samples collected in Beppu Bay. Volcanic ash deposited in lakes and inner bays are not subjected to erosion effect, hence remain in better condition than on-land deposits. A volcanic ash bed characteristically containing micro-crystal contained glass has existed, and so has a volcanic ash bed characteristically containing volcanic foam glass and polyhedral glass. The volcanic ash bed characteristically containing micro-crystal contained glass was found comparable with the Yufu-dake 1 volcanic ash bed originated in the Yufu-Tsurumi volcanic group, as proven from the stratigraphy, rock statement and refraction of the volcanic glass. As a result of performing a {sup 14}C age measurement on seashells in the core samples by using an accelerator mass analysis method, it was found that the eruption age of the Yufu-dake 1 volcanic ash dates back about 2,500 years ago. Core samples collected from lakes and inner bays contain much carbonic material used in the {sup 14}C age measurement. Therefore, investigation on volcanic ash deposited on ocean bottoms is effective. 25 refs., 7 figs., 3 tabs.

  14. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  15. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    International Nuclear Information System (INIS)

    Armienta, M.A.; De la Cruz-Reyna, S.; Soler, A.; Cruz, O.; Ceniceros, N.; Aguayo, A.

    2010-01-01

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO 4 2- , Cl - and F - concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO 4 produced by hydrothermal processes from magmatic SO 2 . Lower S isotopic values correlated with higher F - percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  16. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  17. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    Science.gov (United States)

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-01

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  18. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    International Nuclear Information System (INIS)

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-01

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series.The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA.With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length.At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  19. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra

    Science.gov (United States)

    Iverson, N. A.; Kyle, P. R.; Dunbar, N. W.; Pearce, N. J.

    2012-12-01

    Erebus is the most active volcano in Antarctica and hosts a persistent convecting and degassing phonolite lava lake in its summit crater. Small Strombolian eruptions occasionally eject volcanic bombs onto the crater rim and floor. 40 years of observations, during the austral summer, show that ash eruptions are rare, but extensive records of small tephra (volcanic ash) layers are found embedded in ablating blue ice areas on the flanks of the volcano. Most tephra are deposited within 15km of the summit, although 3 Erebus phonolite tephra have been located over 200km away. The tephra provide a stratigraphic eruptive sequence of Erebus and gives insight into its explosive history. There is very little age control on the eruptions but based on their phonolitic composition they likely span the past 10-40ka. SEM images and Image Particle Analysis (IPA) of tephra were used to determine shard morphology and shape parameters, respectively. The tephra layers characterized by Pele's hair, glass spheres and budding ash are interpreted to be from Strombolian eruptions. In contrast, layers that are dominated by chemical pitting, quenched textures, mossy and adhering particles are mostly likely from phreatomagmatic eruptions. IPA parameters are characterized by rectangularity, compactness, elongation and circularity. Strombolian particles have larger elongation and circularity values exhibited by their stretched and irregular shape and lower rectangularity and compactness values. Phreatomagmatic tephra are more blocky and have higher rectangularity and compactness values and lower elongation and circularity values than Strombolian particles. Based on imagery, many Erebus tephra layers appear to contain a mixture of Strombolian and phreatomagmatic fragments. These mixed eruptions would likely start as phreatomagmatic and transition into magmatic Strombolian eruptions as the water source is exhausted. Major and trace element analyses of the glass shards were measured by electron

  20. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  1. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    Science.gov (United States)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  2. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  3. Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter

    2018-01-01

    Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary

  4. Volcanic Processes and Geology of Augustine Volcano, Alaska

    Science.gov (United States)

    Waitt, Richard B.; Beget, James E.

    2009-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most

  5. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    Science.gov (United States)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  6. In-situ observations of Eyjafjallajökull ash particles by hot-air balloon

    Science.gov (United States)

    Petäjä, T.; Laakso, L.; Grönholm, T.; Launiainen, S.; Evele-Peltoniemi, I.; Virkkula, A.; Leskinen, A.; Backman, J.; Manninen, H. E.; Sipilä, M.; Haapanala, S.; Hämeri, K.; Vanhala, E.; Tuomi, T.; Paatero, J.; Aurela, M.; Hakola, H.; Makkonen, U.; Hellén, H.; Hillamo, R.; Vira, J.; Prank, M.; Sofiev, M.; Siitari-Kauppi, M.; Laaksonen, A.; lehtinen, K. E. J.; Kulmala, M.; Viisanen, Y.; Kerminen, V.-M.

    2012-03-01

    The volcanic ash cloud from Eyjafjallajökull volcanic eruption seriously distracted aviation in Europe. Due to the flight ban, there were only few in-situ measurements of the properties and dispersion of the ash cloud. In this study we show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption. The modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted. Some of this discrepancy can be attributed to the uncertainty in the initial emission height and strength. The observed maximum mass concentration varied between 12 and 18 μg m -3 assuming a density of 2 g m -3, whereas the gravimetric analysis of the integrated column showed a maximum of 45 μg m -3 during the first two descents through the ash plume. Ion chromatography data indicated that a large fraction of the mass was insoluble to water, which is in qualitative agreement with single particle X-ray analysis. A majority of the super-micron particles contained Si, Al, Fe, K, Na, Ca, Ti, S, Zn and Cr, which are indicative for basalt-type rock material. The number concentration profiles indicated that there was secondary production of particles possibly from volcano-emitted sulfur dioxide oxidized to sulfuric acid during the transport.

  7. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  8. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  9. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  10. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  11. Characterization of Montserrat volcanic ash for the assessment of respiratory health hazards

    International Nuclear Information System (INIS)

    Horwell, Claire Judith

    2002-01-01

    Volcanic ash, generated in the long-lived eruption of the Soufriere Hills volcano, Montserrat, is shown to contain respirable (sub-4 μm) particles and the crystalline silica polymorph, cristobalite. Respirable particles of cristobalite can cause silicosis, raising the possibility that volcanic ash is a respiratory health hazard. This study considers some of the main factors that affect human exposure to volcanic particles: the composition, proportions and surface reactivity of respirable ash and the composition and concentrations of re-worked and airborne suspended particulates. Dome-collapse ash-fall deposits are significantly richer in respirable particles (12 weight %) than the other tephra samples, in particular the matrices of dome-collapse pyroclastic-flow deposits (3 weight %). Within the respirable fraction, dome-collapse ash contains the highest proportion of crystalline silica particles (20-27 number %, of which 97 % is cristobalite), compared with other primary tephra types (0.4-5.6 number %). The results are explained by significant fractionation during fragmentation of pyroclastic flows due to the size and strength of particles and the selective elutriation of fines into the lofting ash plume. This result in a fines-depleted dome-collapse matrix and a fines-rich dome-collapse ash deposit. For all sample types, the sub-4 μm fraction comprises 45-55 weight % of the sub-10 μm fraction. Re-worked and airborne samples show enrichment of crystalline silica in the respirable fraction (10-18 number %) but have low proportions of respirable ash (∼ 3 weight %) compared to primary ash samples. The concentration of ash particles re-suspended by road vehicles on Montserrat is found to decrease exponentially with height above the ground, indicating higher exposure for children compared with adults: PM 4 concentration at 0.9 m (height of two year old child) is three times that at 1.8m (adult height). Surface- and free-radical production has been closely linked

