WorldWideScience

Sample records for volcano hazards assessment

  1. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  2. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  3. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  4. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  5. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  6. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  7. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  8. Hazard assessment of long-range tephra dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico). Inplications on civil aviation

    Science.gov (United States)

    Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A.

    2013-12-01

    Popocatépetl is one of the most active volcanoes in Mexico threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude. The current volcanic hazards map, reconstructed after the crisis occurred in 1994, considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra dispersal hazard, especially related to atmospheric dispersal, has been performed. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is strongly required. In this work we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels. Tephra dispersal modelling is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the 'Ochre Pumice' Plinian eruption (4965 14C yrBP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied sampling them on the base of a Probability Density Function. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here

  9. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    F.V. Perry

    2005-01-01

    holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard

  10. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)

    Science.gov (United States)

    Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.

    2015-01-01

    Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing

  11. Combining Volcano Monitoring Timeseries Analyses with Bayesian Belief Networks to Update Hazard Forecast Estimates

    Science.gov (United States)

    Odbert, Henry; Hincks, Thea; Aspinall, Willy

    2015-04-01

    Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method

  12. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    Science.gov (United States)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  13. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  14. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  15. Volcano hazards in the San Salvador region, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    communities. Another concern is a landslide and an associated debris flow (a watery flow of mud, rock, and debris--also known as a lahar) that could occur during periods of no volcanic activity. An event of this type occurred in 1998 at Casita volcano in Nicaragua when extremely heavy rainfall from Hurricane Mitch triggered a landslide that moved down slope and transformed into a rapidly moving debris flow that destroyed two villages and killed more than 2000 people. Historical landslides up to a few hundred thousand cubic meters in volume have been triggered on San Salvador volcano by torrential rainstorms and earthquakes, and some have transformed into debris flows that have inundated populated areas down stream. Destructive rainfall- and earthquake-triggered landslides and debris flows on or near San Salvador volcano in September 1982 and January 2001 demonstrate that such mass movements in El Salvador have also been lethal. This report describes the kinds of hazardous events that occur at volcanoes in general and the kinds of hazardous geologic events that have occurred at San Salvador volcano in the past. The accompanying volcano-hazards-zonation maps show areas that are likely to be at risk when hazardous events occur again.

  16. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  17. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  18. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    Science.gov (United States)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  19. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    Science.gov (United States)

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  20. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    Science.gov (United States)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2

  1. Tephra Fallout Hazard Assessment for VEI5 Plinian Eruption at Kuju Volcano, Japan, Using TEPHRA2

    Science.gov (United States)

    Tsuji, Tomohiro; Ikeda, Michiharu; Kishimoto, Hiroshi; Fujita, Koji; Nishizaka, Naoki; Onishi, Kozo

    2017-06-01

    Tephra fallout has a potential impact on engineered structures and systems at nuclear power plants. We provide the first report estimating potential accumulations of tephra fallout as big as VEI5 eruption from Kuju Volcano and calculated hazard curves at the Ikata Power Plant, using the TEPHRA2 computer program. We reconstructed the eruptive parameters of Kj-P1 tephra fallout deposit based on geological survey and literature review. A series of parameter studies were carried out to determine the best values of empirical parameters, such as diffusion coefficient and the fall time threshold. Based on such a reconstruction, we represent probabilistic analyses which assess the variation in meteorological condition, using wind profiles extracted from a 22 year long wind dataset. The obtained hazard curves and probability maps of tephra fallout associated to a Plinian eruption were used to discuss the exceeding probability at the site and the implications of such a severe eruption scenario.

  2. Hazard Map of the Poás Volcano

    Directory of Open Access Journals (Sweden)

    Gustavo Barrantes Castillo

    2015-07-01

    Full Text Available The Poás volcano presents a series of hazards to the lives and activities of the communities in its surroundings; these hazards include ash fall, volcanic gases, ballistic projection, pyroclastic flows, lahars and lava flows. In the study described in this article, risks were zoned and integrated to form combined hazard maps for later use in territorial planning processes. With respect to methodology, the study was based on a heuristic approximation, which was supported with cartographic, geomorphological, and historical impact criteria to achieve a suitable product in terms of scale and ease of interpretation. These maps present greater detail and integration than other works and cartographies of volcanic hazards in Costa Rica.

  3. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  4. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    The Ceboruco Volcano (21° 7.688 N, 104° 30.773 W) is located in the northwestern part of the Tepic-Zacoalco graben. Its volcanic activity can be divided in four eruptive cycles differentiated by their VEI and chemical variations as well. As a result of andesitic effusive activity, the "paleo-Ceboruco" edifice was constructed during the first cycle. The end of this cycle is defined by a plinian eruption (VEI between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome built up in the interior of the caldera. The dome collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by the andesitic lava flows of the nineteenth century located in the southwestern flank of the volcano. Actually, moderate fumarolic activity occurs in the upper part of the volcano showing temperatures ranging between 20° and 120°C. Some volcanic high frequency tremors have also been registered near the edifice. Shows the updating of the volcanic hazard maps published in 1998, where we identify with SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east sides of the Ceboruco volcano. The population inhabiting the area is 70,224 people in 2010, concentrated in 107 localities and growing at an annual rate of 0.37%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by highway, high road, railroad, and the construction of new highway to Puerto Vallarta, which is built in the southeast sector of the volcano and electrical infrastructure that connect the Cajon and Yesca Dams to Guadalajara city. The most important economic activity in the area is agriculture, with crops of sugar cane (Saccharum officinarum), corn, and jamaica

  5. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  6. Evolving Hazard Monitoring and Communication at San Vicente Volcano, El Salvador

    Science.gov (United States)

    Bowman, L. J.; Gierke, J. S.

    2014-12-01

    El Salvador has 20 potentially active volcanoes, four of which have erupted in the last 100 years. Since San Vicente Volcano has had no historic eruptions, monitoring is not a high priority; especially given the current eruptive crisis at San Miguel Volcano. Though probability of eruptive hazards remains low at San Vicente, it is arguably one of the most hazardous volcanoes in the country due to rainfall-induced landslides and debris-flow risk. At least 250 deaths occurred in November 2009 from landslides and debris flows triggered by Hurricane Ida. This disaster caused the Universidad de El Salvador - Facultad Multidisciplinaria Paracentral (UES-FMP, San Vicente, El Salvador) to partner with governmental and nongovernmental organizations (including the U.S. Peace Corps, U.S. Fulbright Program, Korean International Cooperation Agency, Protección Civil and the Centro de Protección para Desastres (CEPRODE)) to focus its faculty and student research toward hazard monitoring and risk studies. Newly established monitoring efforts include: measurement of surface cracks and localized rainfall by Protección Civil and local residents using crude extensometers and rain gauges; installation of six weather stations that operate within the most at-risk municipalities; seismic refraction surveys to better characterize stratigraphy and seasonal water table changes; and most recently, a USAID/NSF-funded initiative partnered with the UES-FMP to monitor seasonal hydrologic conditions related to flooding and groundwater recharge. The information from these initiatives is now used to communicate current conditions and warnings through a network of two-way radios established by CEPRODE and Protección Civil. Representatives from the multi-institutional team also communicate the data to authorities who make better-informed decisions regarding warnings and evacuations, as well as determine suitable areas for population relocation in the event of a crisis. Data will eventually be used

  7. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lava-flow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.

  8. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  9. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  10. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    Science.gov (United States)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  11. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy

    Science.gov (United States)

    Convertito, Vincenzo; Zollo, Aldo

    2011-08-01

    In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.

  12. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    Science.gov (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  13. ST-HASSET for volcanic hazard assessment: A Python tool for evaluating the evolution of unrest indicators

    Science.gov (United States)

    Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan

    2016-08-01

    Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.

  14. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2014-05-01

    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss

  15. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Kauahikaua, James P.; Tilling, Robert I.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Significant progress has been made over the past century in understanding, characterizing, and communicating the societal risks posed by volcanic, earthquake, and tsunami hazards in Hawai‘i. The work of the Hawaiian Volcano Observatory (HVO), with a century-long commitment to serving the public with credible hazards information, contributed substantially to this global progress. Thomas A. Jaggar, Jr., HVO’s founder, advocated that a scientific approach to understanding these hazards would result in strategies to mitigate their damaging effects. The resultant hazard-reduction methods range from prediction of eruptions and tsunamis, thereby providing early warnings for timely evacuation (if needed), to diversion of lava flows away from high-value infrastructure, such as hospitals. In addition to long-term volcano monitoring and multifaceted studies to better understand eruptive and seismic phenomena, HVO has continually and effectively communicated—through its publications, Web site, and public education/outreach programs—hazards information to emergency-management authorities, news media, and the public.

  16. Stability analysis and hazard assessment of the northern slopes of San Vicente Volcano in central El Salvador

    Science.gov (United States)

    Smith, Daniel M.

    Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.

  17. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-12

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  18. Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

    International Nuclear Information System (INIS)

    2016-07-01

    To provide guidance on the protection of nuclear installations against the effects of volcanoes, the IAEA published in 2012 IAEA Safety Standards Series No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. SSG-21 addresses hazards relating to volcanic phenomena, and provides recommendations and general guidance for evaluation of these hazards. Unlike seismic hazard assessments, models for volcanic hazard assessment have not undergone decades of review, evaluation and testing for suitability in evaluating hazards at proposed nuclear installations. Currently in volcanology, scientific developments and detailed methodologies to model volcanic phenomena are evolving rapidly.This publication provides information on detailed methodologies and examples in the application of volcanic hazard assessment to site evaluation for nuclear installations, thereby addressing the recommendations in SSG-21. Although SSG-21 develops a logical framework for conducting a volcanic hazard assessment, this publication demonstrates the practicability of evaluating the recommendations in SSG-21 through a systematic volcanic hazard assessment and examples from Member States. The results of this hazard assessment can be used to derive the appropriate design bases and operational considerations for specific nuclear installations

  19. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  20. Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions

    Science.gov (United States)

    Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A.

    1990-01-01

    Earthquake and volcano hazard notices were issued for the Mammoth Lakes, California area by the U.S. Geological Survey under the authority granted by the Disaster Relief Act of 1974. The effects on investment, recretion visitation, and risk perceptionsare explored. The hazard notices did not affect recreation visitation, although investment was affected. A perceived loss in the market value of homes was documented. Risk perceptions were altered for property owners. Communication of the probability of an event over time would enhance hazard notices as a policy instrument and would mitigate unnecessary market perturbations. ?? 1990.

  1. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 2: Computational implementation and first results

    Science.gov (United States)

    Peruzza, Laura; Azzaro, Raffaele; Gee, Robin; D'Amico, Salvatore; Langer, Horst; Lombardo, Giuseppe; Pace, Bruno; Pagani, Marco; Panzera, Francesco; Ordaz, Mario; Suarez, Miguel Leonardo; Tusa, Giuseppina

    2017-11-01

    This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude-scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M > 6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M risk reduction.

  2. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy – Part 2: Computational implementation and first results

    Directory of Open Access Journals (Sweden)

    L. Peruzza

    2017-11-01

    Full Text Available This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017 and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude–scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014. Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M  >  6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M  <  6 local volcano-tectonic earthquakes, which dominate the hazard at the short- to mid-term exposure times considered

  3. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations.

    Science.gov (United States)

    Heggie, Travis W

    2009-09-01

    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  4. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  5. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  6. Protocols for geologic hazards response by the Yellowstone Volcano Observatory

    Science.gov (United States)

    ,

    2010-01-01

    The Yellowstone Plateau hosts an active volcanic system, with subterranean magma (molten rock), boiling, pressurized waters, and a variety of active faults with significant earthquake hazards. Within the next few decades, light-to-moderate earthquakes and steam explosions are certain to occur. Volcanic eruptions are less likely, but are ultimately inevitable in this active volcanic region. This document summarizes protocols, policies, and tools to be used by the Yellowstone Volcano Observatory (YVO) during earthquakes, hydrothermal explosions, or any geologic activity that could lead to a volcanic eruption.

  7. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  8. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  9. New Multi-HAzard and MulTi-RIsk Assessment MethodS for Europe (MATRIX): A research program towards mitigating multiple hazards and risks in Europe

    Science.gov (United States)

    Fleming, K. M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Matrix Consortium

    2011-12-01

    Scientists, engineers, civil protection and disaster managers typically treat natural hazards and risks individually. This leads to the situation where the frequent causal relationships between the different hazards and risks, e.g., earthquakes and volcanos, or floods and landslides, are ignored. Such an oversight may potentially lead to inefficient mitigation planning. As part of their efforts to confront this issue, the European Union, under its FP7 program, is supporting the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project. The focus of MATRIX is on natural hazards, in particular earthquakes, landslides, volcanos, wild fires, storms and fluvial and coastal flooding. MATRIX will endeavour to develop methods and tools to tackle multi-type natural hazards and risks within a common framework, focusing on methodologies that are suited to the European context. The work will involve an assessment of current single-type hazard and risk assessment methodologies, including a comparison and quantification of uncertainties and harmonization of single-type methods, examining the consequence of cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and a series of test cases. Three test sites are being used to assess the methods developed within the project (Naples, Cologne, and the French West Indies), as well as a "virtual city" based on a comprehensive IT platform that will allow scenarios not represented by the test cases to be examined. In addition, a comprehensive dissemination program that will involve national platforms for disaster management, as well as various outreach activities, will be undertaken. The MATRIX consortium consists of ten research institutions (nine European and one Canadian), an end-user (i.e., one of the European national platforms for disaster reduction) and a partner from industry.

  10. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    Science.gov (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  11. Protection of the human race against natural hazards (asteroids, comets, volcanoes, earthquakes)

    Science.gov (United States)

    Smith, Joseph V.

    1985-10-01

    Although we justifiably worry about the danger of nuclear war to civilization, and perhaps even to survival of the human race, we tend to consider natural hazards (e.g., comets, asteroids, volcanoes, earthquakes) as unavoidable acts of God. In any human lifetime, a truly catastrophic natural event is very unlikely, but ultimately one will occur. For the first time in human history we have sufficient technical skills to begin protection of Earth from some natural hazards. We could decide collectively throughout the world to reassign resources: in particular, reduction of nuclear and conventional weapons to a less dangerous level would allow concomitant increase of international programs for detection and prevention of natural hazards. Worldwide cooperation to mitigate natural hazards might help psychologically to lead us away from the divisive bickering that triggers wars. Future generations could hail us as pioneers of peace and safety rather than curse us as agents of death and destruction.

  12. The Powell Volcano Remote Sensing Working Group Overview

    Science.gov (United States)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing

  13. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    Science.gov (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  14. LAV@HAZARD: a web-GIS interface for volcanic hazard assessment

    Directory of Open Access Journals (Sweden)

    Giovanni Gallo

    2011-12-01

    Full Text Available Satellite data, radiative power of hot spots as measured with remote sensing, historical records, on site geological surveys, digital elevation model data, and simulation results together provide a massive data source to investigate the behavior of active volcanoes like Mount Etna (Sicily, Italy over recent times. The integration of these heterogeneous data into a coherent visualization framework is important for their practical exploitation. It is crucial to fill in the gap between experimental and numerical data, and the direct human perception of their meaning. Indeed, the people in charge of safety planning of an area need to be able to quickly assess hazards and other relevant issues even during critical situations. With this in mind, we developed LAV@HAZARD, a web-based geographic information system that provides an interface for the collection of all of the products coming from the LAVA project research activities. LAV@HAZARD is based on Google Maps application programming interface, a choice motivated by its ease of use and the user-friendly interactive environment it provides. In particular, the web structure consists of four modules for satellite applications (time-space evolution of hot spots, radiant flux and effusion rate, hazard map visualization, a database of ca. 30,000 lava-flow simulations, and real-time scenario forecasting by MAGFLOW on Compute Unified Device Architecture.

  15. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  16. Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia

    Science.gov (United States)

    Parra, Eduardo; Cepeda, Hector

    1990-07-01

    Although the potential hazards associated with an eruption of Nevado del Ruiz volcano were known to civil authorities before the catastrophic eruption there in November 1985, their low perception of risk and the long quiescent period since the last eruption (140 years), caused them to wait for stronger activity before developing an eruption alert system. Unfortunately, the eruption occurred suddenly after a period of relative quiet, and as a result more than 25,000 people were killed. Although it was accurate and reasonably comprehensive, the hazard map that existed before the eruption was poorly understood by the authorities and even less so by the general population, because the scientific terminology and probabilistic approach to natural hazards were unfamiliar to many of them. This confusion was shared by the communication media, which at critical times placed undue emphasis on the possibility of lava flows rather than on the more imminent threat from mudflows, in keeping with the popular but often inaccurate perception of volcanic eruptions. This work presents an updated hazard map of Nevado del Ruiz that combines information on various hazardous phenomena with their relative probability of occurrence in order to depict numerical "hazard levels" that are easily comprehensible to nonspecialists and therefore less susceptible to misinterpretation. The scale of relative risk is arbitrary, ranging from five to one, and is intended to provide an intuitive indication of danger to people, property and crops. The map is meant to facilitate emergency preparedness and management by political and civil authorities, to educate the public concerning volcanic hazards and to assist in land-use planning decisions.

  17. Pattern Matching for Volcano Status Assessment: what monitoring data alone can say about Mt. Etna activity

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.

    2017-12-01

    The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We

  18. Advances in volcano monitoring and risk reduction in Latin America

    Science.gov (United States)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    We describe results of cooperative work that advanced volcanic monitoring and risk reduction. The USGS-USAID Volcano Disaster Assistance Program (VDAP) was initiated in 1986 after disastrous lahars during the 1985 eruption of Nevado del Ruiz dramatizedthe need to advance international capabilities in volcanic monitoring, eruption forecasting and hazard communication. For the past 28 years, VDAP has worked with our partners to improve observatories, strengthen monitoring networks, and train observatory personnel. We highlight a few of the many accomplishments by Latin American volcano observatories. Advances in monitoring, assessment and communication, and lessons learned from the lahars of the 1985 Nevado del Ruiz eruption and the 1994 Paez earthquake enabled the Servicio Geológico Colombiano to issue timely, life-saving warnings for 3 large syn-eruptive lahars at Nevado del Huila in 2007 and 2008. In Chile, the 2008 eruption of Chaitén prompted SERNAGEOMIN to complete a national volcanic vulnerability assessment that led to a major increase in volcano monitoring. Throughout Latin America improved seismic networks now telemeter data to observatories where the decades-long background rates and types of seismicity have been characterized at over 50 volcanoes. Standardization of the Earthworm data acquisition system has enabled data sharing across international boundaries, of paramount importance during both regional tectonic earthquakes and during volcanic crises when vulnerabilities cross international borders. Sharing of seismic forecasting methods led to the formation of the international organization of Latin American Volcano Seismologists (LAVAS). LAVAS courses and other VDAP training sessions have led to international sharing of methods to forecast eruptions through recognition of precursors and to reduce vulnerabilities from all volcano hazards (flows, falls, surges, gas) through hazard assessment, mapping and modeling. Satellite remote sensing data

  19. Preliminary impact assessment of effusive eruptions at Etna volcano

    Science.gov (United States)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  20. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Aleutian arc volcanoes. Tephra deposits from typical VEI 2 historical eruptions are not well preserved on the island so tephra-fall frequency estimated from stratigraphic studies is underestimated. Akutan Island is home to the largest seafood processing plant in North America and has a workforce of more than one thousand people. Other infrastructure consists of a recently constructed paved airfield on neighboring Akun Island (25 km east of the active vent) and a new boat harbor at the head of Akutan Harbor. Plans to develop greenhouses, tourism, and increased cold storage capacity on Akutan and Akun Islands also are evolving. To support the power demands of the development efforts, The City of Akutan is considering the utilization of geothermal resources on the island that are located in Hot Springs Bay valley northwest of the city. All of the existing and planned infrastructure, water supply, and residential areas are about 12 km downwind (east) of the volcano and are at risk from ash-producing eruptions. The historical eruptive history suggests that VEI 2 eruptions are plausible in the near future and the Holocene tephra-fall record indicates that large eruptions (VEI 4 or larger) occur about every few thousand years. Numerical modeling of tephra fallout based on the record of ash-producing eruptions will be used to improve tephra-fall hazard assessments for the area.

  1. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  2. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are

  3. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 1: Model components for sources parameterization

    Science.gov (United States)

    Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana

    2017-11-01

    The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps

  4. Improving hazard communication through collaborative participatory workshops: challenges and opportunities experienced at Turrialba volcano, Costa Rica

    Science.gov (United States)

    van Manen, S. M.; Avard, G.; Martinez, M.; de Moor, M. J.

    2014-12-01

    Communication is key to disaster risk management before, during and after a hazardous event occurs. In this study we used a participatory design approach to increase disaster preparedness levels around Turrialba volcano (Costa Rica) in collaboration with local communities. We organised five participatory workshops in communities around Turrialba volcano, 2 in February 2014 and a further 3 in May 2014. A total of 101 people attended and participants included the general public, decision makers and relevant government employees. The main finding of the workshops was that people want more information, specifically regarding 1) the activity level at the volcano and 2) how to prepare. In addition, the source of information was identified as an important factor in communication, with credibility and integrity being key. This outcome highlights a communication gap between the communities at risk and the institutions monitoring the volcano, who publish their scientific results monthly. This strong and explicitly expressed desire for more information should be acknowledged and responded to. However, this gives rise to the challenge of how to communicate: how to change the delivery and/or content of the messages already disseminated for greater effectiveness. In our experience, participatory workshops provide a successful mechanism for effective communication. However, critically evaluating the workshops reveals a number of challenges and opportunities, with the former arising from human, cultural and resource factors, specifically the need to develop people's capacity to participate, whereas the latter is predominantly represented by participant empowerment. As disasters are mostly felt at individual, household and community levels, improving communication, not at but with these stakeholders, is an important component of a comprehensive disaster resilience strategy. This work provides an initial insight into the potential value of participatory design approaches for

  5. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  6. One hundred years of volcano monitoring in Hawaii

    Science.gov (United States)

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  7. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea

    2016-01-01

    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  8. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  9. Summary of the stakeholders workshop to develop a National Volcano Early Warning System (NVEWS)

    Science.gov (United States)

    Guffanti, Marianne; Scott, William E.; Driedger, Carolyn L.; Ewert, John W.

    2006-01-01

    The importance of investing in monitoring, mitigation, and preparedness before natural hazards occur has been amply demonstrated by recent disasters such as the Indian Ocean Tsunami in December 2004 and Hurricane Katrina in August 2005. Playing catch-up with hazardous natural phenomena such as these limits our ability to work with public officials and the public to lessen adverse impacts. With respect to volcanic activity, the starting point of effective pre-event mitigation is monitoring capability sufficient to detect and diagnose precursory unrest so that communities at risk have reliable information and sufficient time to respond to hazards with which they may be confronted. Recognizing that many potentially dangerous U.S. volcanoes have inadequate or no ground-based monitoring, the U.S Geological Survey (USGS) Volcano Hazards Program (VHP) and partners recently evaluated U.S. volcano-monitoring capabilities and published 'An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System (NVEWS).' Results of the NVEWS volcanic threat and monitoring assessment are being used to guide long-term improvements to the national volcano-monitoring infrastructure operated by the USGS and affiliated groups. The NVEWS report identified the need to convene a workshop of a broad group of stakeholders--such as representatives of emergency- and land-management agencies at the Federal, State, and local levels and the aviation sector--to solicit input about implementation of NVEWS and their specific information requirements. Accordingly, an NVEWS Stakeholders Workshop was held in Portland, Oregon, on 22-23 February 2006. A summary of the workshop is presented in this document.

  10. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  11. Using Bayesian Belief Networks To Assess Volcano State from Multiple Monitoring Timeseries And Other Evidence

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2013-04-01

    When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard

  12. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  13. National-Level Multi-Hazard Risk Assessments in Sub-Saharan Africa

    Science.gov (United States)

    Murnane, R. J.; Balog, S.; Fraser, S. A.; Jongman, B.; Van Ledden, M.; Phillips, E.; Simpson, A.

    2017-12-01

    National-level risk assessments can provide important baseline information for decision-making on risk management and risk financing strategies. In this study, multi-hazard risk assessments were undertaken for 9 countries in Sub-Saharan Africa: Cape Verde, Ethiopia, Kenya, Niger, Malawi, Mali, Mozambique, Senegal and Uganda. The assessment was part of the Building Disaster Resilience in Sub-Saharan Africa Program and aimed at supporting the development of multi-risk financing strategies to help African countries make informed decisions to mitigate the socio-economic, fiscal and financial impacts of disasters. The assessments considered hazards and exposures consistent with the years 2010 and 2050. We worked with multiple firms to develop the hazard, exposure and vulnerability data and the risk results. The hazards include: coastal flood, drought, earthquake, landslide, riverine flood, tropical cyclone wind and storm surge, and volcanoes. For hazards expected to vary with climate, the 2050 hazard is based on the IPCC RCP 6.0. Geolocated exposure data for 2010 and 2050 at a 15 arc second ( 0.5 km) resolution includes: structures as a function of seven development patterns; transportation networks including roads, bridges, tunnels and rail; critical facilities such as schools, hospitals, energy facilities and government buildings; crops; population; and, gross domestic product (GDP). The 2050 exposure values for population are based on the IPCC SSP 2. Values for other exposure data are a function of population change. Vulnerability was based on openly available vulnerability functions. Losses were based on replacement values (e.g., cost/m2 or cost/km). Risk results are provided in terms of annual average loss and a variety of return periods at the national and Admin 1 levels. Assessments of recent historical events are used to validate the model results. In the future, it would be useful to use hazard footprints of historical events for validation purposes. The

  14. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  15. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  16. MEditerranean Supersite Volcanoes (MED-SUV) project: from objectives to results

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia

    2017-04-01

    The MEditerranean Supersite Volcanoes (MED-SUV) was a FP7 3-year lasting project aimed at improving the assessment of volcanic hazards at two of the most active European volcanic areas - Campi Flegrei/Vesuvius and Mt. Etna. More than 3 million people are exposed to potential hazards in the two areas, and the geographic location of the volcanoes increases the number of people extending the impact to a wider region. MED-SUV worked on the (1) optimisation and integration of the existing and new monitoring systems, (2) understanding of volcanic processes, and on the (3) relationship between the scientific and end-user communities. MED-SUV fully exploited the unique multidisciplinary long-term in-situ datasets available for these volcanoes and integrated them with Earth observations. Technological developments and implemented algorithms allowed better constraint of pre-, sin- and post-eruptive phases. The wide range of styles and intensities of the volcanic phenomena observed at the targeted volcanoes - archetypes of 'closed' and 'open' conduit systems - observed by using the long-term multidisciplinary datasets, exceptionally upgraded the understanding of a variety of geo-hazards. Proper experiments and studies were carried out to advance the understanding of the volcanoes' internal structure and processes, and to recognise signals related to impending unrest/eruptive phases. Indeed, the hazard quantitative assessment benefitted from the outcomes of these studies and from their integration with cutting edge monitoring approaches, thus leading to step-changes in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. Among the MED-SUV achievements, we can list the (i) implementation of a data policy compliant with the GEO Open Data Principles for ruling the exploitation and shared use of the project outcomes; (ii) MED-SUV e-infrastructure creation as test bed for designing an interoperable infrastructure to

  17. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  18. Lateral blasts at Mount St. Helens and hazard zonation

    Science.gov (United States)

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  19. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Minería (SERNAGEOMIN) that will emphasize studies of volcanic history, volcano hazard assessments, and establishing real time monitoring at 43 of the highest threat volcanoes. To prioritize monitoring and hazard mitigation efforts in Chile, SERNAGEOMIN has adopted the threat assessment methodology developed by the USGS for U.S. volcanoes along with the USGS conceptual framework for a National Volcano Early Warning System (NVEWS). When complete, the new Chilean volcano monitoring networks will close one of the largest gaps in global volcano monitoring.

  20. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  1. Perceptions of hazard and risk on Santorini

    Science.gov (United States)

    Dominey-Howes, Dale; Minos-Minopoulos, Despina

    2004-10-01

    Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no "emergency plan" for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.

  2. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  3. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  4. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    Science.gov (United States)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed

  5. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  6. A Framework for Probabilistic Multi-Hazard Assessment of Rain-Triggered Lahars Using Bayesian Belief Networks

    Directory of Open Access Journals (Sweden)

    Pablo Tierz

    2017-09-01

    Full Text Available Volcanic water-sediment flows, commonly known as lahars, can often pose a higher threat to population and infrastructure than primary volcanic hazardous processes such as tephra fallout and Pyroclastic Density Currents (PDCs. Lahars are volcaniclastic flows of water, volcanic debris and entrained sediments that can travel long distances from their source, causing severe damage by impact and burial. Lahars are frequently triggered by intense or prolonged rainfall occurring after explosive eruptions, and their occurrence depends on numerous factors including the spatio-temporal rainfall characteristics, the spatial distribution and hydraulic properties of the tephra deposit, and the pre- and post-eruption topography. Modeling (and forecasting such a complex system requires the quantification of aleatory variability in the lahar triggering and propagation. To fulfill this goal, we develop a novel framework for probabilistic hazard assessment of lahars within a multi-hazard environment, based on coupling a versatile probabilistic model for lahar triggering (a Bayesian Belief Network: Multihaz with a dynamic physical model for lahar propagation (LaharFlow. Multihaz allows us to estimate the probability of lahars of different volumes occurring by merging varied information about regional rainfall, scientific knowledge on lahar triggering mechanisms and, crucially, probabilistic assessment of available pyroclastic material from tephra fallout and PDCs. LaharFlow propagates the aleatory variability modeled by Multihaz into hazard footprints of lahars. We apply our framework to Somma-Vesuvius (Italy because: (1 the volcano is strongly lahar-prone based on its previous activity, (2 there are many possible source areas for lahars, and (3 there is high density of population nearby. Our results indicate that the size of the eruption preceding the lahar occurrence and the spatial distribution of tephra accumulation have a paramount role in the lahar

  7. 30 years in the life of an active submarine volcano: The evolution of Kick-`em-Jenny and implications for hazard in the southern Caribbean

    Science.gov (United States)

    Allen, R. W.; Berry, C.; Henstock, T.; Collier, J.; Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.

    2017-12-01

    behaviour suggests a timescale for major eruptions which is more similar to sub-aerial volcanos in the arc than previously thought. Despite lacking the precision of satellite technologies used in the monitoring of terrestrial volcanos results clearly demonstrate the capability of repeat swath bathymetry surveys as a means of assessing submarine volcanic hazard.

  8. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  9. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  10. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  11. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  12. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy – Part 1: Model components for sources parameterization

    Directory of Open Access Journals (Sweden)

    R. Azzaro

    2017-11-01

    Full Text Available The volcanic region of Mt. Etna (Sicily, Italy represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA, the first results and maps of which are presented in a companion paper, Peruzza et al. (2017. The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades. The analysis of the frequency–magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude–size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool – FiSH (Pace et al., 2016 – that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be

  13. Landslides in Nicaragua - Mapping, Inventory, Hazard Assessment, Vulnerability Reduction, and Forecasting Attempts

    Science.gov (United States)

    Dévoli, G.; Strauch, W.; Álvarez, A.; Muñoz, A.; Kjekstad, O.