  12. Characterization of Montserrat volcanic ash for the assessment of respiratory health hazards

    Energy Technology Data Exchange (ETDEWEB)

    Horwell, Claire Judith

    2002-07-01

    Volcanic ash, generated in the long-lived eruption of the Soufriere Hills volcano, Montserrat, is shown to contain respirable (sub-4 {mu}m) particles and the crystalline silica polymorph, cristobalite. Respirable particles of cristobalite can cause silicosis, raising the possibility that volcanic ash is a respiratory health hazard. This study considers some of the main factors that affect human exposure to volcanic particles: the composition, proportions and surface reactivity of respirable ash and the composition and concentrations of re-worked and airborne suspended particulates. Dome-collapse ash-fall deposits are significantly richer in respirable particles (12 weight %) than the other tephra samples, in particular the matrices of dome-collapse pyroclastic-flow deposits (3 weight %). Within the respirable fraction, dome-collapse ash contains the highest proportion of crystalline silica particles (20-27 number %, of which 97 % is cristobalite), compared with other primary tephra types (0.4-5.6 number %). The results are explained by significant fractionation during fragmentation of pyroclastic flows due to the size and strength of particles and the selective elutriation of fines into the lofting ash plume. This result in a fines-depleted dome-collapse matrix and a fines-rich dome-collapse ash deposit. For all sample types, the sub-4 {mu}m fraction comprises 45-55 weight % of the sub-10 {mu}m fraction. Re-worked and airborne samples show enrichment of crystalline silica in the respirable fraction (10-18 number %) but have low proportions of respirable ash ({approx} 3 weight %) compared to primary ash samples. The concentration of ash particles re-suspended by road vehicles on Montserrat is found to decrease exponentially with height above the ground, indicating higher exposure for children compared with adults: PM{sub 4} concentration at 0.9 m (height of two year old child) is three times that at 1.8m (adult height). Surface- and free-radical production has been

  13. A 28-fold increase in secretory protein synthesis is associated with DNA puff activity in the salivary gland of Bradysia hygida (Diptera, Sciaridae

    Directory of Open Access Journals (Sweden)

    de-Almeida J.C.

    1997-01-01

    Full Text Available When the first group of DNA puffs is active in the salivary gland regions S1 and S3 of Bradysia hygida larvae, there is a large increase in the production and secretion of new salivary proteins demonstrable by [3H]-Leu incorporation. The present study shows that protein separation by SDS-PAGE and detection by fluorography demonstrated that these polypeptides range in molecular mass from about 23 to 100 kDa. Furthermore, these proteins were synthesized mainly in the S1 and S3 salivary gland regions where the DNA puffs C7, C5, C4 and B10 are conspicuous, while in the S2 region protein synthesis was very low. Others have shown that the extent of amplification for DNA sequences that code for mRNA in the DNA puffs C4 and B10 was about 22 and 10 times, respectively. The present data for this group of DNA puffs are consistent with the proposition that gene amplification is necessary to provide some cells with additional gene copies for the production of massive amounts of proteins within a short period of time (Spradling AC and Mahowald AP (1980 Proceedings of the National Academy of Sciences, USA, 77: 1096-1100.

  14. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  15. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  16. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  17. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  18. Study of soft X-ray energy spectra from gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Zhang Guixin; Han Min; Luo Chengmu

    2006-01-01

    A ROSS-FILTER-PIN spectrometer in the spectral range of 0.28 keV-1.56 keV was developed to study the soft X-ray radiation emitted from gas-puff Z-pinch plasma. It is composed of five channels covering the energy interval of interest without gaps. Soft X-ray spectral energy cuts were determined by the L absorption edges of selected filter elements (K absorption edges being used for light filter elements), and the optimum thickness of filter material was designed using computer code. To minimize the residual sensitivity outside the sensitivity range of each channel, element of the first filter was added into the second filter of all the Ross pair. To diminish the area of each filter, PIN detector with small sensitive area of 1 mm 2 was adopted for the spectrometer. A filter with small area is easy to fabricate and would be helpful to withstand the Z-pinch discharge shock wave. With this ROSS-FILTER-PIN spectrometer, the energy spectra of soft X-ray from a small gas-puff Z-pinch were investigated, and the correlation between the soft X-ray yield and the plasma implosion state was also studied. (authors)

  19. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  20. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  1. Design and construction of a testbed for the application of real volcanic ash from the Eyjafjallajökull and Grimsvötn eruptions to microgas turbines

    Science.gov (United States)

    Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar

    2017-04-01

    It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.

  2. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  3. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  4. Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes

    Science.gov (United States)

    Miallier, D.; Pilleyre, T.; Boivin, P.; Labazuy, P.; Gailler, L.-S.; Rico, J.

    2017-10-01

    The Grand Sarcoui is a prominent trachytic volcano of the intraplate Quaternary volcanic field of Chaîne des Puys (Massif Central, France), which fulfills basic requirements for being qualified as monogenetic. Grand Sarcoui looks like a simple axisymmetric lava dome, but close observation reveals a complex and dissymmetric structure and composition. The construction of the dome, about 12.5 ka ago, combined both endogenous and exogenous growth which resulted in variable modes of emplacement and textures of the lava. One of its most interesting features is a large ( 0.29 106 m2) fan of deposits bearing hummocks and secondary hydro-eruption craters. Cross sections of these deposits demonstrate that they originated from a sector collapse accompanied by a blast-like event. The dome is covered by a thin layer of lapilli and ash, attributed to a delayed summit eruption which occurred about 10.6 ka ago, surprisingly late after its construction. So, this volcano has, at a reduced scale, features that are more usually observed in large composite volcanoes. However, some of these features differ slightly from those that have been documented to date, and they remain partly unexplained. This shows that monogenetic, well preserved, trachytic lava domes, are uncommon and poorly known, unlike rhyolitic, andesitic and dacitic domes.

  5. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  6. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  7. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study

    Directory of Open Access Journals (Sweden)

    A. Lindenthal

    2013-06-01

    Full Text Available In high-nutrient–low-chlorophyll regions, phytoplankton growth is limited by the availability of water-soluble iron. The eruption of Kasatochi volcano in August 2008 led to ash deposition into the iron-limited NE Pacific Ocean. Volcanic ash released iron upon contact with seawater and generated a massive phytoplankton bloom. Here we investigate this event with a one-dimensional ocean biogeochemical column model to illuminate the ocean response to iron fertilisation by volcanic ash. The results indicate that the added iron triggered a phytoplankton bloom in the summer of 2008. Associated with this bloom, macronutrient concentrations such as nitrate and silicate decline and zooplankton biomass is enhanced in the ocean mixed layer. The simulated development of the drawdown of carbon dioxide and increase of pH in surface seawater is in good agreement with available observations. Sensitivity studies with different supply dates of iron to the ocean emphasise the favourable oceanic conditions in the NE Pacific to generate massive phytoplankton blooms in particular during July and August in comparison to other months. By varying the amount of volcanic ash and associated bio-available iron supplied to the ocean, model results demonstrate that the NE Pacific Ocean has higher, but limited capabilities to consume CO2 after iron fertilisation than those observed after the volcanic eruption of Kasatochi.

  8. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  9. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  10. Nature's refineries — Metals and metalloids in arc volcanoes

    Science.gov (United States)

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  11. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  12. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  13. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  14. The European air traffic management response to volcanic ash crises: towards institutionalised aviation crisis management.

    Science.gov (United States)

    Dopagne, Jacques

    2011-06-01

    A cloud of ash drifting from the erupting Eyjafjallajökull volcano in Iceland in April and May 2010 covered Europe and created an unprecedented situation. It resulted in an almost complete lockdown of European airspace in the period from 15th to 21st April, 2010: more than 100,000 flights were cancelled, 10 million people were affected and over US$1.8bn was lost by airlines globally. This paper presents the air traffic management (ATM) view of the situation. Through an analysis of the evolution of the events in the affected region, the paper will provide more details on ATM planning, reaction and follow-up actions. Furthermore, the influence of this event on the identification of further improvements needed to advance volcanic procedures internationally will be discussed. Actions undertaken since the end of the event - the establishment of the European Aviation Crisis Coordination Cell, running of the International Civil Aviation Organization VOLCEX 11/01 volcanic ash exercise and European response to the Grimsvötn eruption in May 2011 - will be discussed at the end of the paper.

  15. Numerical analysis of gas puff modulation experiment on JT-60U

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Sakasai, Akira

    1992-03-01

    In tokamak transport physics, source modulation experiments are one of the most effective methods. For an analysis of these modulation experiments, a simple numerical method was developed to solve the general transport equations. This method was applied to gas puff modulation experiments on JT-60U. From the comparison between the measured and calculated density perturbations, it was found that the particle diffusion coefficient is about 0.8 m 2 /sec in the edge region and 0.1-0.2 m 2 /sec in the central region. (author)

  16. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  17. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    Science.gov (United States)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. 4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial challenge. A

  18. Gas puff modulation experiments in Tore Supra

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Devynck, P.; Dudok de Wit, T.; Garbet, X.; Gil, C.; Harris, G.; Laviron, C.; Martin, G.

    1993-01-01

    Experiments with a modulation of the gas puff have been done in Tore Supra with the aim to investigate the transport of particles and heat. The target plasma is ohmically heated, sawtoothing with frequencies between 12 and 20 Hz, deuterium for both the plasma and the injection, and with various densities, rising in a series of shots. Both the diffusion coefficient and the pinch velocity for the particle transport were determined using an harmonic modulation. The method gives reasonable results, even for small perturbations, and the obtained values are able to reproduce the stationary values. The heat flow carried by electrons also shows a modulation. The part of the modulation which is not caused by the density can in principle be used to discriminate diffusive and convective terms in the heat flux. An ion temperature profile calculated with empirically determined value of heat diffusivity reproduces the slow evolution of the total kinetic energy. 6 figs., 7 refs

  19. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    Science.gov (United States)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  20. The dynamics of gas-puff imploding plasmas on the NRL Gamble II Generator

    International Nuclear Information System (INIS)

    Stephanakis, S.J.; Boller, J.R.; Hinshelwood, D.D.; McDonald, S.W.; Mehlman, C.G.; Ottinger, P.F.; Young, F.C.

    1985-01-01

    The experimental study of imploding plasma loads on the NRL Gamble II generator was initiated more than a year ago. Preliminary results including scaling laws for K-line radiation output from neon puffs and the effect of plasma erosion opening switches (PEOS's) on the x-ray yields and the pinch quality were reported upon during the past year. In order to better understand the implosion dynamics of such plasmas, time-resolved photographs have been taken of the implosion history. In contrast with time-integrated x-ray pinhole photographs, the time-resolved visible-light pictures indicate that the implosion phase is essentially instability-free, while pinching and flaring occur at late times during the blow-up phase. Furthermore, these visible-light framing photographs clearly show that the discharge is flared out toward the anode at early times and becomes cylindrical at implosion. This so-called ''zipper-effect'' has been seen in previous argon-puff experiments and is due to the non-uniform initial distribution of gas across the anode-cathode gap. The authors present comparisons of time-resolved photographs taken both in visible and x-ray light along with x-ray spectra taken with and without PEOS's. The implications of these data are discussed in view of the present theoretical understanding of the plasma implosion dynamics

  1. The dynamics of gas-puff imploding plasmas on the NRL Gamble II generator

    International Nuclear Information System (INIS)

    Stephanakis, S.J.; Boller, J.R.; Hinshelwood, D.D.; McDonald, S.W.; Mehlman, C.G.; Ottinger, P.F.; Young, F.C.

    1985-01-01

    The experimental study of imploding plasma loads on the NRL Gamble II generator was initiated more than a year ago. Preliminary results including scaling laws for K-line radiation output from neon puffs and the effect of plasma erosion opening switches (PEOS's) on the x-ray yields and the pinch quality were reported upon during the past year. In order to better understand the implosion dynamics of such plasmas, time-resolved photographs have been taken of the implosion history. In contrast with time-integrated x-ray pinhole photographs, the time-resolved visible-light pictures indicate that the implosion phase is essentially instability-free, while pinching and flaring occur at late times during the blow-up phase. Furthermore, these visible-light framing photographs clearly show that the discharge is flared out toward the anode at early times and becomes cylindrical at implosion. This so-called ''zipper-effect'' has been seen in previous argon-puff experiments and is due to the non-uniform initial distribution of gas across the anode-cathode gap. The authors present comparisons of time-resolved photographs taken both in visible and x-ray light along with x-ray spectra taken with and without PEOS's. The implications of these data are discussed in view of the present theoretical understanding of the plasma implosion dynamics

  2. Geology, tectonics, and the 2002-2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery

    Science.gov (United States)

    Solikhin, Akhmad; Thouret, Jean-Claude; Gupta, Avijit; Harris, Andy J. L.; Liew, Soo Chin

    2012-02-01

    The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We

  3. Heavy metals in moss samples exposed to tHe atmospHeric dust after eruption of eyjafjallajökull volcano

    Directory of Open Access Journals (Sweden)

    Patryk Ochota

    2012-03-01

    Full Text Available Background: Volcanic ash, which is ejected during volcanic eruptions, flies in the air and spreads by the wind over large distances. It is a magmatic source and as such may contain heavy metals. The aim of the study was to carry out investigation on heavy metal content: Pb, Cd, Zn, Fe, Mn, Cu and Cr in samples of moss bags exposed to atmospheric dust containing volcanic ash in Sosnowiec (Poland after eruption of Eyjafjallajökull volcano in Iceland. Materials and methods: Samples have been exposed to atmospheric dust after volcanic eruption for 2 months, and were mineralised in 70% HNO3 and 30% H2O2. The content of Pb and Cd was analysed by atomic absorption spectrometry with electrothermal atomization (ETAAS and Zn, Fe, Mn, Cu, Cr by atomic absorption spectrometry with flame atomization (FAAS. Results: During the experiment the content of lead in samples of moss increased by 54,9 μg/g, cadmium by 3,41 μg/g, manganese by 150 μg/g, iron by 6,09 mg/g, zinc by 514 μg/g, copper by 20,77 μg/g and chromium by 6,99 μg/g. Conclusions: In Sosnowiec the comparable increase of metal content was from several to 41 times higher than in the areas not exposed to volcanic ash. It indicates that volcanic ash can be a potential source of heavy metals in the environment and, consequently, affect our health.