    2009-04-01

    A successful landslide hazard and risk assessment requires awareness and good understanding of the potential landslide problems within the geographic area involved. However, this requirement is not always met in developing countries where population, scientific community, and the government may not be aware of the landslide threat. The landslide hazard assessment is often neglected or is based on sparse and not well documented technical information. In Nicaragua (Central America), the basic conditions for landslide hazard and risk assessment were first created after the catastrophic landslides triggered by Hurricane Mitch in October 1998. A single landslide took the life of thousands of people at Casita volcano forcing entire communities to be evacuated or relocated and, furthermore, thousands of smaller landslides caused loss of fertile soils and pasture lands, and made serious damages to the infrastructure. Since those events occurred, the public awareness has increased and the country relies now on new local and national governmental laws and policies, on a number of landslide investigations, and on educational and training programs. Dozens of geologists have been capacitated to investigate landslide prone areas, The Instituto Nicaragüense de Estudios Territoriales (INETER), governmental geo-scientific institution, has assumed the responsibility to help land-use planners and public officials to reduce geological hazard losses. They are committed to work cooperatively with national, international, and local agencies, universities and the private sector to provide scientific information and improve public safety through forecasting and warnings. However, in order to provide successful long-term landslide hazard assessment, the institutions must face challenges related to the scarcity and varied quality of available landslide information; collection and access to dispersed data and documents; organization of landslide information in a form that can be easy to

  14. Meteorological Hazard Assessment and Risk Mitigation in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Jaboyedoff, Michel; Bugnon, Pierre-Charles; Nsengiyumva, Jean-Baptiste; Horton, Pascal; Derron, Marc-Henri

    2015-04-01

    Between 10 and 13 April 2012, heavy rains hit sectors adjacent to the Vulcanoes National Park (Musanze District in the Northern Province and Nyabihu and Rubavu Districts in the Western Province of RWANDA), causing floods that affected about 11,000 persons. Flooding caused deaths and injuries among the affected population, and extensive damage to houses and properties. 348 houses were destroyed and 446 were partially damaged or have been underwater for several days. Families were forced to leave their flooded homes and seek temporal accommodation with their neighbors, often in overcrowded places. Along the West-northern border of RWANDA, Virunga mountain range consists of 6 major volcanoes. Mount Karisimbi is the highest volcano at 4507m. The oldest mountain is mount Sabyinyo which rises 3634m. The hydraulic network in Musanze District is formed by temporary torrents and permanent watercourses. Torrents surge during strong storms, and are provoked by water coming downhill from the volcanoes, some 20 km away. This area is periodically affected by flooding and landslides because of heavy rain (Rwanda has 2 rainy seasons from February to April and from September to November each year in general and 2 dry seasons) striking the Volcano National Park. Rain water creates big water channels (in already known torrents or new ones) that impact communities, agricultural soils and crop yields. This project aims at identifying hazardous and risky areas by producing susceptibility maps for floods, debris flow and landslides over this sector. Susceptibility maps are being drawn using field observations, during and after the 2012 events, and an empirical model of propagation for regional susceptibility assessments of debris flows (Flow-R). Input data are 10m and 30m resolution DEMs, satellite images, hydrographic network, and some information on geological substratum and soil occupation. Combining susceptibility maps with infrastructures, houses and population density maps will be

  15. Flank Collapse Assessment At Kick-'em-Jenny Submarine Volcano (Lesser Antilles): A Combined Approach Using Modelling and Experiments

    Science.gov (United States)

    Dondin, F. J. Y.; Heap, M. J.; Robertson, R. E. A.; Dorville, J. F. M.; Carey, S.

    2016-12-01

    In the Lesser Antilles over 52 volcanic landslide episodes have been identified. These episodes serve as a testament to the hazard posed by volcanic landslides to a region composed of many islands that are small independent countries with vulnerable local economies. This study presents a relative slope stability analysis (RIA) to investigate the stability condition of the only active submarine volcano of the Lesser Antilles Arc: Kick-'em-Jenny Submarine Volcano (KeJ). Thus we hope to provide better constraint on the landslide source geometry to help mitigate volcanic landslide hazards at a KeJ. KeJ is located ca. 8 km north of Grenada island. KeJ lies within a collapse scar from a prehistorical flank collapse. This collapse was associated with a voluminous landslide deposit of about 4.4km3 with a 14 km runout. Numerial simulations showed that this event could generate a regional tsunami. We aim to quantify potential initial volumes of collapsed material using a RIA. The RIA evaluates the critical potential failure surface associated with factor of safety (Fs) inferior to unity and compares them to areas of deficit/surplus of mass/volume obtained from the comparison of an high resolution digital elevation model of the edifice with an ideal 3D surface. We use freeware programs VolcanoFit 2.0 and SSAP 4.7. and produce a 3D representation of the stability map. We report, for the first time, results of a Limit Equilibrium Method performed using geomechanical parameters retrieved from rock mechanics tests performed on two rock basaltic-andesite rock samples collected from within the crater of the volcano during the 1-18 November 2013 NA039 E/V Nautilus cruise. We performed triaxial and uniaxial deformation tests to obtain values of strength at the top and bottom of the edifice. We further characterized the permeability and P-wave velocity of the samples collected. The chosen internal structure for the model is composed of three bodies: (i) a body composed of basaltic

  16. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    Science.gov (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  17. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    many sources of uncertainty in forecasting the areas that volcanic activity will effect and the severity of the effects. Uncertainties arise from: natural variability, inadequate data, biased data, incomplete data, lack of understanding of the processes, limitations to predictive models, ambiguity, and unknown unknowns. The description of volcanic hazards is thus necessarily probabilistic and requires assessment of the attendant uncertainties. Several issues arise from the probabilistic nature of volcanic hazards and the intrinsic uncertainties. Although zonation maps require well-defined boundaries for administrative pragmatism, such boundaries cannot divide areas that are completely safe from those that are unsafe. Levels of danger or safety need to be defined to decide on and justify boundaries through the concepts of vulnerability and risk. More data, better observations, improved models may reduce uncertainties, but can increase uncertainties and may lead to re-appraisal of zone boundaries. Probabilities inferred by statistical techniques are hard to communicate. Expert elicitation is an emerging methodology for risk assessment and uncertainty evaluation. The method has been applied at one major volcanic crisis (Soufrière Hills Volcano, Montserrat), and is being applied in planning for volcanic crises at Vesuvius.

  18. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  19. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  20. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka

    Directory of Open Access Journals (Sweden)

    Ya. D. Muraviev

    2014-01-01

    Full Text Available On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows» has been developed for some volcano group as well as for individual volcanoes on the peninsula in framework of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc». Main components of this database are the following: physic-geographical information on region of active volcanism and adjacent areas, on human settlements; data on the mudflow activity; data on distribution of the snow and ice reserves. This database is aimed at mapping of surrounding territories and estimating a hazard of lahars.For illustration the paper presents a map of the lahar hazards, results of calculations of the distances of ejects and maximal area of ejected material spreading in dependence on a character and power of an eruption. In future we plan to perform operational calculations of maximal possible volumes of such flows and areas of their spreading. The calculations will be made on the basis of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc».A volume of hard material carried by lahars onto slopes and down to foot of the Kluchevskaya volcanic massif is estimated on the basis of data on the snow and ice reserves on volcano slopes. On the average for many years, the snow accumulation in zones of the mudflow formations their volume often reaches 15–17 millions of cubic meters. Depending on the snowfall activity in different years this value may vary within 50% relative to the norm. Further on, calculations of maximal possible volume of such flows will be performed in a

  1. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  2. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  3. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  4. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  5. Dynamic Statistical Models for Pyroclastic Density Current Generation at Soufrière Hills Volcano

    Science.gov (United States)

    Wolpert, Robert L.; Spiller, Elaine T.; Calder, Eliza S.

    2018-05-01

    To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate hazard maps that provide long-term forecasts of areas of potential impact. Several recent efforts in the field develop new statistical methods for application of flow models to generate fully probabilistic hazard maps that both account for, and quantify, uncertainty. However a limitation to the use of most statistical hazard models, and a key source of uncertainty within them, is the time-averaged nature of the datasets by which the volcanic activity is statistically characterized. Where the level, or directionality, of volcanic activity frequently changes, e.g. during protracted eruptive episodes, or at volcanoes that are classified as persistently active, it is not appropriate to make short term forecasts based on longer time-averaged metrics of the activity. Thus, here we build, fit and explore dynamic statistical models for the generation of pyroclastic density current from Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction and flow volumes based on 1996-2008 flow datasets. The development of this approach allows for short-term behavioral changes to be taken into account in probabilistic volcanic hazard assessments. We show that collapses from the SHV lava dome follow a clear pattern, and that a series of smaller flows in a given direction often culminate in a larger collapse and thereafter directionality of the flows change. Such models enable short term forecasting (weeks to months) that can reflect evolving conditions such as dome and crater morphology changes and non-stationary eruptive behavior such as extrusion rate variations. For example, the probability of inundation of the Belham Valley in the first 180 days of a forecast period is about twice as high for lava domes facing Northwest toward that valley as it is for domes pointing East toward the Tar River Valley. As rich multi-parametric volcano monitoring dataset become

  6. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  7. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  8. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  9. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    Science.gov (United States)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  10. Should We Stay Or Should We Go Now? Hazard Warnings, Risk Perception, and Evacuation Decisions at Pacaya Volcano, Guatemala During the 2010 Eruption.

    Science.gov (United States)

    Lechner, H. N.; Rouleau, M.

    2017-12-01

    Pacaya volcano, in Guatemala, presents considerable risk to nearby communities and in May 2010, the volcano experienced its largest eruption in more than a decade. The eruption damaged or destroyed hundreds of homes, injured scores of people with one fatality, and prompted the evacuation of approximately 2000 people from several communities. During this eruption crisis, people living within at-risk communities were presented with the choice to evacuate or remain in the hazard zone. Many chose not to leave. Using quantitative methodologies, this research investigates evacuation decisions through causal relationships between hazard warnings, evacuation orders, risk perception, evacuation intention and behavior, and attempts to understand why some people chose to stay in harm's-way. In October 2016, we conducted a door-to-door survey administered to 172 households in eight communities within 5 km of the active vent. Participants were asked to rank factors that influenced their decision to evacuate or not, their level of trust in emergency management agencies, and the intention to evacuate during a future crisis. Initial analysis suggests that many people have confidence in emergency management agencies and information from volcano scientists; however, during the 2010 eruption, warning messages and evacuation orders were based on previous eruption patterns and tephra distribution and therefore disseminated differentially to at-risk communities. This likely delayed evacuation decisions by households in the communities that were most affected by the eruption. The data also suggest that while many households perceive evacuation as the most effective protective action, the perceived risk to one's home and property may play a more important role in the decision making process. We will discuss these results as well as communication strategies between agencies and communities, and how to better facilitate more effective and successful evacuations during future eruption crises

  11. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  12. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  13. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  14. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  15. Hazard Models From Periodic Dike Intrusions at Kı¯lauea Volcano, Hawai`i

    Science.gov (United States)

    Montgomery-Brown, E. K.; Miklius, A.

    2016-12-01

    The persistence and regular recurrence intervals of dike intrusions in the East Rift Zone (ERZ) of Kı¯lauea Volcano lead to the possibility of constructing a time-dependent intrusion hazard model. Dike intrusions are commonly observed in Kı¯lauea Volcano's ERZ and can occur repeatedly in regions that correlate with seismic segments (sections of rift seismicity with persistent definitive lateral boundaries) proposed by Wright and Klein (USGS PP1806, 2014). Five such ERZ intrusions have occurred since 1983 with inferred locations downrift of the bend in Kı¯lauea's ERZ, with the first (1983) being the start of the ongoing ERZ eruption. The ERZ intrusions occur on one of two segments that are spatially coincident with seismic segments: Makaopuhi (1993 and 2007) and Nāpau (1983, 1997, and 2011). During each intrusion, the amount of inferred dike opening was between 2 and 3 meters. The times between ERZ intrusions for same-segment pairs are all close to 14 years: 14.07 (1983-1997), 14.09 (1997-2011), and 13.95 (1993-2007) years, with the Nāpau segment becoming active about 3.5 years after the Makaopuhi segment in each case. Four additional upper ERZ intrusions are also considered here. Dikes in the upper ERZ have much smaller opening ( 10 cm), and have shorter recurrence intervals of 8 years with more variability. The amount of modeled dike opening during each of these events roughly corresponds to the amount of seaward south flank motion and deep rift opening accumulated in the time between events. Additionally, the recurrence interval of 14 years appears to be unaffected by the magma surge of 2003-2007, suggesting that flank motion, rather than magma supply, could be a controlling factor in the timing and periodicity of intrusions. Flank control over the timing of magma intrusions runs counter to the historical research suggesting that dike intrusions at Kı¯lauea are driven by magma overpressure. This relatively free sliding may have resulted from decreased

  16. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  17. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  18. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico

    Directory of Open Access Journals (Sweden)

    D. Schneider

    2008-06-01

    Full Text Available Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l., considering also possible future developments of the glaciers on the volcano. Observations of the glacial extent are important for estimations of future hazard scenarios, especially in a rapidly changing tropical glacial environment. In this study, analysis of the glaciers on Iztaccíhuatl shows a dramatic retreat during the last 150 years: the glaciated area in 2007 corresponds to only 4% of the one in 1850 AD and the glaciers are expected to survive no later than the year 2020. Most of the glacial retreat is considered to be related to climate change but in-situ observations suggest also that geo- and hydrothermal heat flow at the summit-crater area can not be ruled out, as emphasized by fumarolic activity documented in a former study. However, development of crater lakes and englacial water reservoirs are supposed to be a more realistic scenario for lahar generation than sudden ice melting by rigorous volcano-ice interaction. Model calculations show that possible outburst floods have to be larger than ~5×105 m3 or to achieve an H/L ratio (Height/runout Length of 0.2 and lower in order to reach the populated lower flanks. This threshold volume equals 2.4% melted ice of Iztaccíhuatl's total ice volume in 2007, assuming 40% water and 60% volumetric debris content of a potential lahar. The model sensitivity analysis reveals important effects of the generic type of the Digital Terrain Model (DTM used on the results. As a consequence, the predicted affected areas can vary significantly. For such

  19. A Volcano Exploration Project Pu`u `O`o (VEPP) Exercise: Is Kilauea in Volcanic Unrest? (Invited)

    Science.gov (United States)

    Schwartz, S. Y.

    2010-12-01

    Volcanic activity captures the interest and imagination of students at all stages in their education. Analysis of real data collected on active volcanoes can further serve to engage students in higher-level inquiry into the complicated physical processes associated with volcanic eruptions. This exercise takes advantage of both student fascination with volcanoes and the recognized benefits of incorporating real, internet-accessible data to achieve its goals of enabling students to: 1) navigate a scientific website; 2) describe the physical events that produce volcano monitoring data; 3) identify patterns in geophysical time-series and distinguish anomalies preceding and synchronous with eruptive events; 4) compare and contrast geophysical time series and 5) integrate diverse data sets to assess the eruptive state of Kilauea volcano. All data come from the VEPP website (vepp.wr.usgs.gov) which provides background information on the historic activity and volcano monitoring methods as well as near-real time volcano monitoring data from the Pu`u `O`o eruptive vent on Kilauea Volcano. This exercise, designed for geology majors, has students initially work individually to acquire basic skills with volcano monitoring data interpretation and then together in a jigsaw activity to unravel the events leading up to and culminating in the July 2007 volcanic episode. Based on patterns established prior to the July 2007 event, students examine real-time volcano monitoring data to evaluate the present activity level of Kilauea volcano. This exercise will be used for the first time in an upper division Geologic Hazards class in fall 2010 and lessons learned including an exercise assessment will be presented.

  20. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    Science.gov (United States)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  1. Geophysics in the monitoring of natural hazards

    International Nuclear Information System (INIS)

    Arafin, S.

    2005-01-01

    Natural disasters such as earthquakes, floods, tsunamis, landslides and volcanic eruptions strike every year, killing thousands of people and destroying property worth billions of dollars. Some of these can be a surprise like the 2004 Asian Tsunami. Earthquakes, volcanic eruptions and landslides are usually grouped into what are termed 'geo-hazards'. Because mud volcanoes do not pose any serious threat to human life and property, they are the least studied of all geo-hazards. However, the 1997 explosive eruption of the Piparo mud volcano in Trinidad, West Indies caught many scientists and planners by surprise. It was the strongest eruption of a mud volcano ever recorded, causing extensive damage to the small town of Piparo. A description of the 1997 eruption of the Piparo mud volcano and the associated land deformation, together with a three-dimensional gravity modeling of the gravitational anomaly of the nearby Tabaquite mud volcano have been presented. From the modeling, the geometry of the mud volcano has been deciphered, and it has been shown that a large, dynamic density contrast exists at the Tabaquite volcano. The existence of a large dynamic density contrast indicates that the gravity method can be used as a potential tool for monitoring mud volcanoes. (author)

  2. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards: Chapter 6

    Science.gov (United States)

    Mothes, Patricia A; Vallance, James W.

    2015-01-01

    Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.

  3. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  4. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  5. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    Science.gov (United States)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  6. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  7. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  8. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  9. Disaster Risks Reduction for Extreme Natural Hazards

    Science.gov (United States)

    Plag, H.; Jules-Plag, S.

    2013-12-01

    Mega disasters associated with extreme natural hazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Floods and droughts are major threats that potentially could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis frequently cause disasters that eventually could exceed the immediate coping capacity of the global economy, particularly since we have built mega cities in hazardous areas that are now ready to be harvested by natural hazards. Unfortunately, the more we learn to cope with the relatively frequent hazards (50 to 100 years events), the less we are worried about the low-probability, high-impact events (a few hundred and more years events). As a consequence, threats from the 500 years flood, drought, volcano eruption are not appropriately accounted for in disaster risk reduction (DRR) discussions. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because exposure of human assets to hazards was much lower in the past. The most extreme events that occurred during the last 2,000 years would today cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. Recent extreme earthquakes have illustrated the destruction they can inflict, both directly and indirectly through tsunamis. Large volcano eruptions have the potential to impact climate, anthropogenic infrastructure and resource supplies on global scale. During the last 2,000 years several large volcano eruptions occurred, which under today's conditions are associated with extreme disaster risk. The comparison of earthquakes and volcano eruptions indicates that large volcano eruptions are the low-probability geohazards with potentially the highest impact on our civilization

  10. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis

    Science.gov (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús

    2015-04-01

    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  11. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    Science.gov (United States)

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  12. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  13. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  14. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  15. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  16. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project

    Science.gov (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos

    2017-04-01

    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  17. Natural hazards in Goma and the surrounding villages, East African Rift System

    Science.gov (United States)

    Balagizi, Charles M.; Kies, Antoine; Kasereka, Marcellin M.; Tedesco, Dario; Yalire, Mathieu M.; McCausland, Wendy A.

    2018-01-01

    The city of Goma and its surrounding villages (Democratic Republic of the Congo, DRC) are among the world’s most densely populated regions strongly affected by volcanic hazards. In 2002, Nyiragongo volcano erupted destroying 10–15% of Goma and forced a mass evacuation of the population. Hence, the ~ 1.5 million inhabitants of Goma and Gisenyi (Rwanda) continue to live with the threat of new lava flows and other eruptive hazards from this volcano. The current network of fractures extends from Nyiragongo summit to Goma and continues beneath Lake Kivu, which gives rise to the fear that an eruption could even produce an active vent within the center of Goma or within the lake. A sub-lacustrine volcanic eruption with vents in the floor of the main basin and/or Kabuno Bay of Lake Kivu could potentially release about 300 km3 of carbon dioxide (CO2) and 60 km3 of methane (CH4) dissolved in its deep waters that would be catastrophic to populations (~ 2.5 million people) along the lake shores. For the time being, ongoing hazards related to Nyiragongo and Nyamulagira volcanoes silently kill people and animals, slowly destroy the environment, and seriously harm the health of the population. They include mazuku (CO2-rich locations where people often die of asphyxiation), the highly fluoridated surface and ground waters, and other locally neglected hazards. The volcanic gas plume causes poor air quality and acid rain, which is commonly used for drinking water. Given the large number of people at risk and the continued movement of people to Goma and the surrounding villages, there is an urgent need for a thorough natural hazards assessment in the region. This paper presents a general view of natural hazards in the region around Goma based on field investigations, CO2 measurements in mazuku, and chemistry data for Lake Kivu, rivers and rainwater. The field investigations and the datasets are used in conjunction with extremely rich-historical (1897–2000) and

  18. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  19. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  20. Perception of Natural Hazards and Risk among University of Washington Students

    Science.gov (United States)

    Herr, K.; Brand, B.; Hamlin, N.; Ou, J.; Thomas, B.; Tudor, E.

    2012-12-01

    Familiarity with a given population's perception of natural hazards and the threats they present is vital for the development of effective education prior to and emergency management response after a natural event. While much work has been done in other active tectonic regions, perception of natural hazards and risk among Pacific Northwest (PNW) residents is poorly constrained. The objective of this work is to assess the current perception of earthquake and volcanic hazards and risk in the PNW, and to better understand the factors which drive the public's behavior concerning preparedness and response. We developed a survey to assess the knowledge of natural hazards common to the region, their perception of risk concerning these hazards, and their level of preparedness should a natural hazard occur. The survey was distributed to University of Washington students and employees via an internet link as part of a class project in 'Living with Volcanoes' (ESS 106) in March of 2012, which returned more than 900 responses. The UW student population was chosen as our first "population" to assess because of their uniqueness as a large, semi-transient population (typical residence of less than 5 years). Only 50% of participants correctly reported their proximity to an active volcano, indicating either lack of knowledge of active volcanoes in the region or poor spatial awareness. When asked which area were most at risk to lahars, respondents indicated that all areas close to the hazard source, including topographically elevated regions, were at a higher risk than more distal and low-lying localities that are also at high risk, indicating a lack of knowledge concerning the topographic dependency of this hazard. Participants perceived themselves to be able to cope better with an earthquake than a volcanic event. This perception may be due to lack of knowledge of volcanic hazards and their extent or due to a false sense of security concerning earthquakes fostered by regular

  1. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  2. Co-designing communication and hazard preparedness strategies at Turrialba volcano, Costa Rica

    Science.gov (United States)

    van Manen, Saskia; Avard, Geoffroy; Martinez, Maria

    2014-05-01

    Globally volcanic activity results in huge human, social, environmental and economic losses. Disaster risk reduction (DRR) is the concept and systematic practice of reducing disaster risks and associated losses through a wide range of strategies, including efforts to increase knowledge through education and outreach. However, recent studies have shown a substantial gap between risk reduction actions taken at national and local levels, with national policies showing little change at the community level. Yet it is at local levels are where DRR efforts can have the biggest impact. This research focuses on communicating hazard preparedness strategies at Turrialba volcano, Costa Rica. Located in the Central Cordillera just 35 km northeast of Costa Rica's capital city San Jose this 3,340 m high active stratovolcano looms over Costa Rica's Central Valley, the social and economic hub of the country. Following progressive increases in degassing and seismic activity Turrialba resumed activity in 1996 after more than 100 years of quiescence. Since 2007 it has continuously emitted gas and since 2010 intermittent phreatic explosions accompanied by ash emissions have occurred. Despite high levels of hazard salience individuals and communities are not or under-prepared to deal with a volcanic eruption. In light of Turrialba's continued activity engaging local communities with disaster risk management is key. At the local levels culture (collective behaviours, interactions, cognitive constructs, and affective understanding) is an important factor in shaping peoples' views, understanding and response to natural phenomena. As such an increasing number of academic studies and intergovernmental organisations advocate for the incorporation of cultural context into disaster risk reduction strategies, which firstly requires documenting people's perception. Therefore approaching community disaster preparedness from a user-centred perspective, through an iterative and collaborative

  3. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  4. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  5. Hazards assessment for the INEL Landfill Complex

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment

  6. Hazards assessment for the INEL Landfill Complex

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  7. 222 S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1998-01-01

    This report documents the hazards assessment for the 222-S Analytical Laboratory located on the US Department of Energy (DOE) Hanford Site. Operation of the laboratory is the responsibility of Waste Management Federal Services, Inc. (WMFS). This hazards assessment was conducted to provide the emergency planning technical basis for the 222-S Facility. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  8. Phreatic eruptions at Ruapehu: Occurrence statistics and probabilistic hazard forecast

    Science.gov (United States)

    Strehlow, Karen; Sandri, Laura; Gottsmann, Jo; Kilgour, Geoff; Rust, Alison; Tonini, Roberto

    2017-04-01

    Phreatic eruptions, although posing a serious threat to human life in crater proximity, are often underestimated or neglected, and have been comparatively understudied with respect to magmatic events. The detailed eruption catalogue for Ruapehu Volcano (North Island of New Zealand) provides an exceptional opportunity to study the statistics of recurring phreatic explosions at an active crater lake volcano. We first carried out a completeness analysis of this catalog; then, we performed a statistical analysis on this phreatic eruption database, which suggests that phreatic events at Ruapehu do not follow a Poisson process. Rather, they tend to cluster, which is possibly linked to an increased heat flow during periods of a more shallow-seated magma column. The average probability for a phreatic explosion to occur at Ruapehu within the next month is about 10%, as inferred from the complete part of the catalog studied. However, the frequency of phreatic explosions is significantly higher than the background level in years prior to magmatic episodes. The combination of numerical simulations of ejected clasts' trajectory with a Bayesian event tree tool (PyBetVH) has allowed performing a full probabilistic assessment of the hazard due to ballistic ejecta in the summit area of Ruapehu, which is frequently visited by hikers. Resulting hazard maps show that the absolute probability for the summit to be affected by ballistics within the next month is up to 6%. The hazard is especially high on the northern lake shore, where there is a mountain refuge. Epistemic uncertainty associated to the resulting hazard maps is also quantified. Our results contribute to the local hazard assessment as well as the general perception of hazards due to steam-driven explosions.

  9. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  10. New high-definition thickness data obtained at tropical glaciers: preliminary results from Antisana volcano (Ecuador) using GPR prospection

    Science.gov (United States)

    Zapata, Camilo; Andrade, Daniel; Córdova, Jorge; Maisincho, Luis; Carvajal, Juan; Calispa, Marlon; Villacís, Marcos

    2014-05-01

    The study of tropical glaciers has been a significant contribution to the understanding of glacier dynamics and climate change. Much of the data and results have been obtained by analyzing plan-view images obtained by air- and space-borne sensors, as well as depth data obtained by diverse methodologies at selected points on the glacier surface. However, the measurement of glacier thicknesses has remained an elusive task in tropical glaciers, often located in rough terrains where the application of geophysical surveys (i.e. seismic surveys) requires logistics sometimes hardly justified by the amount of obtained data. In the case of Ecuador, however, where most glaciers have developed on active volcanoes and represent sources/reservoirs of fresh water, the precise knowledge of such information is fundamental for scientific research but also in order to better assess key aspects for the society. The relatively recent but fast development of the GPR technology has helped to obtain new highdefinition thickness data at Antisana volcano that will be used to: 1) better understand the dynamics and fate of tropical glaciers; 2) better estimate the amount of fresh water stored in the glaciers; 3) better assess the hazards associated with the sudden widespread melting of glaciers during volcanic eruptions. The measurements have been obtained at glaciers 12 and 15 of Antisana volcano, with the help of a commercial GPR equipped with a 25 MHz antenna. A total of 30 transects have been obtained, covering a distance of more than 3 km, from the glacier ablation zone, located at ~ 4600 masl, up to the level of 5200 masl. The preliminary results show a positive correlation between altitude and glacier thickness, with maximum and minimum calculated values reaching up to 80 m, and down to 15 m, respectively. The experience gained at Antisana volcano will be used to prepare a more widespread GPR survey in the glaciers of Cotopaxi volcano, whose implications in terms of volcanic hazards

  11. Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    Jan M. Lindsay

    2018-04-01

    Full Text Available We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick ‘em Jenny and Ronde/Caille, Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia, and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past ~10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that

  12. A multidisciplinary and multi-sensor assessment of continuous degassing at Turrialba volcano, Costa Rica; insights and their application to hazard management

    Science.gov (United States)

    van Manen, S. M.; Tortini, R.; Burson, B.; Carn, S. A.

    2013-12-01

    Turrialba is an active stratovolcano located in the Central Cordillera of Costa Rica with an elevation of 3,340 m. Located just 35 km northeast of Costa Rica's capital city San Jose it looms over Costa Rica's Central Valley, the social and economic hub of the country. After more than 100 years of quiescence Turrialba resumed activity in 1996, marked by progressive increases in degassing and seismic activity with gas emissions becoming continuous in 2007. Intermittent phreatic explosions accompanied by ash emissions that have reached the capital have been occurring since 2010. The activity has resulted in the evacuation of two villages, closure of the National Park that comprises the summit region of the volcano and devastation of the local ecosystem. In this work we present a multi-disciplinary and multi-sensor assessment of the persistent degassing and its impacts on the local ecosystem. Combining a variety of high temporal and high spatial resolution satellite-based time series with ground-based measurements of ambient gas concentrations, element deposition and surveys of species richness, enables a comprehensive assessment of SO2 emissions and changes in vegetation. Satellite-based time-series were obtained from Landsat TM and ETM+, Terra ASTER and MODIS, Aqua MODIS, EO-1 and Aura OMI, with some of the data dating back to 2000. Preliminary results show exposure to the volcanic plume results in high soil acidity and significant uptake of certain heavy metals (e.g. Cd, Co, Cu, Hg and Pb) by vegetation, in contrast other elements such as Ba, Ca and Sr are leached from the soil as a result of the acid deposition. These factors are likely to be responsible for decreased species richness and physiological damage observed downwind of Turrialba. Ambient SO2 concentrations that exceed WHO guideline values have been recorded, which has potentially important consequences for human health in the area. Analyzing and relating the remote observations to conditions and impacts

  13. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    Iceland is one of the most active terrestrial volcanic regions on Earth with an average of more than 20 eruptions per century. Around 80% of all events are tephra generating explosive eruptions, but less than 10 % of all known tephra layers have been mapped. Recent hazard assessment models show...... that the two key parameters for hazard assessment modeling are total grain size distribution (TGSD) and eruptive style. These two parameters have been determined for even fewer eruptive events in Iceland. One of the most hazardous volcanoes in Iceland is Katla and no data set of TGSD or other eruptive...... parameters exist. Katla has not erupted for 99 years, but at least 2 of the 20 eruptions since the settlement of Iceland in 871 have reached Northern Europe as visible tephra fall. These eruptions occurred in 1755 and 1625 and remain enigmatic both in terms of actual size and eruption dynamics. This work...

  14. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-01-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty C-14 dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with

  15. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  16. Geophysical Investigations of Magma Plumbing Systems at Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    MacQueen, Patricia Grace

    Cerro Negro near Leon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6--7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive density anomalies beneath Cerro Negro and Las Pilas-El Hoyo. These findings suggest that eruptions at Cerro Negro may be tapping a large magma reservoir beneath Las Pilas-El Hoyo, implying that Cerro Negro should be considered the newest vent on the Las Pilas-El Hoyo volcanic complex. As such, it is possible that the intensity of volcanic hazards at Cerro Negro may eventually increase in the future to resemble those pertaining to a stratovolcano. Keywords: Cerro Negro; Las Pilas-El Hoyo; Bouguer gravity; magmatic plumbing systems; potential fields; volcano.

  17. Earth Girl Volcano: An Interactive Game for Disaster Preparedness

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards. Earth Girl is a friendly character that kids can easily connect with and she helps players understand how to best minimize volcanic risk. Our previous award-winning game, Earth Girl Tsunami, has seen success on social media, and is available as a free app for both Android and iOS tables and large phones in seven languages: Indonesian, Thai, Tamil, Japanese, Chinese, Spanish, French and English. This is the first public viewing of the Earth Girl Volcano new game prototype.

  18. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  19. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  20. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  1. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  2. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  3. A~probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  4. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  5. Tank farms hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ''Interim Safety Basis Document, WHC-SD-WM-ISB-001'' as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process

  6. PUREX facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  7. Onsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    This report documents the emergency preparedness Hazards Assessment for the onsite transportation of hazardous material at the Hanford Site. The assessment is required by US Department of Energy (DOE) Order 5500.3A and provides the technical basis for the emergency classification and response procedures. A distinction is made between onsite for the purpose of emergency preparedness and onsite for the purpose of applying US Department of Transportation (DOT) regulations. Onsite for the purpose of emergency preparedness is considered to be within the physical boundary of the entire Hanford Site. Onsite for the purpose of applying DOT regulations is north of the Wye Barricade

  8. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  9. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores

    Science.gov (United States)

    Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui

    1999-09-01

    A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in

  10. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    Science.gov (United States)

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to

  11. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    Science.gov (United States)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  12. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    OpenAIRE

    Schmidt, A; Witham, CS; Theys, N; Richards, NAD; Thordarson, T; Szpek, K; Feng, W; Hort, MC; Woolley, AM; Jones, AR; Redington, AL; Johnson, BT; Hayward, CL; Carslaw, KS

    2014-01-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We h...

  13. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  14. A methodology for physically based rockfall hazard assessment

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria.

  15. Modeling lahar behavior and hazards

    Science.gov (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  16. Implementing DOE guidance for hazards assessments at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Zimmerman, G.A.

    1993-01-01

    Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ''Guidance for a Hazards Assessment Methodology''). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ''Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports''). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments

  17. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  18. Geophysical investigations of magma plumbing systems at Cerro Negro volcano, Nicaragua

    OpenAIRE

    MacQueen, Patricia Grace

    2013-01-01

    Cerro Negro near Léon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6-7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive d...

  19. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  20. Hazard waste risk assessment

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1986-01-01

    Pacific Northwest Laboratory continued to provide technical assistance to the Department of Energy (DOE) Office of Operational Safety (OOS) in the area of risk assessment for hazardous and radioactive-mixed waste management. The overall objective is to provide technical assistance to OOS in developing cost-effective risk assessment tools and strategies for bringing DOE facilities into compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) and the Resource Conservation and Recovery Act (RCRA). Major efforts during FY 1985 included (1) completing the modification of the Environmental Protection Agency (EPA) Hazard Ranking System (HRS) and developing training manuals and courses to assist in field office implementation of the modified Hazard Ranking System (mHRS); (2) initiating the development of a system for reviewing field office HRS/mHRS evaluations for appropriate use of data and appropriate application of the methodology; (3) initiating the development of a data base management system to maintain all field office HRS/mHRS scoring sheets and to support the master OOS environmental data base system; (4) developing implementation guidance for Phase I of the DOE CERCLA Program, Installation Assessment; (5) continuing to develop an objective, scientifically based methodology for DOE management to use in establishing priorities for conducting site assessments under Phase II of the DOE CERCLA Program, Confirmation; and (6) participating in developing the DOE response to EPA on the proposed listing of three sites on the National Priorities List

  1. Risk management of El Chichón and Tacaná Volcanoes: Lessons learned from past volcanic crises: Chapter 8

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2015-01-01

    Before 1985, Mexico lacked civil-protection agencies with a mission to prevent and respond to natural and human-caused disasters; thus, the government was unprepared for the sudden eruption of El Chichón Volcano in March–April 1982, which produced the deadliest volcanic disaster in the country’s recorded history (~2,000 fatalities). With the sobering lessons of El Chichón still fresh, scientists and governmental officials had a higher awareness of possible disastrous outcome when Tacaná Volcano began to exhibit unrest in late 1985. Seismic and geochemical studies were quickly initiated to monitor activity. At the same time, scientists worked actively with officials of the Federal and local agencies to develop the “Plan Operativo” (Operational Plan)—expressly designed to effectively communicate hazards information and reduce confusion and panic among the affected population. Even though the volcano-monitoring data obtained during the Tacaná crisis were limited, when used in conjunction with protocols of the Operational Plan, they proved useful in mitigating risk and easing public anxiety. While comprehensive monitoring is not yet available, both El Chichón and Tacaná volcanoes are currently monitored—seismically and geochemically—within the scientific and economic resources available. Numerous post-eruption studies have generated new insights into the volcanic systems that have been factored into subsequent volcano monitoring and hazards assessments. The State of Chiapas is now much better positioned to deal with any future unrest or eruptive activity at El Chichón or Tacaná, both of which at the moment are quiescent as of 2014. Perhaps more importantly, the protocols first tested in 1986 at Tacaná have served as the basis for the development of risk-management practices for hazards from other active and potentially active volcanoes in Mexico. These practices have been most notably employed since 1994 at Volcán Popocatépetl since a major

  2. Reducing risk from lahar hazards: concepts, case studies, and roles for scientists

    Science.gov (United States)

    Pierson, Thomas C.; Wood, Nathan J.; Driedger, Carolyn L.

    2014-01-01

    Lahars are rapid flows of mud-rock slurries that can occur without warning and catastrophically impact areas more than 100 km downstream of source volcanoes. Strategies to mitigate the potential for damage or loss from lahars fall into four basic categories: (1) avoidance of lahar hazards through land-use planning; (2) modification of lahar hazards through engineered protection structures; (3) lahar warning systems to enable evacuations; and (4) effective response to and recovery from lahars when they do occur. Successful application of any of these strategies requires an accurate understanding and assessment of the hazard, an understanding of the applicability and limitations of the strategy, and thorough planning. The human and institutional components leading to successful application can be even more important: engagement of all stakeholders in hazard education and risk-reduction planning; good communication of hazard and risk information among scientists, emergency managers, elected officials, and the at-risk public during crisis and non-crisis periods; sustained response training; and adequate funding for risk-reduction efforts. This paper reviews a number of methods for lahar-hazard risk reduction, examines the limitations and tradeoffs, and provides real-world examples of their application in the U.S. Pacific Northwest and in other volcanic regions of the world. An overriding theme is that lahar-hazard risk reduction cannot be effectively accomplished without the active, impartial involvement of volcano scientists, who are willing to assume educational, interpretive, and advisory roles to work in partnership with elected officials, emergency managers, and vulnerable communities.

  3. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  4. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  5. 283-E and 283-W hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  6. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  7. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  8. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    . The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H 2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (≥ 8 km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5 km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower west

  9. Probabilistic tsunami hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau (Canada); Alcinov, T.; Roussel, P.; Lavine, A.; Arcos, M.E.M.; Hanson, K.; Youngs, R., E-mail: trajce.alcinov@amecfw.com, E-mail: patrick.roussel@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure, Dartmouth, NS (Canada)

    2015-07-01

    In 2012 the Geological Survey of Canada published a preliminary probabilistic tsunami hazard assessment in Open File 7201 that presents the most up-to-date information on all potential tsunami sources in a probabilistic framework on a national level, thus providing the underlying basis for conducting site-specific tsunami hazard assessments. However, the assessment identified a poorly constrained hazard for the Atlantic Coastline and recommended further evaluation. As a result, NB Power has embarked on performing a Probabilistic Tsunami Hazard Assessment (PTHA) for Point Lepreau Generating Station. This paper provides the methodology and progress or hazard evaluation results for Point Lepreau G.S. (author)

  10. Living the Volcano: A First-Year Study Abroad Experience to Santorini, Greece

    Science.gov (United States)

    Skinner, L. A.; Miller, M.; Scarnati, B.

    2014-12-01

    Over the last decade, enrollment in Northern Arizona University's (NAU) Geologic Disasters (GLG112) class has grown to its current 840 students in 7 sections per semester (4% of NAU enrollment). Given this large audience composed of >50% freshmen, the course curriculum was re-designed in 2012 using standards set by NAU's First Year Learning Initiative (FYLI), which seeks to increase academic success early in college. FYLI pedagogical principles include active-learning, frequent feedback, low-stakes assessments, and increased guidance from professors & peer teaching assistants (PTAs). As a result of the successes measured in FYLI courses, we launched a FYLI study abroad experience in 2014. We posed the question, "How can an early-career study abroad experience further develop the attitudes, skills, & behaviors necessary for success?" The pioneering program was NAU in Greece: The Cataclysmic Eruption of Santorini Volcano. Enrollment was limited to freshman & sophomore students who have taken GLG112 (or equivalent). The 3-week program took 9 students, 1 PTA, & 1 faculty member to Santorini (via Athens, 2 days). A detailed itinerary addressed a set of disciplinary & non-disciplinary learning outcomes. Student learning about Santorini volcano and the tectonic setting & hazards of the Aegean Sea occurred on the go - on ferries & private boat trips and during hiking, snorkeling, and swimming. Classroom time was limited to 1 hr/day and frequent assessments were employed. Student products included a geologic field notebook, travel journal, and 3 blog posts pertaining to geologic hazards & life on Santorini. Geologic disasters are ideal topics for early career study abroad experiences because the curriculum is place-based. Student learning benefits immensely from interacting with the land & local populations, whose lives are affected daily by the dangers of living in such geologically hazardous environments. The needs of early career students are unique, however, and must be

  11. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  12. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  13. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  14. The SARVIEWS Project: Automated SAR Processing in Support of Operational Near Real-time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P. W.; Dehn, J.; Arko, S. A.; McAlpin, D. B.; Gong, W.

    2016-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing has become established in operational volcano monitoring. Centers like the Alaska Volcano Observatory rely heavily on remote sensing data from optical and thermal sensors to provide time-critical hazard information. Despite this high use of remote sensing data, the presence of clouds and a dependence on solar illumination often limit their impact on decision making. Synthetic Aperture Radar (SAR) systems are widely considered superior to optical sensors in operational monitoring situations, due to their weather and illumination independence. Still, the contribution of SAR to operational volcano monitoring has been limited in the past due to high data costs, long processing times, and low temporal sampling rates of most SAR systems. In this study, we introduce the automatic SAR processing system SARVIEWS, whose advanced data analysis and data integration techniques allow, for the first time, a meaningful integration of SAR into operational monitoring systems. We will introduce the SARVIEWS database interface that allows for automatic, rapid, and seamless access to the data holdings of the Alaska Satellite Facility. We will also present a set of processing techniques designed to automatically generate a set of SAR-based hazard products (e.g. change detection maps, interferograms, geocoded images). The techniques take advantage of modern signal processing and radiometric normalization schemes, enabling the combination of data from different geometries. Finally, we will show how SAR-based hazard information is integrated in existing multi-sensor decision support tools to enable joint hazard analysis with data from optical and thermal sensors. We will showcase the SAR processing system using a set of recent natural disasters (both earthquakes and volcanic eruptions) to demonstrate its

  15. When the hazard you're monitoring is the least of your troubles… the early days of a ubiquitous computing citizen science initiative on active volcanoes

    Science.gov (United States)

    van Manen, S. M.; Richards, M.; Seaton, R.; Cameron, I.; Avard, G.; Martinez, M.

    2014-12-01

    Approximately 500 million people live in close proximity to one or more of the world's 1500 active volcanoes, and this number is set to increase through population growth. The corresponding human, social, environmental and economic costs of volcanic activity are likewise set to rise. Monitoring of active volcanoes is imperative to minimize the impact of volcanic activity. However, people's responses towards risk are not just determined by objective scientific information, but also by socio-cognitive factors such as hazard salience; risk perception; anxiety levels and sense of self efficacy. This project aims to take a citizen science approach to the monitoring of hazardous volcanic gases: a low-cost automated ubiquitous technology station will increase spatial and temporal data resolution while providing citizens access to relevant, accurate, timely and local information. This means a single data stream can be used to develop a better understanding of volcanic degassing and raise levels of hazard salience and increase feelings of self efficacy. A year and two prototypes into the project, this work presents the lessons learnt to date. Careful consideration was given to the station design in light of the harsh conditions it may encounter. Once the first prototypes were built, results from the initial lab tests were encouraging. Yet it wasn't until the stations were taken into the field that unexpected challenges were encountered: humans. During the very first field trial the prototype was vandalised, our second attempt was thwarted by customs and courier services. As a result, we've had to be flexible in our approach and adapt our strategy and station design in response to these events, which will eventually result in a better outcome. However, this case study serves as a reminder of the importance of considering factors beyond the equipment, data, interpretation and involvement of the public, when planning and implementing a citizen science initiative.

  16. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  17. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  18. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  19. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  20. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  1. Building 894 hazards assessment document

    International Nuclear Information System (INIS)

    Banda, Z.; Williams, M.

    1996-07-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 894. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which 9 chemicals were kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 130 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal 130 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  2. Building 6630 hazards assessment document

    International Nuclear Information System (INIS)

    Williams, M.; Banda, Z.

    1996-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 6630. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which one chemical was kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the chemical release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 76 meters. The highest emergency classification is an Alert. The Emergency Planning Zone is a nominal 100 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  3. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from ...

  4. Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria

    2011-01-01

    High‐resolution helicopter magnetic and electromagnetic (HEM) data flown over the rugged, ice‐covered Mt. Adams, Mt. Baker and Mt. Rainier volcanoes (Washington), reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water‐saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Alteration at Mount Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The EM data identified water‐saturated rocks from the surface to the detection limit (100–200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. The best estimates for ice thickness are obtained over relatively low resistivity (<800 ohm‐m) ground for the main ice cap on Mt. Adams and over most of the summit of Mt. Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration‐related debris flows, including the Sunset Amphitheater region at Mt. Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams and eastern flanks of Mt. Baker.

  5. Exploration of resilience assessments for natural hazards

    Science.gov (United States)

    Lo Jacomo, Anna; Han, Dawei; Champneys, Alan

    2017-04-01

    The occurrence of extreme events due to natural hazards is difficult to predict. Extreme events are stochastic in nature, there is a lack of long term data on their occurrence, and there are still gaps in our understanding of their physical processes. This difficulty in prediction will be exacerbated by climate change and human activities. Yet traditional risk assessments measure risk as the probability of occurrence of a hazard, multiplied by the consequences of the hazard occurring, which ignores the recovery process. In light of the increasing concerns on disaster risks and the related system recovery, resilience assessments are being used as an approach which complements and builds on traditional risk assessments and management. In mechanical terms, resilience refers to the amount of energy per unit volume that a material can absorb while maintaining its ability to return to its original shape. Resilience was first applied in the fields of psychology and ecology, and more recently has been used in areas such as social sciences, economics, and engineering. A common metaphor for understanding resilience is the stability landscape. The landscape consists of a surface of interconnected basins, where each basin represents different states of a system, which is a point on the stability landscape. The resilience of the system is its capacity and tendency to remain within a particular basin. This depends on the topology of the landscape, on the system's current position, and on its reaction to different shocks and stresses. In practical terms, resilience assessments have been conducted for various purposes in different sectors. These assessments vary in their required inputs, the methodologies applied, and the output they produce. Some measures used for resilience assessments are hazard independent. These focus on the intrinsic capabilities of a system, for example the insurance coverage of a community, or the buffer capacity of a water storage reservoir. Other

  6. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  7. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron

  8. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  9. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    Science.gov (United States)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  10. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    Science.gov (United States)

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples

  11. Volcano alert level systems: managing the challenges of effective volcanic crisis communication

    Science.gov (United States)

    Fearnley, C. J.; Beaven, S.

    2018-05-01

    Over the last four decades, volcano observatories have adopted a number of different communication strategies for the dissemination of information on changes in volcanic behaviour and potential hazards to a wide range of user groups. These commonly include a standardised volcano alert level system (VALS), used in conjunction with other uni-valent communication techniques (such as information statements, reports and maps) and multi-directional techniques (such as meetings and telephone calls). This research, based on interviews and observation conducted 2007-2009 at the five US Geological Survey (USGS) volcano observatories, and including some of the key users of the VALS, argues for the importance of understanding how communicating volcanic hazard information takes place as an everyday social practice, focusing on the challenges of working across the boundaries between the scientific and decision-making communities. It is now widely accepted that the effective use, value and deployment of information across science-policy interfaces of this kind depend on three criteria: the scientific credibility of the information, its relevance to the needs of stakeholders and the legitimacy of both the information and the processes that produced it. Translation and two-way communication are required to ensure that all involved understand what information is credible and relevant. Findings indicate that whilst VALS play a role in raising awareness of an unfolding situation, supplementary communication techniques are crucial in facilitating situational understanding of that situation, and the uncertainties inherent to its scientific assessment, as well as in facilitating specific responses. In consequence, `best practice' recommendations eschew further standardisation, and focus on the in situ cultivation of dialogue between scientists and stakeholders as a means of ensuring that information, and the processes through which it is produced are perceived to be legitimate by all

  12. Assessment of Muria geochemistry evolution and related to volcanic hazard to NPP site at Muria

    International Nuclear Information System (INIS)

    Basuki Wibowo; June Mellawati; Heni Susiati

    2011-01-01

    Study of geochemistry evolution aspect in Mt. Muria cycle to predict the level of volcanic hazards posed in the future on Muria nuclear power plant site was conducted. The purpose of the study was to determine the Muria geochemistry condition, tectonic patterns and to predict the level of volcanic hazard in the future on Muria nuclear power plant sites. The methodology used is the collection of secondary data on the complex geochemical conditions Muria volcanic in their life cycle, perform correlation geochemical cycle in its path towards conditions that most likely experienced tectonic, volcanic, and interpretation of the hazard posed. The study shows that geochemical conditions in Muria Volcano complex composed of potassium, low-yield product predicted high-temperature molten magma (decompression) and high potassium levels (compression). Pattern of tectonic decompression geochemical conditions associated with low potassium in Muria old, while the pattern of tectonic compression geochemical conditions associated with high potassium in young Muria. The level of volcanic hazard in the future indicated by the nature of non capable of Mt. Muria. (author)

  13. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner

    2014-12-01

    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  14. Stability analysis of Western flank of Cumbre Vieja volcano (La Palma) using numerical modelling

    Science.gov (United States)

    Bru, Guadalupe; Gonzalez, Pablo J.; Fernandez-Merodo, Jose A.; Fernandez, Jose

    2016-04-01

    La Palma volcanic island is one of the youngest of the Canary archipelago, being a composite volcano formed by three overlapping volcanic centers. There are clear onshore and offshore evidences of past giant landslides that have occurred during its evolution. Currently, the active Cumbre Vieja volcano is in an early development state (Carracedo et al., 2001). The study of flank instability processes aim to assess, among other hazards, catastrophic collapse and potential tsunami generation. Early studies of the potential instability of Cumbre Vieja volcano western flank have focused on the use of sparse geodetic networks (Moss et al. 1999), surface geological mapping techniques (Day et al. 1999) and offshore bathymetry (Urgeles et al. 1999). Recently, a dense GNSS network and satellite radar interferometry results indicate ground motion consistent with deep-seated creeping processes (Prieto et al. 2009, Gonzalez et al. 2010). In this work, we present a geomechanical advanced numerical model that captures the ongoing deformation processes at Cumbre Vieja. We choose the Finite Elements Method (FEM) which is based in continuum mechanics and is the most used for geotechnical applications. FEM has the ability of using arbitrary geometry, heterogeneities, irregular boundaries and different constitutive models representative of the geotechnical units involved. Our main contribution is the introduction of an inverse approach to constrain the geomechanical parameters using satellite radar interferometry displacements. This is the first application of such approach on a large volcano flank study. We suggest that the use of surface displacements and inverse methods to rigorously constrain the geomechanical model parameter space is a powerful tool to understand volcano flank instability. A particular important result of the studied case is the estimation of displaced rock volume, which is a parameter of critical importance for simulations of Cumbre Vieja tsunamigenic hazard

  15. Assigning a volcano alert level: negotiating uncertainty, risk, and complexity in decision-making processes

    OpenAIRE

    Carina J Fearnley

    2013-01-01

    A volcano alert level system (VALS) is used to communicate warning information from scientists to civil authorities managing volcanic hazards. This paper provides the first evaluation of how the decision-making process behind the assignation of an alert level, using forecasts of volcanic behaviour, operates in practice . Using interviews conducted from 2007 to 2009 at five USGS-managed (US Geological Survey) volcano observatories (Alaska, Cascades, Hawaii, Long Valley, and Yellowstone), two k...

  16. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  17. Environmental Hazards and Mud Volcanoes in Romania

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Romania, an eastern European country, is severely affected by a variety of natural hazards. These include frequent earthquakes, floods, landslides, soil erosion, and...

  18. Hazard assessment for Romania–Bulgaria crossborder region

    International Nuclear Information System (INIS)

    Solakov, Dimcho; Simeonova, Stela; Alexandrova, Irena; Trifonova, Petya; Ardeleanu, Luminita; Cioflan, Carmen

    2014-01-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanisation and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. The main objective of this study is to assess the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets

  19. Advanced Materials Laboratory hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  20. Conceptual geoinformation model of natural hazards risk assessment

    Science.gov (United States)

    Kulygin, Valerii

    2016-04-01

    Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.

  1. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  2. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  3. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  4. The Volcano Disaster Assistance Program—Helping to save lives worldwide for more than 30 years

    Science.gov (United States)

    Lowenstern, Jacob B.; Ramsey, David W.

    2017-10-20

    What do you do when a sleeping volcano roars back to life? For more than three decades, countries around the world have called upon the U.S. Geological Survey’s (USGS) Volcano Disaster Assistance Program (VDAP) to contribute expertise and equipment in times of crisis. Co-funded by the USGS and the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance (USAID/OFDA), VDAP has evolved and grown over the years, adding newly developed monitoring technologies, training and exchange programs, and eruption forecasting methodologies to greatly expand global capabilities that mitigate the impacts of volcanic hazards. These advances, in turn, strengthen the ability of the United States to respond to its own volcanic events.VDAP was formed in 1986 in response to the devastating volcanic mudflow triggered by an eruption of Nevado del Ruiz volcano in Colombia. The mudflow destroyed the city of Armero on the night of November 13, 1985, killing more than 25,000 people in the city and surrounding areas. Sadly, the tragedy was avoidable. Better education of the local population and clear communication between scientists and public officials could have allowed warnings to be received, understood, and acted upon prior to the disaster.VDAP strives to ensure that such a tragedy will never happen again. The program’s mission is to assist foreign partners, at their request, in volcano monitoring and empower them to take the lead in mitigating hazards at their country’s threatening volcanoes. Since 1986, team members have responded to over 70 major volcanic crises at more than 50 volcanoes and have strengthened response capacity in 12 countries. The VDAP team consists of approximately 20 geologists, geophysicists, and engineers, who are based out of the USGS Cascades Volcano Observatory in Vancouver, Washington. In 2016, VDAP was a finalist for the Samuel J. Heyman Service to America Medal for its work in improving volcano readiness and warning

  5. Late Holocene Eruptive History of Popocatepetl Volcano, Mexico: Implications for Future Hazards

    Science.gov (United States)

    Abrams, M.

    1995-01-01

    Detailed mapping of the strata around the Popocatepetl Volcano in central Mexico indicates that there have been major eruptions every 1000 to 2000 years. The last two of these destroyed pre- Columbian cities in the area, and a similar level of eruption today might require evacuation of as many as 30 million people.

  6. Seismic hazard assessment in the Ibero-Maghreb region

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.J.; Garcia fernandez, M. [Consejo Superior de Investigaciones Cientifcas, Barcelona (Spain). Inst. of Earth Sciences; GSAHP Ibero-Maghreb Working Group

    1999-12-01

    The paper illustrates the contribution of the Ibero-Maghreb region to the global GSHAP (Global Seismic Hazard Assessment Program) map: for the first time, a map of regional hazard source zones is presented and agreement on a common procedure for hazard computation in the region has been achieved.

  7. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population

  8. Emergency preparedness hazards assessment for selected 100 Area Bechtel Hanford, Inc. facilities

    International Nuclear Information System (INIS)

    1997-07-01

    The emergency preparedness hazards assessment for Bechtel Hanford Inc. (BHI) facilities in the 100 Areas of the Hanford Site. The purpose of a hazards assessment is to identify the hazardous material at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. The hazards assessment is the technical basis for the facility emergency plans and procedures. There are many other buildings and past- practice burial grounds, trenches, cribs, etc., in the 100 Areas that may contain hazardous materials. Undisturbed buried waste sites that are not near the Columbia River are outside the scope of emergency preparedness hazards assessments because there is no mechanism for acute release to the air or ground water. The sites near the Columbia River are considered in a separate flood hazards assessment. This hazards assessment includes only the near-term soil remediation projects that involve intrusive activities

  9. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas

    2009-03-01

    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  10. Optimized autonomous space in-situ sensor web for volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  11. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  12. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  13. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  14. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  15. Geoheritage value of the UNESCO site at Leon Viejo and Momotombo volcano, Nicaragua

    Science.gov (United States)

    van Wyk de Vries, Benjamin; Navarro, Martha; Espinoza, Eveling; Delgado, Hugo

    2017-04-01

    The Momotombo volcano has a special place in the history of Nicaragua. It is perfectly visible from the Capital, Managua, and from the major city of Leon. The old capital "Leon Viejo", founded in 1524 was abandoned in 1610, after a series of earthquakes and some major eruptions from Momotombo. The site was subsequently covered by Momotombo ash. A major geothermal power plant stands at the base of the volcano. Momotombo had been dormant for a hundred years, but had maintained high fumarole temperatures (900°C), indicating magma had been close to the surface for decades. In recent years, seismic activity has increased around the volcano. In December 2015, after a short ash eruption phase the volcano erupted lava, then a string of Vulcanian explosions. The volcano is now in a phase of small Vulcanian explosions and degassing. The Leon Viejo World Heritage site is at risk to mainly ash fall from the volcano, but the abandonment of the old city was primarily due to earthquakes. Additional risks come from high rainfall during hurricanes. There is an obvious link between the cultural site (inscribed under UNESCO cultural criteria) and the geological environment. First, the reactivation of Momotombo volcano makes it more important to revise the hazard of the site. At the same time, Leon Viejo can provide a portal for outreach related to the volcano and for geological risk in general. To maximise this, we provide a geosite inventory of the main features of Momotombo, and it's environs, that can be used as the first base for such studies. The volcano was visited by many adventure tourists before the 2015/2016 eruption, but is out of bounds at present. Alternative routes, around the volcano could be made, to adapt to the new situation and to show to visitors more of the geodiversity of this fascinating volcano-tectonic and cultural area.

  16. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (??? 8??km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5??km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower

  17. Landslides Hazard Assessment Using Different Approaches

    Directory of Open Access Journals (Sweden)

    Coman Cristina

    2017-06-01

    Full Text Available Romania represents one of Europe’s countries with high landslides occurrence frequency. Landslide hazard maps are designed by considering the interaction of several factors which, by their joint action may affect the equilibrium state of the natural slopes. The aim of this paper is landslides hazard assessment using the methodology provided by the Romanian national legislation and a very largely used statistical method. The final results of these two analyses are quantitative or semi-quantitative landslides hazard maps, created in geographic information system environment. The data base used for this purpose includes: geological and hydrogeological data, digital terrain model, hydrological data, land use, seismic action, anthropic action and an inventory of active landslides. The GIS landslides hazard models were built for the geographical area of the Iasi city, located in the north-east side of Romania.

  18. Seismic hazard assessment of the Hanford region, Eastern Washington State

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Power, M.S.; Swan, F.H. III

    1985-01-01

    A probabilistic seismic hazard assessment was made for a site within the Hanford region of eastern Washington state, which is characterized as an intraplate region having a relatively low rate of seismic activity. Probabilistic procedures, such as logic trees, were utilized to account for the uncertainties in identifying and characterizing the potential seismic sources in the region. Logic trees provide a convenient, flexible means of assessing the values and relative likelihoods of input parameters to the hazard model that may be dependent upon each other. Uncertainties accounted for in this way include the tectonic model, segmentation, capability, fault geometry, maximum earthquake magnitude, and earthquake recurrence rate. The computed hazard results are expressed as a distribution from which confidence levels are assessed. Analysis of the results show the contributions to the total hazard from various seismic sources and due to various earthquake magnitudes. In addition, the contributions of uncertainties in the various source parameters to the uncertainty in the computed hazard are assessed. For this study, the major contribution to uncertainty in the computed hazard are due to uncertainties in the applicable tectonic model and the earthquake recurrence rate. This analysis serves to illustrate some of the probabilistic tools that are available for conducting seismic hazard assessments and for analyzing the results of these studies. 5 references, 7 figures

  19. DATA PROCESSING CONCEPTS FOR THE INTEGRATION OF SAR INTO OPERATIONAL VOLCANO MONITORING SYSTEMS

    Directory of Open Access Journals (Sweden)

    F. J. Meyer

    2013-05-01

    Full Text Available Remote Sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and despite its high performance in monitoring change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to (1 the high data costs associated with radar data, (2 the slow data processing and delivery procedures, and (3 the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of the above mentioned limitations and allow for a meaningful integration of radar remote sensing data into operational volcano monitoring systems. The data integration concept presented here combines advanced data processing techniques with fast data access procedures in order to provide high quality radar-based volcano hazard information at improved temporal sampling rates. First performance analyses show that the integration of SAR can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  20. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  1. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  2. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  3. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  4. The Prodigies of The Albano Lake During Roman Age and Natural Hazard Assessment At Roma, Italy.

    Science.gov (United States)

    Funiciello, R.; Giordano, G.; de Rita, D.