  4. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  5. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  6. Probability density function of a puff dispersing from the wall of a turbulent channel

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2015-11-01

    Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.

  7. The 13 ka Pelée-Type Dome Collapse at Nevado de Toluca Volcano, México.

    Science.gov (United States)

    D'Antonio, M.; Capra, L.; Sarocchi, D.; Bellotti, F.

    2007-05-01

    The Nevado de Toluca is an active volcano located in the central sector of the Trans-Mexican Volcanic Belt, 80 km southwest of Mexico City. Activity at this andesitic to dacitic stratovolcano began ca. 2.6 Ma ago. During the last 42 ka, the volcano has been characterized by different eruptive styles, including five dome collapses dated at 37, 32, 28, 26, and 13 ka and five Plinian eruptions at 42 ka, 36 ka, 21.7 ka, 12.1 ka and 10.5 ka. The 13 ka dome collapse is the youngest event of this type, and originated a 0.11 km3 block-and-ash flow deposit on the north-eastern sector of the volcano. The deposit consists of two facies: channel-like, 10 m thick, monolitologic, that is composed of up to five units, with decimetric dacitic clasts set in a sandy matrix; and a lateral facies that consists of a gray, sandy horizon, up to 4 m thick, with a 30 cm-thick surge layer at the base. The main component is a dacitic lava, with different degree of vesciculation, with mineral association of Pl-Hbl-Opx. Plagioclases show two different textures: in equilibrium, with normal zoning (core = An37-64.3, rim = An30.7-45.8) or with spongy cellular texture with inverse zoning (core = An38-43.5, rim = An45-51.2). Hornblende is normally light green, barren of oxidation. The rock matrix contains up to 53 perc. of glass with abundant microlites, indicating over-pressure on the crystallizing magma and a rapid expulsion. All these stratigraphic and petrographic features indicate that the dome was quickly extruded on the summit of the volcano, probably triggered by a magma mixing process, and its collapse was accompanied by an explosive component, being classified as a Pelée-type event.

  8. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  9. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  10. Electron microprobe analyses of glasses from Kīlauea tephra units, Kīlauea Volcano, Hawaii

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.

    2014-01-01

    This report presents approximately 2,100 glass analyses from three tephra units of Kīlauea Volcano: the Keanakākoʻi Tephra, the Kulanaokuaiki Tephra, and the Pāhala Ash. It also includes some new analyses obtained as part of a re-evaluation of the MgO contents of glasses in two of the three original datasets; this re-evaluation was conducted to improve the consistency of glass MgO contents among the three datasets. The glass data are a principal focus of Helz and others (in press), which will appear in the AGU Monograph Hawaiian Volcanoes—From Source to Surface. The report is intended to support this publication, in addition to making the data available to the scientific community.

  11. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  12. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  13. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  14. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  15. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  16. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  17. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  18. Characteristics of x-ray radiation from a gas-puff z-pinch plasma

    International Nuclear Information System (INIS)

    Akiyama, N.; Takasugi, K.

    2002-01-01

    Characteristics of x-ray radiation from Ar gas-puff z-pinch plasma have been investigated by changing delay time of discharge from gas puffing. Intense cloud structure of x-ray image was observed at small delay time region, but the total x-ray signal was not so intense. The x-ray signal increased with increasing the delay time, and hot spots of x-ray image also became intense. Electron temperature was evaluated from x-ray spectroscopic data, and no significant difference in temperature was observed. (author)

  19. Prediction of dosage-based parameters from the puff dispersion of airborne materials in urban environments using the CFD-RANS methodology

    Science.gov (United States)

    Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.

    2018-02-01

    One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble

  20. Effects of Electronic Cigarette Liquid Nicotine Concentration on Plasma Nicotine and Puff Topography in Tobacco Cigarette Smokers: A Preliminary Report.

    Science.gov (United States)

    Lopez, Alexa A; Hiler, Marzena M; Soule, Eric K; Ramôa, Carolina P; Karaoghlanian, Nareg V; Lipato, Thokozeni; Breland, Alison B; Shihadeh, Alan L; Eissenberg, Thomas

    2016-05-01

    Electronic cigarettes (ECIGs) aerosolize a liquid that usually contains propylene glycol and/or vegetable glycerin, flavorants, and the dependence-producing drug nicotine in various concentrations. This study examined the extent to which ECIG liquid nicotine concentration is related to user plasma nicotine concentration in ECIG-naïve tobacco cigarette smokers. Sixteen ECIG-naïve cigarette smokers completed four laboratory sessions that differed by the nicotine concentration of the liquid (0, 8, 18, or 36 mg/ml) that was placed into a 1.5 Ohm, dual coil "cartomizer" powered by a 3.3V battery. In each session, participants completed two, 10-puff ECIG use bouts with a 30-second inter-puff interval; bouts were separated by 60 minutes. Venous blood was sampled before and after bouts for later analysis of plasma nicotine concentration; puff duration, volume, and average flow rate were measured during each bout. In bout 1, relative to the 0mg/ml nicotine condition (mean = 3.8 ng/ml, SD = 3.3), plasma nicotine concentration increased significantly immediately after the bout for the 8 (mean = 8.8 ng/ml, SD = 6.3), 18 (mean = 13.2 ng/ml, SD = 13.2), and 36 mg/ml (mean = 17.0 ng/ml, SD = 17.9) liquid concentration. A similar pattern was observed after bout 2. Average puff duration in the 36 mg/ml condition was significantly shorter compared to the 0mg/ml nicotine condition. Puff volume increased during the second bout for 8 and 18 mg/ml conditions. For a given ECIG device, nicotine delivery may be directly related to liquid concentration. ECIG-naïve cigarette smokers can, from their first use bout, attain cigarette-like nicotine delivery profiles with some currently available ECIG products. Liquid nicotine concentration can influence plasma nicotine concentration in ECIG-naïve cigarette smokers, and, at some concentrations, the nicotine delivery profile of a 3.3V ECIG with a dual coil, 1.5-Ohm cartomizer approaches that of a combustible tobacco cigarette in this

  1. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  2. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    Science.gov (United States)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  4. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  5. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  6. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Science.gov (United States)

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  7. Determination of the physical values of a plasma puff by analysis of the diamagnetic signals. 1. part: expansion model for the puff. 2. part: comparison of experimental results with the expansion model for the plasma puff

    International Nuclear Information System (INIS)

    Jacquinot, J.; Leloup, Ch.; Waelbroeck, F.; Poffe, J.P.

    1964-01-01

    The flow of a dense plasma puff, along the axis of a uniform magnetic field is examined, assuming the following hypotheses: the axial distribution of the line density can be described at any time by a gaussian function whose characteristic parameter is independent of the distance from the axis of the system; the β ratio is less than 0,6. An approximate solution of the magnetohydrodynamics equations is obtained. The evolution of the characteristic properties of the plasma (local velocity, temperature and density) can be calculated from a set of equations involving 5 plasma parameters. A method leading to the determination of these parameters is described. It uses 5 informations picked up from the diamagnetic signals induced by the plasma into a set of 4 compensated magnetic loops. (authors) [fr

  8. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010

    Directory of Open Access Journals (Sweden)

    I. Steinke

    2011-12-01

    Full Text Available During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RHice =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns,imm ~ 109 m−2 at 247 K compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns,dep were found to be 1011 m−2 at 224 K and RHice =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for

  9. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  10. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  11. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    Science.gov (United States)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  12. Evaluation of a new method for puff arrival time as assessed through wind tunnel modelling

    Czech Academy of Sciences Publication Activity Database

    Chaloupecká, Hana; Jaňour, Zbyněk; Mikšovský, J.; Jurčáková, Klára; Kellnerová, Radka

    2017-01-01

    Roč. 111, October (2017), s. 194-210 ISSN 0957-5820 R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : wind tunnel * short-term gas leakage * puff Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.905, year: 2016 https://www.sciencedirect.com/science/article/pii/S0957582017302203

  13. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  14. Flows correlation of the Tuxtlas, Veracruz volcanic field. Dating by TL of ceramics found in leakages of the San Martin volcano

    International Nuclear Information System (INIS)

    Ramirez, A.; Schaaf, P.; Espindola, J.M.; Zamora, A.

    2006-01-01

    In this work the age estimation carried out to archaeological ceramics found inside the spills and one ash deposit both of the San Martin volcano. The technique used for its processing was that of fine grain (4-11 μm). The paleodosis it was calculated using the additive method for the determination of the equivalent dose (Q) and the regenerative method for the determination of the factor by supralineality (l). The samples of ceramic were processed like total sample. In the case of the geologic sample (ash sample) one carries out the separation of minerals in particular glasses at 95% of purity. For the determination of the annual dose rate its were carried out in the place of sampling measurements with a gamma spectrometry equipment, with it the determinations of Uranium, thorium and potassium were obtained, besides the cosmic contribution. Once having both elements (paleodosis and annual dose rate) it was calculated the age of the samples and consequently of the flows, which were stratigraphically correlated. (Author)

  15. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  16. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  17. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  18. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.

    Science.gov (United States)

    Boszczyk, Agnieszka; Kasprzak, Henryk; Jóźwik, Agnieszka

    2017-05-01

    The aim of this study was to analyse the indentation and deformation of the corneal surface, as well as eye retraction, which occur during air puff intraocular pressure (IOP) measurement. A group of 10 subjects was examined using a non-contact Corvis ST tonometer, which records image sequences of corneas deformed by an air puff. Obtained images were processed numerically in order to extract information about corneal deformation, indentation and eyeball retraction. The time dependency of the apex deformation/eye retraction ratio and the curve of dependency between apex indentation and eye retraction take characteristic shapes for individual subjects. It was noticed that the eye globes tend to rotate towards the nose in response to the air blast during measurement. This means that the eye globe not only displaces but also rotates during retraction. Some new parameters describing the shape of this curve are introduced. Our data show that intraocular pressure and amplitude of corneal indentation are inversely related (r 8  = -0.83, P = 0.0029), but the correlation between intraocular pressure and amplitude of eye retraction is low and not significant (r 8  = -0.24, P = 0.51). The curves describing corneal behaviour during air puff tonometry were determined and show that the eye globe rotates towards the nose during measurement. In addition, eye retraction amplitudes may be related to elastic or viscoelastic properties of deeper structures in the eye or behind the eye and this should be further investigated. Many of the proposed new parameters present comparable or even higher repeatability than the standard parameters provided by the Corvis ST. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  19. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  20. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  1. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards: Chapter 6

    Science.gov (United States)

    Mothes, Patricia A; Vallance, James W.

    2015-01-01

    Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.

  2. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  3. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  4. Chronology of the 2015 eruption of Hakone volcano, Japan: geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis

    Science.gov (United States)

    Mannen, Kazutaka; Yukutake, Yohei; Kikugawa, George; Harada, Masatake; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    The 2015 eruption of Hakone volcano was a very small phreatic eruption, with total erupted ash estimated to be in the order of only 102 m3 and ballistic blocks reaching less than 30 m from the vent. Precursors, however, had been recognized at least 2 months before the eruption and mitigation measures were taken by the local governments well in advance. In this paper, the course of precursors, the eruption and the post-eruptive volcanic activity are reviewed, and a preliminary model for the magma-hydrothermal process that caused the unrest and eruption is proposed. Also, mitigation measures taken during the unrest and eruption are summarized and discussed. The first precursors observed were an inflation of the deep source and deep low-frequency earthquakes in early April 2015; an earthquake swarm then started in late April. On May 3, steam wells in Owakudani, the largest fumarolic area on the volcano, started to blowout. Seismicity reached its maximum in mid-May and gradually decreased; however, at 7:32 local time on June 29, a shallow open crack was formed just beneath Owakudani as inferred from sudden tilt change and InSAR analysis. The same day mud flows and/or debris flows likely started before 11:00 and ash emission began at about 12:30. The volcanic unrest and the eruption of 2015 can be interpreted as a pressure increase in the hydrothermal system, which was triggered by magma replenishment to a deep magma chamber. Such a pressure increase was also inferred from the 2001 unrest and other minor unrests of Hakone volcano during the twenty-first century. In fact, monitoring of repeated periods of unrest enabled alerting prior to the 2015 eruption. However, since open crack formation seems to occur haphazardly, eruption prediction remains impossible and evacuation in the early phase of volcanic unrest is the only way to mitigate volcanic hazard.[Figure not available: see fulltext.

  5. Observation of atmospheric 210Pb and 212Pb originating from the 2004 eruptive activity of Asama volcano, Japan, and relevant 222Rn releasing from the erupting magma

    International Nuclear Information System (INIS)

    Kukita, Kazuhiko; Koike, Yuya; Nakamura, Toshihiro; Sato, Jun; Saito, Takashi

    2005-01-01

    This paper describes a study of observation of atmospheric 210Pb and 212Pb possibly from the volcano (36 deg N, 138 deg E) activity in the title and of measurement of 222Rn releasing efficiency with the ash-fall deposit collected around the period. The aerosol sample was collected from Sep. 1, an eruption day, on a building terrace (10 m high) of Meiji University at Kawasaki, located at 140 km SE of the volcano, every 24 hr on the glass fiber filter using a high volume air sampler. The filter was cut out to 4 disks, which were packed into acrylic canisters with a window of a thin Mylar film for non-destructive γ-ray measurement. 210Pb and 212Pb radioactivities were determined by the 46.5- and 238.6-keV γ-rays with an LEPS (low energy photon spectrometer) and an HPGe spectrometer, respectively. The ash-fall sample from the eruption Sep. 14, was collected at Kanrakumachi, Gunma Pref., 40 km SE of the volcano, and measurement for the growth curve of 222Rn from the fall started 1 week after the eruption. A well-type HPGe spectrometer was used for determination of the 351.9-keV γ-ray of 222Rn from 214Pb in equilibrium, which was normalized by the 911.1-keV 228Ac γ-ray. 210Pb and 212Pb emitted into the atmosphere were suggested to have been transported 140 km within the time of a few times of the 212Pb half life (10.6 hr) on the northerly wind. 210Pb and 212Pb, and 222Rn were suggested to be a possibly useful tool of monitoring magmatic activities. (S.I.)