    Roma is built just 20 km to the northwest of the Pleistocene Colli Albani volcano, but is believed not exposed to relevant natural hazards, except for the Tiber river flood- ings, and local amplification of seismic waves from distal earthquakes. This belief has generally induced modern historians and geologists to discard as SmythologicalT the & cedil;many references to natural prodigies that are reported by many Roman-age historians. Recent studies have demonstrated that the Albano maar, the youngest volcanic cen- tre of the Colli Albani volcano and presently filled by a 175 m deep lake, protracted its activity to the Holocene triggering several catastrophic lahar events, likely related to lake withdrawal, the deposits of which are exposed to the southwest of Roma and reach its periphery. This finding youngs the history of the volcano and makes it rele- vant to pre-historic settlements, which ScarefullyT avoided the Albano maar slopes up & cedil;to the Bronze age. What is still unknown, though, is whether the lake experienced such fluctuations and overspills during historic times. Several Roman authors such as Ti- tus Livius, Dionigi d'Alicarnasso, Plutarco, Germanico, and many others wrote about the then well known 398 BC prodigious event, when, during the war between Roma and the Etruscan city of Veio, the gods anger caused the sudden rise and overspill of the Albano lake, reported as unrelated to climatic events, and the destructive flooding of the countryside. After that event Romans actually built a tunnel-drain which still operates regulating the lake level at 293 m a.s.l., 70 m below the maar rim elevation. Should those chronicles be truthful, we can join the geologic observation of Holocene lahar deposits from lake withdrawal with historical lake withdrawals, reassessing the natural hazard for the city of Roma under a point of view never explored before. This paper carefully explores the historical credibility of the 398 BC lake overspill event and its

  5. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    Science.gov (United States)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  6. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  7. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  8. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  9. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    Volume II of the proceedings covers sessions IX - XIV. The general topics of the presented papers are: volcanoes, piping and components, waste tanks, probabilistic seismic hazards, geological and geotechnical aspects, equipment, codes and standards, analysis, and upgrades. Individual papers are indexed separately. (GH)

  10. Earthquake Prediction Research In Iceland, Applications For Hazard Assessments and Warnings

    Science.gov (United States)

    Stefansson, R.

    Earthquake prediction research in Iceland, applications for hazard assessments and warnings. The first multinational earthquake prediction research project in Iceland was the Eu- ropean Council encouraged SIL project of the Nordic countries, 1988-1995. The path selected for this research was to study the physics of crustal processes leading to earth- quakes. It was considered that small earthquakes, down to magnitude zero, were the most significant for this purpose, because of the detailed information which they pro- vide both in time and space. The test area for the project was the earthquake prone region of the South Iceland seismic zone (SISZ). The PRENLAB and PRENLAB-2 projects, 1996-2000 supported by the European Union were a direct continuation of the SIL project, but with a more multidisciplinary approach. PRENLAB stands for "Earthquake prediction research in a natural labo- ratory". The basic objective was to advance our understanding in general on where, when and how dangerous NH10earthquake motion might strike. Methods were devel- oped to study crustal processes and conditions, by microearthquake information, by continuous GPS, InSAR, theoretical modelling, fault mapping and paleoseismology. New algorithms were developed for short term warnings. A very useful short term warning was issued twice in the year 2000, one for a sudden start of an eruption in Volcano Hekla February 26, and the other 25 hours before a second (in a sequence of two) magnitude 6.6 (Ms) earthquake in the South Iceland seismic zone in June 21, with the correct location and approximate size. A formal short term warning, although not going to the public, was also issued before a magnitude 5 earthquake in November 1998. In the presentation it will be shortly described what these warnings were based on. A general hazard assessmnets was presented in scientific journals 10-15 years ago assessing within a few kilometers the location of the faults of the two 2000 earthquakes and suggesting

  11. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  12. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  13. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    Directory of Open Access Journals (Sweden)

    Lars Rosendahl Appelquist

    2014-01-01

    Full Text Available This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti’s coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti’s sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths.

  14. Development of Air Quality Impact Assessment Method of Potential Volcanic Hazard near the Korean Peninsula

    Science.gov (United States)

    Sunwoo, Y.; Kim, Y. J.; Kim, D.; Park, J. E.; Hong, K. H.

    2016-12-01

    Many volcanos are located within 1,500 km of Korea which implies that a potential disaster is always possible. Several eruption precursors were observed rather recently at Mt. Baekdu, which has sparked intensive research on volcanic disasters in Korea. For assessment of potential volcanic hazard in Korea, we developed classification method of volcanic eruption dates using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4) regarding air quality impact. And, we conducted 3 dimensional chemistry transport modeling for selected eruption dates. WRF-ARW(version 3.6.1) meteorological modeling was employed for high resolution HYSPLIT input meteorological data,. The modeling domain covers Northeast Asia including Korea, Japan, east China, and part of Russia. Forward trajectories were calculated every 3 hours for 1 year (2010) and the trajectories were initiated from 3 volcanoes, Mt. Baekdu, Mt. Aso, and Mt. Tarumae. Selected eruption dates were classified into 5 classes using 4 parameters, PBL, trajectory retention time, initial trajectory altitude and exposed population. The number of significant days for volcanic eruption impact were 7 for Mt. Baekdu (spring and fall), 7 for Mt. Aso (summer), 1 for Mt. Tarumae (spring), and these were classified as class A, with the highest risk of incurring severe air pollution episodes in the receptor area. In addition, we analyzed the spatio-temporal distributions of these trajectories in the receptor area to help determine the period and domain of the volcanic eruption 3 dimensional chemistry transport modeling. Using class A eruption dates, we conducted CMAQ(v5.0.2) modeling for calculate full chemical reactions of volcanic gases and ashes in troposphere.

  15. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  16. An overview of a GIS method for mapping landslides and assessing landslide hazards at Río El Estado watershed, on the SW flank of Pico de Orizaba Volcano, Mexico

    Science.gov (United States)

    Legorreta Paulin, G.; Bursik, M. I.; Contreras, T.; Polenz, M.; Ramírez Herrera, M.; Paredes Mejía, L.; Arana Salinas, L.

    2012-12-01

    This poster provides an overview of the on-going research project (Grant SEP-CONACYT no 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, produce a landslide susceptibility map, and estimate sediment production by using Geographic Information Systems (GIS). The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The catchment covers 5.2 km2 with elevations ranging from 2676.79 to 4248.2 m a.s.l. and hillslopes between 0° and 56°. The stream system of Río El Estado catchment erodes Tertiary and Quaternary lavas, pyroclastic flows, and fall deposits. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The methodology encompasses three main stages of analysis to assess landslide hazards: Stage 1 builds a historic landslide inventory. In the study area, an inventory of more than 170 landslides is created from multi-temporal aerial-photo-interpretation and local field surveys to assess landslide distribution. All landslides were digitized into a geographic information system (GIS), and a spatial geo-database of landslides was constructed from standardized GIS datasets. Stage 2 Calculates the susceptibility for the watershed. During this stage, Multiple Logistic Regression and SINMAP) will be evaluated to select the one that provides scientific accuracy, technical accessibility, and applicability. Stage 3 Estimate the potential total material delivered to the main stream drainage channel by all landslides in the catchment. Detailed geometric measurements of individual landslides visited during the field work will be carried out to obtain the landslide area and volume. These measurements revealed an empirical relationship between area and volume that took the

  17. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  18. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D. [New Brunswick Power Corp., Point Lepreau Generating Station, Lepreau, New Brunswick (Canada); Lavine, A. [AMEC Foster Wheeler Environment and Infrastructure Americas, Oakland, California (United States); Egan, J. [SAGE Engineers, Oakland, California (United States)

    2015-09-15

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components-a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  19. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau, NB (Canada); Lavine, A., E-mail: alexis.lavine@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure Americas, Oakland, CA (United States); Egan, J., E-mail: jegan@sageengineers.com [SAGE Engineers, Oakland, CA (United States)

    2015-07-01

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components--a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  20. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  1. Knowledge Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia: A Participative Workshop to Reduce Volcanic Risk

    Science.gov (United States)

    Sheridan, M. F.; Cordoba, G. A.

    2009-12-01

    Galeras has been in nearly constant activity during modern historic times (roughly the past 500 years). Approximately 10,000 people live within an area designated as the highest-hazard and nearly 400,000 people are within areas of potential harmful effects. A wide variety of stakeholders are affected by the hazards, including: farmers, indigenous villagers, and people in urban environments. Hazards assessment and volcano monitoring are the responsibility of the Colombian Geological Survey (INGEOMINAS), whereas decisions regarding mitigation and response procedures are the responsibility of various governmental offices and the national emergency system (SNPAD). According to the current plan, when the risk level rises to a high level the people in the highest risk zone are required to evacuate. The volcano currently is in a very active, but fluctuating, condition and a future large eruption in a medium time frame (years to decades) is possible. There is a growing level of discomfort among many of the affected groups, including indigenous communities, farmers, and urban dwellers, related to the risk assessment. The general opinion prior to July 2009 was quite polarized as the decision makers saw the people of the region as poorly prepared to understand this hazard, whereas the population felt that their views were not being heard. The result was that the people in the hazardous areas decided not to evacuate, even during the current period of explosive activity. To resolve this situation the University of Nariño (Colombia) and the State University of New York at Buffalo organized a workshop named "Knowledge, Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia" that was held in Pasto (Colombia), between 6 and 11 July, 2009. The general objective of this workshop was to analyze the existing hazard maps and safety plans for Galeras and form a bridge connecting scientists, decision makers, and other stake holders to promote a better

  2. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  3. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    and observations on active volcanoes. The issue to facilitate the access to this valued source of information is to reshape this fragmented community into a unique infrastructure concerning common technical solutions and data policies. Some of the key actions include the implementation of virtual accesses to geophysical, geochemical, volcanological and environmental raw data and metadata, multidisciplinary volcanic and hazard products, tools for modelling volcanic processes, and transnational access to facilities of volcano observatories. Indeed this implementation will start from the outcomes of the two EC-FP7 projects, Futurevolc and MED-SUV, relevant to three out of four global volcanic Supersites, which are located in Europe and managed by European institutions. This approach will ease the exchange and collaboration among the European volcano community, thus allowing better understanding of the volcanic processes occurring at European volcanoes considered worldwide as natural laboratories.

  4. Probabilistic Tsunami Hazard Assessment: the Seaside, Oregon Pilot Study

    Science.gov (United States)

    Gonzalez, F. I.; Geist, E. L.; Synolakis, C.; Titov, V. V.

    2004-12-01

    A pilot study of Seaside, Oregon is underway, to develop methodologies for probabilistic tsunami hazard assessments that can be incorporated into Flood Insurance Rate Maps (FIRMs) developed by FEMA's National Flood Insurance Program (NFIP). Current NFIP guidelines for tsunami hazard assessment rely on the science, technology and methodologies developed in the 1970s; although generally regarded as groundbreaking and state-of-the-art for its time, this approach is now superseded by modern methods that reflect substantial advances in tsunami research achieved in the last two decades. In particular, post-1990 technical advances include: improvements in tsunami source specification; improved tsunami inundation models; better computational grids by virtue of improved bathymetric and topographic databases; a larger database of long-term paleoseismic and paleotsunami records and short-term, historical earthquake and tsunami records that can be exploited to develop improved probabilistic methodologies; better understanding of earthquake recurrence and probability models. The NOAA-led U.S. National Tsunami Hazard Mitigation Program (NTHMP), in partnership with FEMA, USGS, NSF and Emergency Management and Geotechnical agencies of the five Pacific States, incorporates these advances into site-specific tsunami hazard assessments for coastal communities in Alaska, California, Hawaii, Oregon and Washington. NTHMP hazard assessment efforts currently focus on developing deterministic, "credible worst-case" scenarios that provide valuable guidance for hazard mitigation and emergency management. The NFIP focus, on the other hand, is on actuarial needs that require probabilistic hazard assessments such as those that characterize 100- and 500-year flooding events. There are clearly overlaps in NFIP and NTHMP objectives. NTHMP worst-case scenario assessments that include an estimated probability of occurrence could benefit the NFIP; NFIP probabilistic assessments of 100- and 500-yr

  5. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  6. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  7. Oak Ridge Y-12 Plant Emergency Management Hazards Assessment (EMHA) Process

    International Nuclear Information System (INIS)

    Bailiff, E.G.; Bolling, J.D.

    2000-01-01

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Plant for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provides in this report include methods and requirements for performing the following emergency management activities at Y-12: hazards identification; hazards survey, and hazards assessment

  8. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    Science.gov (United States)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  9. Aiding alternatives assessment with an uncertainty-tolerant hazard scoring method.

    Science.gov (United States)

    Faludi, Jeremy; Hoang, Tina; Gorman, Patrick; Mulvihill, Martin

    2016-11-01

    This research developed a single-score system to simplify and clarify decision-making in chemical alternatives assessment, accounting for uncertainty. Today, assessing alternatives to hazardous constituent chemicals is a difficult task-rather than comparing alternatives by a single definitive score, many independent toxicological variables must be considered at once, and data gaps are rampant. Thus, most hazard assessments are only comprehensible to toxicologists, but business leaders and politicians need simple scores to make decisions. In addition, they must balance hazard against other considerations, such as product functionality, and they must be aware of the high degrees of uncertainty in chemical hazard data. This research proposes a transparent, reproducible method to translate eighteen hazard endpoints into a simple numeric score with quantified uncertainty, alongside a similar product functionality score, to aid decisions between alternative products. The scoring method uses Clean Production Action's GreenScreen as a guide, but with a different method of score aggregation. It provides finer differentiation between scores than GreenScreen's four-point scale, and it displays uncertainty quantitatively in the final score. Displaying uncertainty also illustrates which alternatives are early in product development versus well-defined commercial products. This paper tested the proposed assessment method through a case study in the building industry, assessing alternatives to spray polyurethane foam insulation containing methylene diphenyl diisocyanate (MDI). The new hazard scoring method successfully identified trade-offs between different alternatives, showing finer resolution than GreenScreen Benchmarking. Sensitivity analysis showed that different weighting schemes in hazard scores had almost no effect on alternatives ranking, compared to uncertainty from data gaps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-01-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26 th , 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4 th , 2011 and still continuously erupted until August 28 th , 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  11. Rockfall Hazard Process Assessment : Implementation Report

    Science.gov (United States)

    2017-10-01

    The Montana Department of Transportation (MDT) commissioned a new research program to improve assessment and management of its rock slope assets. The Department implemented a Rockfall Hazard Rating System (RHRS) program in 2005 and wished to add valu...

  12. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  13. Probabilistic Hazard Estimation at a Densely Urbanised Area: the Neaples Volcanoes

    Science.gov (United States)

    de Natale, G.; Mastrolorenzo, G.; Panizza, A.; Pappalardo, L.; Claudia, T.

    2005-12-01

    The Neaples volcanic area (Southern Italy), including Vesuvius, Campi Flegrei caldera and Ischia island, is the highest risk one in the World, where more than 2 million people live within about 10 km from an active volcanic vent. Such an extreme risk calls for accurate methodologies aimed to quantify it, in a probabilistic way, considering all the available volcanological information as well as modelling results. In fact, simple hazard maps based on the observation of deposits from past eruptions have the major problem that eruptive history generally samples a very limited number of possible outcomes, thus resulting almost meaningless to get the event probability in the area. This work describes a methodology making the best use (from a Bayesian point of view) of volcanological data and modelling results, to compute probabilistic hazard maps from multi-vent explosive eruptions. The method, which follows an approach recently developed by the same authors for pyroclastic flows hazard, has been here improved and extended to compute also fall-out hazard. The application of the method to the Neapolitan volcanic area, including the densely populated city of Naples, allows, for the first time, to get a global picture of the areal distribution for the main hazards from multi-vent explosive eruptions. From a joint consideration of the hazard contributions from all the three volcanic areas, new insight on the volcanic hazard distribution emerges, which will have strong implications for urban and emergency planning in the area.

  14. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  15. Wicked Problems in Natural Hazard Assessment and Mitigation

    Science.gov (United States)

    Stein, S.; Steckler, M. S.; Rundle, J. B.; Dixon, T. H.

    2017-12-01

    Social scientists have defined "wicked" problems that are "messy, ill-defined, more complex than we fully grasp, and open to multiple interpretations based on one's point of view... No solution to a wicked problem is permanent or wholly satisfying, which leaves every solution open to easy polemical attack." These contrast with "tame" problems in which necessary information is available and solutions - even if difficult and expensive - are straightforward to identify and execute. Updating the U.S.'s aging infrastructure is a tame problem, because what is wrong and how to fix it are clear. In contrast, addressing climate change is a wicked problem because its effects are uncertain and the best strategies to address them are unclear. An analogous approach can be taken to natural hazard problems. In tame problems, we have a good model of the process, good information about past events, and data implying that the model should predict future events. In such cases, we can make a reasonable assessment of the hazard that can be used to develop mitigation strategies. Earthquake hazard mitigation for San Francisco is a relatively tame problem. We understand how the earthquakes result from known plate motions, have information about past earthquakes, and have geodetic data implying that future similar earthquakes will occur. As a result, it is straightforward to develop and implement mitigation strategies. However, in many cases, hazard assessment and mitigation is a wicked problem. How should we prepare for a great earthquake on plate boundaries where tectonics favor such events but we have no evidence that they have occurred and hence how large they may be or how often to expect them? How should we assess the hazard within plates, for example in the New Madrid seismic zone, where large earthquakes have occurred but we do not understand their causes and geodetic data show no strain accumulating? How can we assess the hazard and make sensible policy when the recurrence of

  16. Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico

    Directory of Open Access Journals (Sweden)

    M. A. Armienta

    2011-07-01

    Full Text Available Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico.

  17. Volcanoes, Third Edition

    Science.gov (United States)

    Nye, Christopher J.

    It takes confidence to title a smallish book merely “Volcanoes” because of the impliction that the myriad facets of volcanism—chemistry, physics, geology, meteorology, hazard mitigation, and more—have been identified and addressed to some nontrivial level of detail. Robert and Barbara Decker have visited these different facets seamlessly in Volcanoes, Third Edition. The seamlessness comes from a broad overarching, interdisciplinary, professional understanding of volcanism combined with an exceptionally smooth translation of scientific jargon into plain language.The result is a book which will be informative to a very broad audience, from reasonably educated nongeologists (my mother loves it) to geology undergraduates through professional volcanologists. I bet that even the most senior professional volcanologists will learn at least a few things from this book and will find at least a few provocative discussions of subjects they know.

  18. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  19. Video Games in Volcanic Hazard Communications: Methods & Issues

    Science.gov (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain

    2016-04-01

    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  20. Waste receiving and processing (WRAP) module 1 hazards assessment. Revision 1

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1997-01-01

    This report documents the hazards assessment for the Waste Receiving and Processing Module I (WRAP 1) located on the U.S. Department of Energy (DOE) Hanford Site. Operation of the WRAP 1 is the responsibility of Rust Federal Services Hanford (RFSH). This hazards assessment was conducted to provide the emergency planning technical basis for the WRAP 1. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  1. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  2. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  3. Vulnerability of settlements around Mt. Cameroon volcano, Cameroon

    Science.gov (United States)

    Zogning, Appolinaire; Spinetti, Claudia; Ngouanet, Chretien; Tchoudam, David; Kouokam, Emmanuel; Thierry, Pierre; Bignami, Christian; Fabrizia Buongiorno, Maria; Ilaria Pannaccione Apa, Maria

    2010-05-01

    Located at the bottom of the Gulf of Guinea, Cameroon is exposed to a large variety of natural hazards, including volcanism. Most of the hazard are concentrated around the active volcano Mt. Cameroon which combines effusive and explosive types of activity. The threatened stakes are numerous and different exposed: people, settlements, industrial plantations, petrol refinery and many other factories and infrastructures. Until 2005, no risk management plans has been available. In 2006, the French Embassy in Cameroon, within the framework of a financial convention between Cameroon and France, put in place the GRINP (Management of Natural Risks and Civil Protection) project whose objective was to reinforce the capacity of Cameroon's civil protection department and thus, contribute to the improvement of the security of the population faced with catastrophes. The objective was to realize a Risk Prevention Plan at a local council scale, and taking into consideration the specific natural risks of each zone. The general objective of the RPP was to clearly draw land use maps for risks zones, showing the overlay of stakes with risk of different intensities. In 2008 European Commission funded the Mia-Vita project (Mitigating and Assessing Volcanic Impacts on Terrain and human Activities). The aim of the project is to improve the crisis management capabilities based on monitoring and early warning systems and secure communications; reduction of people's vulnerability and development of recovering capabilities after an event occurs for both local communities and ecological systems. Keyword: natural hazards, Mt. Cameroon, vulnerability, risk prevention plan

  4. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  5. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2017-12-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  6. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  7. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  8. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  9. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  10. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  11. "Bundle Data" Approach at GES DISC Targeting Natural Hazards

    Science.gov (United States)

    Shie, C. L.; Shen, S.; Kempler, S. J.

    2015-12-01

    Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the "Big", i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served "Big" Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard/event, we have thus initiated a "Bundle Data" approach in 2014, first targeting the hurricane event/topic. We have recently worked on new topics such as volcano and blizzard. The "bundle data" of a specific hazard/event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant ("knowledge-based") data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online "Data Cookbook" site at GES DISC is the current host for the "bundle data". We are now also planning on developing an "Automated Virtual Collection Framework" that shall eventually accommodate the "bundle data", as well as further improve our management in "Big Data".

  12. Bundle Data Approach at GES DISC Targeting Natural Hazards

    Science.gov (United States)

    Shie, Chung-Lin; Shen, Suhung; Kempler, Steven J.

    2015-01-01

    Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the Big, i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served Big Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard event, we have thus initiated a Bundle Data approach in 2014, first targeting the hurricane event topic. We have recently worked on new topics such as volcano and blizzard. The bundle data of a specific hazard event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant (knowledge--based) data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online Data Cookbook site at GES DISC is the current host for the bundle data. We are now also planning on developing an Automated Virtual Collection Framework that shall eventually accommodate the bundle data, as well as further improve our management in Big Data.

  13. Hazard assessment and risk management of offshore production chemicals

    International Nuclear Information System (INIS)

    Schobben, H.P.M.; Scholten, M.C.T.; Vik, E.A.; Bakke, S.

    1994-01-01

    There is a clear need for harmonization of the regulations with regard to the use and discharge of drilling and production chemicals in the North Sea. Therefore the CHARM (Chemical Hazard Assessment and Risk Management) model was developed. Both government (of several countries) and industry (E and P and chemical suppliers) participated in the project. The CHARM model is discussed and accepted by OSPARCON. The CHARM model consists of several modules. The model starts with a prescreening on the basis of hazardous properties like persistency, accumulation potential and the appearance on black lists. The core of the model.consists of modules for hazard assessment and risk analysis. Hazard assessment covers a general environmental evaluation of a chemical on the basis of intrinsic properties of that chemical. Risk analysis covers a more specific evaluation of the environmental impact from the use of a production chemical, or a combination of chemicals, under actual conditions. In the risk management module the user is guided to reduce the total risk of all chemicals used on a platform by the definition of measures in the most cost-effective way. The model calculates the environmental impact for the marine environment. Thereto three parts are distinguished: pelagic, benthic and food chain. Both hazard assessment and risk analysis are based on a proportional comparison of an estimated PEC with an estimated NEC. The PEC is estimated from the use, release, dilution and fate of the chemical and the NEC is estimated from the available toxicity data of the chemicals

  14. Magnetotelluric survey of Ischia resurgent caldera (Southern Italy): inference for volcano-tectonics and dynamic

    Science.gov (United States)

    Carlino, S.; Di Giuseppe, M. G.; Troiano, A.

    2017-12-01

    The island of Ischia (located in the Bay of Naples) represents a peculiar case of well-exposed caldera that has experienced a large (>800m) and rapid resurgence, until recent time. It gives us the possibility for a better understanding of caldera resurgence process, by integrating the available geological information with new geophysical data of the deeper structures associated to the resurgence. To this aim, a magnetotelluric survey of the island, has been performed along two main profiles of the central-western sector, obtaining the first electrical resistivity map down to a depth of 3km. The resurgence is tough to be associated to a shallow magma intrusion, which also produced a vigorous hot fluids circulation with high geothermal gradients (>150°Ckm-1) in the southern and western sector. The interpretation of resistivity variations allow us to recognize the main volcano-tectonic features of central-western part of the island, along the two profiles, such as the presence of a possible very shallow magmatic intrusion to a depth of about 1km, the tectonic structures bordering the resurgent area and the occurrence of large thermal anomaly of the western sector. All these data are fundamental for the assessment of volcano-dynamic of the island and associated hazard. Furthermore, this study show a not common example of a large resurgence that is likely generated by a laccolith intrusion. This process is generally associated to the arrival of fresh magma into the system that, in turn, may imply imminent eruption and high volcanic hazard.

  15. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  16. The Utilization of Remotely Sensed Data to Analyze the Estimated Volume of Pyroclastic Deposits and Morphological Changes Caused by the 2010-2015 Eruption of Sinabung Volcano, North Sumatra, Indonesia

    Science.gov (United States)

    Yulianto, Fajar; Suwarsono; Sofan, Parwati

    2016-08-01

    In this research, remotely sensed data has been used to estimate the volume of pyroclastic deposits and analyze morphological changes that have resulted from the eruption of Sinabung volcano. Topographic information was obtained from these data and used for rapid mapping to assist in the emergency response. Topographic information and change analyses (pre- and syn- eruption) were conducted using digital elevation models (DEMs) for the period 2010-2015. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) data from 2009 were used to generate the initial DEMs for the condition prior to the eruption of 2010. Satellite pour l'observation de la terre 6 (SPOT 6) stereo images acquired on 21 June 2015 and were used to make a DEM for that time. The results show that the estimated total volume of lava and pyroclastic deposits, produced during the period 2010 to mid-2015 is approximately 2.8 × 108 m3. This estimated volume of pyroclastic deposits can be used to predict the magnitude of future secondary lahar hazards, which are also related to the capacity of rivers in the area. Morphological changes are illustrated using cross-sectional analysis of the deposits, which are currently deposited to the east, southeast and south of the volcano. Such analyses can also help in forecasting the direction of the future flow hazards. The remote sensing and analysis methods used at Sinabung can also be applied at other volcanoes and to assess the threats of other types of hazards such as landslides and land subsidence.

  17. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  18. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  19. Multi Hazard Assessment: The Azores Archipelagos (PT) case

    Science.gov (United States)

    Aifantopoulou, Dorothea; Boni, Giorgio; Cenci, Luca; Kaskara, Maria; Kontoes, Haris; Papoutsis, Ioannis; Paralikidis, Sideris; Psichogyiou, Christina; Solomos, Stavros; Squicciarino, Giuseppe; Tsouni, Alexia; Xerekakis, Themos

    2016-04-01

    The COPERNICUS EMS Risk & Recovery Mapping (RRM) activity offers services to support efficient design and implementation of mitigation measures and recovery planning based on EO data exploitation. The Azores Archipelagos case was realized in the context of the FWC 259811 Copernicus EMS RRM, and provides potential impact information for a number of natural disasters. The analysis identified population and assets at risk (infrastructures and environment). The risk assessment was based on hazard and vulnerability of structural elements, road network characteristics, etc. Integration of different hazards and risks was accounted in establishing the necessary first response/ first aid infrastructure. EO data (Pleiades and WV-2), were used to establish a detailed background information, common for the assessment of the whole of the risks. A qualitative Flood hazard level was established, through a "Flood Susceptibility Index" that accounts for upstream drainage area and local slope along the drainage network (Manfreda et al. 2014). Indicators, representing different vulnerability typologies, were accounted for. The risk was established through intersecting hazard and vulnerability (risk- specific lookup table). Probabilistic seismic hazards maps (PGA) were obtained by applying the Cornell (1968) methodology as implemented in CRISIS2007 (Ordaz et al. 2007). The approach relied on the identification of potential sources, the assessment of earthquake recurrence and magnitude distribution, the selection of ground motion model, and the mathematical model to calculate seismic hazard. Lava eruption areas and a volcanic activity related coefficient were established through available historical data. Lava flow paths and their convergence were estimated through applying a cellular, automata based, Lava Flow Hazard numerical model (Gestur Leó Gislason, 2013). The Landslide Hazard Index of NGI (Norwegian Geotechnical Institute) for heavy rainfall (100 year extreme monthly rainfall

  20. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    Science.gov (United States)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or

  1. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  2. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  3. Recent developments in the external hazard risk assessment in Ukraine

    International Nuclear Information System (INIS)

    2000-01-01

    Ukrainian legislation prescribes safety analysis reports for all operating and future NPPs. Apart from main report they must include: safety analysis supplement; design basis accident analysis; beyond design basis accident analysis; probabilistic safety assessment (PSA); technical; substantiation of safety. Regulatory requirements to PSA contents cover the criteria for core damage frequency and large radioactive release frequency. Initiating events taken into account are internal events; internal hazards and external hazards. External hazards to be considered are seismic events, external fires, external floods, extreme ambient temperatures, aircraft crashes, etc. Current status of PSA development is related to operating WWER-440 and WWER-1000 NPPs and NPPs under construction. This presentation describes in detail the external hazard risk assessment for South Ukraine including methodology applied and expected future activities

  4. Afghanistan Multi-Risk Assessment to Natural Hazards

    Science.gov (United States)

    Diermanse, Ferdinand; Daniell, James; Pollino, Maurizio; Glover, James; Bouwer, Laurens; de Bel, Mark; Schaefer, Andreas; Puglisi, Claudio; Winsemius, Hessel; Burzel, Andreas; Ammann, Walter; Aliparast, Mojtaba; Jongman, Brenden; Ranghieri, Federica; Fallesen, Ditte

    2017-04-01

    The geographical location of Afghanistan and years of environmental degradation in the country make Afghanistan highly prone to intense and recurring natural hazards such as flooding, earthquakes, snow avalanches, landslides, and droughts. These occur in addition to man-made disasters resulting in the frequent loss of live, livelihoods, and property. Since 1980, disasters caused by natural hazards have affected 9 million people and caused over 20,000 fatalities in Afghanistan. The creation, understanding and accessibility of hazard, exposure, vulnerability and risk information is key for effective management of disaster risk. This is especially true in Afghanistan, where reconstruction after recent natural disasters and military conflicts is on-going and will continue over the coming years. So far, there has been limited disaster risk information produced in Afghanistan, and information that does exist typically lacks standard methodology and does not have uniform geo-spatial coverage. There are currently no available risk assessment studies that cover all major natural hazards in Afghanistan, which can be used to assess the costs and benefits of different resilient reconstruction and disaster risk reduction strategies. As a result, the Government of Afghanistan has limited information regarding current and future disaster risk and the effectiveness of policy options on which to base their reconstruction and risk reduction decisions. To better understand natural hazard and disaster risk, the World Bank and Global Facility for Disaster Reduction and Recovery (GFDRR) are supporting the development of new fluvial flood, flash flood, drought, landslide, avalanche and seismic risk information in Afghanistan, as well as a first-order analysis of the costs and benefits of resilient reconstruction and risk reduction strategies undertaken by the authors. The hazard component is the combination of probability and magnitude of natural hazards. Hazard analyses were carried out

  5. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    Science.gov (United States)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  6. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  7. Multidisciplinary research for the safe fruition of an active geosite: the Salse di Nirano mud volcanoes (Northern Apennines, Italy)

    Science.gov (United States)

    Coratza, Paola; Albarello, Dario; Cipriani, Anna; Cantucci, Barbara; Castaldini, Doriano; Conventi, Marzia; Dadomo, Andrea; De Nardo, Maria Teresa; Macini, Paolo; Martinelli, Giovanni; Mesini, Ezio; Papazzoni, Cesare Andrea; Quartieri, Simona; Ricci, Tullio; Santagata, Tommaso; Sciarra, Alessandra; Vezzalini, Giovanna

    2017-04-01

    last decades. In particular, tourist environmental maps, geotourism maps, books in hard copy and digital format, videos, virtual flights, multimedia and audio CDs have been implemented. Although the hazard from mud volcanoes is generally low, sometimes they may lead to sudden and violent eruptions and isolated casualties have been reported. Very notable case in this regard is the event that occurred in September 2014 in the Natural Reserve of Macalube di Aragona in Sicily where a mud volcano erupted, with an ejection of mud up to about 20 m above the ground and causing the burial of two children killing them. When a given geological site acquires a tourism value, it is necessary to assess the possible natural hazard processes which might threaten the safety of visitors. In particular, fast-occurring processes might directly involve tourists in proximity of the site of interest or along access roads and footpaths. In this context, multidisciplinary research, aiming at analysing the causes and understanding triggering mechanisms of paroxysmal and dangerous phenomena in the Natural Reserve of Nirano, are in progress, funded by the Fiorano municipality. The research team is composed by experts of different disciplines (geology, geomorphology, geophysics, geochemistry, palaeontology, mineralogy, topography) from different institutions. The first results of the multidisciplinary research here presented seem to confirm that no significant and dangerous phenomena can affect visitors along the pathways of the Reserve.