  6. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  7. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  8. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  9. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Science.gov (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  10. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  11. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  12. Numerical studies of neon gas-puff Z-pinch dynamic processes

    International Nuclear Information System (INIS)

    Ning Cheng; Yang Zhenhua; Ding Ning

    2003-01-01

    Dynamic processes of neon gas-puff Z-pinch are studied numerically in this paper. A high temperature plasma with a high density can be generated in the process. Based on some physical analysis and assumption, a set of equations of one-dimensional Lagrangian radiation magneto-hydrodynamic (MHD) and its code are developed to solve the problem. Spatio-temporal distributions of plasma parameters in the processes are obtained, and their dynamic variations show that the major results are self-consistent. The duration for the plasma pinched to centre, as well as the width and the total energy of the x-ray pulse caused by the Z-pinch are in reasonable agreement with experimental results of GAMBLE-II. A zipping effect is also clearly shown in the simulation

  13. Survey for tolerance to emerald ash borer within North American ash species

    Science.gov (United States)

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  14. Cytogenetic analysis of the 2B1-2-2B9-10 region of the X chromosome of Drosophila melanogaster. V. Changes in the pattern of polypeptide synthesis in salivary glands caused by mutations located in the 2B5 puff

    International Nuclear Information System (INIS)

    Dubrovskii, E.B.; Zhimulev, I.F.

    1986-01-01

    The authors have investigated the role of the 2B5 puff in the synthesis of ecdysone-inducible proteins. They showed that in mutants for the overlapping complementation complex (occ) located in the 2B5 puff the synthesis of these proteins is impaired: in mutants 1t336 and 1t366 to a lesser extent and in mutant t143 to a greater extent. Similarly to the deletion of the 2B5 puff, mutation t435 completely blocks the synthesis of ecdysone-inducible proteins. An increase in the dose of the 2B5 puff leads to an increase in the level of synthesis of two ecdysone-inducible polypeptides, for which evidence is available that they are encoded in the region of another ecdysone puff. The results obtained, together with the findings that the tissues of larvae mutant for the occ locus are not sensitive to the action of 20-hydroxy ecdysone and that the normal course of development of ecdysone-dependent puffing is impaired in the chromosomes of salivary glands of these mutants, suggest the presence of a key regulatory role of the 2B5 puff in metamorphosis

  15. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  16. Correlation of tephra layers by trace elements abundances in glass shards

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Takaaki

    1988-10-01

    For identifying volcanic ash layer, a method was explained by analyzing minor elements contained in glassy material of volcanic ash. Based upon the understanding that glassy material in volcanic ash was formed by the quenching of magma and that composition of it reflected the composition of magma at the time of deposition, identification of volcanic ash layer was conducted by applying such consideration that minor elements were concentrated in the magma during the deposition process and that distribution coefficient was characteristic of every minor element. For the analysis, apparatus of irradiated neutron was applied. As the result of analysis, variation of the data was approximately 5% among the ashes belong to the same volcano. distribution map of volcanic ash in Japan was prepared by using the result. By this, it was understood that the ashes obtained from the volcanos in the middle part of Japan were different from other but those from Kyushu district were mostly identical among them. For further study of volcano, necessity of such analysis of volcanic ash in the sea bottom mud was explained. 3 references, 2 figures, 1 table.

  17. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  18. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  19. Contributed Review: The novel gas puff targets for laser-matter interaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, Przemyslaw W., E-mail: wachulak@gmail.com [Institute of Optoelectronics, Military University of Technology, Ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2016-09-15

    Various types of targetry are used nowadays in laser matter interaction experiments. Such targets are characterized using different methods capable of acquiring information about the targets such as density, spatial distribution, and temporal behavior. In this mini-review paper, a particular type of target will be presented. The targets under consideration are gas puff targets of various and novel geometries. Those targets were investigated using extreme ultraviolet (EUV) and soft X-ray (SXR) imaging techniques, such as shadowgraphy, tomography, and pinhole camera imaging. Details about characterization of those targets in the EUV and SXR spectral regions will be presented.

  20. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  1. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  2. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  3. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  4. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  5. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  6. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption.

    Science.gov (United States)

    Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd

    2016-01-15

    Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.

  7. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  8. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  9. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  10. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  11. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  12. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  13. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  14. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  15. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  16. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Science.gov (United States)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  17. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  18. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    International Nuclear Information System (INIS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Dux, R.; Pütterich, T.; Viezzer, E.

    2013-01-01

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique

  19. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  20. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  1. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  2. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  3. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  4. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  5. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  6. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  7. Transition from Plinian to unstable eruption conditions recorded in fine-grained proximal ash layers of the Middle Laacher See Tephra (12,900 a BP), East Eifel Volcanic Field, Germany

    DEFF Research Database (Denmark)

    Zernack, Anke Verena

    The 12,900 a BP eruption of Laacher See Volcano is a classic example of a complex, multi-phase Plinian eruption and one of the largest known of the Northern Hemisphere during the Late Quaternary. The wide range of primary and reworked pyroclastic deposits produced record drastically changing...... internal and external conditions during the course of the eruption. Here we focus on the so-called “Hauptbritzbank” (HBB), which marks a significant change in the eruptive style of Laacher See Volcano following the initial Plinian phase. The interval is characterised by a series of thin ash beds...... to assess their eruptive mechanism, transport processes and depositional conditions. Correlation between the Eastern and Southern fan proved difficult with dispersal axes of deposits pointing to two different locations within the Laacher See basin and some not intersecting the basin at all. In addition...

  8. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  9. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  10. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  11. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  12. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    Science.gov (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  13. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  14. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    Czech Academy of Sciences Publication Activity Database

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubeš, P.; Labetsky, A. Yu.; Řezáč, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtová, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravařík, J.; Kurmaev, N. E.; Orčíková, Hana; Padalko, V. N.; Ratakhin, N. A.; Šíla, O.; Turek, Karel; Varlachev, V. A.