  8. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  9. Assessment of mixed hazardous and radioactive waste sites at Hanford

    International Nuclear Information System (INIS)

    McLaughlin, T.J.; Cramer, K.H.; Lamar, D.A.; Sherwood, D.R.; Stenner, R.D.; Schulze, W.B.

    1987-10-01

    The US Department of Energy and Pacific Northwest Laboratory recently completed a preliminary assessment of 685 inactive hazardous waste sites located on the Hanford Site. The preliminary assessment involved collecting historical data and individual site information, conducting site inspections, and establishing an environmental impact priority, using the Hazard Ranking System, for each of these 685 sites. This preliminary assessment was the first step in the remediation process required by the Comprehensive Environmental Response, Compensation and Liability Act. This paper presents the results of that preliminary assessment. 10 refs., 4 figs., 1 tab

  10. Chaparrastique (San Mighel) Volcano Eruptions since Dec. 29th, 2013, El Salvador

    Science.gov (United States)

    Martinez-Hackert, B.; Bajo, J. V.; Escobar, D.; Gutierrez, E.

    2015-12-01

    The December 29th, 2013 eruption of Chaparrastique (San Miguel) volcano in El Salvador came as a surprise and was the first of several small eruptions in the past two years. They came after many years of preceeding earthquake swarms and significant degassing. Being the second volcano to erupt in El Salvador in less than ten years, it caused grave concern for the population of the country. Although they were not large eruptions (VEI 2), the materials were widespread and caused deposits of volcanic tephra as far at the capital San Salvador and closed the airports in the vecinity for a couple of days. This is a summary of the research, mitigation and services that were done days after the first eruption on December 29, 2013 and the follwing months. In conjunction with the team of the Direccion General del Observatorio Ambiental from the Ministerio de Medio Ambiente y Recursos Naturales possible first response strategies were discussed and decided to obtain results that could be quickly put in place to mitigate and decide on actions such as evacuations or relocations of people living in volcano related high-risk hazard areas. Collection of samples, mapping and measurements of the volcanic tephra in the field together with Digital Globe and areal photography after the event, allowed identification of four different volcanic products that can be correlated to the opening of the vent and ending in the eruption of juvenile materials of basaltic to trachybasaltic composition, and the production of a lahar hazard map based on LaharZ.

  11. Using Bayesian Belief Networks and event trees for volcanic hazard assessment and decision support : reconstruction of past eruptions of La Soufrière volcano, Guadeloupe and retrospective analysis of 1975-77 unrest.

    Science.gov (United States)

    Komorowski, Jean-Christophe; Hincks, Thea; Sparks, Steve; Aspinall, Willy; Legendre, Yoann; Boudon, Georges

    2013-04-01

    Since 1992, mild but persistent seismic and fumarolic unrest at La Soufrière de Guadeloupe volcano has prompted renewed concern about hazards and risks, crisis response planning, and has rejuvenated interest in geological studies. Scientists monitoring active volcanoes frequently have to provide science-based decision support to civil authorities during such periods of unrest. In these circumstances, the Bayesian Belief Network (BBN) offers a formalized evidence analysis tool for making inferences about the state of the volcano from different strands of data, allowing associated uncertainties to be treated in a rational and auditable manner, to the extent warranted by the strength of the evidence. To illustrate the principles of the BBN approach, a retrospective analysis is undertaken of the 1975-77 crisis, providing an inferential assessment of the evolving state of the magmatic system and the probability of subsequent eruption. Conditional dependencies and parameters in the BBN are characterized quantitatively by structured expert elicitation. Revisiting data available in 1976 suggests the probability of magmatic intrusion would have been evaluated high at the time, according with subsequent thinking about the volcanological nature of the episode. The corresponding probability of a magmatic eruption therefore would have been elevated in July and August 1976; however, collective uncertainty about the future course of the crisis was great at the time, even if some individual opinions were certain. From this BBN analysis, while the more likely appraised outcome - based on observational trends at 31 August 1976 - might have been 'no eruption' (mean probability 0.5; 5-95 percentile range 0.8), an imminent magmatic eruption (or blast) could have had a probability of about 0.4, almost as substantial. Thus, there was no real scientific basis to assert one scenario was more likely than the other. This retrospective evaluation adds objective probabilistic expression to

  12. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  13. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrøm, Thomas

    2014-01-01

    coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used...... to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure......This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed...

  14. Geomorphological insights on human-volcano interactions and use of volcanic materials in pre-Hispanic cultures of Costa Rica through the Holocene

    Science.gov (United States)

    Ruiz, Paulo; Mana, Sara; Gutiérrez, Amalia; Alarcón, Gerardo; Garro, José; Soto, Gerardo J.

    2018-02-01

    Critical Zones in tropical environments, especially near active volcanoes, are rich in resources such as water, food and construction materials. In Central America, people have lived near volcanic centers for thousands of years and learned to take advantage of these resources. Understanding how pre-Hispanic societies lived in this type of Critical Zones and interacted with volcanoes, provides us with insights on how to reduce the negative impact derived from volcanic activity in modern cities. In this multidisciplinary approach we focus on two case studies in Costa Rica near Poás and Turrialba volcanoes, which are currently active, in order to obtain a comprehensive view of human-volcano interactions through time. We use a methodology based on historical accounts, geological and archaeological fieldwork, geomorphological characterization based on remote sensing techniques and past (pre-Hispanic), and present land use analysis. The northern Poás region represents a case of a poorly developed pre-Hispanic society, which subsisted mainly on hunting and gathering activities, had no permanent settlements and was probably affected by the activity of the Hule and Río Cuarto maars. In spite of their vulnerability and lack of infrastructure, they used geomorphology to their advantage, achieving natural protection. Conversely, the Guayabo National Monument near Turrialba Volcano represents a cultural peak in pre-Hispanic societies in Costa Rica. Archaeological remains and structures at this site indicate that this society had a good understanding of physical and geological processes and was therefore able to take advantage of natural resources for water and food supply, construction, and protection as well as hazard prevention and mitigation. The use of new technologies, some accessible and low-cost such as Google Earth and others with restricted access and higher costs such as LiDAR, allowed us to complete a rapid and efficient characterization of land use and

  15. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables

  16. Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.

    2005-01-01

    A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.

  17. Historical tephra-stratigraphy of the Cosiguina Volcano (Western Nicaragua)

    International Nuclear Information System (INIS)

    Hradecky, Petr; Rapprich, Vladislav

    2008-01-01

    New detailed geological field studies and 14 C dating of the Cosiguina Volcano (westernmost Nicaragua) have allowed to reconstruct a geological map of the volcano and to establish a recent stratigraphy, including three historical eruptions. Five major sequences are represented. I: pyroclastic flows around 1500 AD, II: pyroclastic flows, scoria and pumice flows and surges, III: pyroclastic deposits related to a littoral crater, IV: pyroclastic flows related to 1709 AD eruption, and finally, V: pyroclastic deposits corresponding to the cataclysmic 1835 AD phreatic, phreatomagmatic and subplinian eruption, which seems to be relatively small-scale in comparison with the preceding historical eruptions. The pulsating geochemical character of the pyroclastic rocks in the last five centuries has been documented. The beginning of every eruption is marked by increasing contents of silica and Zr. Based on that, regardless of present-day volcanic repose, the entire Cosiguina Peninsula should be considered as a very hazardous volcanic area. (author)

  18. Harmonizing seismic hazard assessments for nuclear power plants

    International Nuclear Information System (INIS)

    Mallard, D.J.

    1993-01-01

    Even a cursory comparison between maps of global seismicity and NPP earthquake design levels reveals many inconsistencies. While, in part, this situation reflects the evolution in understanding of seismic hazards, mismatches can also be due to ongoing differences in the way the hazards are assessed and in local regulatory requirements. So far, formal international consensus has only been able to encompass broad principles, such as those recently recommended by the International Atomic Energy Agency, and even these can raise many technical issues, particularly relating to zones of diffuse seismicity. In the future, greater harmonisation in hazard assessments and, to some extent, in earthquake design levels could emerge through the more widespread use of probabilistic methods. International collaborative ventures and joint projects will be important for resolving anomalies in the existing databases and their interpretations, and for acquiring new data, but to achieve their ideal objectives, they will need to proceed in clearly defined stages. (author)

  19. Y-12 National Security Complex Emergency Management Hazards Assessment (EMHA) Process; FINAL

    International Nuclear Information System (INIS)

    Bailiff, E.F.; Bolling, J.D.

    2001-01-01

    This document establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Complex for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provided in this document include methods and requirements for performing the following emergency management activities at Y-12: (1) hazards identification; (2) hazards survey, and (3) hazards assessment

  20. Geomorphological hazards and environmental impact: Assessment and mapping

    Science.gov (United States)

    Panizza, Mario

    In five sections the author develops the methods for the integration of geomorphological concepts into Environmental Impact and Mapping. The first section introduces the concepts of Impact and Risk through the relationships between Geomorphological Environment and Anthropical Element. The second section proposes a methodology for the determination of Geomorphological Hazard and the identification of Geomorphological Risk. The third section synthesizes the procedure for the compilation of a Geomorphological Hazards Map. The fourth section outlines the concepts of Geomorphological Resource Assessment for the analysis of the Environmental Impact. The fifth section considers the contribution of geomorphological studies and mapping in the procedure for Environmental Impact Assessment.

  1. Assessment and classification of hazardous street trees in University ...

    African Journals Online (AJOL)

    The study was carried out to assessed and classified hazardous trees within the University of Ibadan (UI) campus, Oyo State, Nigeria. The study population was 25 municipal tree species comprising of 420 individual trees located along the major roads of the study area, which were considered hazardous to the community.

  2. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be

  3. Hanford B Reactor Building Hazard Assessment Report

    International Nuclear Information System (INIS)

    Griffin, P. W.

    1999-01-01

    The 105-B Reactor (hereinafter referred to as B Reactor) is located in the 100 Area of the Hanford Site near Richland, Washington. The B Reactor is one of nine plutonium production reactors that were constructed in the 1940s during the Cold War Era. Construction of the B Reactor began June 7, 1943, and operation began on September 26, 1944. The Environmental Restoration Contractor was requested by RL to provide an assessment/characterization of the B Reactor building to determine and document the hazards that are present and could pose a threat to the environment and/or to individuals touring the building. This report documents the potential hazards, determines the feasibility of mitigating the hazards, and makes recommendations regarding areas where public tour access should not be permitted

  4. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  5. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas

    Directory of Open Access Journals (Sweden)

    Eugeniusz Krause

    2013-01-01

    Full Text Available Increasing coal production concentration and mining in coal seams of high methane content contribute to its growing emission to longwall areas. In this paper, analysis of survey data concerning the assessment of parameters that influence the level of methane hazard in mining areas is presented. The survey was conducted with experts on ventilation and methane hazard in coal mines. The parameters which influence methane hazard in longwall areas were assigned specific weights (numerical values. The summary will show which of the assessed parameters have a strong, or weak, influence on methane hazard in longwall areas close to coal seams of high methane content.

  6. Geo hazard studies and their policy implications in Nicaragua

    Science.gov (United States)

    Strauch, W.

    2007-05-01

    Nicaragua, situated at the Central American Subduction zone and placed in the trajectory of tropical storms and hurricanes, is a frequent showplace of natural disasters which have multiplied the negative effects of a long term socioeconomic crisis leaving Nicaragua currently as the second poorest country of the Americas. In the last years, multiple efforts were undertaken to prevent or mitigate the affectation of the natural phenomena to the country. National and local authorities have become more involved in disaster prevention policy and international cooperation boosted funding for disaster prevention and mitigation measures in the country. The National Geosciences Institution (INETER) in cooperation with foreign partners developed a national monitoring and early warning system on geological and hydro-meteorological phenomena. Geological and risk mapping projects were conducted by INETER and international partners. Universities, NGO´s, International Technical Assistance, and foreign scientific groups cooperated to capacitate Nicaraguan geoscientists and to improve higher education on disaster prevention up to the master degree. Funded by a World Bank loan, coordinated by the National System for Disaster Prevention, Mitigation and Attention (SINAPRED) and scientifically supervised by INETER, multidisciplinary hazard and vulnerability studies were carried out between 2003 and 2005 with emphasis on seismic hazard. These GIS based works provided proposals for land use policies on a local level in 30 municipalities and seismic vulnerability and risk information for each single building in Managua, Capital of Nicaragua. Another large multidisciplinary project produced high resolution air photos, elaborated 1:50,000 vectorized topographic maps, and a digital elevation model for Western Nicaragua. These data, integrated in GIS, were used to assess: 1) Seismic Hazard for Metropolitan Managua; 2) Tsunami hazard for the Pacific coast; 3) Volcano hazard for Telica

  7. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters

  8. Hydrothermal element fluxes from Copahue, Argentina: A "beehive" volcano in turmoil

    Science.gov (United States)

    Varekamp, J.C.; Ouimette, A.P.; Herman, S.W.; Bermudez, A.; Delpino, D.

    2001-01-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July-October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20 000-25 000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  9. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications

    Science.gov (United States)

    Fearnley, C. J.; McGuire, W. J.; Davies, G.; Twigg, J.

    2012-11-01

    The standardisation of volcano early warning systems (VEWS) and volcano alert level systems (VALS) is becoming increasingly common at both the national and international level, most notably following UN endorsement of the development of globally comprehensive early warning systems. Yet, the impact on its effectiveness, of standardising an early warning system (EWS), in particular for volcanic hazards, remains largely unknown and little studied. This paper examines this and related issues through evaluation of the emergence and implementation, in 2006, of a standardised United States Geological Survey (USGS) VALS. Under this upper-management directive, all locally developed alert level systems or practices at individual volcano observatories were replaced with a common standard. Research conducted at five USGS-managed volcano observatories in Alaska, Cascades, Hawaii, Long Valley and Yellowstone explores the benefits and limitations this standardisation has brought to each observatory. The study concludes (1) that the process of standardisation was predominantly triggered and shaped by social, political, and economic factors, rather than in response to scientific needs specific to each volcanic region; and (2) that standardisation is difficult to implement for three main reasons: first, the diversity and uncertain nature of volcanic hazards at different temporal and spatial scales require specific VEWS to be developed to address this and to accommodate associated stakeholder needs. Second, the plural social contexts within which each VALS is embedded present challenges in relation to its applicability and responsiveness to local knowledge and context. Third, the contingencies of local institutional dynamics may hamper the ability of a standardised VALS to effectively communicate a warning. Notwithstanding these caveats, the concept of VALS standardisation clearly has continuing support. As a consequence, rather than advocating further commonality of a standardised

  10. The assessment of tornado missile hazard to nuclear power plants

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1983-01-01

    Numerical methods and computer codes for assessing tornado missile hazards to nuclear power plants are developed. Due to the uncertainty and randomness of tornado and tornado-generated missiles' characteristics, the damage probability of targets has a highly spread distribution. The proposed method is useful for assessing the risk of not providing protection to some nonsafety-related targets whose failure can create a hazard to the safe operation of nuclear power plants

  11. A global probabilistic tsunami hazard assessment from earthquake sources

    Science.gov (United States)

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  12. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  13. VHub - Cyberinfrastructure for volcano eruption and hazards modeling and simulation

    Science.gov (United States)

    Valentine, G. A.; Jones, M. D.; Bursik, M. I.; Calder, E. S.; Gallo, S. M.; Connor, C.; Carn, S. A.; Rose, W. I.; Moore-Russo, D. A.; Renschler, C. S.; Pitman, B.; Sheridan, M. F.

    2009-12-01

    Volcanic risk is increasing as populations grow in active volcanic regions, and as national economies become increasingly intertwined. In addition to their significance to risk, volcanic eruption processes form a class of multiphase fluid dynamics with rich physics on many length and time scales. Risk significance, physics complexity, and the coupling of models to complex dynamic spatial datasets all demand the development of advanced computational techniques and interdisciplinary approaches to understand and forecast eruption dynamics. Innovative cyberinfrastructure is needed to enable global collaboration and novel scientific creativity, while simultaneously enabling computational thinking in real-world risk mitigation decisions - an environment where quality control, documentation, and traceability are key factors. Supported by NSF, we are developing a virtual organization, referred to as VHub, to address this need. Overarching goals of the VHub project are: Dissemination. Make advanced modeling and simulation capabilities and key data sets readily available to researchers, students, and practitioners around the world. Collaboration. Provide a mechanism for participants not only to be users but also co-developers of modeling capabilities, and contributors of experimental and observational data sets for use in modeling and simulation, in a collaborative environment that reaches far beyond local work groups. Comparison. Facilitate comparison between different models in order to provide the practitioners with guidance for choosing the "right" model, depending upon the intended use, and provide a platform for multi-model analysis of specific problems and incorporation into probabilistic assessments. Application. Greatly accelerate access and application of a wide range of modeling tools and related data sets to agencies around the world that are charged with hazard planning, mitigation, and response. Education. Provide resources that will promote the training of the

  14. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  15. MEDiterranean Supersite Volcanoes (MED-SUV) project: state of the art and main achievements after the first 18 months

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia; Allard, Patrick; Baills, Audrey; Briole, Pierre; D'Auria, Luca; Dingwell, Donald; Martini, Marcello; Kueppers, Ulrich; Marzocchi, Warner; Minet, Christian; Vagner, Amélie

    2015-04-01

    Taking account of the valuable resources and information available for Mt. Etna, Campi Flegrei, and Vesuvius Supersites, MED-SUV aims at exploiting the huge record of geophysical, geochemical and volcanological data available for the three Supersite volcanoes and carry out experiments to fill gaps in the knowledge of the structure of these volcanoes and of the processes driving their activity. The project's activities have focused on (1) gaining new insights into the inner structure of these volcanoes; (2) evaluating the suitability of the current EO and in-situ observations to track the dynamics of the volcano supply system and/or the eruptive phenomena, (3) making the access to observations easy; (4) defining the effects of magma ascent on the stress/strain field (and vice versa); (5) assessing the capability of the Earth science community to forecast the occurrence of eruptions in terms of both location and time of an eruption; (6) optimizing the chain from observations to end-users during an eruptive event; and (7) making the project outcomes "exportable" to other European volcanic areas and elsewhere. Indeed, the overall goal of the project is to apply the rationale of the Geohazard Supersites and Natural Laboratories GEO-GEOSS initiative to the three volcanoes, in order to better assess the volcanic hazards they posed. In the first 18 months, MED-SUV consortium carried out activities relating to coordination, scientific/technological development, and dissemination. Coordination included mainly meetings organised in order to start the project and consortium activity and to strengthen the synergy with EC and international initiatives, such as geohazard activities of GEO-GEOSS, EPOS-PP and the other two FP7 Supersite projects, MARsite and FUTUREVOLC. The main scientific/technological results included the design and development of a prototype (NETVIS) for the optimization and implementation of processing tools for the analysis of Mt. Etna's camera network, design

  16. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  17. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.

    2014-07-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.

  18. Assessment of hazards and risks for landscape protection planning in Sicily.

    Science.gov (United States)

    La Rosa, Daniele; Martinico, Francesco

    2013-09-01

    Landscape protection planning is a complex task that requires an integrated assessment and involves heterogeneous issues. These issues include not only the management of a considerable amount of data to describe landscape features but also the choice of appropriate tools to evaluate the hazards and risks. The landscape assessment phase can provide fundamental information for the definition of a Landscape Protection Plan, in which the selection of norms for protection or rehabilitation is strictly related to hazards, values and risks that are found. This paper describes a landscape assessment methodology conducted by using GIS, concerning landscape hazards, values and risk. Four hazard categories are introduced and assessed concerning urban sprawl and erosion: landscape transformations by new planned developments, intensification of urban sprawl patterns, loss of agriculture land and erosion. Landscape value is evaluated by using different thematic layers overlaid with GIS geoprocessing. The risk of loss of landscape value is evaluated, with reference to the potential occurrence of the previously assessed hazards. The case study is the Province of Enna (Sicily), where landscape protection is a relevant issue because of the importance of cultural and natural heritage. Results show that high value landscape features have a low risk of loss of landscape value. For this reason, landscape protection policies assume a relevant role in landscapes with low-medium values and they should be addressed to control the urban sprawl processes that are beginning in the area. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)

    Science.gov (United States)

    Becerril, Laura; Martí, Joan; Bartolini, Stefania; Geyer, Adelina

    2017-07-01

    Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption (1730-1736), on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  20. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  1. Modelling human interactions in the assessment of man-made hazards

    International Nuclear Information System (INIS)

    Nitoi, M.; Farcasiu, M.; Apostol, M.

    2016-01-01

    The human reliability assessment tools are not currently capable to model adequately the human ability to adapt, to innovate and to manage under extreme situations. The paper presents the results obtained by ICN PSA team in the frame of FP7 Advanced Safety Assessment Methodologies: extended PSA (ASAMPSA_E) project regarding the investigation of conducting HRA in human-made hazards. The paper proposes to use a 4-steps methodology for the assessment of human interactions in the external events (Definition and modelling of human interactions; Quantification of human failure events; Recovery analysis; Review). The most relevant factors with respect to HRA for man-made hazards (response execution complexity; existence of procedures with respect to the scenario in question; time available for action; timing of cues; accessibility of equipment; harsh environmental conditions) are presented and discussed thoroughly. The challenges identified in relation to man-made hazards HRA are highlighted. (authors)

  2. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    International Nuclear Information System (INIS)

    Matthews, Elizabeth C.; Sattler, Meredith; Friedland, Carol J.

    2014-01-01

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs

  3. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Elizabeth C., E-mail: echiso1@lsu.edu [Louisiana State University, Baton Rouge, LA (United States); Sattler, Meredith, E-mail: msattler@lsu.edu [School of Architecture, Louisiana State University, Baton Rouge, LA (United States); Friedland, Carol J., E-mail: friedland@lsu.edu [Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA (United States)

    2014-11-15

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.

  4. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  5. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  6. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  7. Hazard assessment for small torrent catchments - lessons learned

    Science.gov (United States)

    Eisl, Julia; Huebl, Johannes

    2013-04-01

    The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam

  8. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    Science.gov (United States)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  9. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  10. Hydrothermal element fluxes from Copahue, Argentina: A “beehive” volcano in turmoil

    Science.gov (United States)

    Varekamp, Johan C.; Ouimette, Andrew P.; Herman, Scott W.; Bermúdez, Adriana; Delpino, Daniel

    2001-11-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20000 25000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  11. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, California

    Science.gov (United States)

    Stock, G. M.; Luco, N.; Collins, B. D.; Harp, E.; Reichenbach, P.; Frankel, K. L.

    2011-12-01

    Rock falls are a considerable hazard in Yosemite Valley, California with more than 835 rock falls and other slope movements documented since 1857. Thus, rock falls pose potentially significant risk to the nearly four million annual visitors to Yosemite National Park. Building on earlier hazard assessment work by the U.S. Geological Survey, we performed a quantitative rock-fall hazard and risk assessment for Yosemite Valley. This work was aided by several new data sets, including precise Geographic Information System (GIS) maps of rock-fall deposits, airborne and terrestrial LiDAR-based point cloud data and digital elevation models, and numerical ages of talus deposits. Using Global Position Systems (GPS), we mapped the positions of over 500 boulders on the valley floor and measured their distance relative to the mapped base of talus. Statistical analyses of these data yielded an initial hazard zone that is based on the 90th percentile distance of rock-fall boulders beyond the talus edge. This distance was subsequently scaled (either inward or outward from the 90th percentile line) based on rock-fall frequency information derived from a combination of cosmogenic beryllium-10 exposure dating of boulders beyond the edge of the talus, and computer model simulations of rock-fall runout. The scaled distances provide the basis for a new hazard zone on the floor of Yosemite Valley. Once this zone was delineated, we assembled visitor, employee, and resident use data for each structure within the hazard zone to quantitatively assess risk exposure. Our results identify areas within the new hazard zone that may warrant more detailed study, for example rock-fall susceptibility, which can be assessed through examination of high-resolution photographs, structural measurements on the cliffs, and empirical calculations derived from LiDAR point cloud data. This hazard and risk information is used to inform placement of existing and potential future infrastructure in Yosemite Valley.

  12. Health Risk Assessment on Hazardous Ingredients in Household Deodorizing Products

    Directory of Open Access Journals (Sweden)

    Minjin Lee

    2018-04-01

    Full Text Available The inhalation of a water aerosol from a humidifier containing disinfectants has led to serious lung injuries in Korea. To promote the safe use of products, the Korean government enacted regulations on the chemicals in various consumer products that could have adverse health effects. Given the concern over the potential health risks associated with the hazardous ingredients in deodorizing consumer products, 17 ingredients were analyzed and assessed according to their health risk on 3 groups by the application type in 47 deodorizing products. The risk assessment study followed a stepwise procedure (e.g., collecting toxicological information, hazard identification/exposure assessment, and screening and detailed assessment for inhalation and dermal routes. The worst-case scenario and maximum concentration determined by the product purpose and application type were used as the screening assessment. In a detailed assessment, the 75th exposure factor values were used to estimate the assumed reasonable exposure to ingredients. The exposed concentrations of seven ingredients were calculated. Due to limitation of toxicity information, butylated hydroxyl toluene for a consumer’s exposure via the dermal route only was conducted for a detailed assessment. This study showed that the assessed ingredients have no health risks at their maximum concentrations in deodorizing products. This approach can be used to establish guidelines for ingredients that may pose inhalation and dermal hazards.

  13. Health Risk Assessment on Hazardous Ingredients in Household Deodorizing Products

    Science.gov (United States)

    Lee, Minjin; Kim, Joo-Hyon; Lee, Daeyeop; Kim, Jaewoo; Lim, Hyunwoo; Seo, Jungkwan; Park, Young-Kwon

    2018-01-01

    The inhalation of a water aerosol from a humidifier containing disinfectants has led to serious lung injuries in Korea. To promote the safe use of products, the Korean government enacted regulations on the chemicals in various consumer products that could have adverse health effects. Given the concern over the potential health risks associated with the hazardous ingredients in deodorizing consumer products, 17 ingredients were analyzed and assessed according to their health risk on 3 groups by the application type in 47 deodorizing products. The risk assessment study followed a stepwise procedure (e.g., collecting toxicological information, hazard identification/exposure assessment, and screening and detailed assessment for inhalation and dermal routes). The worst-case scenario and maximum concentration determined by the product purpose and application type were used as the screening assessment. In a detailed assessment, the 75th exposure factor values were used to estimate the assumed reasonable exposure to ingredients. The exposed concentrations of seven ingredients were calculated. Due to limitation of toxicity information, butylated hydroxyl toluene for a consumer’s exposure via the dermal route only was conducted for a detailed assessment. This study showed that the assessed ingredients have no health risks at their maximum concentrations in deodorizing products. This approach can be used to establish guidelines for ingredients that may pose inhalation and dermal hazards. PMID:29652814

  14. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  15. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands

    Directory of Open Access Journals (Sweden)

    L. Becerril

    2017-07-01

    Full Text Available Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (>  1.5 km3 DRE and longest (6 years eruption, the Timanfaya eruption (1730–1736, on the Canary Islands in historical times (last 600 years. This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  16. Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru)

    OpenAIRE

    Rivera, M.; Martin, H.; Le Pennec, Jean-Luc; Thouret, J. C.; Gourgaud, A.; Gerbe, M. C.

    2017-01-01

    El Misti volcano, a large and hazardous edifice of the Andean Central Volcanic Zone (CVZ) of southern Peru, consists of four main growth stages. Misti 1 (>112 ka) is an old stratovolcano partly concealed by two younger stratocones (Misti 2, 112-40 ka; Misti 3, 38-11 ka), capped in turn by a recent summit cone (Misti 4,

  17. ETINDE. Improving the role of a methodological approach and ancillary ethnoarchaeological data application for place vulnerability and resilience to a multi-hazard environment: Mt. Cameroon volcano case study [MIA-VITA project -FP7-ENV-2007-1

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Kouokam, Emmanuel; Mbe Akoko, Robert; Peppoloni, Silvia; Fabrizia Buongiorno, Maria; Thierry, Pierre

    2013-04-01

    The FP7 MIA-VITA [Mitigate and assess risk from volcanic impact on terrain and human activities] project has been designed to address multidisciplinary aspects of volcanic threat assessment and management from prevention to crisis management recovery. In the socio-economic analysis carried out at Mt. Cameroon Bakweri and Bakossi ethnic groups, ancillary ethnoarchaeological information has been included to point out the cultural interaction between the volcano and its residents. In 2009-2011, ethnoanthropological surveys and interviews for data collection were carried out at Buea, Limbe, West Coast, Tiko and Muyuka sub-divisions adjacent to Mt. Cameroon. One of the outstanding, results from the Bakweri and Bakossi cultural tradition study: natural hazards are managed and produced by supernatural forces, as: Epasa Moto, God of the Mountain (Mt. Cameroon volcano) and Nyango Na Nwana , Goddess of the sea (Gulf of Guinea). In the case of Mount Cameroon, people may seek the spirit or gods of the mountain before farming, hunting and most recently the undertaking of the Mount Cameroon annual race are done. The spirit of this mountain must be seek to avert or stop a volcanic eruption because the eruption is attributed to the anger of the spirit. Among the Northern Bakweri, the association of spirits with the mountain could also be explained in terms of the importance of the mountain to the people. Most of their farming and hunting is done on the Mountain. Some forest products, for instance, wood for building and furniture is obtained from the forest of the mountain; this implies that the people rely on the Mountain for food, game and architecture/furniture etc. In addition, the eruption of the mountain is something which affects the people. It does not only destroy property, it frustrates people and takes away human lives when it occurs. Because of this economic importance of the Mountain and its unexpected and unwanted eruption, the tendency is to believe that it has some

  18. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  19. Elevation uncertainty in coastal inundation hazard assessments

    Science.gov (United States)

    Gesch, Dean B.; Cheval, Sorin

    2012-01-01

    Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising water levels overwhelm flood defenses, especially in heavily populated areas, the potential of the hazard is realized and a natural disaster results. Two noteworthy recent examples of such natural disasters resulting from coastal inundation are the Hurricane Katrina storm surge in 2005 along the Gulf of Mexico coast in the United States, and the tsunami in northern Japan in 2011. Longer term, slowly varying processes such as land subsidence (Committee on Floodplain Mapping Technologies, 2007) and sea-level rise also can result in coastal inundation, although such conditions do not have the rapid water level rise associated with other flooding events. Geospatial data are a critical resource for conducting assessments of the potential impacts of coastal inundation, and geospatial representations of the topography in the form of elevation measurements are a primary source of information for identifying the natural and human components of the landscape that are at risk. Recently, the quantity and quality of elevation data available for the coastal zone have increased markedly, and this availability facilitates more detailed and comprehensive hazard impact assessments.