    2015-01-01

    Roč. 57, č. 4 (2015), s. 044005 ISSN 0741-3335 R&D Projects: GA ČR GAP205/12/0454; GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) LH13283 Institutional support: RVO:61389005 Keywords : z-pinch * gas puff * deuterium * fast neutrons * plasma guns Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.404, year: 2015

  15. Neutron energy distribution function reconstructed from time-of-flight signals in deuterium gas-puff Z-pinch

    Czech Academy of Sciences Publication Activity Database

    Klír, D.; Kravárik, J.; Kubeš, J.; Rezac, K.; Ananev, S.S.; Bakshaev, Y. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E.D.; Korolev, V. D.; Ustroev, G. I.; Juha, Libor; Krása, Josef; Velyhan, Andriy

    2009-01-01

    Roč. 37, č. 3 (2009), s. 425-432 ISSN 0093-3813 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LA08024 Grant - others:IAEA(XE) RC 14817 Institutional research plan: CEZ:AV0Z10100523 Keywords : deuterium * fusion reaction * gas puff * Monte Carlo reconstruction * neutron energy spectra * neutron s * Z-pinch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.043, year: 2009

  16. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds

    Directory of Open Access Journals (Sweden)

    Pangayao Denvert

    2018-01-01

    Full Text Available Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6 different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3 coal ash ponds. Among the three coal ash ponds, results showed that eight (8 putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR. Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.

  17. The rise and fall of periodic 'drumbeat' seismicity at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Bell, Andrew F.; Hernandez, Stephen; Gaunt, H. Elizabeth; Mothes, Patricia; Ruiz, Mario; Sierra, Daniel; Aguaiza, Santiago

    2017-10-01

    Highly periodic 'drumbeat' long period (LP) earthquakes have been described from several andesitic and dacitic volcanoes, commonly accompanying incremental ascent and effusion of viscous magma. However, the processes controlling the occurrence and characteristics of drumbeat, and LP earthquakes more generally, remain contested. Here we use new quantitative tools to describe the emergence, evolution, and degradation of drumbeat LP seismicity at the andesitic Tungurahua volcano, Ecuador, in April 2015. The signals were recorded during an episode of minor explosive activity and ash emission, without lava effusion, and are the first to be reported at Tungurahua during the ongoing 17 yrs of eruption. Following four days of high levels of continuous and 'pulsed' tremor, highly-periodic LP earthquakes first appear on 10 April. Over the next four days, inter-event times and event amplitudes evolve through a series of step-wise transitions between stable behaviors, each involving a decrease in the degree of periodicity. Families of similar waveforms persist before, during, and after drumbeat activity, but the activity levels of different families change coincidentally with transitions in event rate, amplitude, and periodicity. A complex micro-seismicity 'initiation' sequence shows pulse-like and stepwise changes in inter-event times and amplitudes in the hours preceding the onset of drumbeat activity that indicate a partial de-coupling between event size and rate. The observations increase the phenomenology of drumbeat LP earthquakes, and suggest that at Tungurahua they result from gas flux and rapid depressurization controlled by shear failure of the margins of the ascending magma column.

  18. High-resolution measurement, line identification, and spectral modeling of the Kβ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Faenov, A.Y.; Dyakin, V.M.; Fiedorowicz, H.; Bartnik, A.; Szczurek, M.; Beiersdorfer, P.; Nilsen, J.; Osterheld, A.L.

    1997-01-01

    We present an analysis of the spectrum of satellite transitions to the He-β line in ArXVII. High-resolution measurements of the spectra from laser-heated Ar-gas-puff targets are made with spectral resolution of 10000 and spatial resolution of better than 50 μm. These are compared with tokamak measurements. Several different lines are identified in the spectra and the spectral analysis is used to determine the plasma parameters in the gas-puff laser-produced plasma. The data complement those from tokamak measurements to provide more complete information on the satellite spectra. copyright 1997 The American Physical Society

  19. Experiments with a Gas-Puff-On-Wire-Array Load on the GIT-12 Generator for Al K-shell Radiation Production at Microsecond Implosion Times

    International Nuclear Information System (INIS)

    Shishlov, Alexander V.; Baksht, Rina B.; Chaikovsky, Stanislav A.; Fedunin, Anatoly V.; Fursov, Fedor I.; Kovalchuk, Boris M.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Labetsky, Aleksey Yu.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.; Lassalle, Francis; Bayol, Frederic

    2006-01-01

    Results of the experiments carried out on the GIT-12 generator at the current level of 3.5 MA and the Z-pinch implosion times from 700 ns to 1.1 μs are presented. A multi-shell (triple-shell) load configuration with the outer gas puffs (neon) and the inner wire array (aluminum) was used in the experiments. In the course of the research, implosion dynamics of the triple-shell z-pinch was studied, and the radiation yield in the spectral range of neon and aluminum K-lines have been measured. Optimization of the inner wire array parameters aimed at obtaining the maximum aluminum K-shell radiation yield has been carried out. As a result of optimization of the gas-puff-on-wire-array Z-pinch load, the aluminum K-shell radiation yield (hv> 1.55 keV) up to 4 kJ/cm in the radiation pulse with FWHM less than 30 ns has been obtained. Comparison of the experimental results with the results of preliminary 1D RMHD simulations allows a conclusion that at least 2/3 of the generator current is switched from a gas puff to an aluminum wire array. The radiation yield in the spectral range of neon K-lines (0.92-1.55 keV) increases considerably in the shots with the inner wire array in comparison with the shots carried out with the outer gas puffs only. The radiation yield in the spectral range above 1 keV registered in the experiments reached 10 kJ/cm. The presence of a high portion of the neon plasma inside an inner wire array can limit the radiation yield in the spectral range above 1.55 keV

  20. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  1. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  2. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  3. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  4. Application of bio-huff-`n`-puff technology at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  5. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  6. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  7. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  8. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    Science.gov (United States)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  9. Study of the L–I–H transition with a new dual gas puff imaging system in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Shao, L.M.; Liu, S.C.

    2014-01-01

    The intermediate oscillatory phase during the L–H transition, termed the I-phase, is studied in the EAST superconducting tokamak using a newly developed dual gas puff imaging (GPI) system near the L–H transition power threshold. The experimental observations suggest that the oscillatory behaviour...

  10. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  11. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  12. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  13. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  14. The Powell Volcano Remote Sensing Working Group Overview

    Science.gov (United States)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing

  15. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    Science.gov (United States)

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  16. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  17. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    Costa, Camila P. da; Vilhena, Marco T.

    2009-01-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  18. Volcano hazards in the San Salvador region, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  19. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  20. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    Science.gov (United States)

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  1. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  2. Study of a large rapid ashing apparatus and a rapid dry ashing method for biological samples and its application

    International Nuclear Information System (INIS)

    Jin Meisun; Wang Benli; Liu Wencang

    1988-04-01

    A large rapid-dry-ashing apparatus and a rapid ashing method for biological samples are described. The apparatus consists of specially made ashing furnace, gas supply system and temperature-programming control cabinet. The following adventages have been showed by ashing experiment with the above apparatus: (1) high speed of ashing and saving of electric energy; (2) The apparatus can ash a large amount of samples at a time; (3) The ashed sample is pure white (or spotless), loose and easily soluble with few content of residual char; (4) The fresh sample can also be ashed directly. The apparatus is suitable for ashing a large amount of the environmental samples containing low level radioactivity trace elements and the medical, food and agricultural research samples

  3. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  4. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  5. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  6. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  7. Spectral analysis of white ash response to emerald ash borer infestations

    Science.gov (United States)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  8. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  9. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  10. Characteristics of the magnetic wall reflection model on ion acceleration in gas-puff z pinch

    International Nuclear Information System (INIS)

    Nishio, M.; Takasugi, K.