  20. Seismic hazard assessment; Valutazione della pericolosita` sismica

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1998-12-31

    This paper presents a brief summary of the most commonly used methodologies for seismic hazard assessment. The interest is focused on the probabilistic approach, which can take into account the uncertainties of input data and provides results better comparable with those obtained from hazard analyses of other natural phenomena. Calculation methods, input data and treatment of variability are examined. Some examples of probabilistic seismic hazard maps are moreover presented. [Italiano] Questo lavoro presenta un breve sommario delle piu` comuni metodologie utilizzate per la valutazione della pericolosita` sismica di un sito. Una particolare attenzione e` rivolta all`approccio probabilistico, che permette di tener conto delle incertezze legate ai dati iniziali e fornisce risultati piu` facilmente confrontabili con quelli ottenuti da analisi di pericolosita` di altri fenomeni naturali. Vengono presi in esame i metodi di calcolo, i dati di base e il trattamento delle incertezze. Vengono inoltre presentati alcuni esempi di carte di pericolosita` sismica di tipo probabilistico.

  1. A spatiotemporal multi-hazard exposure assessment based on property data

    Science.gov (United States)

    Fuchs, Sven; Keiler, Margreth; Zischg, Andreas

    2016-04-01

    The paper presents a nation-wide spatially explicit object-based assessment of buildings and citizens exposed to natural hazards in Austria, including river flooding, torrential flooding, and snow avalanches. The assessment was based on two different datasets, (a) hazard information providing input to the exposure of elements at risk, and (b) information on the building stock combined from different spatial data available on the national level. Hazard information was compiled from two different sources. For torrential flooding and snow avalanches available local-scale hazard maps were used, and for river flooding the results of the countrywide flood modelling eHORA were available. Information on the building stock contained information on the location and size of each building, as well as on the building category and the construction period. Additional information related to the individual floors, such as their height and net area, main purpose and configuration, was included for each property. Moreover, this dataset has an interface to the population register and allowed therefore retrieving the number of primary residents for each building. With the exception of sacral buildings, an economic module was used to compute the monetary value of buildings using (a) the information of the building register such as building type, number of storeys and utilisation, and (b) regionally averaged construction costs. It is shown that the repeatedly-stated assumption of increasing exposure due to continued population growth and related increase in assets has to be carefully evaluated by the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to torrential flooding, commercial buildings as well as buildings used for

  2. Comparison of landslide hazard and risk assessment practices in Europe

    Science.gov (United States)

    Corominas, J.; Mavrouli, O.

    2012-04-01

    An overview is made of the landslide hazard and risk assessment practices that are officially promoted or applied in Europe by administration offices, geological surveys, and decision makers (recommendations, regulations and codes). The reported countries are: Andorra, Austria, France, Italy (selected river basins), Romania, Spain (Catalonia), Switzerland and United Kingdom. The objective here was to compare the different practices for hazard and risk evaluation with respect to the official policies, the methodologies used (qualitative and quantitative), the provided outputs and their contents, and the terminology and map symbols used. The main observations made are illustrated with examples and the possibility of harmonization of the policies and the application of common practices to bridge the existing gaps is discussed. Some of the conclusions reached include the following: zoning maps are legally binding for public administrators and land owners only in some cases and generally when referring to site-specific or local scales rather than regional or national ones; so far, information is mainly provided on landslide susceptibility and hazard and risk assessment is performed only in a few countries; there is a variation in the use of scales between countries; the classification criteria for landslide types and mechanisms present large diversity even within the same country (in some cases no landslide mechanisms are specified while in others there is an exhaustive list); the techniques to obtain input data for the landslide inventory and susceptibility maps vary from basic to sophisticated, resulting in various levels of data quality and quantity; the procedures followed for hazard and risk assessment include analytical procedures supported by computer simulation, weighted-indicators, expert judgment and field survey-based, or a combination of all; there is an important variation between hazard and risk matrices with respect to the used parameters, the thresholds

  3. Volcanically-Triggered Rainfall and the Effect on Volcanological Hazards at Soufriere Hills, Montserrat

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.

  4. Combining heuristic and statistical techniques in landslide hazard assessments

    Science.gov (United States)

    Cepeda, Jose; Schwendtner, Barbara; Quan, Byron; Nadim, Farrokh; Diaz, Manuel; Molina, Giovanni

    2014-05-01

    As a contribution to the Global Assessment Report 2013 - GAR2013, coordinated by the United Nations International Strategy for Disaster Reduction - UNISDR, a drill-down exercise for landslide hazard assessment was carried out by entering the results of both heuristic and statistical techniques into a new but simple combination rule. The data available for this evaluation included landslide inventories, both historical and event-based. In addition to the application of a heuristic method used in the previous editions of GAR, the availability of inventories motivated the use of statistical methods. The heuristic technique is largely based on the Mora & Vahrson method, which estimates hazard as the product of susceptibility and triggering factors, where classes are weighted based on expert judgment and experience. Two statistical methods were also applied: the landslide index method, which estimates weights of the classes for the susceptibility and triggering factors based on the evidence provided by the density of landslides in each class of the factors; and the weights of evidence method, which extends the previous technique to include both positive and negative evidence of landslide occurrence in the estimation of weights for the classes. One key aspect during the hazard evaluation was the decision on the methodology to be chosen for the final assessment. Instead of opting for a single methodology, it was decided to combine the results of the three implemented techniques using a combination rule based on a normalization of the results of each method. The hazard evaluation was performed for both earthquake- and rainfall-induced landslides. The country chosen for the drill-down exercise was El Salvador. The results indicate that highest hazard levels are concentrated along the central volcanic chain and at the centre of the northern mountains.

  5. Assessment of vulnerability to storm induced flood hazard along diverse coastline settings

    Directory of Open Access Journals (Sweden)

    Valchev Nikolay

    2016-01-01

    Full Text Available European coasts suffer notably from hazards caused by low-probability and high-impact hydrometeorological events. The aim of the study is to assess in probabilistic terms the magnitude of storm‐induced flooding hazard along Varna regional coast (Bulgaria, western Black Sea and to identify susceptible coastal sectors (hotspots. The study is performed employing the Coastal Risk Assessment Framework (CRAF developed within EU FP7 RISC-KIT project. It constitutes a screening process that allows estimation of relevant hazard intensities, extents and potential receptors’ exposure vulnerability within predefined sectors. Total water level was the chief property considered for calculation of coastal flooding hazard. It was estimated using Holman model (for sandy beaches and EurOtop formulation (for artificial or rocky slopes. Resulting values were subjected to Extreme Value Analysis to establish that the best fitting distribution corresponds to Generalized Extreme Value distribution. Furthermore, hazard extents were modelled by means of bathtubbing or overwash estimation in order to form the flooding hazard indicator. Land use, social vulnerability, transport systems, utilities and business settings were considered as exposure indicators. Finally, potential risk was assessed by coastal indices following an index-based methodology, which combines hazard and exposure indicators into a single index, thereby providing base for comparison of coastal sectors’ vulnerability. The study found that the concentration of hotspots is highest in Varna Bay.

  6. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  7. The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards

    Science.gov (United States)

    Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.

    2011-12-01

    On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated case of successful eruption forecast and hazards assessment but it is also an important case-study of silicic eruptions in an arc segment where mostly mafic magmas have been erupted during the Holocene.

  8. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    International Nuclear Information System (INIS)

    Kim, Jeong Gon; Byun, Hun Soo

    2014-01-01

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks

  9. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Gon [Hanwha Chemical Ulsan Site, Ulsan (Korea, Republic of); Byun, Hun Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2014-12-15

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

  10. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  11. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  12. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  13. Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA

    Science.gov (United States)

    Flinders, Ashton; Shen, Yang

    2015-04-01

    Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.

  14. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  15. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  16. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT FOR PLANNING FUTURE DECONTAMINATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-01

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed

  17. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  18. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Gupta, Abhinav

    2017-01-01

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  19. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    Science.gov (United States)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  20. Qualitative and Quantitative Assessment of Naturals Hazards in the Caldera of Mount Bambouto (West Cameroon)

    Science.gov (United States)

    Zangmo Tefogoum, G.; Kagou Dongmo, A.; Nkouathio, D. G.; Wandji, P.

    2009-04-01

    Mount Bambouto is polygenic stratovolcano of the Cameroon Volcanic Line, build between 21 Ma and 4,5Ma (Nkouathio et al., 2008). It is situated at about 200 km NE of mount Cameroon, at 09°55' and 10°15' East and, 05°25' and 05°50' Nord. This volcano covers an area of 500 Km2 and culminates at 2740 m at Meletan hill and bears a collapse caldera (13 x 8 km). Fissural, extrusive and explosive dynamism are responsible of the construction in three main stages this volcano including the edification of a sommital large rim caldera. Mount Bambouto structure gives rise to different natural hazards, of volcanological origin and meteorological origin. In the past time, landslides, floodings, firebush, blocks collapse took place in this area with catastrophic impact on the population. New research program had been carried out in the caldera concerning qualitative and quantitative evaluation of natural risks and catastrophes. The main factors of instability are rain, structure of the basement, slopes, lithology and anthropic activities; particularly, the occurrence of exceptional rainfall due to global change are relevant; this gives opportunity to draw landslides hazards zonation map of the Bambouto caldera which is the main risk in this area. We evaluate the financial potential of the caldera base on the average income of breeding, farming, school fees and the cost of houses and equipments for each family. The method of calculation revealed that, the yearly economy of the mounts Bambouto caldera represents about 2 billions FCFA. Some recommendations have been made in order to prevent and reduced the potential losses and the number of victims in particular by better land use planning. These help us to estimate the importance of destruction of the environment and biodiversity in case of catastrophes. We conclude that in the Bambouto caldera there is moderate to high probability that destructive phenomena due to landslides occurs within the upcoming years with enormous

  1. AECB workshop on seismic hazard assessment in southern Ontario

    International Nuclear Information System (INIS)

    Stepp, J.C.; Price, R.A.; Coppersmith, K.J.; Klimkiewicz, G.C.; McGuire, R.K.

    1995-10-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. The format of each session involved invited presentations of relevant data followed by open presentations by participants, a general discussion focusing on the relevance of the presented information for seismic hazard assessment in southern Ontario, then development of conclusions and recommendations. In the final session, the conclusions and recommendations were summarized and an open discussion was held to develop consensus. This report presents perspective summaries of the workshop technical sessions together with conclusions and recommendations prepared by the session chairs and the general chairman. 2 refs

  2. Geochemical and Geophysical Signatures of Poas Volcano, Costa Rica

    Science.gov (United States)

    Martinez, M.; van Bergen, M.; Fernandez, E.; Takano, B.; Barboza, V.; Saenz, W.

    2007-05-01

    Among many research fields in volcanology, prediction of eruptions is the most important from the hazard- mitigation point of view. Most geophysicists have sought for the best physical parameters for this objective: various kinds of wave signals and geodesic data are two of such parameters. Being able to be remotely monitored gives them advantage over many other practical methods for volcano monitoring. On the other hand, increasing volcanic activity is always accompanied by mass transfer. The most swiftly-moving materials are volcanic gases which are the target geochemists have intensively studied although monitoring gases is rather tedious and limited for active volcanoes hosting crater lakes. A Japanese group lead by Bokuichiro Takano has recently developed an indirect method for monitoring gas injection into volcanic crater lakes. Polythionates are formed when SO2 and H2S are injected into the lake from subaqueous fumaroles. Such polythionates consist of chains of 4 to 6 sulphur atoms, the terminal ones of which are bonded with three oxygen atoms. The general formula for these anions is SxO62- (x= 4 to 6). Important to note is that SO2 input into the lake also depends upon the plumbing system of the volcanoes: conduits, cracks and hydrothermal reservoirs beneath the lake that usually differ from volcano to volcano. Despite such site-specific characters some general statements can be made on the behaviour of these chemical species. For example, at low volcanic activity S6O62- predominates while S4O62- and S5O62- become predominant with increasing SO2 that increases with volcanic activity. At higher SO2 input and high temperature polythionates disappear in the lake through interaction with aqueous SO2 (sulfitolysis). Thus, the ratios of the three polythionates or their absence serve as an indicator for various stages of volcanic activity. Monitoring polythionates is an independent method that can be compared with results from geophysical methods. However, it

  3. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  4. Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization

    NARCIS (Netherlands)

    Voet, van der H.; Slob, W.

    2007-01-01

    A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a

  5. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  6. Mine aftershocks and implications for seismic hazard assessment

    CSIR Research Space (South Africa)

    Kgarume, T

    2010-11-01

    Full Text Available A methodology of assessing the seismic hazard associated with aftershocks is developed by performing statistical and deterministic analysis of seismic data from two South African deep-level gold mines. A method employing stacking of aftershocks...

  7. Focused study of interweaving hazards across the Caribbean

    Science.gov (United States)

    Braun, John J.; Mattioli, Glen S.; Calais, Eric; Carlson, David; Dixon, Timothy H.; Jackson, Michael E.; Kursinski, E. Robert; Mora-Paez, Hector; Miller, M. Meghan; Pandya, Rajul; Robertson, Richard; Wang, Guoquan

    2012-02-01

    The Caribbean is a region of lush vegetation, beaches, active volcanoes, and significant mountain ranges, all of which create a natural aesthetic that is recognized globally. Yet these very same features, molded through geological, oceanic, and atmospheric processes, also pose natural hazards for the developing countries in the Caribbean. The rise in population density, migration to coastal areas, and substandard building practices, combined with the threat of natural hazards, put the region's human population at risk for particularly devastating disasters. These demographic and social characteristics exist against a backdrop of the threat of an evolving climate, which produces a more vigorous hurricane environment and a rising average sea level.

  8. Multi-hazard assessment using GIS in the urban areas: Case study - Banja Luka municipality, B&H

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2013-01-01

    Full Text Available The research presents a techniques for natural hazard assessment using GIS and cartographic approaches with multi-hazard mapping in urban communities, because natural hazards are a multi-dimensional phenomena which have a spatial component. Therefore the use of Remote Sensing and GIS has an important function and become essential in urban multi-hazard assessment. The first aim of this research was to determine the geographical distributions of the major types of natural hazards in the study area. Seismic hazards, landslides, rockfalls, floods, torrential floods, and excessive erosion are the most significant natural hazards within the territory of Banja Luka Municipality. Areas vulnerable to some of these natural hazards were singled out using analytical maps. Based on these analyses, an integral map of the natural hazards of the study area was created using multi-hazard assessment and the total vulnerability was determined by overlapping the results. The detailed analysis, through the focused research within the most vulnerable areas in the study area will highlight the administrative units (urban centres and communes that are vulnerable to various types of natural hazard. The results presented in this article are the first multi-hazard assessment and the first version of the integral map of natural hazards in the Republic of Srpska.

  9. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Directory of Open Access Journals (Sweden)

    Falakh Fajrul

    2018-01-01

    Full Text Available Water Treatment Plant (WTP is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  10. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Science.gov (United States)

    Falakh, Fajrul; Setiani, Onny

    2018-02-01

    Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  11. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    Science.gov (United States)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  12. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  13. Identification of potentially hazardous human gene products in GMO risk assessment.

    Science.gov (United States)

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  14. Space volcano observatory (SVO): a metric resolution system on-board a micro/mini-satellite

    Science.gov (United States)

    Briole, P.; Cerutti-Maori, G.; Kasser, M.

    2017-11-01

    1500 volcanoes on the Earth are potentially active, one third of them have been active during this century and about 70 are presently erupting. At the beginning of the third millenium, 10% of the world population will be living in areas directly threatened by volcanoes, without considering the effects of eruptions on climate or air-trafic for example. The understanding of volcanic eruptions, a major challenge in geoscience, demands continuous monitoring of active volcanoes. The only way to provide global, continuous, real time and all-weather information on volcanoes is to set up a Space Volcano Observatory closely connected to the ground observatories. Spaceborne observations are mandatory and implement the ground ones as well as airborne ones that can be implemented on a limited set of volcanoes. SVO goal is to monitor both the deformations and the changes in thermal radiance at optical wavelengths from high temperature surfaces of the active volcanic zones. For that, we propose to map at high resolution (1 to 1,5 m pixel size) the topography (stereoscopic observation) and the thermal anomalies (pixel-integrated temperatures above 450°C) of active volcanic areas in a size of 6 x 6 km to 12 x 12 km, large enough for monitoring most of the target features. A return time of 1 to 3 days will allow to get a monitoring useful for hazard mitigation. The paper will present the concept of the optical payload, compatible with a micro/mini satellite (mass in the range 100 - 400 kg), budget for the use of Proteus platform in the case of minisatellite approach will be given and also in the case of CNES microsat platform family. This kind of design could be used for other applications like high resolution imagery on a limited zone for military purpose, GIS, evolution cadaster…

  15. Risk assessment of major hazards: Hazardous materials transportation in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Ph; Pages, P

    1988-02-01

    There is no doubt that, thanks to the pioneering studies of the late seventies and the early eighties, a methodology has been made available that allows risk management of hazardous transportation in urban areas. This approach can easily be extended to the management of other similar risks (storages and to some extent natural hazards). The methodology is both technically available and affordable. The insertion within the decision making processes deserves still some efforts. It has be seen that the applications are broad and numerous. They range from route selection to emergency preparedness, with some insights into acceptability considerations. One limit to the use of such studies, aiming to an objective assessment of the risk, is the complexity of the decision problems, where many factors are to be considered, the most subtle being the one linked to acceptability. However, as such studies develop, those factors start to be clarified, and decision makers learn how to use risk indices in this context. So at the present time it can be said that risk analyses are a valuable input into the decision making process in most cases. And, as more experience is acquired the uses are broader. As any technical innovation risk assessment modifies the approaches to the questions it is dealing with. It seems impossible now to treat those kinds of risks as was done ten years ago.

  16. Risk assessment of major hazards: Hazardous materials transportation in urban areas

    International Nuclear Information System (INIS)

    Hubert, Ph.; Pages, P.

    1988-02-01

    There is no doubt that, thanks to the pioneering studies of the late seventies and the early eighties, a methodology has been made available that allows risk management of hazardous transportation in urban areas. This approach can easily be extended to the management of other similar risks (storages and to some extent natural hazards). The methodology is both technically available and affordable. The insertion within the decision making processes deserves still some efforts. It has be seen that the applications are broad and numerous. They range from route selection to emergency preparedness, with some insights into acceptability considerations. One limit to the use of such studies, aiming to an objective assessment of the risk, is the complexity of the decision problems, where many factors are to be considered, the most subtle being the one linked to acceptability. However, as such studies develop, those factors start to be clarified, and decision makers learn how to use risk indices in this context. So at the present time it can be said that risk analyses are a valuable input into the decision making process in most cases. And, as more experience is acquired the uses are broader. As any technical innovation risk assessment modifies the approaches to the questions it is dealing with. It seems impossible now to treat those kinds of risks as was done ten years ago

  17. Hazard assessments of double-shell flammable gas tanks

    International Nuclear Information System (INIS)

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  18. Volcanic activity at Etna volcano, Sicily, Italy between June 2011 and March 2017 studied with TanDEM-X SAR interferometry

    Science.gov (United States)

    Kubanek, J.; Raible, B.; Westerhaus, M.; Heck, B.

    2017-12-01

    High-resolution and up-to-date topographic data are of high value in volcanology and can be used in a variety of applications such as volcanic flow modeling or hazard assessment. Furthermore, time-series of topographic data can provide valuable insights into the dynamics of an ongoing eruption. Differencing topographic data acquired at different times enables to derive areal coverage of lava, flow volumes, and lava extrusion rates, the most important parameters during ongoing eruptions for estimating hazard potential, yet most difficult to determine. Anyhow, topographic data acquisition and provision is a challenge. Very often, high-resolution data only exists within a small spatial extension, or the available data is already outdated when the final product is provided. This is especially true for very dynamic landscapes, such as volcanoes. The bistatic TanDEM-X radar satellite mission enables for the first time to generate up-to-date and high-resolution digital elevation models (DEMs) repeatedly using the interferometric phase. The repeated acquisition of TanDEM-X data facilitates the generation of a time-series of DEMs. Differencing DEMs generated from bistatic TanDEM-X data over time can contribute to monitor topographic changes at active volcanoes, and can help to estimate magmatic ascent rates. Here, we use the bistatic TanDEM-X data to investigate the activity of Etna volcano in Sicily, Italy. Etna's activity is characterized by lava fountains and lava flows with ash plumes from four major summit crater areas. Especially the newest crater, the New South East Crater (NSEC) that was formed in 2011 has been highly active in recent years. Over one hundred bistatic TanDEM-X data pairs were acquired between January 2011 and March 2017 in StripMap mode, covering episodes of lava fountaining and lava flow emplacement at Etna's NSEC and its surrounding area. Generating DEMs of every bistatic data pair enables us to assess areal extension of the lava flows, to

  19. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards

    International Nuclear Information System (INIS)

    Elless, M.P.; Ferguson, B.W.; Bray, C.A.; Patch, S.; Mielke, H.; Blaylock, M.J.

    2008-01-01

    Abatement of soil-lead hazards may also reduce human exposure to other soil toxins, thereby achieving significant collateral benefits that are not accounted for today. This proposition was tested with the specific case of soil-arsenic, where 1726 residential soil samples were collected and analyzed for lead and arsenic. The study found that these two toxins coexisted in most samples, but their concentrations were weakly correlated, reflecting the differing sources for each toxin. Collateral benefits of 9% would be achieved during abatement of the lead-contaminated soils having elevated arsenic concentrations. However, a hidden hazard of 16% was observed by overlooking elevated arsenic concentrations in soils having lead concentrations not requiring abatement. This study recommends that soil samples collected under HUD programs should be collected from areas of lead and arsenic deposition and tested for arsenic as well as lead, and that soil abatement decisions consider soil-arsenic as well as soil-lead guidelines. - Coexistence of arsenic at elevated concentrations with lead in residential soils undergoing lead hazard assessment is often overlooked, providing either collateral benefits or hidden hazards

  20. Slope Hazard and Risk Assessment in the Tropics: Malaysia' Experience

    Science.gov (United States)

    Mohamad, Zakaria; Azahari Razak, Khamarrul; Ahmad, Ferdaus; Manap, Mohamad Abdul; Ramli, Zamri; Ahmad, Azhari; Mohamed, Zainab

    2015-04-01

    The increasing number of geological hazards in Malaysia has often resulted in casualties and extensive devastation with high mitigation cost. Given the destructive capacity and high frequency of disaster, Malaysia has taken a step forward to address the multi-scale landslide risk reduction emphasizing pre-disaster action rather than post-disaster reaction. Slope hazard and risk assessment in a quantitative manner at regional and national scales remains challenging in Malaysia. This paper presents the comprehensive methodology framework and operational needs driven by modern and advanced geospatial technology to address the aforementioned issues in the tropics. The Slope Hazard and Risk Mapping, the first national project in Malaysia utilizing the multi-sensor LIDAR has been critically implemented with the support of multi- and trans-disciplinary partners. The methodological model has been formulated and evaluated given the complexity of risk scenarios in this knowledge driven project. Instability slope problems in the urban, mountainous and tectonic landscape are amongst them, and their spatial information is of crucial for regional landslide assessment. We develop standard procedures with optimal parameterization for susceptibility, hazard and risk assessment in the selected regions. Remarkably, we are aiming at producing an utmost complete landslide inventory in both space and time. With the updated reliable terrain and landscape models, the landslide conditioning factor maps can be accurately derived depending on the landslide types and failure mechanisms which crucial for hazard and risk assessment. We also aim to improve the generation of elements at risk for landslide and promote integrated approaches for a better disaster risk analysis. As a result, a new tool, notably multi-sensor LIDAR technology is a very promising tool for an old geological problem and its derivative data for hazard and risk analysis is an effective preventive measure in Malaysia

  1. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  2. Landslide hazard assessment of the Black sea coastline (Caucasus, Russia) via drones

    Science.gov (United States)

    Kazeev, Andrey; Postoev, German; Fedotova, Ksenia

    2017-04-01

    Landslide hazard assessment of slopes of Sochi was performed along the railway between the cities Tuapse and Adler (total length 103 km). The railway passes through the territory with active development of hazardous geological processes such as landslides, rock falls and debris-flows. By the beginning of 2016, 36 landslide sites were discovered along the railway (total length 34 km), 48 rock-fall sites (length 31 km), and 5 debris-flow sites (length 0.14 km). In recent years the intensification of deformations was observed. For instance, during previous 10 years (1996¬¬-2005) 28 sudden deformations occurred due to slope processes, which caused interruptions in traffic. And in the present decade (2006-2015), 72 deformations were recorded. High landslide activity and economic loss determined the necessity of complex investigations of engineering geological conditions of landslides development and causes of its intensification. The protection strategy development was needed to minimize negative consequences. Thus, the investigations of landslide situation along the railway "Tuapse - Adler" included the categorization of landslide sites by level of hazard, with risk assessment based on numerical criteria. Preliminary evaluation of landslide hazard for the railway was conducted via the analysis of archived engineering-geological documents. 13 of 36 landslide sites (total length 13 km) were selected, reflecting the variety and peculiarities of landslide displacements on slopes (both active and inactive sites). Visual field observations of landslide slopes using drone "DJI Phantom 4" were completed during the second stage of this investigation. High-resolution photographs of landslide cirques, cracks, scarp walls, vegetation features were obtained via drone, which would have been impossible to obtain from the ground in conditions of dense subtropical vegetation cover. Possible approaches to the landslide activity and hazard assessment were evaluated: slope stability

  3. Tsunami hazard and risk assessment in El Salvador

    Science.gov (United States)

    González, M.; González-Riancho, P.; Gutiérrez, O. Q.; García-Aguilar, O.; Aniel-Quiroga, I.; Aguirre, I.; Alvarez, J. A.; Gavidia, F.; Jaimes, I.; Larreynaga, J. A.

    2012-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, causing the loss of thousands of human lives and extensive damage to coastal infrastructure around the world. Several works have attempted to study these phenomena in order to understand their origin, causes, evolution, consequences, and magnitude of their damages, to finally propose mechanisms to protect coastal societies. Advances in the understanding and prediction of tsunami impacts allow the development of adaptation and mitigation strategies to reduce risk on coastal areas. This work -Tsunami Hazard and Risk Assessment in El Salvador-, funded by AECID during the period 2009-12, examines the state of the art and presents a comprehensive methodology for assessing the risk of tsunamis at any coastal area worldwide and applying it to the coast of El Salvador. The conceptual framework is based on the definition of Risk as the probability of harmful consequences or expected losses resulting from a given hazard to a given element at danger or peril, over a specified time period (European Commission, Schneiderbauer et al., 2004). The HAZARD assessment (Phase I of the project) is based on propagation models for earthquake-generated tsunamis, developed through the characterization of tsunamigenic sources -sismotectonic faults- and other dynamics under study -tsunami waves, sea level, etc.-. The study area is located in a high seismic activity area and has been hit by 11 tsunamis between 1859 and 1997, nine of them recorded in the twentieth century and all generated by earthquakes. Simulations of historical and potential tsunamis with greater or lesser affection to the country's coast have been performed, including distant sources, intermediate and close. Deterministic analyses of the threats under study -coastal flooding- have been carried out, resulting in different hazard maps (maximum wave height elevation, maximum water depth, minimum tsunami

  4. Detection, Source Location, and Analysis of Volcano Infrasound

    Science.gov (United States)

    McKee, Kathleen F.

    The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible

  5. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  6. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  7. Assessing natural hazard risk using images and data

    Science.gov (United States)

    Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.

    2012-12-01

    Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.

  8. Risk assessment of chemicals in food and diet: Hazard identification by methods of animal-based toxicology

    DEFF Research Database (Denmark)

    Barlow, S. M.; Greig, J. B.; Bridges, J. W.

    2002-01-01

    the current state of the science of risk assessment of chemicals in food and diet, by consideration of the four stages of risk assessment, that is. hazard identification. hazard characterisation, exposure assessment and risk characterisation. The contribution of animal-based methods in toxicology to hazard......, on hazard identification for food chemicals, such as new measurement techniques, the use of transgenic animals, assessment of hormone balance and the possibilities for conducting studies in which common human diseases have been modelled. is also considered. (C) 2002 ILSI. Published by Elsevier Science Ltd....... All rights reserved....