    2013-01-01

    The magnetic wall reflection model was examined with the numerical simulation of the trajectory calculation of particles. This model is for the ions accelerated by some current-independent mechanism. The trajectory calculation showed angle dependency of highest velocities of accelerated particles. This characteristics is of the magnetic wall reflection model, not of the other current-independent acceleration mechanism. Thomson parabola measurements of accelerated ions produced in the gas-puff z-pinch experiments were carried out for the verification of the angle dependency. (author)

  11. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  12. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  13. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  14. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  15. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  16. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  17. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  18. An improved ashing procedure for biologic sample

    Energy Technology Data Exchange (ETDEWEB)

    Zongmei, Wu [Zhejiang Province Enviromental Radiation Monitoring Centre (China)

    1992-07-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches.

  19. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  20. Volcano Trial Case on GEP: Systematically processing EO data

    OpenAIRE

    Baumann, Andreas Bruno Graziano

    2017-01-01

    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  1. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  2. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  3. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  4. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  5. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  6. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  7. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  8. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  9. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  10. Determining the ash content of coal flotation tailings using an MPOF optical ash meter

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-01-01

    The block layout, a description of the design and principles of operation of an automatic optical, continuous action MPOF type ash meter are presented. The difference in the optical properties of coal and rock is used in the ash meter. The identification of the ash content is conducted on the basis of the spectral characteristics of reflection of a finely dispersed aqueous coal and rock suspension.

  11. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    Science.gov (United States)

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  12. Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry

    OpenAIRE

    Silow, Christoph; Zannini, Emanuele; Arendt, Elke K.

    2016-01-01

    Four vegetable fat blends (FBs) with low trans-fatty acid (TFA???0.6?%) content with various ratios of palm stearin (PS) and rapeseed oil (RO) were characterised and examined for their application in puff pastry production. The amount of PS decreased from FB1 to FB4 and simultaneously the RO content increased. A range of analytical methods were used to characterise the FBs, including solid fat content (SFC), differential scanning calorimetry (DSC), cone penetrometry and rheological measuremen...

  13. Felsic maar-diatreme volcanoes: a review

    Science.gov (United States)

    Ross, Pierre-Simon; Carrasco Núñez, Gerardo; Hayman, Patrick

    2017-02-01

    breccias (Kelian, Mt. Rawdon). Pyroclastic rocks in the diatreme are typically poorly sorted, and ash-rich. They contain a heterolithic mix of juvenile clasts and lithic clasts from various stratigraphic levels. Megablocks derived from the ejecta ring or the country rocks are often found in the diatremes. Evidence for multiple explosions is in the form of steep crosscutting pyroclastic bodies within some diatremes and fragments of pyroclastic rocks within other pyroclastic facies. Pyroclastic rocks are cut by coherent felsic dikes and plugs which may have been feeders to lava domes at the surface. Allowing for the difference in magma composition, felsic maar-diatreme volcanoes have many similarities with their ultramafic to mafic equivalents. Differences include a common association with felsic domes, inside the crater or just outside (Wau), although the domes within the crater may be destroyed during the eruption (Hoya de Estrada, Tepexitl); the dikes and plugs feeding and invading felsic diatremes seem larger; the processes of phreatomagmatic explosions involving felsic magmas may be different.

  14. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  15. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  16. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  17. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  18. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  19. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  20. Measurements of radon and chemical elements: Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V.; Armienta, M.A.; Valdes, C.; Mena, M.; Seidel, J.L.; Monnin, M.

    2002-01-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  1. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    Science.gov (United States)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  2. A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength

    Czech Academy of Sciences Publication Activity Database

    Wachulak, P.W.; Bartnik, A.; Fiedorowicz, H.; Feigl, T.; Jarocki, R.; Kostecki, J.; Rudawski, P.; Sawicka, Magdalena; Szczurek, M.; Szczurek, A.; Zawadzki, Z.

    2010-01-01

    Roč. 100, č. 3 (2010), 461-469 ISSN 0946-2171 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-plasma * EUV source * gas puff target * elliptical multi- layer * mirror * table-top setup Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  3. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  4. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    Directory of Open Access Journals (Sweden)

    Karen S. Harpp

    2018-05-01

    Full Text Available The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. Geochemical, geologic, and geophysical data support the hypothesis that the differences are not evolutionary, but rather the eastern volcanoes grew in a different tectonic environment than the younger volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. These differences are attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of supersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates to the distance to the Galápagos Spreading Center (GSC. When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago, and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them

  5. Spectroscopic determination of the magnetic field distribution in a gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gregorian, L; Davara, G; Kroupp, E; Maron, Y [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics

    1997-12-31

    The time dependent radial distribution of the magnetic field in a gas-puff Z-pinch plasma has been determined by observing the Zeeman effect on emission lines, allowed for by polarization spectroscopy and high accuracy line-profile measurements. A modeling scheme, based on a 1-D magnetic diffusion equation, is used to fit the experimental data. The plasma conductivity inferred from the field distribution was found to be consistent with the Spitzer conductivity. The current density distribution and the time dependent plasma region in which the entire circuit current flows were determined. (author). 3 figs., 6 refs.

  6. Fallout of thorium isotopes from the 1982 eruption of El Chichon volcano

    International Nuclear Information System (INIS)

    Barbod, T.

    1985-01-01

    Radiochemical measurements of the concentrations of the 228 Th, 230 Th, and 232 Th have been carried out for a total of 38 individual samples of rain and snow collected at Fayetteville (36 N, 94 0 W), Arkansas, during the period between April 1982 and December 1983. The concentrations of 228 Th, 230 Th, and 232 Th in a total of 9 composite rain samples, each covering a period of three months, have been also determined radiochemically. The thorium isotope data thus obtained were compared with the results of measurements of the concentrations of uranium isotopes in these rain and snow samples, which were carried out in our laboratories by previous investigators. The eruption of El Chichon volcano in Mexico occurred on March 28, 1982, and was followed by the second phase consisting of two major eruptions of April 3 and April 4, 1982. Marked increases in the concentrations of thorium and uranium isotopes were observed during the months of January and February 1983, followed by small peaks in April and May 1983. The concentrations of the 23 2''Th and 238 U in rain samples collected at Fayetteville, Arkansas, decreased steadily during the second half of 1983. The ratios of 228 Th/ 232 Th and 230 Th/ 232 Th in rain also showed a marked increase during the first half of 1983. These results indicate that the thorium and uranium isotopes in rain during the first half of 1983 had their origin in a large amount of volcanic ash materials injected into the stratosphere by the 1982 eruption of El Chichon volcano in Mexico

  7. Analysis list: ash2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash2 Larvae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.1.tsv ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/ash2.Larvae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Larvae.gml ...

  8. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  9. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  10. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  11. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    Science.gov (United States)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse

  12. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  13. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  14. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  15. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  16. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  17. Volcanic ash deposition, eelgrass beds, and inshore habitat loss from the 1920s to the 1990s at Chignik, Alaska

    Science.gov (United States)

    Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.

    2018-03-01

    We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.

  18. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  19. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  20. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even