  9. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

    International Nuclear Information System (INIS)

    2015-06-01

    IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, published in 2010, covers all aspects of site evaluation relating to seismic hazards and recommends the use of prehistoric, historical and instrumental earthquake data in seismic hazard assessments. Prehistoric data on earthquakes cover a much longer period than do historical and instrumental data. However, gathering such data is generally difficult in most regions of the world, owing to an absence of human records. Prehistoric data on earthquakes can be obtained through the use of palaeoseismic techniques. This publication describes the current status and practices of palaeoseismology, in order to support Member States in meeting the recommendations of SSG-9 and in establishing the necessary earthquake related database for seismic hazard assessment and reassessment. At a donors’ meeting of the International Seismic Safety Centre Extrabudgetary Project in January 2011, it was suggested to develop detailed guidelines on seismic hazards. Soon after the meeting, the disastrous Great East Japan Earthquake and Tsunami of 11 March 2011 and the consequent accident at the Fukushima Daiichi nuclear power plant occurred. The importance of palaeoseismology for seismic hazard assessment in site evaluation was highlighted by the lessons learned from the Fukushima Daiichi nuclear power plant accident. However, no methodology for performing investigations using palaeoseismic techniques has so far been available in an IAEA publication. The detailed guidelines and practical tools provided here will be of value to nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers in the area of seismic hazard assessment in site evaluation for nuclear installations, and the information will be of importance in support of hazard assessments in the future

  10. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    Science.gov (United States)

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  11. Bioassay-based risk assessment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, K.C.; Brown, K.W.; He, L.Y. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Microbial bioassays have been used to assess the genotoxic hazard at more than 30 different hazardous waste sites. Environmental samples were extracted with dichloromethane and methanol, and the resulting residue tested using GC/MS analysis as well as the Salmonella Microsomal and E. coli Prophage Induction assays. At a munitions wastewater contaminated site, there was no correlation between mutagenicity in bacteria, and the risk as estimated from chemical analysis data of trinitrotoluene. Samples 202 and 204 from a coal gasification site contained 72 mg/kg and 9 mg/kg benzo(a)pyrene, whereas the mutagenic responses of these samples were 231 net revertants/mg and 902 revertants/mg, respectively. The data suggest that microbial bioassays provide a valuable tool for monitoring the interactions of the components of a complex mixture.

  12. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  13. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    Science.gov (United States)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  14. Assessment of tsunami hazard to the U.S. Atlantic margin

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason; Geist, Eric L.; Brothers, Daniel S.; Andrews, Brian D.

    2014-01-01

    Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low-probability events need to be evaluated.

  15. Three-armed rifts or masked radial pattern of eruptive fissures? The intriguing case of El Hierro volcano (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Martí, J.; Gudmundsson, A.

    2015-04-01

    Using new surface structural data as well as subsurface structural data obtained from seventeen water galleries, we provide a comprehensive model of the volcano-tectonic evolution of El Hierro (Canary Islands). We have identified, measured and analysed more than 1700 volcano-structural elements including vents, eruptive fissures, dykes and faults. The new data provide important information on the main structural patterns of the island and on its stress and strain fields, all of which are crucial for reliable hazard assessments. We conducted temporal and spatial analyses of the main structural elements, focusing on their relative age and association with the three main cycles in the construction of the island: the Tiñor Edifice, the El Golfo-Las Playas Edifice, and the Rift Volcanism. A radial strike distribution, which can be related to constructive episodes, is observed in the on-land structures. A similar strike distribution is seen in the submarine eruptive fissures, which are radial with respect to the centre of the island. However, the volcano-structural elements identified onshore and reflecting the entire volcano-tectonic evolution of the island also show a predominant NE-SW strike, which coincides with the main regional trend of the Canary archipelago as a whole. Two other dominant directions of structural elements, N-S and WNW-ESE, are evident from the establishment of the El Golfo-Las Playas edifice, during the second constructive cycle. We suggest that the radial-striking structures reflect comparatively uniform stress fields during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses in each of the volcanic edifices. By contrast, in the shallower parts of the edifice the NE-SW, N-S and WNW-ESE-striking structures reflect local stress fields related to the formation of mega-landslides and masking the general and regional radial patterns.

  16. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  17. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    Hadlock, D.J.

    1999-01-01

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  18. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    Science.gov (United States)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions

  19. Identification and assessment of hazardous compounds in drinking water.

    Science.gov (United States)

    Fawell, J K; Fielding, M

    1985-12-01

    The identification of organic chemicals in drinking water and their assessment in terms of potential hazardous effects are two very different but closely associated tasks. In relation to both continuous low-level background contamination and specific, often high-level, contamination due to pollution incidents, the identification of contaminants is a pre-requisite to evaluation of significant hazards. Even in the case of the rapidly developing short-term bio-assays which are applied to water to indicate a potential genotoxic hazard (for example Ames tests), identification of the active chemicals is becoming a major factor in the further assessment of the response. Techniques for the identification of low concentrations of organic chemicals in drinking water have developed remarkably since the early 1970s and methods based upon gas chromatography-mass spectrometry (GC-MS) have revolutionised qualitative analysis of water. Such techniques are limited to "volatile" chemicals and these usually constitute a small fraction of the total organic material in water. However, in recent years there have been promising developments in techniques for "non-volatile" chemicals in water. Such techniques include combined high-performance liquid chromatography-mass spectrometry (HPLC-MS) and a variety of MS methods, involving, for example, field desorption, fast atom bombardment and thermospray ionisation techniques. In the paper identification techniques in general are reviewed and likely future developments outlined. The assessment of hazards associated with chemicals identified in drinking and related waters usually centres upon toxicology - an applied science which involves numerous disciplines. The paper examines the toxicological information needed, the quality and deployment of such information and discusses future research needs. Application of short-term bio-assays to drinking water is a developing area and one which is closely involved with, and to some extent dependent on

  20. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  1. Trash Can Volcano - One Change of State with Endless Possibilities

    Science.gov (United States)

    Brill, K. A.; Lanza, F.; Gochis, E. E.; Lechner, H. N.; Waite, G. P.

    2013-12-01

    Introducing students to earth science and geophysical concepts in fun, innovative and demonstrative ways is critical to capturing the attention of students at all levels. A properly designed experiment may provide a variety of dimensions that middle and high school teachers can use to introduce some of the core ideas in geosciences while addressing many of the Next Generation Science Standards (NGSS). Using a modified experiment from Harpp et al. (2005) referred to here as 'Trash Can Volcano' we introduce students to the fields of volcanology, natural hazards, and geophysics as well as the use of models and data analysis in an inquiry based fashion. The Trash Can Volcano uses the expansive properties of boiling nitrogen or subliming carbon dioxide to simulate an eruption of a magmatic system. We produce an analog model of an eruption by confining either of these gasses in a submerged plastic soda pop bottle. The expanding gasses pressurize the bottle beyond the yield strength of the plastic; the resulting explosion is analogous to a Strombolian style eruption. An experiment of this type engages students by providing a dramatic experience and begs further inquiry into the nature of the event. This activity also provides educators with a variety of possible directions to explore the core ideas and NGSS standards. In one of our explorations we show how scientists monitor volcanic eruptions and hazards. We deploy three separate microphones to capture atmospheric pressure changes at known distances, and students can calculate the speed of the wave emitted from the energetic release of the gas by identifying the arrival of the waves at each microphone. Using this data, students can also investigate wave attenuation. In another module, students observe the demonstration, develop a research plan, discuss different variables and controls, and then observe the explosive demonstration again. This methodology provides an opportunity to observe, learn and study an event

  2. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  3. Multi-hazard risk assessment applied to hydraulic fracturing operations

    Science.gov (United States)

    Garcia-Aristizabal, Alexander; Gasparini, Paolo; Russo, Raffaella; Capuano, Paolo

    2017-04-01

    Without exception, the exploitation of any energy resource produces impacts and intrinsically bears risks. Therefore, to make sound decisions about future energy resource exploitation, it is important to clearly understand the potential environmental impacts in the full life-cycle of an energy development project, distinguishing between the specific impacts intrinsically related to exploiting a given energy resource and those shared with the exploitation of other energy resources. Technological advances as directional drilling and hydraulic fracturing have led to a rapid expansion of unconventional resources (UR) exploration and exploitation; as a consequence, both public health and environmental concerns have risen. The main objective of a multi-hazard risk assessment applied to the development of UR is to assess the rate (or the likelihood) of occurrence of incidents and the relative potential impacts on surrounding environment, considering different hazards and their interactions. Such analyses have to be performed considering the different stages of development of a project; however, the discussion in this paper is mainly focused on the analysis applied to the hydraulic fracturing stage of a UR development project. The multi-hazard risk assessment applied to the development of UR poses a number of challenges, making of this one a particularly complex problem. First, a number of external hazards might be considered as potential triggering mechanisms. Such hazards can be either of natural origin or anthropogenic events caused by the same industrial activities. Second, failures might propagate through the industrial elements, leading to complex scenarios according to the layout of the industrial site. Third, there is a number of potential risk receptors, ranging from environmental elements (as the air, soil, surface water, or groundwater) to local communities and ecosystems. The multi-hazard risk approach for this problem is set by considering multiple hazards

  4. From Chaitén to the Chilean volcano monitoring network Jorge Munoz, Hugo Moreno, Servicio Nacional de Geología y Minería, Chile, jmunoz@sernageomin.cl

    Science.gov (United States)

    Muñoz, J.; Moreno, H.

    2010-12-01

    Chaitén volcano in southern Andes started a plinian to subplinian rhyolitic eruption on May 2008 following a long period of quiescence. A new dome complex grew up at high rates during 2008-2009 inside a 2 kilometers caldera like structure. Pyroclastic, laharic, block and ash flows and ash falls deposits have been affecting the surrounding populations, ground, vegetation, ocean and rivers, such as the laharic flows burying the currently evacuated Chaitén city. The geological, volcanologic and seismic knowledge produced during the eruption and the determination of evolutionary sceneries were properly transferred and consequently taken in account during complex decisions of authorities in charge of the emergency. As a result, no fatalities or major people injuries were produced during this rhyolitic eruption. Mainly as the consequence of the eruption of the Chaitén volcano but also due to the valuable technical advice during the crisis management, evacuation, hazards evolution, volcanic alerts and selection of sites for relocation of the Chaitén city provided by geologist and volcanologist from SERNAGEOMIN, the funding for the National Volcano Monitoring Network (RNVV) was approved during 2008 and it was integrated as a Bicentenary initiative. During the lapse of 5 year, RNVV need to create professional capacity and working teams, improve the current volcano observatory at Temuco and conform three new observatories at Coihaique, Talca and Antofagasta cities to implement volcano monitoring networks at the 43 hazardous volcanoes along the Chilean Andes. Monitoring net is currently conformed by seismic stations in 10 volcanoes or volcanic groups (San Pedro-San Pablo in Central Volcanic Andes and Llaima, Villlarrica, Mocho-Choshuenco, Carrán-Los Venados, Cordón Caulle, Osorno, Calbuco, Chaitén and Melimoyu in the southern volcanic Andes), in addition to gas measure and video camera stations in Llaima, Villarrica and Chaitén volcanoes. In addition, the geologic and

  5. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data

    Science.gov (United States)

    Tang, Xiao-Wei; Bai, Xu; Hu, Ji-Lei; Qiu, Jiang-Nan

    2018-05-01

    Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.

  6. Hazard Assessment in a Big Data World

    Science.gov (United States)

    Kossobokov, Vladimir; Nekrasova, Anastasia

    2017-04-01

    Open data in a Big Data World provides unprecedented opportunities for enhancing scientific studies and better understanding of the Earth System. At the same time, it opens wide avenues for deceptive associations in inter- and transdisciplinary data misleading to erroneous predictions, which are unacceptable for implementation. Even the advanced tools of data analysis may lead to wrong assessments when inappropriately used to describe the phenomenon under consideration. A (self-) deceptive conclusion could be avoided by verification of candidate models in experiments on empirical data and in no other way. Seismology is not an exception. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in early history of instrumental seismology can be proved erroneous when subjected to objective hypothesis testing. In many cases of seismic hazard assessment (SHA), either probabilistic or deterministic, term-less or short-term, the claims of a high potential of a model forecasts are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers, which situation creates numerous deception points and resulted controversies. So far, most, if not all, the standard probabilistic methods to assess seismic hazard and associated risks are based on subjective, commonly unrealistic, and even erroneous assumptions about seismic recurrence and none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Accurate testing against real observations must be done in advance claiming seismically hazardous areas and/or times. The set of errors of the first and second kind in such a comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a user-defined cost-benefit function. The information obtained in testing experiments may supply

  7. Probabilistic disaggregation of a spatial portfolio of exposure for natural hazard risk assessment

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2018-01-01

    In natural hazard risk assessment situations are encountered where information on the portfolio of exposure is only available in a spatially aggregated form, hindering a precise risk assessment. Recourse might be found in the spatial disaggregation of the portfolio of exposure to the resolution...... of a portfolio of buildings in two communes in Switzerland and the results are compared to sample observations. The relevance of probabilistic disaggregation uncertainty in natural hazard risk assessment is illustrated with the example of a simple flood risk assessment....

  8. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  9. Hazard Identification, Risk Assessment and Risk Control (HIRARC Accidents at Power Plant

    Directory of Open Access Journals (Sweden)

    Ahmad Asmalia Che

    2016-01-01

    Full Text Available Power plant had a reputation of being one of the most hazardous workplace environments. Workers in the power plant face many safety risks due to the nature of the job. Although power plants are safer nowadays since the industry has urged the employer to improve their employees’ safety, the employees still stumble upon many hazards thus accidents at workplace. The aim of the present study is to investigate work related accidents at power plants based on HIRARC (Hazard Identification, Risk Assessment and Risk Control process. The data were collected at two coal-fired power plant located in Malaysia. The finding of the study identified hazards and assess risk relate to accidents occurred at the power plants. The finding of the study suggested the possible control measures and corrective actions to reduce or eliminate the risk that can be used by power plant in preventing accidents from occurred

  10. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  11. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  12. assessment of radiological hazard indices from surface soil to ...

    African Journals Online (AJOL)

    samples in Eagle, Atlas and rock cement companies in Port Harcourt was carried out by ... and external hazard indices in order to assess the radiological implication to the people .... Sciences & Environmental Management, Vol. 9, No. 3, pp.

  13. 78 FR 33894 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Science.gov (United States)

    2013-06-05

    ... chemicals and fumes caused by open burn pits. DATES: Written comments and recommendations on the proposed... to ``OMB Control No. 2900-NEW, Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire.... Title: Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire, VA Form 10-10066. OMB...

  14. The Global Seismic Hazard Assessment Program (GSHAP - 1992/1999

    Directory of Open Access Journals (Sweden)

    D. Giardini

    1999-06-01

    Full Text Available The United Nations, recognizing natural disasters as a major threat to human life and development, designed the 1990-1999 period as the International Decade for Natural Disaster Reduction (UN/IDNDR; UN Res. 42/169/ 1987. Among the IDNDR Demonstration Projects is the Global Seismic Hazard Assessment Program (GSHAP, launched in 1992 by the International Lithosphere Program (ILP and implemented in the 1992-1999 period. In order to mitigate the risk associated to the recurrence of earthquakes, the GSHAP promoted a regionally coordinated, homogeneous approach to seismic hazard evaluation. To achieve a global dimension, the GSHAP established initially a mosaic of regions and multinational test areas, then expanded to cover whole continents and finally the globe. The GSHAP Global Map of Seismic Hazard integrates the results obtained in the regional areas and depicts Peak-Ground-Acceleration (PGA with 10% chance of exceedance in 50 years, corresponding to a return period of 475 years. All regional results and the Global Map of Seismic Hazard are published in 1999 and available on the GSHAP homepage on http://seismo.ethz.ch/GSHAP/.

  15. Estimating volume of deposits associated with landslides on volcanic landscapes in the SW flank of the volcano Pico de Orizaba, Puebla-Veracruz

    Directory of Open Access Journals (Sweden)

    Gabriel Legorreta Paulín

    2017-03-01

    Full Text Available Landslides that occur along river systems are very common and have the potential to cause harm to human, to its infrastructure or affect their socio-economic activity. This dynamic is magnified in territories where morphological contrasts are very marked; as in the border between the mountains and subhorizontal land. This is especially true for volcanic terrains where volcanic activity can trigger voluminous landslides along stream systems by sector and flank collapse and where high seasonal rainfall on terrains covered by poorly consolidated materials produces small but hazardous landslides and debris flows that occur continually along stream systems during the volcanic repose periods. Those type of landslides can deliver volumes of hundreds and millions cubic meters that create a potentially hazardous situation for people and property down the valleys. The study of landslides in volcanic terrains through a Geographic Information System (GIS and under a geomorphological criterion, have allowed to develop a comprehensive methodology linked to the development of multi-temporal inventory, with susceptibility and volume estimation of displaced material. The aim of this research is to develop a method (protocol for landslide susceptibility and landslide volume assessment of potentially unstable volcanic landscapes in order to be helpful in mitigating landslide damages to human settlements. Pico de Orizaba volcano is the highest volcano in Mexico. The volcano has been affected by large flank collapse landslides throughout its geological history. These events have partially destroyed the cone as it happened in Bezymianny volcano and St. Elena volcano. In this volcano, the risk associated with landslide and debris flows, is increased by the growing of human settlements along the hillslopes and by the subsistence agriculture, and deforestation. This situation is favored by a volcanic calm that has lasted 147 years, approximate. These conditions create a

  16. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  17. Cost assessment of natural hazards in Europe - state-of-the-art, knowledge gaps and recommendations

    Science.gov (United States)

    Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J. C. J. M.; Bouwer, L. M.; Bubeck, P.; Ciavola, P.; Thieken, A. H.; Genovese, E.; Green, C.; Hallegatte, S.; Kreibich, H.; Lequeux, Q.; Viavattenne, C.; Logar, I.; Papyrakis, E.; Pfurtscheller, C.; Poussin, J.; Przyluski, V.

    2012-04-01

    Effective and efficient reduction of natural hazard risks requires a thorough understanding of the costs of natural hazards in order to develop sustainable risk management strategies. The current methods that assess the costs of different natural hazards employ a diversity of terminologies and approaches for different hazards and impacted sectors. This makes it difficult to arrive at robust, comprehensive and comparable cost figures. The CONHAZ (Costs of Natural Hazards) project aimed to compile and synthesise current knowledge on cost assessment methods in order to strengthen the role of cost assessments in the development of integrated natural hazard management and adaptation planning. In order to achieve this, CONHAZ has adopted a comprehensive approach, considering natural hazards ranging from droughts, floods and coastal hazards to Alpine hazards, as well as different impacted sectors and cost types. Its specific objectives have been 1) to compile the state-of-the-art methods for cost assessment; 2) to analyse and assess these methods in terms of technical aspects, as well as terminology, data quality and availability, and research gaps; and 3) to synthesise resulting knowledge into recommendations and to identify further research needs. This presentation summarises the main results of CONHAZ. CONHAZ differentiates between direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and costs of risk mitigation. It is shown that the main focus of cost assessment methods and their application in practice is on direct costs, while existing methods for assessing intangible and indirect effects are rather rarely applied and methods for assessing indirect effects often cannot be used on the scale of interest (e.g. the regional scale). Furthermore, methods often focus on single sectors and/or hazards, and only very few are able to reflect several sectors or multiple hazards. Process understanding and its use in cost assessment

  18. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland

    International Nuclear Information System (INIS)

    McGrath, David; Zhang Chaosheng; Carton, Owen T.

    2004-01-01

    Spatial distribution and hazard assessment of soil lead in the mining site of Silvermines, Ireland, were investigated using statistics, geostatistics and geographic information system (GIS) techniques. Positively skewed distribution and possible outlying values of Pb and other heavy metals were observed. Box-Cox transformation was applied in order to achieve normality in the data set and to reduce the effect of outliers. Geostatistical analyses were carried out, including calculation of experimental variograms and model fitting. The ordinary point kriging estimates of Pb concentration were mapped. Kriging standard deviations were regarded as the standard deviations of the interpolated pixel values, and a second map was produced, that quantified the probability of Pb concentration higher than a threshold value of 1000 mg/kg. These maps provide valuable information for hazard assessment and for decision support. - A probability map was produced that was useful for hazard assessment and decision support

  19. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, David; Zhang Chaosheng; Carton, Owen T

    2004-01-01

    Spatial distribution and hazard assessment of soil lead in the mining site of Silvermines, Ireland, were investigated using statistics, geostatistics and geographic information system (GIS) techniques. Positively skewed distribution and possible outlying values of Pb and other heavy metals were observed. Box-Cox transformation was applied in order to achieve normality in the data set and to reduce the effect of outliers. Geostatistical analyses were carried out, including calculation of experimental variograms and model fitting. The ordinary point kriging estimates of Pb concentration were mapped. Kriging standard deviations were regarded as the standard deviations of the interpolated pixel values, and a second map was produced, that quantified the probability of Pb concentration higher than a threshold value of 1000 mg/kg. These maps provide valuable information for hazard assessment and for decision support. - A probability map was produced that was useful for hazard assessment and decision support.

  20. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    OpenAIRE

    Custer, Rocco; Nishijima, Kazuyoshi

    2012-01-01

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is ...

  1. Understanding the Potential for Volcanoes at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2002-01-01

    By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste

  2. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  3. The methodology of environmental impacts assessment of environmentally hazardous facilities

    OpenAIRE

    Adamenko, Yaroslav

    2017-01-01

    The article deals with the methodology of environmental impacts assessment of environmentally hazardous facilities and activities. The stages of evaluation of environmental impacts are proved. The algorithm and technology of decision-making in the system of environmental impact assessments based on a multi-criteria utility theory are proposed.

  4. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  5. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  6. Risk assessment of hazardous waste transport - perspectives of GIS application

    International Nuclear Information System (INIS)

    Lazar, R.E.; Dumitrescu, M.; Stefanescu, I.

    2001-01-01

    Due to the increasing public awareness of the potential risks associated with waste transport, the environmental impact assessment of this activity has become an issue of major importance. This paper presents a project proposal, which can establish a national action plan for waste transport evaluation. Such a programme is sustained by the necessity to obtain an adequate method for the rapid and efficient estimation of individual and social risks due to the transport of hazardous substances in Romania. The main objective is to develop regional strategies for risk assessment in comprising: establishing the areas that must be investigated and their particular characteristics; identifying the transport activities in the areas; determining hazards; establishing the analysis criteria and prioritizing the study areas; evaluating continuous emissions; studying major accidents; studying population health; classifying the risks; establishing regional strategies; implementing political and regulatory measures. The project expectation is to provide a decision tool for risk managers and authorities in order to control or limit transportation and the storage of hazardous substances.(author)

  7. Hazard risk and vulnerability assessment : Regional District of Nanaimo : final report

    International Nuclear Information System (INIS)

    2006-06-01

    A Hazard Risk and Vulnerability Assessment (HRVA) is a mandated regulatory requirement in British Columbia that requires local authorities to prepare emergency plans that reflect the local authority's assessment of the relative risk of occurrence and the potential impact on people and property of the hazards, emergencies or disasters that could affect the jurisdictional area for which the local authority has responsibility. This report constituted an HRVA for the Regional District of Nanaimo, British Columbia. It presented the study scope and methodology and provided an overview of the Regional District of Nanaimo. This included information on the setting, demographics, and economy. Next, it discussed social vulnerability; critical response and recovery facilities; and critical infrastructure such as water, energy, telecommunications and transportation. A summary of the Regional District of Nanaimo's response capabilities that were considered when assessing the Regional District's overall risk to the hazards was also presented. Response capabilities were discussed with reference to fire and rescue; police; ambulance; and search and rescue. Emergency support and preparedness organizations were also identified. These included the Emergency Coordination Centre, environmental services, emergency social services, amateur radio and health authorities. Last, 33 hazards that could affect the Regional District of Nanaimo were identified and discussed. The study identified the following hazards as high risk: flooding; forest fires and wildland urban interface fires; and human diseases and pandemic. It was recommended that the advancement of business continuity planning in the Regional District of Nanaimo would help to reduce the impact of a possible human disease and pandemic risk outbreak affecting the population. 75 refs., 25 figs., 14 tabs., 2 appendices

  8. A procedure for NEPA assessment of selenium hazards associated with mining.

    Science.gov (United States)

    Lemly, A Dennis

    2007-02-01

    This paper gives step-by-step instructions for assessing aquatic selenium hazards associated with mining. The procedure was developed to provide the U.S. Forest Service with a proactive capability for determining the risk of selenium pollution when it reviews mine permit applications in accordance with the National Environmental Policy Act (NEPA). The procedural framework is constructed in a decision-tree format in order to guide users through the various steps, provide a logical sequence for completing individual tasks, and identify key decision points. There are five major components designed to gather information on operational parameters of the proposed mine as well as key aspects of the physical, chemical, and biological environment surrounding it--geological assessment, mine operation assessment, hydrological assessment, biological assessment, and hazard assessment. Validation tests conducted at three mines where selenium pollution has occurred confirmed that the procedure will accurately predict ecological risks. In each case, it correctly identified and quantified selenium hazard, and indicated the steps needed to reduce this hazard to an acceptable level. By utilizing the procedure, NEPA workers can be confident in their ability to understand the risk of aquatic selenium pollution and take appropriate action. Although the procedure was developed for the Forest Service it should also be useful to other federal land management agencies that conduct NEPA assessments, as well as regulatory agencies responsible for issuing coal mining permits under the authority of the Surface Mining Control and Reclamation Act (SMCRA) and associated Section 401 water quality certification under the Clean Water Act. Mining companies will also benefit from the application of this procedure because priority selenium sources can be identified in relation to specific mine operating parameters. The procedure will reveal the point(s) at which there is a need to modify operating

  9. Role of beach morphology in wave overtopping hazard assessment

    Science.gov (United States)

    Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew

    2017-04-01

    Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.

  10. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    Science.gov (United States)

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  11. DomeHaz, a Global Hazards Database: Understanding Cyclic Dome-forming Eruptions, Contributions to Hazard Assessments, and Potential for Future Use and Integration with Existing Cyberinfrastructure

    Science.gov (United States)

    Ogburn, S. E.; Calder, E.; Loughlin, S.

    2013-12-01

    cyclicity of dome growth and pauses, the difficulty in defining eruptions at cyclically active lava domes, the identification of patterns in eruptive frequency between volcanoes of differing composition, the relationship between extrusion rates and large explosions, and the timing of large explosions in relation to dome growth. Where possible, we link these global observations to conceptual and physical models of volcanic processes. We also investigate the production of decision trees from the database for hazard analysis. Continuation of this work will include the completion of a relational database, which will be continuously maintained and updated as part of the Global Volcano Model (GVM) project. We envision DomeHaz being linked to other databases such as the mass-flows database FlowDat, and the Smithsonian GVP catalog of eruptions. A key component in creating a robust cyberinfrastructure is high-quality and complete data sets provided by the community and compiled into databases, which ideally exist as part of an informational network. This paper serves as a call for participation from individuals, research groups, and monitoring bodies for generating a global database on the hazards associated with lava dome eruptions.

  12. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  13. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  14. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  15. Connecting Hazard Analysts and Risk Managers to Sensor Information.

    Science.gov (United States)

    Le Cozannet, Gonéri; Hosford, Steven; Douglas, John; Serrano, Jean-Jacques; Coraboeuf, Damien; Comte, Jérémie

    2008-06-11

    Hazard analysts and risk managers of natural perils, such as earthquakes, landslides and floods, need to access information from sensor networks surveying their regions of interest. However, currently information about these networks is difficult to obtain and is available in varying formats, thereby restricting accesses and consequently possibly leading to decision-making based on limited information. As a response to this issue, state-of-the-art interoperable catalogues are being currently developed within the framework of the Group on Earth Observations (GEO) workplan. This article provides an overview of the prototype catalogue that was developed to improve access to information about the sensor networks surveying geological hazards (geohazards), such as earthquakes, landslides and volcanoes.

  16. In situ assessment of genotoxic hazards of environmental pollution.

    Science.gov (United States)

    Sandhu, S S; Lower, W R

    1989-01-01

    The potential impact of the environmental pollutants on human health can be evaluated by the laboratory analysis of the environmental samples or by the measurement of the biological effects on indigenous populations and/or specific test organisms placed in the environment to be monitored. A canary in a cage, used by 19th century miners as a biological indicator for rising levels of toxic gases, is a classical example of in situ hazard identification. The induced toxic effects are often the result of synergistic and antagonistic interactions among various physical and chemical factors that are difficult to reproduce in the laboratory. Therefore, conceivably the biological effects measured on or near the impacted site have greater relevancy for hazard assessment to man than from the data derived from the environmental samples analyzed in the lab. The organisms most commonly employed for the assessment of mutagenicity under real-world conditions are: (1) flowering plants, (2) wild and captive mammals, and (3) aquatic vertebrates. Plant species such as Tradescantia paludosa, Zea mays, and Osmunda regalis have been used for monitoring ambient air quality around several major industrial cities in the U.S.A., nuclear power plants, and industrial waste sites, and also for the assessment of potential health effects of municipal sewage sludges. Domestic animals such as dogs can be used as sentinels to provide information on the effects of contaminants in the environment and have been used to a limited extent to evaluate the environmental influences on the occurrence of breast cancer and osteosarcoma. Cytogenetic analysis from feral and wild animals has been employed for assessing the health hazards and prioritizing the clean-up efforts at hazardous waste sites. Aquatic animals have been used more often than terrestrial animals or plants to identify and characterize the genotoxic effects of environmental pollution. Since 1970, a number of studies has been reported on the

  17. Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps

    Science.gov (United States)

    Chen, Lixia; van Westen, Cees J.; Hussin, Haydar; Ciurean, Roxana L.; Turkington, Thea; Chavarro-Rincon, Diana; Shrestha, Dhruba P.

    2016-11-01

    Extreme rainfall events are the main triggering causes for hydro-meteorological hazards in mountainous areas, where development is often constrained by the limited space suitable for construction. In these areas, hazard and risk assessments are fundamental for risk mitigation, especially for preventive planning, risk communication and emergency preparedness. Multi-hazard risk assessment in mountainous areas at local and regional scales remain a major challenge because of lack of data related to past events and causal factors, and the interactions between different types of hazards. The lack of data leads to a high level of uncertainty in the application of quantitative methods for hazard and risk assessment. Therefore, a systematic approach is required to combine these quantitative methods with expert-based assumptions and decisions. In this study, a quantitative multi-hazard risk assessment was carried out in the Fella River valley, prone to debris flows and flood in the north-eastern Italian Alps. The main steps include data collection and development of inventory maps, definition of hazard scenarios, hazard assessment in terms of temporal and spatial probability calculation and intensity modelling, elements-at-risk mapping, estimation of asset values and the number of people, physical vulnerability assessment, the generation of risk curves and annual risk calculation. To compare the risk for each type of hazard, risk curves were generated for debris flows, river floods and flash floods. Uncertainties were expressed as minimum, average and maximum values of temporal and spatial probability, replacement costs of assets, population numbers, and physical vulnerability. These result in minimum, average and maximum risk curves. To validate this approach, a back analysis was conducted using the extreme hydro-meteorological event that occurred in August 2003 in the Fella River valley. The results show a good performance when compared to the historical damage reports.

  18. Earthquake Hazard Assessment: an Independent Review

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".

  19. Volcanoes of México: An Interactive CD-ROM From the Smithsonian's Global Volcanism Program

    Science.gov (United States)

    Siebert, L.; Kimberly, P.; Calvin, C.; Luhr, J. F.; Kysar, G.

    2002-12-01

    The Smithsonian Institution's Global Volcanism Program is nearing completion of an interactive CD-ROM, the Volcanoes of México. This CD is the second in a series sponsored by the U.S. Department of Energy Office of Geothermal Technologies to collate Smithsonian data on Quaternary volcanism as a resource for the geothermal community. It also has utility for those concerned with volcanic hazard and risk mitgation as well as an educational tool for those interested in Mexican volcanism. We acknowledge the significant contributions of many Mexican volcanologists to the eruption reports, data, and images contained in this CD, in particular those contributions of the Centro Nacional de Prevencion de Desastres (CENAPRED), the Colima Volcano Observatory of the University of Colima, and the Universidad Nacional Autónoma de México (UNAM). The Volcanoes of México CD has a format similar to that of an earlier Smithsonian CD, the Volcanoes of Indonesia, but also shows Pleistocene volcanic centers and additional data on geothermal sites. A clickable map of México shows both Holocene and Pleistocene volcanic centers and provides access to individual pages on 67 volcanoes ranging from Cerro Prieto in Baja California to Tacaná on the Guatemalan border. These include geographic and geologic data on individual volcanoes (as well as a brief paragraph summarizing the geologic history) along with tabular eruption chronologies, eruptive characteristics, and eruptive volumes, when known. Volcano data are accessible from both geographical and alphabetical searches. A major component of the CD is more than 400 digitized images illustrating the morphology of volcanic centers and eruption processes and deposits, providing a dramatic visual primer to the country's volcanoes. Images of specific eruptions can be directly linked to from the eruption chronology tables. The Volcanoes of México CD includes monthly reports and associated figures and tables cataloging volcanic activity in M

  20. Environmental Hazards Assessment Program. Quarterly report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-31

    This report describes activities and reports on progress for the first quarter (July--September) of the fourth year of the grant to support the Environmental Hazards Assessment Program (EHAP) at the Medical University of South Carolina. It reports progress against the grant objectives and the Program Implementation Plan published at the end of the first year of the grant. The objectives of EHAP stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication that recognizes the direct impact of environmental hazards on the health and well-being of all; (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects; and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health-oriented aspects of environmental restoration and waste management.

  1. External hazards in reliability and risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1977-01-01

    It is current practice in the design of nuclear power generating stations to protect against the effects of significant natural and man-made external hazards which can occur at the plant site in excess of those hazards normally considered for conventional facilities. This paper is meant to identify those postulated external hazards typically considered in nuclear facility design. The paper also attempts to fulfill the following four objectives: (1) Define the current state of the art in applying reliability and risk analysis to determine external hazard design requirements. (2) Provide a ready source of literature references applicable to probabilistic design for extreme loads. (3) Provide some quantitative probability assessment estimates of external hazards. (4) Develop exclusion criteria by which postulated external hazards can be eliminated as a design basis. Rigorous evaluation of the design requirements for nuclear power plant facilities based on principles of probability and risk analysis is just beginning. It is hoped these techniques will be used more extensively in the future to provide a more rational basis for developing design requirements. (orig.) [de

  2. MARINE CONGLOMERATE AND REEF MEGACLASTS AT MAURITUS ISLAND: Evidences of a tsunami generated by a flank collapse of the PITON DE LA Fournaise volcano, Reunion Island?

    Directory of Open Access Journals (Sweden)

    R. Paris

    2014-05-01

    Full Text Available Tsunamis related to volcano flank collapse are typically a high-magnitude, low frequency hazard for which evaluation and mitigation are difficult to address. In this short communication, we present field evidences of a large tsunami along the southern coast of Mauritius Island ca. 4400 years ago. Tsunami deposits described include both marine conglomerates and coral boulders up to 90 m3 (> 100 tons. The most probable origin of the tsunami is a flank collapse of Piton de la Fournaise volcano, Réunion Island.

  3. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  4. Radioactive secrets of Icelandic volcanoes: Eyjafjoll (March 2010) and Grimsvoetn (May 2011); Les secrets radioactifs des volcans islandais: Eyjafjoll (mars 2010) et Grimsvoetn (mai 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud-Vitaux, F.; Pradel, J.; Colas-Linhart, N.

    2011-07-15

    This article recalls that volcanoes release huge quantities of radioactive nuclides during their eruption. In March 2010 the Eyjafjoll volcano (Iceland) ejected several hundred million tonnes of dust in the first 72 hours among which 400 tonnes of uranium-238 (20.000 billions Bq) and 1200 tonnes of natural thorium. Polonium-210 was also released in the atmosphere. Most part of the radioactivity fell on Icelandic soil and no sanitary measures were taken by the authorities because the resulting doses were too low to have hazardous effects. (A.C.)

  5. Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica

    Science.gov (United States)

    Ruiz, P.; Mora, M.; Soto, G. J.; Vega, P.; Barrantes, R.

    2017-12-01

    We produced and compared two detailed topographic datasets of the SW active crater on the summit of Turrialba volcano (03/2016 and 06/2017). These datasets are based on hundreds of orthophotos obtained by low-height flights by drones (Phantom-3, and Inspire-1) to collect the aerial data, and ground control points from RTK-GPS surveys (for ground survey and control points, we used reflective marks and local stations). Photogrammetry software and GIS were used to processes the data for creating DEMs. Using these data, we have been able to document the geomorphological changes generated by eruptions. We have learned the processes involved in the crater evolution during an eruption period passing from a close-system to an open one. Turrialba has been erupting since 2010, when a phreatic explosion opened a small vent on the SW crater. Further minor phreatic eruptions occurred in 2011-2013 with a slow increase of juvenile content in its products, until it clearly evolved to phreatomagmatism in 2014 and an open-system in mid-2016. We recorded significant changes in the morphology of the active crater in the latest period of eruption. These changes are the result of stronger eruptions between 04/2016 and 01/2017, finally clearing the main conduit that opened the system and favored the rise of magma up to the surface. Lava now lies on the bottom of the crater, forming a small lava pool (25m x 15m). We found that in the 15-month period during the opening of the volcanic system, the active crater got 100 m deeper and wider at the bottom (in 06/2017, depth was 230 m, and the empty volume of the crater 2.5x106m3. These observations are consistent with the seismic records through the opening of the system and the eruption style. Aerial dataset from low-height flights by drones are a powerful tool to understand the evolution of volcanoes from close to open systems and for volcano hazard assessments.

  6. Distance education course on spatial multi-hazard risk assessment, using Open Source software

    Science.gov (United States)

    van Westen, C. J.; Frigerio, S.

    2009-04-01

    As part of the capacity building activities of the United Nations University - ITC School on Disaster Geo-Information Management (UNU-ITC DGIM) the International Institute for Geoinformation Science and Earth Observation (ITC) has developed a distance education course on the application of Geographic Information Systems for multi-hazard risk assessment. This course is designed for academic staff, as well as for professionals working in (non-) governmental organizations where knowledge of disaster risk management is essential. The course guides the participants through the entire process of risk assessment, on the basis of a case study of a city exposed to multiple hazards, in a developing country. The courses consists of eight modules, each with a guide book explaining the theoretical background, and guiding the participants through spatial data requirements for risk assessment, hazard assessment procedures, generation of elements at risk databases, vulnerability assessment, qualitative and quantitative risk assessment methods, risk evaluation and risk reduction. Linked to the theory is a large set of exercises, with exercise descriptions, answer sheets, demos and GIS data. The exercises deal with four different types of hazards: earthquakes, flooding, technological hazards, and landslides. One important consideration in designing the course is that people from developing countries should not be restricted in using it due to financial burdens for software acquisition. Therefore the aim was to use Open Source software as a basis. The GIS exercises are written for the ILWIS software. All exercises have also been integrated into a WebGIS, using the Open source software CartoWeb (based on GNU License). It is modular and customizable thanks to its object-oriented architecture and based on a hierarchical structure (to manage and organize every package of information of every step required in risk assessment). Different switches for every component of the risk assessment

  7. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  8. Differential InSAR Monitoring of the Lampur Sidoarjo Mud Volcano (Java, Indonesia) Using ALOS PALSAR Imagery

    Science.gov (United States)

    Thomas, Adam; Holley, Rachel; Burren, Richard; Meikle, Chris; Shilston, David

    2010-03-01

    The Lampur Sidoarjo mud volcano (Java, Indonesia), colloquially called LUSI, first appeared in May 2006. Its cause, whether the result of natural or anthropogenic activities (or a combination of both), is still being debated within the academic, engineering and political communities.The mud volcano expels up to 150,000 m3 of mud per day; and over time, this large volume of mud has had a major environmental and economic impact on the region. The mud flow from LUSI has now covered 6 km2 to depths some tens of metres, displacing approximately 30,000 residents; and continues to threaten local communities, businesses and industry. With such a large volume of mud being expelled each day it is inevitable (as with onshore oil and gas production fields) that there will be some ground surface movement and instability issues at the mud source (the main vent), and in the vicinity of the mud volcano footprint.Due to the dynamic ground surface conditions, engineers and academics alike have found it difficult to reliably monitor ground surface movements within the effected region using conventional surveying techniques. Consequently, engineers responsible for the risk assessment of ground surface instabilities within the proximity of LUSI have called upon the use of satellite interferometry to continually monitor the hazard.The Advanced Land Observing Satellite (ALOS), launched on 24th January 2006, carries onboard an L- band Synthetic Aperture Radar (SAR) instrument called PALSAR (Phased Array type L-band Synthetic Aperture Radar). In contrast to established C-band (5.6cm wavelength) SAR instruments onboard ERS-1 & -2, Envisat, Radarsat-1, and the recently launched Radarsat-2 satellite, PALSAR's (L-band/23.8cm wavelength) instrument presents a number of advantages, including the ability to map larger-scale ground motions, over relatively short timeframes, in tropical environments, without suffering as significantly from signal decorrelation associated with C-band imagery

  9. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Rontogianni, S.; Konstantinou, K. I.; Lin, C.-H.

    2012-07-01

    The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004-2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF) earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7-8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1) HF event that occurred on 24 April 2006 at a depth of 5-6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  10. COMET-LICSAR: Systematic Deformation Monitoring of Fault Zones and Volcanoes with the Sentinel-1 Constellation

    Science.gov (United States)

    Spaans, K.; Wright, T. J.; Hooper, A. J.; Hatton, E. L.; González, P. J.; Bhattarai, S.; Biggs, J.; Crippa, P.; Ebmeier, S. K.; Elliott, J.; Gaddes, M.; Li, Z.; Parsons, B.; Qiu, Q.; McDougall, A.; Walters, R. J.; Weiss, J. R.; Ziebart, M.

    2017-12-01

    The Sentinel-1 constellation represents a major advance in our ability to monitor our planet's hazardous tectonic and volcanic zones. Here we present the latest progress from COMET (*), where we are now providing deformation results to the community for volcanoes and the tectonic belts (**). COMET now responds routinely to most significant continental earthquakes - Sentinel-1 allows us to do this within a few days for most earthquakes. For example, after the M7.8 Kaikoura (New Zealand) earthquake we supplied a processed interferogram to the community just 5 hours and 37 minutes after the Sentinel-1 acquisition. By the end of 2017, we will be producing interferogram products systematically for all earthquakes larger than M 6.0. For deformation data to be useful for preparedness, we need accuracy on the order of 1 mm/yr or better. This requires mass processing of long time series of radar acquisitions. We are currently (July 2017) processing interferograms systematically for the entire Alpine-Himalayan belt ( 9000 x 2000 km) using our LiCSAR chain, making interferograms and coherence products available to the community. By December 2017, we plan to process a wider tectonic area and the majority of subaerial volcanoes. We currently serve displacement and coherence grids, but plan to provide average deformation rates and time series. Results are available through our dedicated portal (**), and are being linked to the ESA G-TEP and EPOS during 2017. We will show the latest results for tectonics and volcanism, and discuss how these can be used to build value-added products, including (i) maps of tectonic strain (ii) maps of seismic hazard (iii) volcano deformation alerts. The accuracy of these products will improve as the number of data products acquired by Sentinel-1 increases, and as the time series lengthen. *http://comet.nerc.ac.uk**http://comet.nerc.ac.uk/COMET-LiCS-portal/

  11. Multi-hazard risk assessment of the Republic of Mauritius

    Science.gov (United States)

    Mysiak, Jaroslav; Galli, Alberto; Amadio, Mattia; Teatini, Chiara

    2013-04-01

    The Republic of Mauritius (ROM) is a small island developing state (SIDS), part of the Mascarene Islands in West Indian Ocean, comprised by Mauritius, Rodrigues, Agalega and St. Brandon islands and several islets. ROM is exposed to many natural hazards notably cyclones, tsunamis, torrential precipitation, landslides, and droughts; and highly vulnerable sea level rise (SLR) driven by human induced climate change. The multihazard risk assessment presented in this paper is aimed at identifying the areas prone to flood, inundation and landslide hazard, and inform the development of strategy for disaster risk reduction (DRR) and climate change adaptation (CCA). Climate risk analysis - a central component of the analysis - is one of the first comprehensive climate modelling studies conducted for the country. Climate change may lift the temperature by 1-2 degree Celsius by 2060-2070, and increase sizably the intensity and frequency of extreme precipitation events. According to the IPCC Forth Assessment Report (AR4), the expected Sea Level Rise (SLR) ranges between 16 and 49 cm. Individually or in combination, the inland flood, coastal inundation and landslide hazards affect large proportion of the country. Sea level rise and the changes in precipitation regimes will amplified existing vulnerabilities and create new ones. The paper outlines an Action plan for Disaster Risk Reduction that takes into account the likely effects of climate change. The Action Plan calls on the government to establish a National Platform for Disaster Risk Reduction as recommended by the Hyogo Framework for Action (HFA) 2005-2015. It consists of nine recommendations which, if put in practice, will significantly reduce the annual damage to natural hazard and produce additional (ancillary) benefits in economic, social and environmental terms.

  12. Benefits Assessment of Two California Hazardous Waste Disposal Facilities (1983)

    Science.gov (United States)

    The purpose of this study was to assess the benefits of RCRA regulations, comparing the results before and after new regulations at two existing hazardous waste sites previously regulated under California state law

  13. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest.

    Science.gov (United States)

    Suh, Jangwon; Kim, Sung-Min; Yi, Huiuk; Choi, Yosoon

    2017-11-27

    In this study, current geographic information system (GIS)-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further.

  14. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest

    Science.gov (United States)

    Kim, Sung-Min; Yi, Huiuk; Choi, Yosoon

    2017-01-01

    In this study, current geographic information system (GIS)-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further. PMID:29186922

  15. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2017-11-01

    Full Text Available In this study, current geographic information system (GIS-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further.

  16. Assessing individual and organizational response to volcanic crisis and unrest at Kīlauea and Mauna Loa volcanoes, Hawai'i

    Science.gov (United States)

    Reeves, Ashleigh; Gregg, Chris; Lindell, Michael; Prater, Carla; Joyner, Timothy; Eggert, Sarah

    2017-04-01

    both written messages and graphic illustrations, placed pressure on HVO to provide information at a faster rate than in previous eruptions. This study aims to improve tools to communicate uncertainty about volcanic activity and organizational and individual response, offering clearer and more reliable information to guide civic leaders in issuing appropriate protective action recommendations. A series of interviews and mental model exercises were conducted with local, state, and federal stakeholders to understand their needs in volcano crises. Current knowledge of local risk communication and mitigation efforts as well as stakeholders' experiences during the June 27 lava flow crisis were identified. Stakeholders included elected officials, emergency managers, scientists, and other professionals involved with the crisis— traffic engineers, land use planners, police officers and firefighters. We are also assessing factors that influence household preparedness to implement officials' protective action recommendations, such as evacuation, and their attitudes toward hazard mitigation efforts, such as lava diversion strategies. Collectively, these studies will provide a detailed evaluation of important risk communication and risk management issues at both household and organizational levels and insight about uncertainties that influence the outcome of volcanic crises.

  17. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  18. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  19. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  20. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  1. Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan

    Directory of Open Access Journals (Sweden)

    G. Babayev

    2010-12-01

    Full Text Available A rapid growth of population, intensive civil and industrial building, land and water instabilities (e.g. landslides, significant underground water level fluctuations, and the lack of public awareness regarding seismic hazard contribute to the increase of vulnerability of Baku (the capital city of the Republic of Azerbaijan to earthquakes. In this study, we assess an earthquake risk in the city determined as a convolution of seismic hazard (in terms of the surface peak ground acceleration, PGA, vulnerability (due to building construction fragility, population features, the gross domestic product per capita, and landslide's occurrence, and exposure of infrastructure and critical facilities. The earthquake risk assessment provides useful information to identify the factors influencing the risk. A deterministic seismic hazard for Baku is analysed for four earthquake scenarios: near, far, local, and extreme events. The seismic hazard models demonstrate the level of ground shaking in the city: PGA high values are predicted in the southern coastal and north-eastern parts of the city and in some parts of the downtown. The PGA attains its maximal values for the local and extreme earthquake scenarios. We show that the quality of buildings and the probability of their damage, the distribution of urban population, exposure, and the pattern of peak ground acceleration contribute to the seismic risk, meanwhile the vulnerability factors play a more prominent role for all earthquake scenarios. Our results can allow elaborating strategic countermeasure plans for the earthquake risk mitigation in the Baku city.

  2. Statistical analysis of the sustained lava dome emplacement and destruction processes at Popocatépetl volcano, Central México

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; Gómez-Vázquez, Ángel; De la Cruz-Reyna, Servando

    2017-06-01

    Popocatépetl volcano reawakened in 1994 after nearly 70 years of quiescence. Between 1996 and 2015, a succession of at least 38 lava domes have been irregularly emplaced and destroyed, with each dome reaching particular volumes at specific emplacement rates. The complexity of this sequence is analyzed using statistical methods in an attempt to gain insight into the physics and dynamics of the lava dome emplacement and destruction process and to objectively assess the hazards related to that volcano. The time series of emplacements, dome residences, lava effusion lulls, and emplaced dome volumes and thicknesses are modeled using the simple exponential and Weibull distributions, the compound non-homogeneous generalized Pareto-Poisson process (NHPPP), and the mixture of exponentials distribution (MOED). The statistical analysis reveals that the sequence of dome emplacements is a non-stationary, self-regulating process most likely controlled by the balance between buoyancy-driven magma ascent and volatile exsolution crystallization. This balance has supported the sustained effusive activity for decades and may persist for an undetermined amount of time. However, the eruptive history of Popocatépetl includes major Plinian phases that may have resulted from a breach in that balance. Certain criteria to recognize such breaching conditions are inferred from this statistical analysis.

  3. Integrated Risk Assessment to Natural Hazards in Motozintla, Chiapas, Mexico

    Science.gov (United States)

    Novelo-Casanova, D. A.

    2012-12-01

    An integrated risk assessment includes the analysis of all components of individual constituents of risk such as baseline study, hazard identification and categorization, hazard exposure, and vulnerability. Vulnerability refers to the inability of people, organizations, and societies to withstand adverse impacts from multiple stressors to which they are exposed. These impacts are due to characteristics inherent in social interactions, institutions, and systems of cultural values. Thus, social vulnerability is a pre-existing condition that affects a society's ability to prepare for and recover from a disruptive event. Risk is the probability of a loss, and this loss depends on three elements: hazard, exposure, and vulnerability. Thus, risk is the estimated impact that a hazard event would have on people, services, facilities, structures and assets in a community. In this work we assess the risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37N, 92.25W) with a population of about 20 000 habitants. Due to its geographical and geological location, this community is continuously exposed to many different natural hazards (earthquakes, landslides, volcanic eruptions, and floods). To determine the level of exposure of the community to natural hazards, we developed integrated studies and analysis of seismic microzonation, landslide and flood susceptibility as well as volcanic impact using standard methodologies. Social vulnerability was quantified from data obtained from local families interviews. Five variables were considered: household structure quality and design, availability of basic public services, family economic conditions, existing family plans for disaster preparedness, and risk perception.The number of families surveyed was determined considering a sample statistically significant. The families that were interviewed were selected using the simple random sampling technique with replacement. With these

  4. Assessment of fire hazards in buildings housing fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.; Lipska, A.

    1978-01-01

    A number of materials in and within the proximity of buildings housing fusion energy experiments (FEE) were analyzed for their potential fire hazard. The materials used in this study were mostly: electrical and thermal insulations. The fire hazard of these materials was assessed in terms of their ease of ignition, heat release rate, generation of smoke, and the effect of thermal environment on the combustion behavior. Several fire protection measures for buildings housing the (FEE) projects are analyzed and as a result of this study are found to be adequate for the near term

  5. Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios

    Science.gov (United States)

    Harbitz, C. B.; Glimsdal, S.; Bazin, S.; Zamora, N.; Løvholt, F.; Bungum, H.; Smebye, H.; Gauer, P.; Kjekstad, O.

    2012-04-01

    The present study documents a high tsunami hazard in the Caribbean region, with several thousands of lives lost in tsunamis and associated earthquakes since the XIXth century. Since then, the coastal population of the Caribbean and the Central West Atlantic region has grown significantly and is still growing. Understanding this hazard is therefore essential for the development of efficient mitigation measures. To this end, we report a regional tsunami exposure assessment based on potential and credible seismic and non-seismic tsunamigenic sources. Regional tsunami databases have been compiled and reviewed, and on this basis five main scenarios have been selected to estimate the exposure. The scenarios comprise two Mw8 earthquake tsunamis (north of Hispaniola and east of Lesser Antilles), two subaerial/submarine volcano flank collapse tsunamis (Montserrat and Saint Lucia), and one tsunami resulting from a landslide on the flanks of the Kick'em Jenny submarine volcano (north of Grenada). Offshore tsunami water surface elevations as well as maximum water level distributions along the shore lines are computed and discussed for each of the scenarios. The number of exposed people has been estimated in each case, together with a summary of the tsunami exposure for the earthquake and the landslide tsunami scenarios. For the earthquake scenarios, the highest tsunami exposure relative to the population is found for Guadeloupe (6.5%) and Antigua (7.5%), while Saint Lucia (4.5%) and Antigua (5%) have been found to have the highest tsunami exposure relative to the population for the landslide scenarios. Such high exposure levels clearly warrant more attention on dedicated mitigation measures in the Caribbean region.

  6. Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    Science.gov (United States)

    Harp, A. G.; Valentine, G. A.

    2018-02-01

    Mafic flank eruptions are common events that pose a serious hazard to the communities and infrastructure often encroaching on the slopes of stratovolcanoes. Flank vent locations are dictated by the propagation path of their feeder dikes. The dikes are commonly thought to propagate either laterally from the central conduit or vertically from a deeper source. However, these interpretations are often based on indirect measurements, such as surface deformation and seismicity at active systems, and several studies at eroded volcanoes indicate the propagation paths may be more complex. We investigated the Oligocene age Summer Coon volcano (Colorado, USA), where erosion has exposed over 700 basaltic-andesitic radial dikes, to constrain the propagation directions, geometries, and spatial distributions of mafic dikes within a stratovolcano. The mean fabric angle of aligned plagioclase crystals was measured in oriented samples from the margins of 77 dikes. Of the 41 dikes with statistically significant flow fabrics, 85% had fabric angles that were inclined—plunging both inward and outward relative to the center of the volcano. After comparing fabric angles to those reported in other studies, we infer that, while most of the dikes with outward-plunging fabrics descended toward the flanks from a source within the edifice and near its axis, dikes with inward-plunging fabrics ascended through the edifice and toward the flanks from a deeper source. A possible control for the inclination of ascending dikes was the ratio between magma overpressure and the normal stress in the host rock. While higher ratios led to high-angle propagation, lower ratios resulted in inclined emplacement. Dikes crop out in higher frequencies within a zone surrounding the volcano axis at 2500 m radial distance from the center and may be the result of ascending dikes, emplaced at similar propagation angles, intersecting the current level of exposure at common distances from the volcano axis. The process

  7. Hazard classification or risk assessment

    DEFF Research Database (Denmark)

    Hass, Ulla

    2013-01-01

    The EU classification of substances for e.g. reproductive toxicants is hazard based and does not to address the risk suchsubstances may pose through normal, or extreme, use. Such hazard classification complies with the consumer's right to know. It is also an incentive to careful use and storage...

  8. Landslide hazard in Bukavu (DR Congo): a geomorphological assessment in a data-poor context

    Science.gov (United States)

    Dewitte, Olivier; Mugaruka Bibentyo, Toussaint; Kulimushi Matabaro, Sylvain; Balegamire, Clarisse; Basimike, Joseph; Delvaux, Damien; Dille, Antoine; Ganza Bamulezi, Gloire; Jacobs, Liesbet; Michellier, Caroline; Monsieurs, Elise; Mugisho Birhenjira, Espoir; Nshokano, Jean-Robert; Nzolang, Charles; Kervyn, François

    2017-04-01

    Many cities in the Global South are known for facing an important increase in their population size. Many of them are then struggling with the sprawl of new settlements and very often urban planning and sustainable management policies are limited, if not non-existent. When those cities are set in landslide-prone environments, this situation is even more problematic. Despite these environmental constrains, landslide hazard assessments relevant for landscape planning remain rare. The objective of this research is to assess the landslide hazard in Bukavu, a city in DR Congo that is facing such a situation. We used a geomorphological approach (adapted from Cardinali et al., 2002) taking into account the data-poor context and the impact of anthropogenic activities. First, we built a multi-temporal historical inventory for a period of 60 years. A total of 151 landslides were mapped (largest landslide 1.5 km2). Their cumulative areas cover 29% of the urban territory and several types of processes are identified. Changes in the distribution and pattern of landslides allowed then to infer the possible evolution of the slopes, the most probable type of failures, and their expected frequency of occurrence and intensity. Despite this comprehensive inventory, hazard linked to the occurrence of new large deep-seated slides cannot be assessed due a scarcity of reliable data on the environmental factors controlling their occurrence. In addition, age estimation of the occurrence of some of the largest landslides refers to periods at the beginning of the Holocene where climatic and seismic conditions were probably different. Therefore, based on the inventory, we propose four hazard scenarios that coincide with today's environment. Hazard assessment was done for (1) reactivation of deep-seated slides, (2) occurrence of new small shallow slides, (3) rock falls, and (4) movements within existing landslides. Based on these assessments, we produced four hazard maps that indicate the

  9. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  10. Generic framework for meso-scale assessment of climate change hazards in coastal environments

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl

    2013-01-01

    coastal environments worldwide through a specially designed coastal classification system containing 113 generic coastal types. The framework provides information on the degree to which key climate change hazards are inherent in a particular coastal environment, and covers the hazards of ecosystem......This paper presents a generic framework for assessing inherent climate change hazards in coastal environments through a combined coastal classification and hazard evaluation system. The framework is developed to be used at scales relevant for regional and national planning and aims to cover all...... and computing requirements, allowing for application in developing country settings. It is presented as a graphical tool—the Coastal Hazard Wheel—to ease its application for planning purposes....

  11. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  12. The hostel or the warehouse? Spatiotemporal exposure assessment for natural hazards

    Science.gov (United States)

    Fuchs, S.; Keiler, M.; Zischg, A.

    2015-04-01

    A spatially explicit object-based temporal assessment of buildings and citizens exposed to natural hazards in Austria is presented, including elements at risk to river flooding, torrential flooding, and snow avalanches. It is shown that the repeatedly-stated assumption of increasing losses due to continued population growth and related increase in assets has to be opposed to the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to mountain hazards, commercial buildings as well as buildings used for recreation purpose are considerably exposed to river flooding. Residential buildings have shown an average exposure, compared to the amount of buildings of this type in the overall building stock. In sum, around 5% of all buildings are exposed to mountain hazards, and around 9% to river flooding, with around 1% of the buildings stock being multi-exposed. It is shown that the dynamics of elements at risk exposed have a time lag once land use regulations are enforced, and it is concluded that an object-based assessment has clear advantages compared to the assessment using aggregated land use data.

  13. Application of a new methodology for coastal multi-hazard-assessment and management on the state of Karnataka, India

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrom, Thomas

    2015-01-01

    This paper presents the application of a new Methodology for coastal multi-hazard assessment & management under a changing global climate on the state of Karnataka, India. The recently published methodology termed the Coastal Hazard Wheel (CHW) is designed for local, regional and national hazard...... at a scale relevant for regional planning purposes. It uses a GIS approach to develop regional and sub-regional hazard maps as well as to produce relevant hazard risk data, and includes a discussion of uncertainties, limitations and management perspectives. The hazard assessment shows that 61 percent...

  14. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  15. Environmental Hazards Assessment Program. Quarterly report, July 1994--September 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Environmental Hazards Assessment Program (EHAP) stated in the proposal to DOE are as follows: Development of a holistic, national basis for risk assessment, risk management, and risk communication that recognizes the direct impact of environmental hazards on the health and well-being of all; development of a pool of talented scientist and experts in cleanup activities, especially in human health aspects; identification of needs and development of programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management. This is a progress report of the first quarter of the third year of the grant. It reports progress against these grant objectives and the Program Implementation Plan (published at the end of the first year of the grant)

  16. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    Science.gov (United States)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA -fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano. The Etnean 2001 Mt. Calcarazzi lava-flow event has been selected for model calibration, while validation has been performed by considering the 2002 Linguaglossa and the 1991-93 Valle del Bove events — suitable data for back analysis being available for these recent eruptions. Quantitative evaluation of the simulations, with respect to the real events, has been performed by means of a couple of fitness functions, which consider either the areas affected by the lava flows, or areas and eruption duration. Sensitivity analyses are in progress for thoroughly evaluating the role of parameters, topographic input data, and mesh geometry on model performance; though, preliminary results have already given encouraging responses on model robustness. In order to evaluate lava-flow hazard in the study area, a regular grid of n.340 possible vents, uniformly covering the study area and located at 500 m intervals, has been hypothesised. For each vent, a statistically-significant number of simulations has been planned, by adopting combinations of durations, lava volumes, and effusion-rate functions, selected by considering available volcanological data. Performed simulations have been stored in a GIS environment for successive analyses and map elaboration. Probabilities of activation, empirically based on past behaviour of the volcano, can be assigned to each vent of the grid, by

  17. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  18. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  19. Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards

    Science.gov (United States)

    Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn

    2018-05-01

    The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name

  20. Tsunami hazard assessment on nuclear power plant site evaluation accordance on DS 417

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    Nuclear power plant site evaluation should conduct the hazard evaluation on tsunami. Global climate changes and particularly extreme meteorology and hydrology phenomena have an impact on the structure, systems and important components related to safety. Therefore, IAEA makes efforts to revise the IAEA Safety Standard Series NS-G 3.4, Meteorological Events in Site Evaluation for Nuclear Power Plants and IAEA safety standard series NS-G 3.5 Flood Hazard For Nuclear Power Plants On Coastal And River Sites, in order to provide protection against the public and the environment safety due to operation of nuclear power plants. There are two methods used in assessing tsunami hazard, probabilistic and deterministic methods. In the tsunami hazard assessment, some necessary information and data should be obtained to determine the basic design of tsunami hazard during designing nuclear power plants, especially the cooling system design. Flooding caused tsunami must be evaluated to determine the site protection system. Furthermore, There must be an evaluation on either coincident event or meteorological simultaneously tsunami event that caused the worst effect on the site. Therefore, the protection of the site from extreme tsunami can be planned. (author)